
A
T

L-
SO

FT
-P

R
O

C
-2

01
8-

02
3

21
N

ov
em

be
r

20
18

The next generation PanDA Pilot for and beyond
the ATLAS experiment

Paul Nilsson1,*, Alexey Anisenkov2,3, Doug Benjamin4, Daniel Drizhuk5, Wen Guan6, Mario

Lassnig7, Danila Oleynik8,9, Pavlo Svirin1 and Tobias Wegner7 on behalf of the ATLAS

Collaboration

1 Brookhaven National Laboratory, Physics Department, United States
2 Budker Institute of Nuclear Physics, Russia
3 Novosibirsk State University, Russia
4 Argonne National Laboratory, United States
5 National Research Centre Kurchatov Institute, Russia
6 University of Wisconsin-Madison, Department of Physics, United States
7 CERN, European Laboratory for Particle Physics, Switzerland
8 University of Texas at Arlington, Department of Physics, United States
9 Joint Institute for Nuclear Research, Russia

Abstract. The Production and Distributed Analysis system (PanDA) is a

pilot-based workload management system that was originally designed for

the ATLAS Experiment at the LHC to operate on grid sites. Since the

coming LHC data taking runs will require more resources than grid

computing alone can provide, the various LHC experiments are engaged in

an ambitious program to extend the computing model to include

opportunistically used resources such as High Performance Computers

(HPCs), clouds and volunteer computers. To this end, PanDA is being

extended beyond grids and ATLAS to be used on the new types of resources

as well as by other experiments. A new key component is being developed,

the next generation PanDA Pilot (Pilot 2). Pilot 2 is a complete rewrite of

the original PanDA Pilot which has been used in the ATLAS Experiment for

over a decade. The new Pilot architecture follows a component-based

approach which improves system flexibility, enables a clear workflow

control, evolves the system according to modern functional use-cases to

facilitate coming feature requests from new and old PanDA users. This paper

describes Pilot 2, its architecture and place in the PanDA hierarchy.

Furthermore, its ability to be used either as a command tool or through APIs

is explained, as well as how its workflows and components are being

streamlined for usage on both grids and opportunistically used resources for

and beyond the ATLAS experiment.

* Corresponding author: paul.nilsson@cern.ch

mailto:paul.nilsson@cern.ch

1 Introduction

The PanDA Pilot [1] has been used by ATLAS [2] and other experiments for well over a

decade. To meet the demands of further extending PanDA [3] beyond grids and ATLAS, the

original Pilot has been rewritten. After a two-year effort, the Pilot 2 project is now in its final

stages of development and has entered testing in the production system.

1.1 What does the PanDA Pilot do?

The task of the PanDA Pilot is to monitor and execute work units on a worker node, either

on the job level or on the more finely grained event level [4]. On the job level (the normal

run mode), the work unit is a payload that a user or production system wants to execute. The

payload is downloaded from a server and has certain requirements, e.g. input and output files,

that are normally staged by the Pilot, and needs a working environment (incl. containers) that

is setup by the Pilot. In the so-called direct access mode, the normal stage-in can be skipped

and the input files are opened remotely by the payload itself. On the event level, the Pilot

running in the event service mode launches and feeds a payload with event ranges (a set of

events to be processed) that are downloaded from a server. This has the major advantage that

if the resource disappears and the Pilot is aborted, all previously processed events are saved

since they have already been uploaded to a server and in the case that the Pilot does not have

time to abort, only the last event is lost – as opposed to losing the entire job with all processed

events which can happen in the normal run mode.

1.2 How does the Pilot fit into the PanDA hierarchy?

The PanDA Pilot is executed on the worker nodes on local resources, on grids and clouds, on

HPCs and on volunteer computers. It is downloaded and run by wrapper scripts that are sent

by Pilot factories to the worker nodes via batch systems. A Pilot interacts with the PanDA

server either directly, via a local instance of the ARC Control Tower (a job management

framework used on Nordugrid [5]) or with the resource-facing Harvester service which

provides resource provisioning and workload shaping [6].

2 Components

The Pilot is component based, with each component being responsible for different tasks.

The main tasks are sorted into controller components, such as Job Control, Data Control,

Payload Control and Monitor Control. Job Control handles the job objects that are either

downloaded from a server or read from file. Data Control takes care of replica lookups,

selection and transfers. Payload Control prepares for execution, selects run mode (normal or

event service), executes and monitors the payload until it finishes by verifying parameters

that are relevant for the payload (e.g. size checks). Monitor Control keeps track of the Pilot

itself and makes sure that it does not run longer than it is allowed to. It also monitors all

threads spawned by the other components. The Information System component presents an

interface to a server-side database containing knowledge about the resource where the Pilot

is running (e.g. which copy tool to use and where to read and write data).

3 Pilot APIs

Normally, the PanDA Pilot is used as a command-line tool. In case this is not wanted but

some Pilot functionality is still needed, an external user may call relevant functions via

simplified Pilot APIs that provide convenient access to internal Pilot modules and functions

that otherwise may be difficult to use. E.g. Harvester is using the Pilot Data API in production

for data transfers on HPCs. Other APIs include the Communicator API (server interactions)

and Services API (benchmarking, memory monitoring and analysis package).

4 Pilot workflows

The Pilot workflows refer to the particular run mode the Pilot should use, such as the Standard

workflow and HPC Pilot workflow. A desired workflow is selected by the wrapper script that

launches the Pilot, and it determines how the jobs will be processed.

4.1 Standard workflow

The Standard workflow relies on internal python queues to keep track of the job objects, and

consists of multiple steps executed in parallel using threads. Each thread polls a queue until

it gets a job object to process; after processing, the result is put in another queue for further

processing and the thread starts polling its input queue again. The job object itself, is an entity

that contains all necessary information about running the payload such as software release

version, parameters for payload setup, transfer type of input files, etc.
Specifically, in the Standard workflow the Pilot performs payload download, setup, stage-in,

execution and stage-out, along with various verifications, monitoring and server job updates

at selectable intervals.

Figure 1 shows the internal generic flow of job objects and how they move through the queues

in the Pilot components. Each box represents a queue.

Fig. 1. The internal generic flow of job objects. A downloaded job is inserted into the jobs queue and

ends up in either the finished_jobs or failed_jobs queue. The completed_jobs queue contains a copy

of a job object that has completed running (finished or failed) and is used for internal bookkeeping.

ATLAS PanDA Pilot 2

4.2 HPC Pilot workflow

The HPC Pilot refers to a dedicated workflow used on HPCs. When this mode is selected,

the normal workflow of the Pilot is skipped in favour of a streamlined workflow more

relevant for HPCs. Resource specific code, such as environmental setup, is kept in plugins.

Dedicated plugins are in development and testing for Titan (OLCF) [7, 8], Theta (ALCF) [9],

Cori and Edison (NERSC) [10, 11] and BNL [12].

4.2.1 Generalized workflow on a typical HPC

The architecture on an HPC may be quite different from a typical grid site. An important

common difference is that the outbound connections from the worker nodes may be

restricted.

Another limitation is the number of job slots in the local batch system of the HPC. While the

size of a job slot can be very large (tens or even hundreds of thousands of cores), the number

of job slots is very limited on the Leadership Computing Facilities and is defined in the local

scheduling policy. On Titan, only a few batch jobs may run at the same time and only four

can be queued [13]. To cope with these issues, a special workflow was implemented in the

Pilot.

The Pilot acts like an MPI application under the control of the Harvester service and runs a

set of jobs in an assembly. Harvester takes care of prestaging input data, stage-out of output

and full communication with the PanDA server, while the Pilot intercommunicates with

Harvester through the shared filesystem. The Pilot reads the job definitions from pre-placed

files and declares outputs for later processing by the Harvester service.

Since all external communications were delegated to Harvester, the general Pilot workflow

could be simplified in the communication part but was extended with optional functionality

required to cover the specifics of the HPC. Special treatment was given to Pilot features using

local files to minimize the I/O of the shared file system. Any specific functionalities unique

to the HPCs were added to plugins.

The Pilot running the HPC workflow has been successfully validated on the Titan

supercomputer.

5 Beyond ATLAS

The PanDA system is currently used by several experiments including ATLAS, COMPASS

[14], LSST [15] and IceCube [16] as well as with software applications for Lattice QCD and

Molecular Dynamics [17, 18]. One of the design goals of the Pilot 2 project was to facilitate

Pilot development and usage by new users (such as experiments). Since the Pilot keeps user

specific code in plugins, as well as being a component-based system, it is easy to support

new workflows. In case the standard workflow is not relevant for the new user, an entirely

new workflow may be implemented that will only use other relevant Pilot modules and

functions.

6 Summary

The PanDA Pilot used by ATLAS and other experiments has been rewritten. The new

version, Pilot 2, is now in its final stages of development and has entered the commissioning

stage. It has been designed especially with HPCs in mind, for which it has a dedicated

workflow with plugins being prepared for several HPCs. In particular, it has been

successfully validated on Titan.

The workflow mechanism represents a major difference to the previous Pilot version, as it

makes it much easier to implement entirely new workflows that may use as much or as little

as is relevant from the Pilot code stack. The new Pilot also has simple to use APIs for external

use. E.g. the resource-facing Harvester service is relying on the Pilot 2 Data API for file

transfers.

Pilot 2 is currently being tested on all grids used by ATLAS as well as with Harvester on

HPCs and will soon be used for running all production and user analysis jobs.

This material is based upon work supported by the U.S. Department of Energy, Office of Science,

Office of High Energy Physics, under contract number DE-SC0012704, and was funded in part by the

Russian Ministry of Education and Science under contract No 14.Z50.31.0024.

This research used resources of the National Energy Research Scientific Computing Center, a U.S.

Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-

05CH11231.

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of

Science User Facility supported under Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge

National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC05-00OR22725.

References

1. P. Nilsson et al., J. Phys. Conf. Series 513 (2014)

2. ATLAS Collaboration, JINST 3 S08003 (2008)

3. T. Maeno et al., J. Phys. Conf. Ser. 898 052002 (2017)

4. P. Calafiura et al., J. Phys. Conf. Series 664 (2015)

5. M. Ellert et al., 446 Future Generation Computer Systems 23 (2007) 219-240

6. T. Maeno et al., To be published in Proceedings of 23rd International Conference on

Computing in High Energy and Nuclear Physics, EPJ Web of Conferences
7. Titan (OLCF), https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan
8. K. De et al, J. Phys. Conf. Series 664 (2015)
9. Theta (ALCF), https://www.alcf.anl.gov/theta
10. Cori (NERSC), https://www.nersc.gov/users/computational-systems/cori
11. Edison (NERSC), http://www.nersc.gov/users/computational-systems/edison
12. KNL cluster (BNL), https://www.racf.bnl.gov/experiments/sdcc/knl-cluster
13. Scheduling policy at OLCF for Titan: https://www.olcf.ornl.gov/for-users/olcf-policy-

guide

14. P. Abbon et al, Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 577, Issue

3, 11 July 2007, Pages 455-518
15. D. Sweeney, Ground-based and Airborne Telescopes, Proceedings of the SPIE,

Volume 6267, id. 626706 (2006)
16. R. Abbasi et al., Nuclear Instruments and Methods in Physics Research A. 601 (3): 294
17. D. Oleynik, To be published in CEUR Workshop Proceedings, http://CEUR-WS.org
18. The CHARMM molecular modeling software http://www.charmm.org

https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan
https://www.alcf.anl.gov/theta
https://www.nersc.gov/users/computational-systems/cori
http://www.nersc.gov/users/computational-systems/edison
https://www.racf.bnl.gov/experiments/sdcc/knl-cluster
https://www.olcf.ornl.gov/for-users/olcf-policy-guide
https://www.olcf.ornl.gov/for-users/olcf-policy-guide
http://ceur-ws.org/
http://www.charmm.org/

