
A
TL

-S
O

FT
-P

R
O

C
-2

01
8-

03
4

26
N

ov
em

be
r

20
18

The Data Ocean Project

An ATLAS and Google R&D collaboration

Martin Barisits1, Fernando Barreiro2, Thomas Beermann3, Karan Bhatia4, Kaushik De2, Ar-
naud Dubreuil5, Johannes Elmsheuser6, Alexei Klimentov6, Mario Lassnig1, Peter Love7,
Tadashi Maeno6, Andrea Manzi1, Ruslan Mashinistov6, Andy Murphy4, Paul Nilsson6,
Sergey Panitkin6, and Tobias Wegner1, on behalf of the ATLAS Collaboration∗

1European Organisation for Nuclear Research (CERN)
2University of Texas at Arlington (UTA)
3University of Innsbruck
4Google LLC
5University of Geneva
6Brookhaven National Laboratory (BNL)
7University of Lancaster

Abstract. Transparent use of commercial cloud resources for scientific ex-
periments is a hard problem. In this article, we describe the first steps of the
Data Ocean R&D collaboration between the high-energy physics experiment
ATLAS together with Google Cloud Platform, to allow seamless use of Google
Compute Engine and Google Cloud Storage for physics analysis. We start by
describing the three preliminary use cases that were identified at the beginning
of the project. The following sections then detail the work done in the data
management system Rucio and the workflow management systems PanDA and
Harvester to interface Google Cloud Platform with the ATLAS distributed com-
puting environment, and show the results of the integration tests. Afterwards,
we describe the setup and results from a full ATLAS user analysis that was exe-
cuted natively on Google Cloud Platform, and give estimates on projected costs.
We close with a summary and and outlook on future work.

1 Project overview

ATLAS [1] is facing several challenges with respect to its computing requirements for LHC
Run-3 in 2021-2023 and HL-LHC runs in 2026-2037 [2]. Many of these challenges are not
specific for ATLAS or LHC though, but common for the scientific computing community
in general. Most importantly, storage continues to be the driving cost factor for computing
and the projected capacity and throughput growth rates cannot accommodate the volume of
data that is expected from future experiments within the foreseen funding constraints. Novel
computing models with a more dynamic use of storage and computing resources need to be
considered, however the current infrastructure is in production use and cannot be radically
changed. Additionally, previous computing system simulation efforts have demonstrated that

∗Copyright 2018 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is
allowed as specified in the CC-BY-4.0 license

due to the complex interactions of the involved software stacks and only fuzzy instrumenta-
tion data it is infeasible to arrive at conclusive models about data management [3]. Effective
improvements to data management were due to repeated tests on the production infrastruc-
ture under different configurations which is time consuming and error-prone. For meaningful
tests at the future scale of ATLAS though, additional resources have to be acquired to run
such tests. The Data Ocean project has been started as an R&D project for evaluating and
adopting novel IT technologies for scientific computing in cooperation with the commercial
cloud provider Google.

ATLAS and Google have started to integrate storage and computing resources from the
Google Cloud Platform (GCP) [4] into the ATLAS distributed computing environment. After
a series of teleconferences, a face-to-face brainstorming meeting in Denver, CO at the ACM
Supercomputing 2017 conference [5] resulted in the design of a first prototype of the Data
Ocean project. The first proposed ideas were threefold: (a) to allow ATLAS user analysis
to benefit from Google Cloud Platform, (b) to allow ATLAS to explore the use of different
computing models to prepare for High-Luminosity LHC, and (c) to provide Google with
science use cases to improve their cloud platform offerings.

Specifically, the following three use cases were identified out of which the actual work
plan was structured:

1.1 User analysis

When analysts use the distributed analysis services to run on the grid, the outputs are de-
posited directly to the grid storage. Making 100 percent of those outputs available to the
analyst quickly is a difficult problem and remains one of the weak points of distributed anal-
ysis. Throughout this R&D project, analysis outputs generated in worker nodes around the
world would be directed to Google Cloud Storage (GCS), where they would become uni-
formly and reliably available to the analyst anywhere in the world. Analysis data products
are small and the GCS-resident outputs could be regarded as a cache with a limited lifetime,
and thus limited storage footprint, while the value of reliable accessibility of this hot data to
analysts is enormous.

1.2 Data placement, replication, and popularity

The final stages of data analysis by users requires access to Petabytes of data products. To
ensure high level of access, ATLAS replicates multiple copies of this data to worldwide com-
puting resources. The Google Cloud Storage service could be an alternative to these highly
used data products since it provides high throughput, high availability, and low latency. We
plan to store the end result of a full ATLAS Monte-Carlo simulation and its associated repro-
cessing data products on Google Cloud Storage. These data products will then be available
to users worldwide through Google Compute and ATLAS computing resources in parallel.

1.3 Data streaming

In order to increase flexibility, ATLAS is investigating the use of smaller units of data, called
sub-file data products, in the analysis chain. A prototype of this Event Streaming Service [6]
is currently in development and could benefit from fine-grained cloud storage. This use case
evaluates the necessary compute to generate the sub-file data products, commonly referred
to as events, from their original files at the scale required by HL-LHC, and the performance
gains of highly parallel small size data delivery to the analysis software.

Figure 1. High-level diagram of the integration of ATLAS Distributed Computing and the Google
Cloud Platform. Scientists and computational workflows get transparent access to cloud resources.

2 Data management

As the foundation, it was necessary to integrate GCS directly into Rucio [7], the scientific
data management system of the experiment. This would allow users as well as automated
computational workflows to transparently read and write data to the cloud using direct APIs
as well as user-friendly clients. Figure 1 shows the high-level architecture between the main
components: the Rucio data management system, the PanDA/Harvester workflow manage-
ment system [8, 9], the file transfer service FTS [10], as well as Google Cloud Storage and
grid storage. Users can directly interact with it using command-line, programmatic APIs, or
web interfaces, whereas PanDA/Harvester use the API exclusively. The complex interaction
between users and workflows with grid sites has been withheld for clarity.

First, the existing cloud storage access protocol S3 [11] was used to interface Rucio with
GCS. S3 is an HTTP verb based protocol and can work in two authentication modes, either
with access credentials that have to be distributed among all the clients, or centrally via
access signatures. GCS provides S3 as a protocol to ease compatibility with competitor
offerings, and was thus the natural first choice to test. The first throughput tests using S3
with access credentials exhibited a hard cap of 100MB/sec to selected European and North
America storage regions available on GCS. Next to the problem of distributing the access
credentials to users, and risking credential leaks, the S3 protocol has a limit of 5 Gigabyte
for file uploads. We could not circumvent this limit without significant development effort
therefore we decided to dismiss the use of S3 and instead use the GCS native protocol using
HTTP with client-side URL signatures [12].

Several Rucio enhancements were implemented with respect to credential handling,
replica lookup, and storage attributes to support transparent signatures. This effort is ben-
eficial for all storage providers which support client-based signatures. Whenever a client
requests the location of a file, and a location is found on a storage system that has the appro-
priate signature flag enabled, the access permissions are checked, i.e., if the user is allowed to
expend credits to read or write that data. If yes, a single use time-limited signature is created
by Rucio which includes the operation, the location, and other kinds of metadata. It is thus
not possible to use the signature for any other operation.

To support storage-to-storage copy, also known as third-party-copy, several changes had
to be made. First, we provided the signed URLs directly from Rucio to FTS. FTS would then
open a channel to the source storage, open a channel to the signed URL on GCS and stream
the results. Figure 2 shows the result of placing 2 Terabytes of data on GCS in parallel, one
Terabyte to a European region, and one Terabyte to a North American region. The achieved
throughput was roughly 0.6 Terabyte/hour, i.e., 166 MB/sec, with a short tail due to source
storage read errors that had to be retried.

Figure 2. Terabyte-scale transfer test from WLCG to Google Cloud Storage to both European and
American GCS endpoints concurrently. Bandwidth was limited by intermediate link capacity.

However, there are still several problems with this approach: In particular, this exposes
several security risks, as the signature could be intercepted. FTS was therefore extended
to create the client-based signatures internally and only use it for third-party-copy when in-
structed so by Rucio. Also, the available bandwidth on the source was not exhausted, but
was limited by the streaming capacity of the FTS servers. To solve this problem it is neces-
sary that FTS forces the source storage to act as the active part in storage-to-storage transfers
when the passive destination part is cloud storage. Both extensions have been developed in
FTS and will be deployed in late 2018, and therefore were not part of this test.

3 Workflow management

ATLAS is relying on the PanDA system to provide workload management on all computing
resources. Generic factories submit the PanDA pilot to the batch systems. The pilot [13]
occupies the slot, ask the PanDA server for a job, monitors the job through its lifetime, and
reports back relevant metrics to the server. This approach was satisfactory on the grid, but
as the heterogeneity of resources grew, such as HPC and clouds, the number of specialised
factories and different solutions grew over the years. The Harvester component has been
designed to address these issues and, to date, has interfaced through a plug-in architecture to
cloud resources such as Google Compute Engine (GCE) and OpenStack, and also several US
DOE HPCs machines such as Theta, Cori, and Titan [14–16].

As shown in Figure 3, PanDA can manage the Virtual Machine (VM) life cycle in Google
Compute Engine (GCE) through the Harvester resource manager. This is a native PanDA
GCE integration with no translation layers, where the plugins interface with GCE via its
Python API. The actual messaging between the VMs and Harvester is done via HTTP. The
instances use unaltered CernVM4 images [17] and industry-standard cloud-config contextu-
alisation. This includes setup and configuration of CVMFS, PanDA resource queues, the

Figure 3. Integration of workflow management system using Harvester with Google Cloud Platform.
The existing systems, such as Rucio or the PanDA Pilot, were used in the same way as in the WLCG
infrastructure.

startup script, and many more. The startup script is 200 lines of Python code to instantiate
the regular PanDA Pilot and continuously transmits and receives heartbeat and killme signals
from Harvester. The VMs are recycled once per day based on the timefloor option in the
PanDA Pilot. Additionally, Squid proxies [18] are deployed in GCE for caching.

4 Analysis

The simplified outline of the distributed analysis workflow on Google Compute Engine is as
follows: create an Rucio-managed storage area on GCS, replicate analysis inputdata to GCS
from grid storage using Rucio, submit PanDA jobs to process the data, measure the job per-
formance throughout its runtime, and retrieve the job outputs with the rucio download utility.
We used regular ATLAS Monte Carlo simulation software, version 20.7.8.4, over extremely
skimmed physics data organised in 30 datasets, with 1 million events, accumulating to 450
GB of data.

The main complication in data management was to have the full-chain from Rucio
datasets to the actual analysis software, using the ROOT data I/O framework, understanding
the file-level signed URLs on cloud storage. From the computational point of view, several
changes had to be applied to the PanDA Pilot and the execution environment to understand
the signed URLs. Support in ROOT I/O changes was developed previous to this project for
another integration project.

The first observation was that direct-IO with GCS using the signed URLs caused reading
corruptions within ROOT, reproducible across a variety of different software versions. These
errors did not happen on grid storage, so must stem from an incompatibility of GCS and the
way ROOT expects HTTP streams. Eventually, this was changed to full file stage-in to the job
working directory. This worked as expected, however defeated the purpose of only reading
what is necessary and not getting the whole file, which incurs significant extra costs, as the
network egress could potentially scale up by several orders of magnitude.

Figure 4. One month of running ATLAS jobs on GCP. First half running with dedicated VMs, second
half running with preemptible VMs exhibiting slightly higher error rate.

The number of virtual machines on GCE is not bound by technical reasons and could be
scaled up significantly. As shown in Figure 4, we evaluated both normal and preemptible
VMs, going from close to 0% failure rate to almost 20% respectively. Considering that the
cost of preemptible VMs is 80% lower, the cost/event ratio makes this an attractive option,
however some parts of the ATLAS analysis software are not yet fully prepared for such cycle
stealing and exhibit errors which potentially lose the whole job. Event level workflows would
allow a reduction in the lost wallclock time by only losing the small event range currently
being processed.

5 Costing

There was no API available to calculate the price for a finished job. The manual cost estimate
thus includes the following items based on the standard GCP price template [19]:

• CPU: n1-standard-1, 1 CPU, 3.75GB RAM, $0.0475/hour.

• Storage: $0.026 GB/month multi-regional storage.

• Network: Ingress free, Egress $0.12 per GB/month.

• Access: 1 million storage operations total $10/month.

This would sum to $26,000 for storing 1 Petabyte/month of raw data without usage. AT-
LAS analysis usage would have to be added on top of that, where processing 50 TB of stored
data with 5 TB job output in a month costs $143 per day, i.e., $4000 in total per month.

This includes storage, network, and 100 VMs with 24 cores each, providing 73k hours of
CPU hours. On average, 100 cores out of the 2400 total cores would be idling though, due
to the I/O characteristics of the ATLAS physics software. Cheaper $0.01/hour preemptible
VMs exist, where the CPU can be stolen for other clients on GCP during such idle phases,
however first tests showed that this is unstable with ATLAS analysis and causes job failures.

A second user workflow was investigated to see if and how cost can be controlled, using
a lepton isolation analysis. The total input data was 92 TB, split into 40% Monte Carlo
simulation data and 60% detector data. Rough processing time estimations at event sizes
from 60kB to 120kB equal 2800 CPU hours, equal to 4 VMs for a full month. This could be
reasonably processed by 100 VMs in a day, incurring the cost mentioned previously. When
compared to grid-style analysis, the average user reads 900 Terabytes per month, and writes
6 Terabytes, though heavily dependent on the type of analysis.

6 Summary and future work

We integrated Google Cloud Storage into the ATLAS data management system Rucio, added
Google Compute Engine into the ATLAS workflow management system PanDA using Har-
vester. We demonstrated that we can run regular ATLAS distributed analysis workload in file
stage-in mode.

The missing direct-IO support is a showstopper for large-scale performance tests, and
would also be necessary to better understand the latencies in wide-area reading. The job
output stage-out was only supported to the CERN data centre, there needs to be future de-
velopment on the Rucio side to support direct stage-out to GCS. The full third-party-copy
transfers also have to be commissioned in production now that they have been implemented.

As an estimation of cost, usually analysis start with DAODs with 100-500 TB of Monte
Carlo simulated data and detector data, this quickly becomes expensive in terms of storage.
Further studies to understand the best price model for optimal storage and CPU usage need
to be developed. Finally, we also foresee containerisation of user code instead of using grid-
style tarballs or CernVMs.

References

[1] ATLAS Collaboration, 2008 JINST 3 S08003
[2] L. Evans and P. Bryant (editors) 2008 JINST 3 S08001
[3] M. Barisits, Hybrid simulation models for data-intensive systems, PhD Thesis, Techni-

cal University of Vienna, 2017
[4] Google Cloud Platform, https://cloud.google.com
[5] ACM/IEEE Supercomputing, The International Conference for High Performance

Computing, Networking, Storage and Analysis, Denver, CO 2017
[6] P. Calafiura, K. De, W. Guan et al., The ATLAS Event Service: A new approach to

event processing, Journal of Physics: Conference Series, 664:062065, 2015
[7] M. Barisits et al., Rucio – Scientific Data Management, Preprint,

https://cds.cern.ch/record/2637240, 2018
[8] T. Maeno, P. Nilsson, K. De et al., PanDA Production and Analysis backend, Journal of

Physics: Conference Series, 219:210, 2009
[9] T. Maeno et al., Harvester: An edge service harvesting heterogeneous resources for

ATLAS, Preprint, https://cds.cern.ch/record/2625435
[10] A. Ayllon, M. Salichos, M. Simon et al., FTS3: New Data Movement Service For

WLCG, Journal of Physics: Conference Series, 513, 2014

[11] Amazon S3 Cloud Object Storage, https://aws.amazon.com/s3/, 2018
[12] Google Cloud Storage – Signed URLs, https://cloud.google.com/storage/docs/access-

control/signed-urls, 2018
[13] P. Nilsson et al., Next Generation PanDA Pilot for ATLAS and Other Experiments,

Journal of Physics: Conference Series, 513, 2014
[14] US DoE LCF Theta, http://www.alcf.anl.gov/

[15] US DoE LCF Cori, https://www.nersc.gov/

[16] US DoE LCF Titan, https://www.olcf.ornl.gov/titan/

[17] J. Blomer et al., Delivering LHC Software to HPC Compute Elements with CernVM-
FS, LNCS, 10524, Springer, 2017

[18] Squid: optimising web delivery, http://www.squid-cache.org/, 2018
[19] Google Cloud Platform Cost and Pricing, https://cloud.google.com/pricing/, 2018

