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Abstract. The Production and Distributed Analysis system (PanDA) is a 

pilot-based workload management system that was originally designed for 

the ATLAS Experiment at the LHC to operate on grid sites. Since the 

coming LHC data taking runs will require more resources than grid 

computing alone can provide, the various LHC experiments are engaged in 

an ambitious program to extend the computing model to include 

opportunistically used resources such as High Performance Computers 

(HPCs), clouds and volunteer computers. To this end, PanDA is being 

extended beyond grids and ATLAS to be used on the new types of resources 

as well as by other experiments. A new key component is being developed, 

the next generation PanDA Pilot (Pilot 2). Pilot 2 is a complete rewrite of 

the original PanDA Pilot which has been used in the ATLAS Experiment for 

over a decade. The new Pilot architecture follows a component-based 

approach which improves system flexibility, enables a clear workflow 

control, evolves the system according to modern functional use-cases to 

facilitate coming feature requests from new and old PanDA users. This paper 

describes Pilot 2, its architecture and place in the PanDA hierarchy. 

Furthermore, its ability to be used either as a command tool or through APIs 

is explained, as well as how its workflows and components are being 

streamlined for usage on both grids and opportunistically used resources for 

and beyond the ATLAS experiment. 
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1 Introduction  

The PanDA Pilot [1] has been used by ATLAS [2] and other experiments for well over a 

decade. To meet the demands of further extending PanDA [3] beyond grids and ATLAS, the 

original Pilot has been rewritten. After a two-year effort, the Pilot 2 project is now in its final 

stages of development and has entered testing in the production system.  

1.1 What does the PanDA Pilot do? 

The task of the PanDA Pilot is to monitor and execute work units on a worker node, either 

on the job level or on the more finely grained event level [4]. On the job level (the normal 

run mode), the work unit is a payload that a user or production system wants to execute. The 

payload is downloaded from a server and has certain requirements, e.g. input and output files, 

that are normally staged by the Pilot, and needs a working environment (incl. containers) that 

is setup by the Pilot. In the so-called direct access mode, the normal stage-in can be skipped 

and the input files are opened remotely by the payload itself. On the event level, the Pilot 

running in the event service mode launches and feeds a payload with event ranges (a set of 

events to be processed) that are downloaded from a server. This has the major advantage that 

if the resource disappears and the Pilot is aborted, all previously processed events are saved 

since they have already been uploaded to a server and in the case that the Pilot does not have 

time to abort, only the last event is lost – as opposed to losing the entire job with all processed 

events which can happen in the normal run mode. 

1.2 How does the Pilot fit into the PanDA hierarchy? 

The PanDA Pilot is executed on the worker nodes on local resources, on grids and clouds, on 

HPCs and on volunteer computers. It is downloaded and run by wrapper scripts that are sent 

by Pilot factories to the worker nodes via batch systems. A Pilot interacts with the PanDA 

server either directly, via a local instance of the ARC Control Tower (a job management 

framework used on Nordugrid [5]) or with the resource-facing Harvester service which 

provides resource provisioning and workload shaping [6]. 

2 Components  

The Pilot is component based, with each component being responsible for different tasks. 

The main tasks are sorted into controller components, such as Job Control, Data Control, 

Payload Control and Monitor Control. Job Control handles the job objects that are either 

downloaded from a server or read from file. Data Control takes care of replica lookups, 

selection and transfers. Payload Control prepares for execution, selects run mode (normal or 

event service), executes and monitors the payload until it finishes by verifying parameters 

that are relevant for the payload (e.g. size checks). Monitor Control keeps track of the Pilot 

itself and makes sure that it does not run longer than it is allowed to. It also monitors all 

threads spawned by the other components. The Information System component presents an 

interface to a server-side database containing knowledge about the resource where the Pilot 

is running (e.g. which copy tool to use and where to read and write data). 

 



 

 

3 Pilot APIs  

Normally, the PanDA Pilot is used as a command-line tool. In case this is not wanted but 

some Pilot functionality is still needed, an external user may call relevant functions via 

simplified Pilot APIs that provide convenient access to internal Pilot modules and functions 

that otherwise may be difficult to use. E.g. Harvester is using the Pilot Data API in production 

for data transfers on HPCs. Other APIs include the Communicator API (server interactions) 

and Services API (benchmarking, memory monitoring and analysis package). 

4 Pilot workflows 

The Pilot workflows refer to the particular run mode the Pilot should use, such as the Standard 

workflow and HPC Pilot workflow. A desired workflow is selected by the wrapper script that 

launches the Pilot, and it determines how the jobs will be processed. 

4.1 Standard workflow  

The Standard workflow relies on internal python queues to keep track of the job objects, and 

consists of multiple steps executed in parallel using threads. Each thread polls a queue until 

it gets a job object to process; after processing, the result is put in another queue for further 

processing and the thread starts polling its input queue again. The job object itself, is an entity 

that contains all necessary information about running the payload such as software release 

version, parameters for payload setup, transfer type of input files, etc. 
Specifically, in the Standard workflow the Pilot performs payload download, setup, stage-in, 

execution and stage-out, along with various verifications, monitoring and server job updates 

at selectable intervals. 

Figure 1 shows the internal generic flow of job objects and how they move through the queues 

in the Pilot components. Each box represents a queue. 

 

Fig. 1. The internal generic flow of job objects. A downloaded job is inserted into the jobs queue and 

ends up in either the finished_jobs or failed_jobs queue. The completed_jobs queue contains a copy 

of a job object that has completed running (finished or failed) and is used for internal bookkeeping. 
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4.2 HPC Pilot workflow 

The HPC Pilot refers to a dedicated workflow used on HPCs. When this mode is selected, 

the normal workflow of the Pilot is skipped in favour of a streamlined workflow more 

relevant for HPCs. Resource specific code, such as environmental setup, is kept in plugins. 

Dedicated plugins are in development and testing for Titan (OLCF) [7, 8], Theta (ALCF) [9], 

Cori and Edison (NERSC) [10, 11] and BNL [12].  

4.2.1 Generalized workflow on a typical HPC 

The architecture on an HPC may be quite different from a typical grid site. An important 

common difference is that the outbound connections from the worker nodes may be 

restricted.  

Another limitation is the number of job slots in the local batch system of the HPC. While the 

size of a job slot can be very large (tens or even hundreds of thousands of cores), the number 

of job slots is very limited on the Leadership Computing Facilities and is defined in the local 

scheduling policy. On Titan, only a few batch jobs may run at the same time and only four 

can be queued [13]. To cope with these issues, a special workflow was implemented in the 

Pilot. 

The Pilot acts like an MPI application under the control of the Harvester service and runs a 

set of jobs in an assembly. Harvester takes care of prestaging input data, stage-out of output 

and full communication with the PanDA server, while the Pilot intercommunicates with 

Harvester through the shared filesystem. The Pilot reads the job definitions from pre-placed 

files and declares outputs for later processing by the Harvester service. 

Since all external communications were delegated to Harvester, the general Pilot workflow 

could be simplified in the communication part but was extended with optional functionality 

required to cover the specifics of the HPC. Special treatment was given to Pilot features using 

local files to minimize the I/O of the shared file system. Any specific functionalities unique 

to the HPCs were added to plugins. 

The Pilot running the HPC workflow has been successfully validated on the Titan 

supercomputer. 

5 Beyond ATLAS 

The PanDA system is currently used by several experiments including ATLAS, COMPASS 

[14], LSST [15] and IceCube [16] as well as with software applications for Lattice QCD and 

Molecular Dynamics [17, 18]. One of the design goals of the Pilot 2 project was to facilitate 

Pilot development and usage by new users (such as experiments). Since the Pilot keeps user 

specific code in plugins, as well as being a component-based system, it is easy to support 

new workflows. In case the standard workflow is not relevant for the new user, an entirely 

new workflow may be implemented that will only use other relevant Pilot modules and 

functions. 

6 Summary 

The PanDA Pilot used by ATLAS and other experiments has been rewritten. The new 

version, Pilot 2, is now in its final stages of development and has entered the commissioning 

stage. It has been designed especially with HPCs in mind, for which it has a dedicated 



 

 

workflow with plugins being prepared for several HPCs. In particular, it has been 

successfully validated on Titan.  

The workflow mechanism represents a major difference to the previous Pilot version, as it 

makes it much easier to implement entirely new workflows that may use as much or as little 

as is relevant from the Pilot code stack. The new Pilot also has simple to use APIs for external 

use. E.g. the resource-facing Harvester service is relying on the Pilot 2 Data API for file 

transfers. 

Pilot 2 is currently being tested on all grids used by ATLAS as well as with Harvester on 

HPCs and will soon be used for running all production and user analysis jobs. 
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