
N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Xcache in ATLAS Distributed Computing

Andrew Hanushevsky1, Hironori Ito2, Mario Lassnig3, Radu Popescu3, Asoka De Silva4,
Michal Simon3, Robert Gardner5, Vincent Garonne6, John De Stefano2, Ilija Vukotic5, Wei
Yang1* on behalf of the ATLAS Collaboration

1SLAC National Accelerator Laboratory, Menlo Park, CA, USA
2Brookhaven National Laboratory, Upton, NY, USA
3CERN, Geneva, Switzerland
4TRIUMF, Vancouver, BC, Canada
5University of Chicago, Chicago, IL, USA
6University of Oslo, Oslo, Norway

Abstract. Inherited from the flexible architecture of Xrootd, Xcache
allows a wide range of customization through configurations and plugins
modules. This paper describes several completed and ongoing R&D efforts
of using Xcache in the LHC ATLAS distributed computing environment,
in particular, using Xcache with the ATLAS data management system
RUCIO for easy-to-use and to improve cache hit rate, to replace Squid and
improve distribution of large files in CVMFS, to adapt the HPC
environment and the data lake model for efficient data distribute and data
access for the HPCs.

1 Introduction
Xcache is a Squid-like cache, but it primarily uses the “xroot” (a.k.a. “root”) protocol [1],
HTTP protocol being added on. It is a multi-threaded file caching application that can
asynchronously fetch and cache file segments or whole files. Its primary designed use cases
are caching static scientific data file of any format, large or small. Xcache is built upon
Xrootd [2] and is flexible to be customized for many usage scenarios, via configuration or
plugins. A single Xcache can easily be deployed via container or CVMFS [3] for a user or a
small user group, while a cluster of Xcache can be built for large or heavy use cases.
 This paper describes some of the Xcache related efforts related to the distributed
computing of the LHC ATLAS experiment [4]. For example, Xcache works with RUCIO
[5] to improve cache hit rate and provide a location independent data access via the global
logical file name. Xcache can also use HTTP protocol with clients, and this capability is
explored to replace Squid cache in the CVMFS data distribution chain. HPC environments
are usually different from the Grid sites [6]. This paper will discuss work being done, as

* Corresponding author, yangw@slac.sanford.edu

 Copyright [2018] CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

well as plans on using Xcache with HPCs and the data lake model [7] to efficiently
distribute data and access data on HPCs.

2 Xcache utilizing information from RUCIO

RUCIO is a data management system developed by the ATLAS experiment. In the ATLAS
distributed environment, multiple copies of a data file are distributed to several locations.
Upon a query, RUCIO can provide a list of all locations filtered by protocols (root, HTTP,
gsiftp, etc.). The output list is in metalink XML format [8]. The list can be sorted based on
the distance to the requestor, using GeoIP [9]. A plugin of Xcache has been developed
using the global Logical File Name (gLFN) in the form of /atlas/rucio/scope:file. The
plugin queries RUCIO to find the optimal data source and other data sources. The gLFN is
a concept initially developed by the ATLAS FAX project [10], and represents a location
independent file path for users to access the data file via the FAX system and its redirection
network (“/atlas/rucio” identifies that this is a RUCIO managed file for the ATLAS
experiment; “scope:file” is the RUCIO Data Identifier (DID) [11], which identifies the file
in RUCIO system). The plugin is capable of failover to the next available data source
should the previous one not respond. If a user has a specific data source in mind, they can
prefix the Xcache URL with the actual data source URL. In that case, the plugin will not
query RUCIO but will go directly to the user specified data source.
 In storage systems managed by RUCIO, data files are stored in a predicable location
based on their RUCIO DID. Using this pattern, the plugin can identify the same files
distributed at different remote data sources and use the same cache entry for them, as
shown in Figure 1. Files accessed using gLFNs also follow the same pattern and share
cache entries in the same way.

Figure 1. A Xcache plugin that communicates with RUCIO to retrieve file location XML (metalink).
It also understands how RUCIO store data files. This knowledge enables Xcache to share cache
entries for the same RUCIO Data IDentifier (DID). Note that the path “scope/fa/6b/file” is a
predictable path because “fa6b” are the first four hexadecimal numbers of the MD5 checksum of
string “scope:file”.

As a part of the integration with ATLAS workflow, we also utilize the concept of volatile
storage in RUCIO and report the change in cache space to RUCIO. This makes RUICO
aware of the content in the cache, and can potentially help ATLAS workflow management
system Panda [12] to schedule jobs accordingly.

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

3 Xcache with HTTP data source and CVMFS

The Xrootd / Xcache software has a plugin module XrdHTTP that enables it to
communicate with client via the HTTP protocol. Using this plugin, we were able to export
the entire CVMFS Stratum-0 via the Xroot protocol, and then use a XrdHTTP enabled
Xcache to serve the data to the CVMFS client on batch nodes. The green arrow in Figure 2
shows the schema.

We conduced such a test that exported the ATLAS CVMFS Stratum-1 (a replica of
Stratum-0) at the Brookhaven National Laboratory via a read-only Xrootd server, using the
root/xroot protocol. We then ran a XrdHTTP enabled Xcache at the SLAC National
Accelerator Laboratory, and modified the configuration of the CVMFS clients on a cluster
of SLAC’s batch nodes to use this cache instance. This batch cluster at SLAC was put in
production operation for several weeks. The CVMFS clients on this cluster function exactly
the same as before. This demonstrated that we can use XrdHTTP enabled Xcache to replace
the various Squid cache servers in the CVMFS data distribution chain. It is also possible to
replace the functionality of Stratum-1 if needed. Giving the Xcache handles large files
much better than the Squid cache, this test opened the possibility of using CVMFS to
distribute large data files.

The manifest file (.cvmfspublished) is the entry point to a CVMFS repository. When
CVMFS repository is updated, a new manifest file is put in the root directory of the
CVMFS repository. Because Xcache is designed for static files, we periodically delete this
manifest file from the above Xcache. This will trigger a refresh of the manifest file, and
thus make the CVMFS client aware of the changes made to the CVMFS repository. Old
files in the Xcache which are no longer part of the CVMFS repository will eventually be
purged by the Xcache when space is needed.

As a part of the work of using Xcache with CVMFS, a prototype of HTTP plugin for
the Xrootd client (as opposed to the XrdHTTP, which is a plugin to the Xrootd server) was
developed in order to have Xcache work with the HTTP data source, and be able to
seamlessly work with the existing Apache infrastructure for CVMFS. The red arrow in
Figure 2 shows the data flow.

Figure 2. By running a Xrootd service on CMVFS Stratum-0/1, we can use a XrdHTTP enabled
Xcache to replace Squid cache in the CVMFS distribution chain. When the HTTP plugin for the
Xrootd client will be fully developped, it will be also possible to have the Xcache seamlessly
integrated into the CVMFS Apache infrastructure.

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

4 Xcache in HPC environment
Most of the Xrootd and Xcache development has been around the traditional Grid site
setup, where there is a standalone machine or a cluster of standalone machines to function
as Xrootd servers or Xcache. In this setup, each machine uses a locally attached disk as the
cache storage. This cache storage is only accessible by the machine itself, and a dedicated
filesystem is created on this storage for caching purpose.

In a HPC environment, we usually don’t have such a dedicated setup. Instead, the
nodes that we are allowed to run Xcache service are usually edge nodes (such as login
nodes and data transfer nodes) with Internet connections. The storage available to users
usually resides at several very large shared Lustre or GPFS storages that are connected to
the batch nodes and edge nodes via InfiniBand-like low latency network. TCP/IP network
among the nodes may or may not be available. If the TPC/IP network is available, it is
usually not the optimized interconnection infrastructure among the nodes. We identified
several challenges and optimization steps in order for Xcache to efficiently use the HPC
resources.

1. Cache space accounting challenge: we can no longer depend on the space usage
of a dedicated file system for the cache space accounting. A new mechanism is
needed to trace the cache space usage.

2. Enable clients to directly access the cache data via the shared Posix file system:
For those data already in the cache, the data doesn’t need to go through the
Xcache nodes if the client has direct access to the shared file systems. A new
function in the Xrootd client and server was developed so that the Xcache will
redirect the clients to the actually location in the shared file system if the data file
is fully cached. This approach not only optimizes the data flow path, but also
enable the client to use the most efficient, native data access mechanism provided
by the HPC sites.

3. Enable clients to fetch data from Xcache via low latency network: new
development work is needed to enable Xroot protocol over the low latency
network via the Remote Direct Memory Access (RDMA). With this function, the
Xcache can deliver newly fetched data blocks to the clients before it has a chance
to save it to the shared file systems. Delivery of partially cached files can also
benefit from this mechanism. This will avoid forcing the clients to understand
how Xcache keeps trace of partially cached files.

Figure 3. In a typical HPC setup, Xcache runs on edge nodes such as data transfer nodes (DTNs) and
uses shared file systems (such as Lustre above) as cache space. For efficient data access, it is desired
that the clients (e.g. Analysis jobs above) read fully cached data files directly from the Lustre file
system, and read newly fetched data blocked from Xcache via the low latency network, such as
InfiniBand.

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

A typical HPC environment with Xcache and possible optimization is shown in Figure 3. A
cluster of Xcache is currently running on the data transfer nodes at the National Energy
Research Scientific Computing Center (NERSC) in the US. Each Xcache node uses a
dedicated directory in the shared Lustre file system as cache space. All data traffic is
currently going through the TCP network among the nodes. This setup is used as the
development and testing environment for the challenges and optimization we identified
above.

5 Summary
We identified several areas where Xcache can be used by ATLAS and other scientific
experiments. The RUCIO plugin for Xcache targets individual users or user groups so that
they can just access their data without having to find out the ATLAS data placement and
follow the change of the data placement, and without having to manage the storage space.
Xcache for CVMFS opened the possibility of using CVMFS to distribute large data files,
and the possibility of a centralized local CVMFS cache (as opposed to cache space on
individual batch nodes). Xcache for HPC aims at optimizing the Xcache for the HPC
environment by rerouting the client to directly read from the HPC shared file system when
possible, and by utilizing the low latency network to deliver data.

Along with this work, we are advancing the concept of volatile storage, a useful
concept when exploring opportunistic resources, expanding Xcache to work with data
sources that supports HTTP protocols, and developing Xroot protocol over RDMA.

6 Acknowledgement
This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231.

References
1. Xrootd.org http://www.xrootd.org
2. L. Bauerdick, K. Bloom, B. Bockelman, D. Bradley, S. Dasu, J. Dost, I.

Sfiligoi, A. Tadel, M. Tadel, F. Wuerthwein, A. Yagil, Journal of Physics:
Conference Series, Volume 513, Track 4

3. S. Aguado, J. Bloomer, P. Buncic, L. Franco, S. Klemer, P. Mato, Proceedings of
XII Advanced Computing and Analysis Techniques in Physics Research vol 1 p
52

4. The ATLAS Collaboration, 2008 JINST 3 S08003
5. V. Garonne, R. Vigne, G. Stewart, M. Barisits, T. Beermann, M. Lassnig, C.

Serfon, L. Goossens, A. Nairz (on behalf of the Atlas Collaboration). Journal of
Physics: Conference Series 5134

6. Worldwide LHC Computing Grid (WLCG), http://wlcg.web.cern.ch
7. M. Girone, S. Campana, Data Management plenary and parallel sessions,

https://indico.cern.ch/event/658060/contributions/2940554/attachments/1625111/2
587608/WLCGDataManagementSummary.pdf

8. The Metalink Download Description Format, https://tools.ietf.org/html/rfc5854
9. What is GeoIP? https://docs.nexcess.net/article/what-is-geoip.html

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

10. R. Gardner, S. Campana, G. Duckeck, J. Elmsheuser, A. Hanushevsky, F. Hönig,
J. Iven, F. Legger, I. Vukotic, W. Yang, Journal of Physics: Conference Series vol
513 (IOP Publishing) p 042049

11. RUCIO Document, https://media.readthedocs.org/pdf/rucio/latest/rucio.pdf
12. A. Klimentov, A. Vaniachine, K. De, T. Wenaus, S. Panitkin, D. Yu, G. Záruba,

M. Titov, SC Companion (IEEE Computer Society) 1521-1522

