

L. Nemenov (JINR, DIRAC collaboration)

SPSC, October 2018

Geneva, Switzerland

Institute of Physics ASCR *Prague*, Czech Republic

Nuclear Physics Institute ASCR *Rez*, Czech Republic

INFN-Laboratori Nazionali di Frascati *Frascati*, Italy

University of Messina

Messina, Italy

KEK

Tsukuba, Japan

Kyoto University

Kyoto, Japan

Kyoto Sangyo University
Kyoto, Japan

Tokyo Metropolitan University *Tokyo*, Japan

Bucharest, Romania

Dubna, Russia

SINP of Moscow State University *Moscow*, Russia

Protvino, Russia

Santiago de Compostela University Santiago de Compostela, Spain

Bern University

Bern, Switzerland

Zurich University

Zurich, Switzerland

Contents

- 1. Experimental check of QCD using π^+K^- , π^-K^+ and $\pi^+\pi^-$ atoms.
- 2. Long-lived $\pi^+\pi^-$ atom lifetime first measurement and possibility to check of QCD predictions.
- 3. Investigation of K^+K^- Coulomb pairs and K^+K^- atoms production .
- 4. Proton-antiproton pair analysis as the new physical method to investigate the particle production in the coordinate space.
 - 5. The short-lived $\pi^+\pi^-$ atom lifetime measurement.
 - 6. High precision measurement of the multiple scattering in Be, Ti, Ni and Pt.

QCD Lagrangian and its prediction

The QCD Lagrangians use the $SU(3)_L *SU(3)_R$ and $SU(2)_L *SU(2)_R$ chiral symmetry breaking.

$$\mathcal{L}(u,d,s) = \mathcal{L}(3) = \mathcal{L}_{sym}(3) + \mathcal{L}_{sym.br.}(3)$$

$$\mathcal{L}(u,d) = \mathcal{L}(2) = \mathcal{L}_{sym}(2) + \mathcal{L}_{sym.br.}(2)$$

 $\mathcal{L}_{\text{sym.br.}}$ is proportional to m_a

 $e^+e^- \rightarrow hadrons$ QCD provides cross sections with 1% precision

- 1. Perturbation theory is working at high momentum transfer Q.
- 2. Unitarity condition.

At large Q, contribution of $\mathcal{L}_{\text{sym.br.}}$ to the cross section is proportional to $1/Q^4$. Therefore these experiments checked only the \mathcal{L}_{sym} prediction precision.

To check the total $\mathcal{L}(3)$ Lagrangian predictions, we must study the <u>low momentum transfer</u> Q processes.

Tools: Lattice calculations and Chiral Perturbation Theory (ChPT) Lattice---- $\mathcal{L}(3)$, $\mathcal{L}(2)$ ChPT-----Effective Lagrangians.

DIRAC setup, experimental and theoretical data

Experiment	Detected atom	τ (10-	¹⁵ sec)	$a^{-} = \frac{1}{3} (a_{1/2} - a_{3/2})$	/2)	Average error	
DIRAC	$349\pm61(stat)\pm9(syst)$ =349±62(tot) (5.6 σ)		5.5	$0.072^{+0.031}_{-0.020}$)	34%
Theory	P.Buttiker et al., Eur.Phys.J. (2004)	K.Sasaki et al., Phys.Rev. (2014)	Z.Fu, Phys.Rev. (2013)	S.R.Beame al. Phys.Re (2008)		J. I	ijnens et al., High Energy nys. (2004)
a	0.090±0.005	0.081	0.077	0.077	0.10		0.089
Method	Roy-Steiner equations	Lattice calculations	Lattice calculations	Lattice calculation	Lattice calculations	ChF	PT, two loops

QCD and Chiral Lagrangian predictions check with long-lived $\pi^+\pi^-$ atoms

The DIRAC collaboration Phys.Lett.(2015) observed 436±61 pion pairs from the long-lived ($\tau \ge 1 \times 10^{-11}$ sec) $\pi^+\pi^-$ atom breakup in Pt foil(Phys.Lett.(2015).

evaluate $\pi\pi$ scattering length combination a_0 - a_2 . The study of the long-lived atoms will allow to measure the Lamb shift depending on another $\pi\pi$ scattering length combination: $2a_0+a_2$ and to evaluate the a_0 , a_2 separately. At present time:

The short-lived atoms lifetime measurement allowed to

 a_0 precision is 6% (experiment), 4-10%(Lattice), 2.3%(ChPT) a_2 precision is 22% (experiment), 1% (Lattice), 2.3% (ChPT) a_0 - a_2 precision is \approx 4% (experiment), 1.5%(ChPT)

$\pi^+\pi^-$ atom lifetime

 $\pi^+\pi^-$ atom (pionium) is a hydrogen-like atom consisting of π^+ and π^- mesons:

$$E_B = -1.86 \text{ keV},$$

$$r_{\rm B} = 387 \, {\rm fm}$$

$$r_B = 387 \text{ fm}, \qquad p_B \approx 0.5 \text{ MeV/c}$$

The $\pi^+\pi^-$ atom lifetime is dominated by the decay into π^0 mesons:

$$\mathbf{\tau}^{0} \qquad \boxed{\Gamma = \frac{1}{\tau} = \Gamma_{2\pi^{0}} + \Gamma_{2\gamma}} \qquad \frac{\Gamma_{2\gamma}}{\Gamma_{2\pi^{0}}} \approx 4 \times 10^{-3}$$

$$\Gamma_{ns\to 2\pi^0} = R |\psi_{ns}(0)|^2 |a_0 - a_2|^2 |\tau_{1s} = (2.9 \pm 0.1) \times 10^{-15} s$$

$$\tau_{1s} = (2.9 \pm 0.1) \times 10^{-15} \, s$$

 a_0 and a_2 are the $\pi\pi$ S-wave scattering lengths for isospin I=0 and I=2.

$$\psi_{nl}\left(0\right) \begin{cases} \neq 0 \text{ for } l=0 & A_{2\pi}(1s, 2s, ..., ns) \longrightarrow \pi^0 \pi^0 \\ = 0 \text{ for } l \neq 0 & A_{2\pi}(np) \xrightarrow{\gamma} A_{2\pi}(1s, 2s, ... (n-1)s) \longrightarrow \pi^0 \pi^0 \end{cases}$$

The *np* state lifetime depends on the transition $np \longrightarrow 1s, 2s, ..., (n-1)s$ probability. This probability is about 3 orders of magnitude less than for $ns \longrightarrow \pi^0\pi^0$.

The $\pi^+\pi^-$ atoms production in Be target

Fig. 1 Method to observe long-lived $A^L_{2\pi}$ by means of a breakup foil (Pt). Most (70%) of the produced $\pi^+\pi^-$ atoms decay and 6% are ionized in the Be target. 6% are long-lived and 18% are short-lived atoms.

Experimental $|Q_L|$ distributions of $\pi^+\pi^-$ pairs

$|Q_L|$ distribution of $\pi^+\pi^-$ pairs for $Q_T < 2.0 \text{ MeV/c}$

- a) The experimental distribution (points with statistical error) and the simulated background (solid line).
- b) The experimental distribution after background subtraction (points with statistical error) and the simulated distribution of atomic pairs (dot-dashed line).

The fit procedure has been applied to the 2-dimensional $(Q_L/, Q_T)$ distribution.

Atomic states population for n=8

n	l	m	P	\sum_{m}	$\sum_{l,m}^{L}$	
	О	0	0.008	0.008		
	1	-1, 1	2×0.0068	0.014		
	2	-2, 2	2×0.0063	0.016		
		0	0.0038	0.010		
	3	-3, 3	2×0.0061	0.019		
	3	-1, 1	2×0.0032	0.019		
		-4, 4	2×0.0058		0.12	
	4	-2, 2	2×0.0028	0.020		
		0	0.0023			
8		-5,5	2×0.0056			
O	5	-3, 3	2×0.0025	0.020		
		-1, 1	2×0.0019			
		-6,6	2×0.0054			
	6	-4,4	2×0.0023	0.020		
	O	-2, 2	2×0.0016	0.020		
	2	0	0.0015			
		-7,7	2×0.0051			
	7	-5, 5	2×0.0021	0.020		
		-3,3	2×0.0014	0.020		
		-1, 1	2×0.0012			

Population of long-lived states

Populations P_n^L of long-lived states $A_{2\pi}^L$ versus n, summed over l and m, at the exit of the Be target (\bullet) and at the Pt foil entry (\blacksquare) .

Summed populations $\sum_{n=1}^{p^L}$ of all long-lived atomic states at the exit of the Be target as a function of n used for "tail" estimation. For each n, the two upper curves show the sum of state populations for the given n plus different "tail" estimations calculated from populations for n and n-1 (exponential "tail" $- \bullet$, hyperbolic "tail" $- \blacktriangle$). The lower curve (\blacksquare) presents the sum of the population for the given n plus the population for n+1 instead of the "tail".

Breakup probability

Probability $P_{br}^{tot}(Pt)$ calculated as a function of α . The horizontal lines correspond to the measured value $P_{br}^{tot}(Pt) = 0.0257^{+0.0097}_{-0.0036}\Big|_{tot} \cdot 10^{-11} s$ together with the total errors. The value $\alpha = 1$, which corresponds to pure QED calculations, is within the error band of the measurement.

Lifetime of long-lived $\pi^+\pi^-$ atoms

Number of atoms: generated on Be target $N_A = 16960 \pm 290|_{\rm tot}$ Number of atomic pairs after Pt foil: $n_A = 436^{+157}_{-61}|_{\rm tot}$ The lifetime of the long-lived atom in 2p state is:

$$\tau_{2p} = 0.45^{+1.08}_{-0.30}|_{\text{tot}} 10^{-11} \text{s} (1), \quad \tau_{2p} = 0.22^{+1.42}_{-0.18}|_{\text{tot}} 10^{-11} \text{s}$$

(2)

QED:
$$\tau_{2p} = 1.17 \times 10^{-11} \text{s}$$

The measured ground state lifetime is:
$$\tau_{1s} = 3.15^{+0.28}_{-0.26}|_{tot} \times 10^{-15}$$
s

The 90% of the long-lived atoms have decay length in l.s. from 40 cm.

up to 140 cm. It opens the possibility to measure the Lamb shift and $\pi\pi$ scattering lengths. The experimental results were presented as section reportson the Rochester 2018, submitted as CERN preprint and in

KK Coulomb pairs and KK atoms

For charged pairs from short-lived sources and with small relative momenta Q, Coulomb final state interaction has to be taken into account.

This interaction increases the production yield of the free pairs with Q decreasing and creates atoms.

There is a precise ratio between the number of produced Coulomb pairs (N_C) with small Q and the number of atoms (N_A) produced simultaneously with Coulomb pairs:

$$N_A = K(Q_0)N_C(Q \le Q_0), \frac{\delta K(Q_0)}{K(Q_0)} \le 10^{-2}$$

$$n_A$$
 - atomic pairs number, $P_{br} = \frac{n_A}{N_A}$

K⁺K⁻ atom and its lifetime

The A_{2K} lifetime is strongly reduced by strong interaction (OBE, scalar meson f_0 and a_0) as compared to the annihilation of a purely Coulomb-bound system (K^+K^-).

	τ (A _{2K} \rightarrow ππ,πη)	K+K⁻ interaction
Ę I	$1.2 \times 10^{-18} \mathrm{s} [1]$	Coulomb-bound
K ⁺ K ⁻ interaction complexity	$8.5 \times 10^{-18} \mathrm{s} [3]$	momentum dependent potential
K+K- in	$3.2 \times 10^{-18} \mathrm{s} [2]$	+ one-boson exchange (OBE)
	$1.1 \times 10^{-18} \mathrm{s} [2]$	+ f_0' (I=0) + $\pi\eta$ -channel (I=1)
	$2.2 \times 10^{-18} \mathrm{s} [4]$	ChPT

References:

- [1] S. Wycech, A.M. Green, Nucl. Phys. A562 (1993), 446;
- [2] S. Krewald, R. Lemmer, F.P. Sasson, Phys. Rev. D69 (2004), 016003;
- [3] Y-J Zhang, H-C Chiang, P-N Shen, B-S Zou, PRD74 (2006) 014013;
- [4] S.P. Klevansky, R.H. Lemmer, PLB702 (2011) 235.

K+K- Coulomb pairs.

Predicted number of K^+K^- pairs with $Q_t < 4$ MeV/c and $Q_t < 6$ MeV/c according to fits of Q_t distributions of given samples

	$Q_t < 4 \text{ MeV/c}$	Q_t < 6 MeV/c
k70:	13906	31457
k50:	12666	28653
k30:	14834	33556
average:	13802	31222

k70, k50, k30 – samples with ratio of at least 70%, 50%, 30% of K^+K^- pairs in individual momentum and time intervals

Coulomb correlations

Atom	Borh radius a _B [fm]	Resonance cτ [fm]
$\pi^+\pi^-$	387	ω(782) 23
πΚ	248	$\omega(782) + \phi(1020)$
K+K-	109	ф(1020) 46
$p\overline{p}$	58	

	Z	A	Nublear radius [fm]
Be	04	9.012	2.56
Ni	28	58.69	4.78
Pt	78	195.08	7.13

Coulomb correlation with account of size of pair production region r^*

$$A_c(r^*, a_B) = A_c(0) \left[1 - \frac{2r^*}{a_B} + \cdots \right], \ A_c(0) \sim \frac{1}{q}$$

Point-like Coulomb correlation

Number of p-antiproton pairs

22

KK Coulomb pairs, KK atoms and proton-antiproton pairs.

- 1. In April 2019 the theoretical investigation of KK pairs and KK atoms production will be finished.
- 2. In June 2019 the preliminary measurement of the KK atoms number generated simultaneously with detected KK pairs will be evaluated.
- 3. In October 2019 the dedicated paper will be submitted.
- 4. The experimental conditions needed for the KK atoms lifetime measurement on SPS and LHC will be formulated.
- 5. The proton-antiproton Coulomb pairs investigation will be done in June 2019.

Thank you

Measurement of the \(\pi K\) scattering length

The S-wave πK scattering lengths $a_{1/2}$ and $a_{3/2}$ in the chiral symmetry world are zero. Therefore the scattering length values $a_{1/2}$ and $a_{3/2}$ are very sensitive to the $\mathcal{L}_{\text{sym.br.}}(3)$.

For Lattice QCD the πK interaction at threshold is a relatively simple process. It gives πK scattering length values with an average precision of 5%.

This precision will be improved in the near future.

There is only one experimental data: <u>DIRAC collaboration</u> observed $349\pm62~\pi K$ atomic pairs (*Phys.Rev.Lett*. 2016) and measured $|a_{1/2}-a_{3/2}|$ with an average precision of 34% (*Phys.Rev.D* 2017).

Atomic states population

n	l	m	P (%)	\sum_{m}	$\sum_{l,m}^{L}$
1	0	0	11.84	11.84	
2 0	0	4.08	4.08	C.	
2	1	-1, 1	2×1.19	2.38	2.38
3 1	0	0	0.78	0.78	۵,
	1	-1, 1	2×0.46	0.91	
	2	-2, 2	2×0.26	0.65	1.56
		0	0.12	0.65	
	0	0	0.21	0.21	
	1	-1, 1	2×0.15	0.30	0
4	2	-2, 2	2×0.12	0.29	
4	- 2	0	0.06	0.29	0.85
	2	-3,3	2×0.09	0.25	
	3	-1, 1	2×0.038	0.25	
3	0	0	0.075	0.075	
	1	-1, 1	2×0.058	0.116	
	2	-2, 2	2×0.060	0.128	0.49
		0	0.028	0.128	
5	3	-3, 3	2×0.044	0.120	
	3	-1, 1	2×0.020	0.128	
		-4,4	2×0.038	£.	
	4	-2, 2	2×0.015	0.119	
		0	0.012		
	0	0	0.032	0.032	
	1	-1, 1	2×0.026	0.052	
	2	-2, 2	2×0.023	0.061	
	2	0	0.014	0.061	
	3	-3, 3	2×0.022	0.065	
-	3	-1,1	2×0.011	0.063	
6 -		-4,4	2×0.020	6.0	0.30
	4	-2, 2	2×0.0088	0.065	
		0	0.0071		
		-5, 5	2×0.018		
	5	-3, 3	2×0.0074	0.062	
		-1, 1	2×0.0055		

n	1	m	P (%)	\sum_{m}	$\sum_{l,m}^{L}$
	0	0	0.015	0.015	
	1	-1, 1	2×0.013	0.026	
	2	-2, 2	2×0.012	0.031	
	-2-	0	0.007	0.051	
	3	-3, 3	2×0.011	0.034	1
	.	-1, 1	2×0.0058	0.034	
		-4, 4	2×0.011]
7	4	-2, 2	2×0.0049	0.035	
1		0	0.0041		0.19
		-5, 5	2×0.010		
	5	-3, 3	2×0.0043	0.035	
	\$	-1, 1	2×0.0033		
	SS - S	-6, 6	2×0.0095	0.035	1
	6	-4, 4	2×0.0038		
	0	-2, 2	2×0.0027	0.055	
		0	0.0024		
	0	0	0.008	0.008	
	1	-1, 1	2×0.0068	0.014	c .
	2	-2, 2	2×0.0063	0.016	5
		0	0.0038	0.010	
	3	-3, 3	2×0.0061	0.019	
		-1, 1	2×0.0032	0.019	
		-4,4	2×0.0058		
	4	-2, 2	2×0.0028	0.020	
		0	0.0023		
8	4	-5, 5	2×0.0056		
0	5	-3, 3	2×0.0025	0.020	0.12
	a - 3	-1, 1	2×0.0019		
		-6, 6	2×0.0054		
	6	-4, 4	2×0.0023	0.020	
	0	-2, 2	2×0.0016	0.020	
		0	0.0015		
		-7,7	2×0.0051		1
	7	-5, 5	2×0.0021	0.020	
	,	-3, 3	2×0.0014	0.020	
	3	-1, 1	2×0.0012	Ī	

Table 1: Population *P* of atomic states with the quantum numbers n, l and mat the exit of the 103 µm thick Be target. The calculations are performed for the average atom momentum 4.44 GeV/c and the ground state lifetime $\tau = 3.15 \cdot 10^{-15} s$. \sum_{m} is the population summed over the quantum number m, and $\sum_{l,m}^{L}$ the long-lived state population summed over *l* and *m*. All numbers are given in % of the total number N_A of produced atoms.

Table 2: Summed populations of long-lived atomic states versus n given in % of the total number of produced $A_{2\pi}$ in the *Be* target. The values are calculated in approach 1 (A1) and minimum/maximum values in approach 2 ($A2_{min}/A2_{max}$).

n	2	3	4	5	6	7	8	$\sum n \leq 8$
A1	2.38	1.56	0.85	0.49	0.30	0.19	0.12	5.91
$A2_{min}$	2.46	1.51	0.81	0.46	0.27	0.16	0.08	5.75
$A2_{max}$	2.46	1.54	0.91	0.67	0.64	0.73	0.92	7.87

Table 3: P_n (in %) is the population of long-lived atomic states versus n (summed over l and m) at the entry in the Pt foil. $P_{br}(np)$ is the breakup probability of the $A_{2\pi}$ np states in the 2.1 μ m thick Pt foil. The values are calculated in approach 1 for the average atom momentum 4.44 GeV/c and the ground state lifetime $\tau = 3.15 \cdot 10^{-15}$ s.

n	2	3	4	5	6	7
P_n	0.48	1.10	0.76	0.47	0.30	0.19
$P_{\rm br}(np)$	0.763	0.933	0.978	0.991	0.996	0.998

K⁺K⁻ atoms ionization probability

 K^+K^- atoms Lorentz factor is $\gamma = 18$

DIRAC future Experimental setup

Energy splitting measurement

 Δ_{2s-2p}^{vac} can be calculated with relative precision $\approx 10^{-5}$

(S. Karshtenbom)

higher order QED

$$E_{2s} - E_{2p} = \Delta_{2s-2p}$$

$$\Delta_{2s-2p}^{vac} = -0.111 \text{eV}$$

Notation:
$$\Delta_{2s-2p}^{vac} = -0.111 \text{eV}$$
 $\Delta_{2s-2p}^{str} = -0.47 \pm 0.01 \text{eV}$ $\Delta_{2s-2p}^{em} = -0.012 \text{eV}$

$$\Delta_{2s-2p}^{em} = -0.012 \text{eV}$$

$$\Rightarrow \Delta_{2s-2p}^{vac+str+em} = -0.59 \pm 0.01 \text{eV}$$

$$\Delta_{2s-2p}^{str} = -\frac{\alpha^3 m_{\pi}}{8} \frac{1}{6} (2a_0 + a_2) + \cdots$$

G.V.Efimov et al. Sov.J.Nucl.Phys. (1986)

$$\Delta_{ns-np}^{str} = -\frac{\Delta_{2s-2p}^{str}}{n^3} \cdot 8$$

CONCLUSION: one parameter $(2a_0+a_2)$ allows to calculate all Δ_{ns-np}^{str} values

Number of atomic pairs

K+K- pair analysis

K⁺*K*[−] Coulomb pairs signal

Distribution of K^+K^- pairs in the RUN 2009 + 2010 over the full pair momentum in laboratory system.

35

III. The short-lived $\pi^+\pi^-$ atom lifetime measurement

Preliminary results on the short-lived atom lifetime measurement based on all available 2008-2010 data are presented in Fig. 1 and 2.

Fig.1. Distribution over $|Q_1|$ for events, selected with criterion $Q_T < 4 \text{ MeV/c}$. Fractions of atomic, Coulomb and non-Coulomb pairs were obtained by fitting the distri-bution over $(|Q_{\rm I}|,Q_{\rm T})$ with criteria: $|Q_{\rm I}|<15$ MeV/c, $Q_T < 4 MeV/c$. N_A , n_A and P_{br} are the number of produced atoms, detected atomic pairs and probability of the atoms breaking in the target respectively.

III. The short-lived $\pi^+\pi^-$ atom lifetime measurement

Preliminary results on the short-lived atom lifetime measurement based on all available 2008-2010 data are presented in Fig. 1 and 2.

Fig.1. Distribution over $|Q_1|$ for events, selected with criterion $Q_T < 4 \text{ MeV/c}$. Fractions of atomic, Coulomb and non-Coulomb pairs were obtained by fitting the distri-bution over $(|Q_{\rm I}|,Q_{\rm T})$ with criteria: $|Q_{\rm I}|<15$ MeV/c, $Q_T < 4 MeV/c$. N_A , n_A and P_{br} are the number of produced atoms, detected atomic pairs and probability of the atoms breaking in the target respectively.