CERN – EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CLIC - Note - 1137

KLYC. THE 1D/1.5D LARGE SIGNAL COMPUTER CODE FOR THE KLYSTRON SIMULATIONS. USER MANUAL.

Jinchi Cai, Igor Syratchev

European Organization for Nuclear Research, Geneva, Switzerland

Abstract

Almost all the accurate and efficient 2D large-signal codes for the klystron simulations are proprietary and are not freely available to the wide klystron community. The klystron code KlyC1D/1.5D has been developed at CERN recently, as an attempt to bridge the gap between the fast, but approximate 1D models and the time/resource consuming PIC codes. Here the notation 1D/1.5D is related to the fact that in KlyC one can choose between a 1D or 2D map of the electric field (RF cavities and space charge), whilst the particle motion is one-dimensional. KlyC is available in the public domain. This manual should help the users to start with KlyC simulations.

Geneva, Switzerland 24 October 2018

Introduction

A number of computer codes for the klystrons simulations have been developed in the past. These codes can be split into three categories depending on the complexity, completeness of the model and computational techniques being used. 1D codes like AJDisk, and KlypWin operate in an idealized environment, where parameters of the RF cavities and space charge forces do not depend on the transverse position of an individual electron trajectory. 2D large-signal codes like TESLA, Klys2D and FCI account for all radial effects in the presence of an arbitrary solenoidal magnetic field. To economize on computation time, these codes use different approximations or external simulations of the electric field in RF cavities and drift tubes areas. Particle-In-Cell (PIC) codes like MAGIC2D/3D and CST/3D provide complete and self-consistent field solutions using fine discretization in space and time throughout the entire device. Unfortunately, the accurate and efficient 2D large-signal codes are proprietary and are not freely available to the wide klystron community. The klystron code KlyC1D/1.5D has been developed at CERN recently, as an attempt to bridge the gap between the fast, but approximate 1D models and the time/resource consuming PIC codes. Here the notation 1D/1.5D is related to the fact that KlyC can choose between a 1D or 2D map of the electric field, whilst the particle motion is one-dimensional.

The KlyC computational algorithm is organized in such a way that the interaction between the electric field of the RF cavities, the space charge field and the longitudinal particles movement are self-consistent. During the first iteration, the electron beam will be modulated in the input cavity and propagate along the tube without taking the space charge forces and the RF cavities electric field into account. During the next iteration, the obtained longitudinal charge density modulation will generate initial distribution of the space charge field, excite the electric field in the cavities and the drift tubes, which in turn will affect the beam dynamic. Such a process will be repeated until the gap voltage in the output cavity is converged, providing specified residual difference between the two last iterations.

In KlyC/1D charged particles are represented by the disks. In KlyC/1.5D, the set of rings with different radii form the equivalent array of charged particles at the emission plane. The rings radial spacing is equidistant and each ring has an identical charge density, so that for the given beam radius, current in each ring will depend on the number of rings and its radial position. Through the propagation along the tube, each ring will preserve its radial position. The communication between the rings comes from the common RF field in the cavities and drifts to which they contribute individually.

KlyC is available in the public Domain. To receive the access to the code and installation instructions, please contact to the developers directly via emails: <u>Jinchi.Cai@cern.ch</u>; <u>Igor. Syratchev@cern.ch</u>.

Content:

- 1. Getting started
- 2. RF cavities and Klystron layout
- 3. Model discretization settings
- 4. Plot settings
- 5. Start simulation
- 6. KlyC output graphics, animations and data
- 7. Bunched beam as a power source
- 8. KlyC internal optimizer(s) module
- 9. The batched jobs
- **10.** Appendix I (E-field import from the other codes)

1. Getting started

After the KlyC installation into the selected folder, open the folder. The KlyC executable file is located in the 'application' folder. Double click on the file 'KlyC.exe' to start (One can also double click klc file to open KlyC by choosing the default program as 'KlyC.exe'):

Beam Para. eff. optimizer Beam Voltage (KV) 20000 Save Save Save Save <th>Name</th> <th>Date modified</th> <th>Туре</th> <th></th> <th>Name</th> <th></th> <th>Date</th> <th></th> <th>Type</th> <th>Size</th>	Name	Date modified	Туре		Name		Date		Type	Size
Projektedon 00/11/201714/23 File folder Provinstal 27/09/201715/25 File folder Vision 27/09/201715/57 File folder Winstal 24/08/201715/57 File folder KlyC.exe 09/11/201714:12 Application 37,32 KlyC GUI window will be opened: New Deam Voltage (kV) 20:000 Beam Voltage (kV) 20:000 Beam Voltage (kV) 20:000 Outer Radius (mm) 3:000 Iner Radius (mm) 0:000 Save as Simulation results summary Beam Number 1:000 Ver Ramp 10 e.c. e.c. 1 Beam Number 1:000 Iteration Relaxation 0:000 Iteration Relaxation 0:000 <td></td> <td></td> <td></td> <td></td> <td>R KI</td> <td>vC BFK.klc</td> <td>28/08/2013</td> <td>10:36</td> <td>KLC File</td> <td>1 KB</td>					R KI	vC BFK.klc	28/08/2013	10:36	KLC File	1 KB
Image: series Image: s						-				1 KB
Wey clear Original Paral Pipercedit										
New Beam Para. eff. optimizer New Beam Voltage (KV) 20.000 Beam Voltage (KV) 20.000 Beam Current (A) 1.000 Outer Radius (mm) 3.000 Inner Radius (mm) 0.000 Tube Radius (mm) 5.000 Beam Number 1 Layer Number 1 Layer Number 1 Stocol of the amplitude of the a	- unition	24,00,2027 20.31	The Forder		SHE K	yc.exe	09/11/201	/ 14:12	Application	37,329 KB
New Beam Para. eff. optimizer Accuracy Setting plot setting Save Beam Voltage (KV) 20.000 Beam Current (A) 1.000 Outer Radius (mm) 3.000 Inner Radius (mm) 0.000 Tube Radius (mm) 5.000 Beam Number 1 Layer Number 1 Layer Number 1 Solo 0.00 mp O degree 0 Y Parameters Type Type Harm Type Harm Type Reflection from (MHz) RQ (D) Max Qain z(mm) Structure Simulation results summary Pout= 0 % Eff.RF= 0 % 0 Beam Number 1 Layer Number 1 Excitation source No No 0 0 Structure Fin (W) Gegree hinor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KlyC GUI window w	ill be open	ed:							
New Deam Voltage (kV) 20,000 Beam Voltage (kV) 20,000 Division Number in RF 128 Inner Radius (mm) 5000 Tube Radius (mm) 5000 Beam Number 1 Layer Number 1 Excitation source Pin (W) Binnulate Excitation source Pin (W) Begree Color 0,000 Ve/c.min= 0 Isonool 150,000 Soloo 00 0,000 Parameters Type Harm				_			_	_		_
Open Beam Current (A) 1.000 Division Number in A_e- 256 Save Outer Radius (mm) 3.000 Division Number in RF 1.28 Save as Inner Radius (mm) 0.000 Max Iterations 50 Simulate Tube Radius (mm) 5.000 Iteration Residual Limit 0.001 Beam Number 1 Excitation source Reflection from output 0 Iso000 gap (mm) 0 degree 0 150.000 160.000 0.000 Reflected electrons No Topue 0 min VP Harm T0p (MHz) R/Q (Q) M Qe Qin z (mm) gap(mm) nose(mm)/Tp L(mm)/MB sigma(S) Ke(m We(J) (x,y,z,Ez)	New Beam Para. eff. o	ptimizer	Accuracy Setting	plot se	tting	Conv. OL	FigOff F	igOn GIF of ▼	txt output	cores 1 🗸
Beam Current (A) 1.000 Division Number in A_e- 256 Save Outer Radius (mm) 3.000 Division Number in RF 128 Save as Inner Radius (mm) 0.000 Max Iterations 50 Simulate Tube Radius (mm) 5.000 Iteration Residual Limit 0.001 Beam Number 1 Excitation source 0 IJ1/J0].i= 0 IJ1/J0].o= 0 Wer Ramp 10 Layer Number 1 Excitation source ISuccessful Iteration No pha.s= 0 Reflected electrons No Tcpuie 0 min Imin 21 5000.00 amp 0 degree chirp 150.000 Isourcessful Iteration No Tcpuie 0 min Imin	Beam Voltage (kV)	20.000	Space Charge Fie	eld Order	8	Simulation res	ults summary			
Save Outer Radius (mm) 3.000 Division Number in RF 128 Save as Inner Radius (mm) 0.000 Max Iterations 50 Simulate Tube Radius (mm) 0.000 Max Iterations 50 Tube Radius (mm) 5.000 Iteration Residual Limit 0.001 U1/J0[.0= 0 EM Beam Number 1 Excitation Relaxation 0.5 0 0 Ver Ramp 10 Layer Number 1 Excitation source Iscitecessful iteration No pha.s= 0 0 Sou0.00 amp 0 degree 0 0.000 Successful iteration No Tcpuie 0 min< 4	Beam Current (A)	1.000	Division Number i	in λ_e-	256	Pout=	0 kW	Gain=	0 dB	
Save as Inner Radius (mm) 0.000 Max Iterations 50 Re.RE 0 Image: Simulate Tube Radius (mm) 5.000 Iteration Residual Limit 0.001 0.001 0.001 0.001 0 0 Image: Simulate Tube Radius (mm) 5.000 Iteration Residual Limit 0.001 0.011 0.011 0.011/0.02 0	Save Outer Radius (mm)	3.000	Division Number i	in RF	128					
Simulate Tube Radius (mm) 5.000 Iteration Residual Limit 0.001 Beam Number 1 Iteration Relaxation 0.5 Ver Ramp 10 Layer Number 1 Excitation source Isuccessful iteration No pla.s= 0 e C. 1 Reflection from output Pin (W) degree chirp Isuccessful iteration No pla.s= 0 21 5000.00 amp 0 degree 0 0.000 Reflected electrons No Tcpu= 0 min Parameters	Save as Inner Radius (mm)	0.000	Max Iterations		50		-			
Ehr Beam Number 1 Iteration Relaxation 0.5 wer Ramp 10 Layer Number 1 Excitation source 0 Ve/c.min= 0 IGamal= 0 ye C. 1 Reflection from output Pin (W) degree chirp 500.000 Pha.s= 0 0 ye C. 1 Reflection from output 150.000 ✓ 360.000 0.000 Reflected electrons No Tcpu= 0 min / Parameters Type Harm 10(HHz) R/Q (Ω) M Qe Qin z (mm) gap(mm) nose(mm)/Tp Lc(mm)/MB sigma(SI) Rc(m We(J) (x,y,z,Ez)	Simulate Tube Radius (mm)	5.000	Iteration Residual	Limit	0.001					
wer Ramp 10 Layer Number 1 Excitation source Ve/c.min= 0 [Gama]= 0 ye C. 1 Reflection from output Excitation source Pin (W) degree chirp Successful Iteration No pha.s= 0 Reflected electrons No Tcpu= 0 min VParameters Type Harm fD(MHz) R/Q (Ω) M Qe Qin z (mm) gap(mm) nose(mm)/Tp Lc(mm)/MB sigma(SI) Rc(m We(J) (x,y,z,Ez)		1	Iteration Relaxatio	n	0.5	IJ1/J0].i=	-	IJ1/J0].o=		
Reflection from output Pin (W) degree chirp Buccessful iteration No pha.s 0 2) 5000 00 amp 0 degree 0 0 Reflected electrons No Tcpui 0 min Parameters Type Harm fD(MHz) R/Q (Ω) M Qe Qin z (mm) gap(mm) nose(mm)/Tp Lc(mm)/MB sigma(SI) Rc(m We(J) (x,y,z,Ez)			voitation source			ve/c.min=	0	Gama =		
x x <				d	a la la se	Successful it	eration No	pha.s=	0 °	
z) 5000.00 amp 0 degree 0 100.000 w 0.000 / Parameters						Reflected ele	ctrons No	Tcpu=	0 min ∢	•
Type Harm fD(MHz) R/Q (Ω) M Qe Qin z (mm) gap(mm) nose(mm)/Tp Lc(mm)/MB sigma(SI) Rc(m) We(J) (x,y,z,Ez)	z) 5000.00 amp 0 degr	ee 0	150.000	360.000	0.000	richeeted ele				
The second	Parameters									
The second	Type Harm fD(MHz) R/Q (0)	м	Qe (Din	z (mm)	(ap(mm)) r				Ab(I) (Y Y Z EZ)
		00 0.7500	250	10000	0	0	0	0	0 0	1 default
-1 1 5000 100 0.7500 250 10000 50 0 0 0 0 0 1 default	-1 1 5000 1	00 0.7500	250	10000	50	0	0	0	0 0	1 default

As an illustration, we will use next the 5 cavities, low perveance, 2 MW L-band klystron. The tube has been designed using the 'classical' bunching method. First, we specify the operating frequency: **f (MHz) 1000.0**; the input power:

Pin (W); the beam and drift tube parameters:

60.000	
--------	--

Beam Para.	eff. op	timizer
Beam Voltage ((kV)	180.000
Beam Current ((A)	16.000
Outer Radius (r	mm)	6.000
Inner Radius (r	nm)	0.000
Tube Radius (n	nm)	10.000
Beam Number		1

For the klystron simulations, the box located next to the value of the input power shall be checked. In the case of the hollow beam, the 'Inner Radius' of the beam shall be specified as well (0.0 by default).

The KlyC particles emission algorithm is based on the model that uses emission from the metal surface (similar to the one used in the PIC CST/3D). In this case the beam kinetic energy will be fractionally converted into the DC potential of the beam space charge (the effect known as the space charge depression). The amount of converted energy will depends on the beam power, the perveance and the drift tube filling factor (space charge). To enable such an emission mechanism (recommended), the value of the 'Image C' shall be set to -1: If Image C = 0, then the beam parameters table.

In 2D simulations, by default, the current density across the beam cross-section is constant. The user can introduce the radial variation of the beam current density as a linear function by specifying the chirp value: In this case, chirp (α) is defined as: $\alpha = \frac{J(r_{m2}) - J(r_{m1})}{J_0} = \frac{J(r_{m2}) - J(r_{m1})}{I_0 / \pi / (r_{m2}^2 - r_{m1}^2)}$; 0.000

The klystron can be simulated using the option of the not perfectly matched RF load. In this case the normalized amplitude (voltage) and phase of reflection shall be specified in:

Reflectio	n for ou	itput	
amp	0	degree	0

simulations speed by about 30% to 100%,

KlyC supports multi-core processors (up to 4): depending on the case.

Upon completing the simulations, the KlyC can generate multiple graphics, animations and extract the data into text file(s). All these can be enabled by using the corresponding buttons on a panel:

2. RF cavities and klystron layout.

The general cavities parameters and klystron layout can be introduced directly into a cavity parameters table:

Cavity Pa	rameters	6						
Number	Туре	Harm	f0(MHz)	R/Q (Ω)	М	Qe	Qin	z (mm)
1	0	1	1000	182.8959	0.9225	334	1.6428e+04	0
2	1	1	1006	116.9999	0.8930	95000	1.9768e+04	480
3	1	1	1016	102.0570	0.8192	95000	1.9816e+04	1630
4	1	1	1030	123.6318	0.9518	95000	1.6970e+04	2400
5	-1	1	1000	180.3864	0.9325	50	1.4787e+04	2730

The cavities types are as follows: 0 is the input cavity, 1 is the bunching cavities and -1 is the output cavity. If the harmonic cavity is used, the harmonic number of this cavity shall be specified in a third column. The frequency (column 4), the external **Q** factor (column 6) and the cavity position (column 9) have to be defined by the user. In the simulations, KlyC uses 1D/2D maps of electric field in the drift tubes and cavity areas. KlyC suggests few options to generate these maps.

1. Gaussian approximation.

In this case the user has to specify directly each cavity's impedance (R/Q), beam coupling (M) and intrinsic Q factor (Qin). Impedance and beam coupling are defined as:

$$\rho = \left[\int_{-\infty}^{+\infty} \frac{|e_z^*(\mathbf{z})|}{\sqrt{\omega_0 \varepsilon_0}} dz\right]^2, |M| = \left|\frac{\int_{-\infty}^{+\infty} e^{-j\omega_0/v_{e0}z} e_z^*(\mathbf{z}) dz}{\int_{-\infty}^{+\infty} |e_z^*(\mathbf{z})| dz}\right]$$

Following, the longitudinal distribution of the normalized electric field will be reconstructed:

$$e_z^*(z) = k \sqrt{\frac{\rho k_0}{\pi \eta_0}} e^{-k^2 z^2}$$
, $k = \frac{1}{2} \frac{\omega_0 / v_{e0}}{\sqrt{-\ln|M(\omega_0 / v_{e0})|}}$

This electric field distribution holds only the longitudinal variation and is constant across the beam tunnel. This option is similar to the one used in 1D computer code AJDisk.

2. KlyC internal cavity calculator.

The specially developed eigenmode solver is integrated into the KlyC. To facilitate the RF cavities parameters calculation, the KlyC cavity calculator supports three the most common topologies of RF cavities that are used in the

klystrons. In the EM module window, for each cavity, the user has to define three geometrical parameters and specify the conductivity of the material being used:

Gap should be specified as a negative number

Nose should be set equal 0 and Lc=gap.

5 🌲

When the geometry of the given cavity is defined, click on solver and adjust the cavity radius (Rc) to satisfy the cavity

. KlyC will run eigenmode frequency specified in the

cavity parameters table. It will calculate R/Q, beam coupling M and Qin. The calculated values will be automatically updated in the cavity parameters table. The values of R/Q and M over the beam cross-section. If the field map box is checked: If field map KlyC will generate the graphical information about the cavity. The Ez field maps in the 5 cavities simulated by KlyC cavity calculator:

In general, it is not necessary to update the cavities every time using 'update cavity' button. When the klystron simulation is started, KlyC will update all the cavities automatically. In all the cases, the cavity position with respect to the one defined in the cavity parameters table will correspond to the gap center. If the user made a topological mistake during cavity geometry specification, the 'check' indicator (bottom right on the GUI window) will blink yellow.

3. KlyC EM module.

This option allows the user to generate an arbitrary cavity geometry using geometric primitives like lines and circular arcs. We may suggest the users to use Excel to generate the parametric models:

ength	Rdrift	Gap	Rfillet	Lcavity	Rslash	Rcavity	beta		Length	Rdrift	Lcavity	Rcavity	Rounding				
200	15	35		5 100	2	5 110	1.570796		30	4.072	5	10	1				
node	dr,mm	dz, mm		_					mode	dr,mm	dz, mm						
1	0.2	0.2							1	0.1	0.1		Ez kV/mm,	1J stored energ	y, E max=758.85	73kV/mm@2.4mm,10.1mm	
-100	0	0		110	Ez kV/mm, 1J	stored energy, Elmax=64.66	34kV/mm@49.8mm,109.8mm	80	-15	0	0		10	,			
-100	15	0		100	•				-15	4.072	0		9 -		Length		
-22.5	15	-5		90		Length		170	-3.5	4.072	-1						*
-22.5	25	-5		80				- 60	-2.5	5.072	-1						
-22.5	25	11000		70		•			-2.5	10	0		7 -			Lcavity	1
-50	25	11000			Rcavity	Lcavity		- 50	2.5	10	0		6	_			
-50	25	0		60 BJ			1	-40	2.5	5.072	-1	/mum/	5	RCAVITY		Rounding	
-50	110	0		~ 50	·1	\uparrow			3.5	4.072	-1			ý	\bigwedge		
50	110	0		40				- 30	15	4.072	0			_ /		N T	
50	25	0		30	ا			- 20	15	0	0		3				
50	25	11000		20	Rslash		Rfillet		-15	0	0		2			Rdrift	
22.5	25	11000		10		Gap	ğ	10					1			~	
22.5	25	-5		0		•											
22.5	15	-5			00 -80 -60	-40 -20 0 2 z/mm	10 40 60 80 100						-15 -10	-6	0 z /mm	5 10	15
100	15	0															
100	0	0															
-100	0	0															

The area with grey background contains the data that shall be copied (or directly generated) into designated txt file that will be used by KlyC to generate and simulate the cavity. In the first line one shall specify the mode number to be simulated, the mesh step length in z direction and the mesh step length in r direction (mm). The geometry should start and finish with min (z) and min (r) points (bottom left corner). From that position, in a clockwise direction, the geometry nodes (first column 'Z'; second column 'R') and primitive's type (third column) shall be introduced one by one. All dimensions are in mm. The primitive's type at its intersecting point (clockwise) shall be specified as follows: - The straight vertical, or horizontal line: '0'

- The arc: +r or -r. Here r is arc radius, '+' if the arc goes clockwise and '-' if it goes anti-clockwise.

- The tilted line is defined as an arc of a very large (~ x100 of the line length itself) radius.

The file with geometry data shall be saved (created) in the same folder, where the klc project file is located.

To read the geometry file in KlyC, the name of the file without extension shall be typed into the last column (x,y,z, Ez) of the parameters table and in the We(J) column the user shall put negative number (-1). Please check that drift radius in the cavity file is the same as the one specified in the project. **Note**, keep 'default' in (x,y,z, Ez) column if the parameters table and/or the KlyC cavity simulator are used only. Next we used the re-entrant cavity as an example:

Cavity Pa	arameters	s													
Number	Туре	Harm	f0(MHz)	R/Q (Ω)	М	Qe	Qin	z (mm)	gap(mm)	nose(mm)/Tp	Lc(mm)/MB	sigma(SI)	Rc(m	We(J)	(x,y,z,Ez)
1	0	1	5000	100	0.7500	250	10000	0	(0	0	0	0	1	default
2	-1	1	1000	0	0	10000	0	100	(0	0	5800000	0	-1	re_entr_cav

Here (cavity #2) we specify the cavity type, harmonic number, frequency, position and material conductivity (sigma). The cavity geometry name is 'Re-ent_cav' and We(J) = -1. When 'cavity update' button is pressed, the cavity will be simulated:

In the column Rc(mm) KlyC will report on the frequency discrepancy between the simulated value and the one specified in the table: $(F_{sim}-f0)/f0$. The user can tune the frequency by modifying the cavity geometry. To our experience, it is not necessary to tune the frequency difference to be '0', as for simulation KlyC will use the frequency from the table (f0), whilst R/Q, M and Qin are slow varying functions with respect to the cavity frequency.

Even if the cavity simulations could be rather fast (few seconds), they will be repeated at every iteration for every cavity. To avoid this, we recommend to run only few (2-3) iterations with box 'txt output' being checked. The KlyC will save all the Ez field distribution(s) into txt files with names KlyCcavity# (# is a cavity number). Next, one can use

these files (please re-name it, if in use) to import file into the KlyC. In this case, the We(J) value associated with this cavity shall be put to '0':

Cavity Pa	arameter	S														
Number	Туре	Harm	f0(MHz)	R/Q (Ω)	М	Qe	Qin	z (mm)	[gap(mm)	nose(mm)/Tp	Lc(mm)/MB	sigma(SI)	Rc(m	We(J)	(x,y,z,Ez)
1	0	1	5000	100	0.7500	250	10000	0		0	0	0	(0 0	1	default
2	1	1	1000	0	0	10000	0	0		0	0	0	58000000	0 0	0	R_cavity2
3	-1	1	1000	132.4000	0.5739	10000	1.9986e+04	100		0	0	0	5800000	0 -0.1164	-1	Re-entr_cav

The cavity (R_cavity2) now will be simulated using this option:

Cavity Pa	arameter	s													
Number	Туре	Harm	f0(MHz)	R/Q (Ω)	М	Qe	Qin	z (mm)	gap(mm)	nose(mm)/Tp	Lc(mm)/MB	sigma(SI)	Rc(m	We(J)	(x,y,z,Ez)
1	0	1	5000	100	0.7500	250	10000	0	0	0	0	C	0	1	default
2	1	1	1000	132.3941	0.5739	10000	0	0	0	0	0	58000000	0	0	R_cavity2
3	-1	1	1000	132.4000	0.5739	10000	1.9986e+04	100	0	0	0	5800000	-0.1164	-1	Re-entr_cav

The last thing to do, the user shall manually put the Qin value of the simulated cavity to be the same as the one simulated by KlyC EM module.

Note, in **2D** simulations KlyC will save filed information only for the number of radial layers that have been specified. If the different radial layers number will be used in simulations later on, KlyC will interpolate field distribution using the saved field data.

To demonstrate the KlyC EM module performance we choose the re-entrant cavity with rounded noses. In this case we have used the square mesh type (dz=dr) and studied the parameters convergence and simulation time as functions of the model resolution:

As a general impression, KlyC EM module does converge smoothly and needs to be refined further to improve the accuracy. That will lead to very long simulation time. However; as a compromise, the discretization $dr;dz/d\lambda=0.005$ can be recommended (it takes few seconds to simulate on the ordinary laptop). The same cavity has been simulated in CST/3D:

The comparison between the two codes is shown next. The KlyC data is taken for dr; $dz/d\lambda=0.005$

	Frequency. MHz	R/Q, Ohms	М	Qin
CST/3D	801.9	147.6	0.647	19229
KlyC EM module	804.1	146.0	0.643	19337

The 0.2% difference in frequency is observed. However, KlyC uses the user defined frequency for simulations, so that these results can be used as an information about the KlyC EM convergence accuracy. The R/Q, M and Qin discrepancies stay within 1%. To our experience, such a difference can affect the tube performance at a level of 0.1%.

4. Filed map import from HFSS and/or CST.

This last option allows the user to design the cavity using eigenmode solvers of HFSS and/or CST. The instructions of how to import the filed maps from these codes into the KlyC are given Appendix I.

3. Model discretization (accuracy) settings.

In the KlyC, the model discretization is controlled by selecting the number of spatial divisions per electronic wavelength (Nz), the number of emitted particles per RF period (Nt) and the number of harmonics to be used in calculations of the space charge field (Ns). Simulations will be completed when the requested iteration residual limit is reached, or the number of iterations exceeds the specified limit. The residual limit is measured using the convergence of the gap voltage in the output cavity. The iterations convergence process can be optimized by adjusting the iteration relaxation parameter (0.5 by default). This parameter controls the weight which will be used by KlyC to account for the result of the given iteration when moving to the consequent one. For every case relaxation parameter can be adjusted (normally <0.5) to minimize the number of iterations (simulation time) to reach the convergent criteria. The model accuracy settings which are recommended for the klystron optimization process are:

4. Plot settings

The output graphics and animations generated by KlyC can be controlled from the plot settings menu:

Accuracy Setting pl	ot setting
Number of trajectories	64
min(ve/c) -0.2 m	nax(ve/c) 1
extension/rc	10
zcut (mm)	-100
zplot (mm)	0
plot arrival function	hold on

The number of trajectories specifies Applegate diagram, it shall be less than 'Division Number in RF'. The velocities limits control the scale of the pictures and animations related to the bunched beam phase diagrams. The 'extension/rc' allows to specify the length (normalized to drift tube radius) of the drift tube after the output cavity. By default, this parameter is set to 2, in order to minimize the simulation time. Parameter 'zcut' specifies the starting position of the plots which are functions of the longitudinal coordinate. The applications of parameter 'zplot', 'plot arrival function' button and 'hold on' box are explained later in the text.

5. Starting simulations.

Before running the simulations, the user can select between two regimes using **GS C E M GS** mode is recommended when the cavities parameters have been defined in the cavity parameters table. In this case the 1D cavities filed maps will be generated and used in simulations. **EM** mode shall be chosen if cavities are designed using KlyC cavity calculator/EM module, or when the electric field is imported from the other eigenmode solvers. In this case the 2D cavities filed maps will be generated and used in simulations.

The user can choose between 1D and 2D simulations by specifying the If Layer Number =1, the 1D simulations will be executed. If Layer

(recommended 4, at least), the 2D simulations will be done. If 2D option is chosen, the space charge simulations will be done in 2D, independently of the simulation regime GS/EM.

Number

>1

The results of the simulations will be saved into txt file if the box 'txt output' is checked:

Now the project is fully prepared for 2D/EM simulation. It is recommended to save each project in the dedicated folder, where all the files generated by KlyC will be located after the simulation is finished. When saved, the project_name.klc file will be created. Next time, the KlyC can be started by clicking on the existing *.klc file in the folder.

Open Save Save as Simulate	Beam Current (A) 16.000 Outer Radius (mm) 6.000 Inner Radius (mm) 0.000		rin k e		infutation results s	ummary						Ø
Save as	Outer Radius (mm) 6.000			256								
		 Division Number 	r in RF	128	Pout=	0 K		0	1, 210		ohi(d.)/E kV/mm	
				100	Eff.RF=	0 9		0	%	0	0	
	Tube Radius (mm) 10.000		al Limit	0.0001	Re.RF=	0	Re.El=	0		0	0	
Sillulate		Iteration Relaxat		0.5	IJ1/J0 .i=	0	IJ1/J0 .o=	0		0	0	
GS EM	Beam Number			0.5	ve/c.min=	0	Gama =	0		0	0	
Power Ramp 6	Layer Number	4 Excitation source			Successful iteratio	n No	pha.s=	0	•			
Image C. 1	Reflection for output	Pin (W)	degree	chirp			Tcpu=	0	min			
(MHz) 1000.00(amp 0 degree 0	60.000	360.000	0.000	Reflected electron	s No	icpu-	U				
umber Type Harm	1 f0(MHz) R/Q (Ω) 1 1000 182.8959	M Qe 0.9225 334	Qin 1.6428e+04	z (mm)	gap(mm) no 36,5000	se(mm)/Tp 9.4000	Lc(mm)/MB	sigma(SI) Ro		e(J)	(x,y,z,Ez) default	
2 1		0.9220 554	1.04208704	U		9,40001	102					
	1 1006 116,9999	0.8930 95000	1.9768e+04	480		14 1000	69			1		
3 1	1 1006 116.9999 1 1016 102.0570	0.8930 95000 0.8192 95000		480 1630	46.2000 63.9000	14.1000 0	69 63.9000	58000000 10 58000000 11	6.4	1	default default	check
		0.8192 95000 0.9518 95000	1.9816e+04		46.2000			58000000 10	06.4 3.0 .8979	1	default	check

It is strongly recommended to check the convergence on line box: \square . In this case the iterations progress window will pop up and will allow to monitor the simulation process. If there is need to terminate simulation, it can

be done by closing the convergence history window. When simulation is finished, the 'Running' indicator will turn red.

6. KlyC output graphics, animations and data.

If requested, upon completion the simulation, KlyC will generate multiple graphics and animations. The animations are generated as gif files and stored in the project folder.

To generate **arrival functions** (time and velocity), the 'hold on' box in the plot setting menu needs to be checked before simulations have been started. Next, the position (zplot) at which the arrival functions will be calculated shall be specified. Finally the arrival function plots will be generated after clicking on 'plot arrival function'. If this operations is repeated for the different zplot value, the new curves will be added to the pictures. The curves will be saved into data files (with value of zplot in the file name) if 'txt output' box is checked.

Note, these calculations require storing a lot of data in a computer memory. That is why, one may consider to use this option if only necessary. The memory cash can be emptied at any time by clicking on

Simulation results summary Pout= 2067 kW Gain= 45.37 dB Vg(kV) phi(d.)/E kV/mm 4.2323 0.1994 71.77 Eff.RF= 73.35 Eff.BI= % 0.8252 14.3392 Re.RF= 7.154e-05 Re.El= 0.0006139 33.1952 0.8701 2.3890 IJ1/J0].i= IJ1/J0|.o= 43.4965 1.202 1.769 10.1475 194.9578 ve/c.min= -0.07811 |Gama|= 0.6236 45.28 pha.s= Successful iteratio Yes Tcpu= 15.07 min Reflected electrons No

The results of simulations are collected in the 'Simulation results summary' table:

The KlyC calculates the RF power production efficiency using the two methods. The first method (Eff.RF) is based on the direct measurement of the output cavity gap voltage. In the second method (Eff.Bl) the beam power balance is used. Here, the total lost power is calculated as a sum of the spent beam kinetic energy, DC/RF energy of the space charge field in the spent beam and the Ohmic losses in all the klystron cavities. With increasing the model resolution (Nz), the Eff.RF will normally converge to the Eff. Bl value. However this might require significant increasing of the computation time. Thus, we recommend to use the efficiency based on the power balance calculations. 'Pout' and 'Gain' in the summary table are calculated using balanced power.

To calculate the power transfer curve in automated regime, check the 'Power ramp' box and select the number of points for the simulation: Power Ramp 6 Next, specify the value of the maximum power to be used: , set the itearations number to be larger than N_points x N_1 (N_1 is anticipated number of iterations needed for single simulation) and start simulation:

In the presence of the reflected electrons, the KlyC will have problems with convergence. These reflected electrons could be virtual: the ones that appear shortly during the iteration process only; or the real ones which will persist. The KlyC indicates two types of abnormalities: **reflected** electrons (colored in yellow during iterations process), those who reached the emission plane and **trapped** electrons (colored in blue), those who stay in the simulation volume for more than 10 RF periods.

If these effects are numerical artefacts (virtual reflected electrons), the user can try to mitigate them by adjusting the value of relaxation parameter and/or changing the number of layers in 2D simulations. Ultimately, the user can specify position of the plane at which the reflected electrons will be absorbed. The position of the absorbing plane is specified in the plot menu using zcut(mm). In the next example, zcut was set to be between the last bunching and the output cavity:

7. Bunched beam as a power source.

ThKlyC allows to simulate RF circuit being excited by the bunched beam. This option can be used for the IOT design, or for the individual studies of special RF output structures in electron devices. The cavity types here will be limited to type '1' and type '-1'. To enable this option, the 'Pin' box shall be unchecked and the KlyC GUI window will be modified:

New	Beam Para. eff. optimizer	Accuracy Setting plot se	tting	Conv. OL FigOf FigOn GIF on 🔻 🗌 txt output cores 2
	Beam Voltage (kV) 180.00	00 Space Charge Field Order	8	Simulation results summary
Open	Beam Current (A) 16.00	Division Number in λ_e-	256	Pout= 0 kW Gain= 0 dB [Vg[(kV) phi(d.)/E kV/mm
Save	Outer Radius (mm) 6.00	00 Division Number in RF	128	Eff.RF= 0 % Eff.Bl= 0 % 0 0
Save as	Inner Radius (mm) 0.00	00 Max Iterations	70	Re.RF= 0 Re.EI= 0 0 C
Simulate	Tube Radius (mm) 10.00	00 Iteration Residual Limit	0.0001	IJ1/J0[.i= 0 IJ1/J0[.o= 0
GS EM	Beam Number	1 Iteration Relaxation	0.3	ve/c.min= 0 Gama = 0
Power Ramp 6	Layer Number	4 Excitation source		nha c=
Image C. 1	Reflection for output	Pin (W) degree	chirp	
f (MHz) 1000.000	amp 0 degree (60.000 120.000	0.000	Reflected electrons No Tcpu= 0 min
Cavity Parameters				
Number Type Harn	n f0(MHz) R/Q (Ω)	M Qe Qin	z (mm)	gap(mm) nose(mm)/Tp Lc(mm)/MB sigma(SI) Rc(m We(J) (x,y,z,Ez)
1 0	1 1000 182.8959	0.9225 334 1.6428e+0		36.5000 9.4000 102 58000000 0 <u>1</u> default
2 -1	1 1000 180.3864	0.9325 50 1.4787e+0	04 100	0 33 9 105 5800000 0 1 default

In the given example we have used the output cavity of the klystron that we have introduced before. Even the parameters of first cavity in the table are not used (colored in dark grey), the user has to specify the cavity position, as it will be used as a position of the emission plane.

The modulated current will be represented by individual bunches with constant charge distribution along the bunch. The bunch separation is defined by the operating frequency and the bunch length is specified by the user in terms of the operating wavelength RF phase by putting this value in 'degree' box.

In addition the user can choose, if the bunch should have velocity dispersion along the bunch length using the 'chirp' value. In this case KlyC will generate congregated bunch, where the velocity of the bunch head is lower than the velocity of the bunch tail. The amplitude of congregation (0<chirp<1) will be used to generate the velocity dispersion:

$$U(t_0) = U_{aver}[1 + chirp \cdot \sin(\omega t - \pi)], 0 < \omega t < 2\pi$$

$$I(t_0) = \frac{I_{aver}}{2\alpha} [\operatorname{sign}(\omega t - \pi + \alpha \pi) - \operatorname{sign}(\omega t - \pi - \alpha \pi)], \alpha = \operatorname{degree}/360^{\circ}$$

The average kinetic energy of the bunched beam is identical the equivalent DC beam kinetic energy specified in the beam parameters table. In the next example we have studied how the RF power extraction efficiency depends on the bunch congregation amplitude:

8. KlyC internal optimizer module.

The internal KlyC optimizer module supports Global and Local optimization routines, which are targeted to maximize the RF power production efficiency. The variable parameters are the cavities frequencies tunings, the cavities positions and the external Q factor of the output cavity. To operate optimizer, however, it is recommended that initial klystron design shall be done manually to the extent, when the user decide that the design is already 'good enough'.

The global optimizer uses a large group of individuals to be evaluated, which is rather time consuming. In this method, each new generation is generated by its parental generation through selection, crossover and mutation operations to ensure the improvement of fitness and diversity. The settings for Global/Local optimization shall defined in the efficiency optimizer window:

Beam Par	a.	eff. optimizer					
deltaf/f			0.0				
delta z /m	nm			20			
seperatio	n		30				
-dQe/Qe	0.2	+dQe	e/Qe	0.2			
eff. LB	0.3	ve/c.	LB	0.1			
Max Ev.	Indivi	dual	30				
start o	opt.	G	lobal	•			

First, the user has to specify the frequency and position variations boundaries (lines 1 and 2). Next, the cavity 'separation/mm' is used to avoid the situation when neighbor cavities come closer than this specified value (line 3). The parameters window to modify the external Q factor can be chosen to be asymmetric (line 4). The tube layout for every case in optimization will be saved (one by one) into project_name_opt.txt file if the simulated efficiency and

the minimal velocity of the electrons in the output cavity area have exceeded the specified values of eff. LB and ve/c LB (line 5).

To select between the two regimes, the user should use the bottom right switch (line 6). For the **Local optimizer** the only one case to start is needed, therefore, the population size (Individual) is not used for this optimizer. Without going into details, the **Max Ev**(olution) shall be set to be large enough (50), so that the user can control the process and abort it manually by closing the optimizer process window if the saturation becomes obvious. For the **Global optimizer**, we recommend that the 'Individual' value shall be large as well (30) and again to abort simulations at any convenience. In the next example we have used the high perveance S-band tube, which was initially designed in 1D using the 'classical' bunching technique (efficiency 45%). Next, the consequent Global and Local optimizations have been applied. After 3 days of optimization, the final tube has reached the efficiency of 67% and RF circuit layout was converted to be consistent with COM (core oscillation method) type klystrons.

9. The batched jobs

On On Off Sweep In the case if the parameters sweep, sensitivity analysis or just a few different tubes need to be simulated in an automated manner, one can use the batched job option. Each project (job) has to have its individual klc input file and all of them have to be placed in the same folder. To start such simulations, first open any of the stored klc projects. Next press on the 'RunAll' button. The batched job toggle will turn 'On'. The jobs will be executed one by one following the files names order. The simulations status is indicated by the progress meter on the instrumentation panel. To interrupt the process one need to switch the toggle to its 'Off' position and the simulations will be aborted when the running case is finished. The short summary of batch simulations will be saved as 'txt' file, where some basic simulation results will be ready for comparison. For each individual simulation, the results can also be saved if 'txt output' box is checked.

Appendix I. Field imported from other eigen solvers

Preparing data from CST:

1. Z direction should be the longitudinal direction and the gap center of the cavity shall be located at (0,0,0). The cavity shall be introduced as an entire 3D object. No symmetry planes shall be used.

							RESUR HISTS	
-	nulation Post Processir	ng View 2D/3D Plot		File	tome Modeling Simu	lation Post Processin	ng View 2D/3D Plot	
Number of Objects		3D Fields in 2D Plane Sectional View	→ Smart Res Scaling Scali	Clar Min	S-Parameter Calculations	nalysis	ne Loss Cylinder A Lo and Q Scan A Lo	nermal Losses prentz Forces
Navigation Tree	× 🖂 cavitybenchm	ark4#		Import		ng	2D/3D Field Post Process	ing
- Components	A CONVOCICIEN			N Import	Result Curve from ASCII File.	cavitybenchm	ark4# 🔀	
in the component 1				Export			ALL STREET, SALES	
asolid3				Plot Da	ita (ASCI).	16662		
solid4				TOUCH	ISTONE	Contraction of the	A & A & T & A & A & A & A & A & A & A &	
···· 💿 solid8			-	Farfield	Source			
solid8_1				Mesh	STL)		A REAL PROPERTY AND INCOME.	
🖶 📆 Groups 🖶 📆 Materials		l		Agilent AD	5			
🐼 Faces		C- T			ADS Component		1 mak	
🗄 🙀 Curves					ADS Co-Simulation			
WCS				WCS				
Wires				- Ancho	r Points			
		1 k		Wires				
				Voxel			(and the second	
Plane Wave					d Bements			
				- Plane	Wave			
	Mode 1 E (pe	ak)		- Farfield				
Ports Excitation Signals	Component:	z		Field S	ources	Mode 1 E (pea	k)	
Field Monitors	3D Maximum [Frequency:	[V/m]: 197.8e+06 1.976764		E Excitat	ion Signals	Component:	2	
Voltage and Current Monitors	Phase:	0		Field N		3D Maximum [V Frequency:	/m]: 197.8e+06	
- Probes	30	Schematic		- Voltage - Voltage	e and Current Monitors	Phase:	1.976764	
Mesh Control Mesh D Results	Parameter List			E Mesh (3D F	Schematic	-
E 2D/3D Results	V Name	Expression	Value	10 Re	ruits	Parameter List	A A A A A A A A A A A A A A A A A A A	Contraction of the local division of the loc
ia⊷iaa Modes ia⊷iaa Mode 1	b	= 146.05	146.05	Des 🖨 😹 20/30 nar 🖶 🎦 Mo		V Name		
in the second se	depth	= 60	60		Mode 1	h	Expression	Value
- be x	gap	= 12.25	12.25		e	depth	= 146.05	146.05
- N Y	Lc	= 36.1788	36.1788	len	X	gap	= 12.25	60
He Z	r1	= 20+3	23	out	He Y	Lc	= 36.1788	12.25
- Per Normal	r2	= 39.934263925815	39.934263925815	out	He Abs	11	= 20+3	36.1788
- be Tangential	rc	= 20	20	rad	Normal	12	= 39.934263925815	23 39.9342
🖲 🔚 h	rm	= 10.82	10.82	rad	Tangential	rc	= 20	20
Surface Current	wth	= 10	10		h h	m	= 10.82	10.82
i ⊡- Energy Density Density Earlields	▼ Parameter List	Result Navigator		100 (B)	Surface Current Energy Density	wth	= 10	10.02

- 2. After the simulation is finished, plot field distribution for the selected mode.
- 3. Export plot data using Plot Data Export module

Export Result Data							
Save II: CSTW Recent Places CSTW Destop ESS: Libraries ESS: Computer ESS: CST ESS: C	yefieldpic.bxt .bxt .bxt .bxt .bxt .bxt .bxt .bxt .bxt .bxt .bxt .bxt	• • • • • • • • • • • • • • • • • • •	Settings for 2D/3D Plot Data Export Number of steps fixed Step width fixed Step width for all directions Dx: 5.49 Dy: 5.49 Dy: 5.49 Dz: 5.49	Cancel Subvolume Help	Subvolume Subvolume Use subvolume Xmin: -49.934 -49.93426392583 Ymin: -49.934 (-49.93426392581) Zmin: -93.025	Xmax: 49.934 49.93426392581 Ymax: 49.934 49.93426392581 49.93426392581	OK OK Cancel Preview Reset
Save as ty	pe: ASCII (*.bd)				Zmin: -83.025 -83.025	Zmax: 83.025 83.025	
Max samples:	Fields in	volume 💌	Value	Description	13.64		

- Choose the name to save to the txt file. Choose the "Field in volume" at the bottom line.
- Choose the region (cubic sub-volume) and output precision (plot mesh) before pressing OK.
- Choose the name to save the txt file. (cavityefieldv1 in this example)

x [mm]	y [mm]	z [mm]	ExRe [V/m]	EyRe [V/m]	EzRe [V/m]	EXIM [V/m]	EyIm [V/m]	EZIM [V/M]
-20	-20	-66	0	0	0	0	0	0
-19 -18	-20 -20	-66 -66	0	0	0	0	0	0
-17	-20 -20	-66 -66	0	0	0	0	0	0
-16 -15	-20	-66	0	0	0	0	ő	ő
-14 -13	-20 -20	-66 -66	0	0	0	0	0	0

The generated data file (see above) shall be modified to be recognized by KlyC:

1. Delete the text header.

2. Remove the columns 4,5,7,8 and 9, so that column 6 will become column 4 (do it in Excel for example). The processed file shall be save into the folder where the project is located.

In the CST eigenmode solver, the stored energy for any resonant mode is normalized to 1J by default. If one will use some other method to generate filed distribution, the stored energy of resonant shall be calculated.

Put the name of the text file (without extension) with modified filed distribution in the last column of the cavities parameter table (x,y,z,Ez) at a position of selected cavity and specify the value of stored energy (in joules) in the We(J) column. Run the 'update cavity' to see if the import was successful and KlyC has calculated R/Q and M of the cavity. Use the value of Qin simulated in the CST in the cavity parameters table.

Cavitye	fieldv1.txt -	Notepad				
File Edit	Format	View	Help			
-10 -9 -7 -6 -5 -4 -3	-19 -19 -19 -19 -19 -19 -19 -19 -19	-66 -66 -66 -66 -66 -66 -66	0 0 0 0 2421.04 7918.65 8089.82			
-2 -1 0 1 2 3 4 5 6 7 8 9 10	-19 -19 -19 -19 -19 -19 -19 -19 -19 -19	-66 -66 -66 -66 -66 -66 -66 -66 -66 -66	9290.88 12181.9 14896.3 12181.9 9290.88 8089.82 7918.65 2421.04 0 0 0 0 0 0	We(J) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(x,y,z,Ez) default default default cavityefieldv1 default default	check

Preparing data from HFSS

1. Generate the volume E-field plot of the chosen mode.

Trais calcular

() Rida (Messayan) (주, Hela Program 사업) (1043) 사업 (10 월 40) (무 5, 11/05/2017 다

2. Choose the calculator in the post-processing menu.

- 2. Vector_E shall be copied to the stack before activating Export button.
- 3. Export field data by selecting a specific cubic region as shown above.
- 4. Change the type of exported data file to .txt and open it:

cavtyeleidv2.bt						
1 Grid Output Min: [-20mm -66.125mm] Max: [20mm 66.125mm] Grid Size: [1mm 1mm]	_					
2 X, Y, Z, Vector data "Vector_E"						
3 -2.000000000000000000000000000000000000	File	Home Inser		ulas Data	Review	
+ -2.000000000000000000000000000000000000	File		Page Layout Form	iulas Data	Review	View PDF-XC
5 -2.000000000000000000000000000000000000	alla y	🕺 🔏 Cut	Calibri + 11 +	A* A* = -		Wrap Text
2.000000000000000000000000000000000000		Be Conv. T				
2.00000000000000-002 -2.0000000000000	Paste	🕈 Format Painter	в х ц - 🖂 - 🥭	- 🗛 - 🛛 🚍 🗟	s == 1 == 7	Merge & Ce
9 -2.000000000000000000000000000000000000			Font			ianment
10 -2.00000000000000000000000000000000000		Clipboard rs	Font	191	Ali	gnment
11 -2.000000000000000000000000000000000000	F5	- I ×	~ fr			
12 -2.00000000000000000000000000000000000	10		~ J*			
13 -2.000000000000000000000000000000000000	- 4	A	В	6	с	D
14 -2.000000000000000000000000000000000000	1	-2.000000E+01	-2.000000E+	-6.0	5125000E+01	Nan
15 -2.000000000000000000000000000000000000	2	-2.000000E+01	-2.000000E+		5125000E+01	
18 -2.0000000000000000=002 -2.000000000000000000000000000000000	3	-2.000000E+01	-2.000000E+		125000E+01	
17 -2.000000000000000000000000000000000000	4	-2.000000E+01	-2.000000E+		125000E+01	
11 -2.0000000000000000-002 -2.000000000000	5	-2.0000000E+01	-2.0000000E+		2125000E+01	
13 -2.000000000000000000-002 -2.0000000000	6	-2.0000000E+01				
2 - 2.000000000000000-002 - 2.0000000000	7	-2.000000E+01	-2.000000E+		L125000E+01	
22 -2.0000000000000000e-002 -2.00000000000000000000000000000000			-2.000000E+		0125000E+01	
-2.000000000000000e-002 -2.0000000000000000e-002 -4.612499999999990e-002 Man Man	8	-2.000000E+01	-2.000000E+		9125000E+01	
-2.000000000000000000000000000000000000	9	-2.000000E+01	-2.000000E+		3125000E+01	
25 -2.0000000000000000e-002 -2.00000000000000000000000000000000	10	-2.000000E+01	-2.000000E+	-5.7	7125000E+01	Nan
26 -2.000000000000000000000000000000000000	11	-2.000000E+01	-2.000000E+	J1 -5.€	5125000E+01	Nan
-2.000000000000000000000000000000000000	12	-2.000000E+01	-2.000000E+		5125000E+01	
-2.000000000000000000000000000000000000	13	-2.000000E+01	-2.000000E+		125000E+01	
9 -2.000000000000000000000000000000000000	14	-2.0000000E+01	-2.000000E+		125000E+01	
-2.000000000000000000000000000000000000	15	-2.000000E+01	-2.000000EH		2125000E+01	
1 -2.000000000000000000000000000000000000	15	-2.000000E+01	-2.000000E+		125000E+01	
2 -2.00000000000000000000000000000000000						
3 -2.000000000000000000000000000000000000	17	-2.000000E+01	-2.000000E+		0125000E+01	
-2.00000000000000000-002 -2.000000000000	18	-2.000000E+01	-2.000000E+		125000E+01	
5 -2.000000000000000000000000000000000000	19	-2.000000E+01	-2.000000E+		3125000E+01	. Nan
6 -2.000000000000000000000000000000000000	20	-2.000000E+01	-2.000000E+	-4.7	7125000E+01	. Nan
-2.000000000000000000000000000000000000	21	-2.000000E+01	-2.000000E+	-4.6	5125000E+01	Nan
5 -2.0000000000000000-002 -2.000000000000	22	-2.000000E+01	-2.000000E+	-4.5	5125000E+01	Nan
9 -2.000000000000000000000-002 -2.0000000000	23	-2.000000E+01	-2.000000E+	-4.4	125000E+01	Nan
0 -2.00000000000000000000000000000000000	24	-2.000000E+01	-2.000000E+		3125000E+01	
12 -2.0000000000000000000-002 -2.0000000000	25	-2.0000000E+01	-2.000000EH		2125000E+01	
2 -200000000000000000000000000000000000	26					
2.00000000000000000000000000000000000		-2.000000E+01	-2.000000E+		1125000E+01	
-2.000000000000000=002 -2.00000000000000=02 -2.41250000000001e=02 Nan Nan Nan	27	-2.000000E+01	-2.000000E+		0125000E+01	
6 -2.0000000000000000-002 -2.000000000000	28	-2.000000E+01	-2.000000E+		9125000E+01	
7 -2.000000000000000000000000000000000000	29	-2.000000E+01	-2.000000E+		3125000E+01	
8 -2.000000000000000000000000000000000000	30	-2.000000E+01	-2.000000E+	-3.7	7125000E+01	. Nan
9 -2.000000000000000000000000000000000000	31	-2.000000E+01	-2.000000E+	-3.€	5125000E+01	Nan
-2.000000000000000000000000000000000000	32	-2.000000E+01	-2.000000E+4	-3.5	5125000E+01	Nan
-2.000000000000000000000000000000000000	33	-2.000000E+01	-2.000000E+	-3.4	125000E+01	Nan
2 -2.0000000000000000 -002 -2.0000000000	34	-2.000000E+01	-2.000000E+		125000E+01	
3 -2.0000000000000000-002 -2.000000000000	35	-2.000000E+01	-2.000000E+		2125000E+01	
4 -2.000000000000000000000000000000000000	36	-2.0000000E+01	-2.000000E+		125000E+01	
-2.000000000000000000000000000000000000	37	-2.0000000E+01	-2.000000EH		125000E+01	
-2.000000000000000000000000000000000000	38	-2.000000E+01	-2.000000E+		9125000E+01	
-2.000000000000000000000000000000000000	39	-2.000000E+01	-2.000000E+		3125000E+01	
-2.00000000000000-02 -2.00000000000000-02 -1.512000000000012e-03 1.425535853353525007 1.56555459527985e-07 -1.65751292097740168e-07	40	-2.000000E+01	-2.000000E+		7125000E+01	
-2.000000000000000000-02 -2.000000000000	41	-2.000000E+01	-2.000000E+		5125000E+01	
-2.000000000000000000000000000000000000	42	-2.000000E+01	-2.000000E+	-2.5	5125000E+01	Nan
-2.000000000000000000000000000000000000	43	-2.000000E+01	-2.000000E+	01 -2.4	125000E+01	Nan
-2.000000000000000000000000000000000000	44	-2.000000E+01	-2.000000E+	-2.3	3125000E+01	Nan
-2.0000000000000000-002 -2.0000000000000	45	-2.000000E+01	-2.000000E+		2125000E+01	
-2.000000000000000000000000000000000000	46	-2.0000000E+01	-2.000000E+		125000E+01	
-2.000000000000000000000000000000000000	47	-2.000000E+01	-2.000000EH		125000E+01	
-2.00000000000000000-002 -2.000000000000	48	-2.0000000E+01	-2.000000E+		125000E+01	
-2.00000000000000000-002 -2.000000000000						
-2.000000000000000000000000000000000000	49	-2.000000E+01	-2.000000E+		3125000E+01	
-2.000000000000000000000000000000000000	50	-2.000000E+01	-2.000000E+		7125000E+01	
2 -2.000000000000000e-002 -2.0000000000000000e-002 2.875000000000026e-003 -7.4519342736209584e+006 -6.2991417415324887e+006 -3.7605688735196769e+007	51	-2.000000E+01	-2.000000E+		5125000E+01	
-2.000000000000000000000000000000000000	52	-2.000000E+01	-2.000000E+		5125000E+01	
-2.000000000000000000000000000000000000	53	-2.000000E+01	-2.000000E+	-1.4	125000E+01	-6.6114620E+0
-2.000000000000000000000000000000000000	54	-2.000000E+01	-2.000000E+		3125000E+01	
6 -2.000000000000000000000000000000000000	55	-2.000000E+01	-2.000000E+		2125000E+01	
-2.00000000000000-02 -2.000000000000-02 7.87499999999991e-03 -1.60952669928981e+007 -1.52469378154630e+07 -2.3734238092013497e+007	56	-2.0000000E+01	-2.000000EH		125000E+01	
8 2-200000000000000000000000000000000000	57	-2.000000E+01	-2.000000EH		1125000E+01	
	-	cavityefi			a south and	an and distillant
-2.000000000000000000e-002 -2.000000000000000000000e-002 1.08749999999999999999990 -1.2159890132788556+007 -1.2278576141776234e+007 -1.2611855474231796e+007		cavityen				
Raw Data		cavityen	Data pro	cessed		

Note, that in HFSS that the geometry is normally specified in m. Next:

1) Delete the text header (the first 2 rows).

244 [2]

- 2) Delete columns 4 and 5, so that Ez(V/m) will become column 4...
- 3) The data in the first 3 columns shall be multiplied by 1000 to convert m into mm.

In the HFSS eigenmode solver, the stored energy for any resonant mode is normalized to 1J by default. Next, follow the same sequence as it was explained above for the CST case.