
Integrated automation for configuration management and
operations in the ATLAS online computing farm

Artem Amirkhanov1, Sergio Ballestrero2, Franco Brasolin3, Haydn du Plessis2, Christo-
pher Jon Lee2, Konstantinos Mitrogeorgos4, Marco Pernigotti5, Arturo Sanchez Pineda6,
Diana Alessandra Scannicchio7,∗, and Matthew Shaun Twomey8

1Budker Institute of Nuclear Physics, Russia
2University of Johannesburg, South Africa
3Istituto Nazionale di Fisica Nucleare Sezione di Bologna, Italy
4Aristotle University of Thessaloniki, Greece
5CERN, Switzerland
6INFN Gruppo Collegato di Udine and Università di Udine, Italy
7University of California Irvine, United States of America
8University of Washington, United States of America

Abstract. The online farm of the ATLAS experiment at the LHC, consisting of
nearly 4000 PCs with various characteristics, provides configuration and con-
trol of the detector and performs the collection, processing, selection, and con-
veyance of event data from the front-end electronics to mass storage. Different
aspects of the farm management are already accessible via several tools. The
status and health of each node are monitored by a system based on Icinga 2 and
Ganglia. PuppetDB gathers centrally all the status information from Puppet, the
configuration management tool used to ensure configuration consistency of ev-
ery node. The in-house Configuration Database (ConfDB) controls DHCP and
PXE, while also integrating external information sources. In these proceedings
we present our roadmap for integrating these and other data sources and sys-
tems, and building a higher level of abstraction on top of this foundation. An
automation and orchestration tool will be able to use these systems and replace
lengthy manual procedures, some of which also require interactions with other
systems and teams, e.g. for the repair of a faulty node. Finally, an inventory
and tracking system will complement the available data sources, keep track of
node history, and improve the evaluation of long-term lifecycle management
and purchase strategies.

1 Introduction

The online farm of the ATLAS [1] experiment at the LHC consists of nearly 4000 nodes with
various characteristics. Due to the large scale of the farm and the variety of the systems,
appropriate tools to address various requirements are needed to effectively manage [2] and
monitor these nodes [3]. As a result, when experts are performing routine interventions,
∗e-mail: atlas-tdaq-sysadmins@cern.ch
From ATL-DAQ-PROC-2018-038. Published with permission by CERN.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 08022 (2019)	 https://doi.org/10.1051/epjconf/201921408022
CHEP 2018



they are required to update a number of individual tools to remove a node from production,
schedule downtime, etc. This is a time consuming process, and the expert must remember
to update all the tools in the correct order (as per the defined procedures). Additionally, a
procedure may require the expert to constantly monitor the status of the node to determine
when it is ready for an intervention and this results in an ineffective workflow.

2 Tools overview

Currently, some of the main tools the experts have to deal with to properly address an inter-
vention on a node are:

• ConfDB [4] – in-house Configuration Database

• Icinga 2 [5] – monitoring and health reporting system

• OKS (Object Kernel Support) [6] – an object-based in-house database defining the re-
sources available for ATLAS data taking

Each of these tools is needed to perform specific actions that will be shortly described in
the following subsections.

In certain cases, a ticket needs to be opened to keep track of the intervention being per-
formed. The current ticketing system in use by the team is Redmine [7].

2.1 Configuration Database

The Configuration Database (ConfDB) [4] uses a MySQL database to store configuration
and state information of all the computer systems of the ATLAS Trigger and DAQ (TDAQ)
Online computing farm, and provides a web interface for performing various operations.

The tool aggregates specific system administration information with data from external
sources, such as the CERN central network database (LanDB) and the ATLAS physical lo-
cations database. The automatic synchronisation with these external sources guarantees con-
sistency across systems and decreases the likelihood of human error.

All the information related to the node hardware, operating system, and specific settings
for the Icinga 2 checks, (for example, to override default thresholds or disable a specific
check) is stored in ConfDB.

Finally, ConfDB manages the status of the node (in production, maintenance, retired,
etc.) and function (TDAQ, Sim@P1 [8], etc.). These two flags are used by Puppet [9], the
configuration management tool in use, when configuring a node to determine which services
should be installed (the function of the node), and if they should be enabled or disabled
(depending on the status of the node). These flags are also used to determine if a node should
be included in the monitoring system, and what health checks should be performed.

2.2 Monitoring

The status and health of every node must be constantly monitored to ensure the correct and
reliable operation of the whole online system. The monitoring system is not critical for
data taking, but it acts as an early-warning system as it warns of impending issues whenever
possible and provides alerts in case of failure.

The monitoring system [2] is composed of Icinga 2 [5], for the active checks and alerting
system, and Ganglia [10], a scalable monitoring system that records performance metrics
which is used for debugging and complementing the Icinga 2 information.

2

EPJ Web of Conferences 214, 08022 (2019)	 https://doi.org/10.1051/epjconf/201921408022
CHEP 2018



they are required to update a number of individual tools to remove a node from production,
schedule downtime, etc. This is a time consuming process, and the expert must remember
to update all the tools in the correct order (as per the defined procedures). Additionally, a
procedure may require the expert to constantly monitor the status of the node to determine
when it is ready for an intervention and this results in an ineffective workflow.

2 Tools overview

Currently, some of the main tools the experts have to deal with to properly address an inter-
vention on a node are:

• ConfDB [4] – in-house Configuration Database

• Icinga 2 [5] – monitoring and health reporting system

• OKS (Object Kernel Support) [6] – an object-based in-house database defining the re-
sources available for ATLAS data taking

Each of these tools is needed to perform specific actions that will be shortly described in
the following subsections.

In certain cases, a ticket needs to be opened to keep track of the intervention being per-
formed. The current ticketing system in use by the team is Redmine [7].

2.1 Configuration Database

The Configuration Database (ConfDB) [4] uses a MySQL database to store configuration
and state information of all the computer systems of the ATLAS Trigger and DAQ (TDAQ)
Online computing farm, and provides a web interface for performing various operations.

The tool aggregates specific system administration information with data from external
sources, such as the CERN central network database (LanDB) and the ATLAS physical lo-
cations database. The automatic synchronisation with these external sources guarantees con-
sistency across systems and decreases the likelihood of human error.

All the information related to the node hardware, operating system, and specific settings
for the Icinga 2 checks, (for example, to override default thresholds or disable a specific
check) is stored in ConfDB.

Finally, ConfDB manages the status of the node (in production, maintenance, retired,
etc.) and function (TDAQ, Sim@P1 [8], etc.). These two flags are used by Puppet [9], the
configuration management tool in use, when configuring a node to determine which services
should be installed (the function of the node), and if they should be enabled or disabled
(depending on the status of the node). These flags are also used to determine if a node should
be included in the monitoring system, and what health checks should be performed.

2.2 Monitoring

The status and health of every node must be constantly monitored to ensure the correct and
reliable operation of the whole online system. The monitoring system is not critical for
data taking, but it acts as an early-warning system as it warns of impending issues whenever
possible and provides alerts in case of failure.

The monitoring system [2] is composed of Icinga 2 [5], for the active checks and alerting
system, and Ganglia [10], a scalable monitoring system that records performance metrics
which is used for debugging and complementing the Icinga 2 information.

The IcingaWeb2 [11] interface provides an overview of every monitored node and the
status of the health checks. The interface makes it possible to interact with the monitoring
system, and in the event of an intervention, allows for downtimes to be scheduled to prevent
receiving unnecessary alarms. Once an intervention has been completed, the health checks
can be re-run to verify that the initial issue is no longer present.

The very large number of nodes to be monitored and the variety of configurations and set-
tings required the creation of an automatic mechanism to produce the Icinga 2 configurations
files. SQL queries and regular expressions, which take advantage of the adopted naming con-
vention for the nodes, are used to extract data from ConfDB and select the correct template
for the node, thereby ensuring the correct monitoring configuration is used for each node.

2.3 OKS - Object Kernel Support

OKS [6] [12] is a library to support a simple, active persistent in-memory object manager.
It is used as the frame of the configuration database to provide the overall description

of the Data Acquisition (DAQ) system, the trigger and detectors software and hardware.
Such descriptions cover the online configuration of all ATLAS processes running during data
taking and provide configuration parameters for many of them.

The information provided refers to which parts of the ATLAS systems and detectors are
participating in a given run, when and where processes shall be started, when and in what
order to shut down running processes, etc.

In this respect the nodes, which cannot be used because of some needed intervention,
have to be disabled and not used in the data taking. The database is usually reloaded at the
next start of the run to take into account any updated information. Once the intervention on
the node is completed it needs to be re-enabled in the database, so that it is included in the
running configuration at the next reload of the database.

3 Implementation

Having introduced the various tools that are used on a regular basis, the implementation of
the automation system can be considered. The system will be required to interface with
these tools, and take care of automatically executing a series of actions as defined by an
arbitrary workflow. To ensure the longevity of the planned system, a community-developed
and supported tool was preferred (compared to a custom-developed in-house tool). After
evaluating various solutions on the market, Rundeck [13], a system which automates jobs,
was selected for implementation and further evaluation. A number of scripts and plugins
were written to enable Rundeck to interact with the various systems in use at ATLAS. These
developments include:

• Node source script - regularly updates the list of nodes that Rundeck can operate on with
live production status;

• ConfDB plugin - uses the ConfDB API to read and modify the current production status of
the node;

• Icinga 2 plugin - uses the Icinga 2 API to schedule and remove downtimes, as well as run
health checks for a node;

• OKS plugin - interacts with the OKS database to request that a node be inserted or removed
from data processing;

• Notify plugin - triggers Webhooks (i.e. arbitrary HTTP callbacks) and sends SMS, email,
and Redmine notifications;

3

EPJ Web of Conferences 214, 08022 (2019)	 https://doi.org/10.1051/epjconf/201921408022
CHEP 2018



Node Intervention
Expert 

Perform 
Intervention 

Intervention 
Completed 

Rundeck

Intervention 
Started 

Set Node
Status to  
"Outgoing"

Disable Node
in OKS 

Wait for node
to be out of 

the Run  

Set Node
Status to

"Maintenance"

Schedule
Downtime 

Shutdown 
Node 

Notify 
Expert 

Wait for node
to be

powered on

Reschedule 
Health
Checks 

Enable Node
in OKS

Set Node
Status to

"Production" 

Remove
Downtime 

End

ConfDB

Return  
Confirmation 

Return
Confirmation

Return
Confirmation

OKS

Disabled for
Next Run 

Enabled for
Next Run 

Icinga

Return  
Downtime ID

Return
Confirmation

Return  
Confirmation

Node

Return 
Confirmation 

Figure 1: A typical workflow of actions performed with Rundeck while intervening on a
node.

• Waitfor plugin - allows a Rundeck job to be paused1 until a node is in a desired state or
until a manual intervention has been completed.

To illustrate Rundeck’s utility, figure 1 shows a typical series of actions that need to be
performed when intervening on a node. Figure 2 shows the Rundeck implementation of this
workflow. With the implementation of Rundeck, the majority of these actions can be of-
floaded and handled by Rundeck, allowing the expert to continue with other work. This is
especially useful when interacting with OKS, as OKS status changes can take a number of
hours to come into effect. By using this Rundeck job, an expert can initiate an intervention
and then be notified by Rundeck when the node is out of production and ready for mainte-
nance. Once the intervention has been completed, Rundeck will handle all the steps required
to bring the node back into production.

A useful feature of Rundeck is the centralised secrets storage facility, which allows keys
and passwords to be securely stored, and then utilised by a Rundeck job. The usage of

1Rundeck itself does not support pausing a job. The plugin implements pseudo-pause functionality by calling a
script that enters into a sleep state until some condition is met.

4

EPJ Web of Conferences 214, 08022 (2019)	 https://doi.org/10.1051/epjconf/201921408022
CHEP 2018



Node Intervention
Expert 

Perform 
Intervention 

Intervention 
Completed 

Rundeck

Intervention 
Started 

Set Node
Status to  
"Outgoing"

Disable Node
in OKS 

Wait for node
to be out of 

the Run  

Set Node
Status to

"Maintenance"

Schedule
Downtime 

Shutdown 
Node 

Notify 
Expert 

Wait for node
to be

powered on

Reschedule 
Health
Checks 

Enable Node
in OKS

Set Node
Status to

"Production" 

Remove
Downtime 

End

ConfDB

Return  
Confirmation 

Return
Confirmation

Return
Confirmation

OKS

Disabled for
Next Run 

Enabled for
Next Run 

Icinga

Return  
Downtime ID

Return
Confirmation

Return  
Confirmation

Node

Return 
Confirmation 

Figure 1: A typical workflow of actions performed with Rundeck while intervening on a
node.

• Waitfor plugin - allows a Rundeck job to be paused1 until a node is in a desired state or
until a manual intervention has been completed.

To illustrate Rundeck’s utility, figure 1 shows a typical series of actions that need to be
performed when intervening on a node. Figure 2 shows the Rundeck implementation of this
workflow. With the implementation of Rundeck, the majority of these actions can be of-
floaded and handled by Rundeck, allowing the expert to continue with other work. This is
especially useful when interacting with OKS, as OKS status changes can take a number of
hours to come into effect. By using this Rundeck job, an expert can initiate an intervention
and then be notified by Rundeck when the node is out of production and ready for mainte-
nance. Once the intervention has been completed, Rundeck will handle all the steps required
to bring the node back into production.

A useful feature of Rundeck is the centralised secrets storage facility, which allows keys
and passwords to be securely stored, and then utilised by a Rundeck job. The usage of

1Rundeck itself does not support pausing a job. The plugin implements pseudo-pause functionality by calling a
script that enters into a sleep state until some condition is met.

Figure 2: The resulting Rundeck workflow definition for a typical node intervention.

the key store can be seen in figure 2, where secrets are injected into API calls and scripts
when required through the use of ${globals.*} which are resolved to key store secrets at
execution time (see steps 3, 5, 6, 14, 15, and 17).

This was tested first as a small pilot project in a lab environment containing approximately
400 nodes. Finally, the tool was deployed in mid-2018 within ATLAS where it is able to
automate operations across 4000 nodes.

5

EPJ Web of Conferences 214, 08022 (2019)	 https://doi.org/10.1051/epjconf/201921408022
CHEP 2018



(a)

(b)

Figure 3: Time (a) and number of actions (b) required to perform common interventions
with and without Rundeck. Averages are based on the time and actions required by two
independent experts.

6

EPJ Web of Conferences 214, 08022 (2019)	 https://doi.org/10.1051/epjconf/201921408022
CHEP 2018



(a)

(b)

Figure 3: Time (a) and number of actions (b) required to perform common interventions
with and without Rundeck. Averages are based on the time and actions required by two
independent experts.

4 Results
Since Rundeck has been deployed in both the test and production environments, a number of
jobs have been created in order to simplify daily operations of the team. The time taken by an
expert has been reduced, as shown in figure 3a. This is because Rundeck is able to follow the
execution of the intervention, leaving the expert free to continue with other tasks. Rundeck
is also able to execute many commands almost instantly, whereas an expert would need to
manually interact with various disparate systems. Additionally, figure 3b shows that most
operations have been reduced from many steps to simply launching the task from Rundeck.

Using Rundeck also improves security through the use of a very detailed activity log that
provides audits for each action taken by users and Rundeck itself. As a result, it is always
possible to know what actions were done on a node and by whom – something which was
not always easy to determine. Moreover, the integrated key storage removes the need to
store passwords in plain text within scripts. By using a shared platform for all interventions,
experts are also able to see the status of interventions that were initiated by other colleagues,
thereby preventing work from being repeated.

5 Inventory and tracking system
An inventory and tracking system would augment the current systems in use. Our survey up
to now has not identified an existing open source tool suitable for our needs, so we expect to
have to design and implement it.

This will keep track of the node history, thereby improving the evaluation of long-term
lifecycle management and purchase strategies.

Further improvement of the overall automation and stability of the farm can be achieved
through the design and implementation of a hardware tracking system. This would help the
team by providing useful insights for the purchase of new hardware; for example, number of
failures per vendor. The system would enable the team to handle spare parts more efficiently,
which is becoming increasingly complex as the number of vendors and hardware configu-
rations increases. This tool would also provide live availability information to the TDAQ
infrastructure, ensuring that unstable nodes are not used for data taking. When integrated
with Rundeck, it would be possible to alter the running job based on the history of the node.

6 Conclusion
Implementing an automation tool, like Rundeck, has reduced the number of manual processes
that an expert must perform when carrying out an intervention. As a result, the expert’s work-
flow would not be interrupted to regularly check the status of each step before proceeding with
the next one. Although some plugins had to be developed to interact with various systems,
this was easily accomplished using Rundeck’s versatile plugin framework. Some effort was
needed to work around Rundeck’s shortcomings (such as not being able to pause a job, or not
allowing branching within a job using conditional logic).

Rundeck has proven itself a valuable tool for improving and automating operations
through its ability to interact with most systems used by the team. Further development
will be needed to implement an inventory tracking system and subsequently integrate it with
Rundeck. With its plugin framework and API, new integrations can be added with relative
ease, further expanding its utility as new tools and systems are introduced.

Since its implementation, Rundeck has reduced the risk of human error by ensuring that
correct procedures are followed for each intervention, whilst maintaining a clear audit trail of
every action taken. With Rundeck handling many aspects of common interventions, experts
are interrupted less, thereby allowing them to focus more on other tasks.

7

EPJ Web of Conferences 214, 08022 (2019)	 https://doi.org/10.1051/epjconf/201921408022
CHEP 2018



References

[1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
JINST 3 (2008) S08003

[2] S Ballestrero and F Brasolin and D Fazio and C Gament and C J Lee and D A Scan-
nicchio and M S Twomey, Integrated monitoring of the ATLAS online computing farm,
J.Phys.Conf.Ser. 898 (2017)

[3] S Ballestrero and A Bogdanchikov and F Brasolin and C Contescu and S Dubrov and D
Fazio and A Korol and C J Lee and D A Scannicchio and M S Twomey, ATLAS TDAQ
System Administration: evolution and re-design, J.Phys.Conf.Ser. 664 082024 (2015)

[4] S. Ballestrero, F. Brasolin, G.-L. Darlea, I. Dumitru, D. A. Scannicchio, M. S. Twomey,
M. L. Valsan, A. Zaytsev, Centralized configuration system for a large scale farm of net-
work booted computers, J.Phys.Conf.Ser. 396 042004 (2012)

[5] Icinga2: https://www.icinga.com/products/icinga-2/
[6] R. Jones and L. Mapelli and Y. Ryabov and I. Soloviev, The OKS persistent in-memory

object manager, IEEE Transactions on Nuclear Science, 45, 1958-1964 (1998)
[7] Redmine: https://www.redmine.org/
[8] S Ballestrero, SM Batraneanu, F Brasolin, C Contescu, A Di Girolamo, , CJ Lee,

ME Pozo Astigarraga, DA Scannicchio, MS Twomey, A Zaytsev, Design and perfor-
mance of the virtualization platform for offline computing on the ATLAS TDAQ Farm,
J.Phys.Conf.Ser. 513 032011 (2014)

[9] PuppetLabs: https://puppet.com/products/how-puppet-works
[10] Ganglia: http://ganglia.sourceforge.net/
[11] Icinga Web 2: https://www.icinga.com/products/icinga-web-2/
[12] J Almeida and M Dobson and A Kazarov and G L Miotto and JE Sloper and I Soloviev

and R Torres, The ATLAS DAQ System Online Configurations Database Service Chal-
lenge, IReal-Time Conference, 2007 15th IEEE-NPSS; April 29 - May 4 (2007) Page(s):
1 - 8

[13] Rundeck: https://rundeck.org/

8

EPJ Web of Conferences 214, 08022 (2019)	 https://doi.org/10.1051/epjconf/201921408022
CHEP 2018


