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Chapter 1

Introduction

1.1 Outline and Motivation

In a colliding storage ring like the LHC, luminosity is a key measure of the overall

machine performance. To ensure the maximum efficiency during collisions, losses

due to various beam dynamics processes should be minimised, such that particles

are only lost due to collisions with counter rotating bunches. One effect that is

unavoidable in the LHC and is known to cause additional losses is the beam-

beam interaction. At each collision point the bunches will experience the electric

field of the counter rotating bunch. The interaction between two counter rotating

beams can be strong and hence dictate the choice of operation parameters for the

machine. Understanding the beam-beam interaction and its effects are vital to

maximise the luminosity performance in the LHC and push the luminosity reach

for future machines. The impact of the beam-beam interaction on the luminosity

performance in the LHC is the topic of this thesis. A brief summary of the thesis

is given in the following section.
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1.2 Thesis Summary

This thesis contains research conducted throughout a 4 year period with 9 months

of that spent on long-term attachment at CERN. It consists of three introduc-

tory chapters and three main research chapters, followed by a brief summary. The

aim of this thesis was to identify and quantify the impact of beam-beam effects

on the luminosity performance of the LHC. The luminosity is a key parameter

which defines the performance of the machine. It is therefore important to un-

derstand these effects, and the impact they have on the luminosity. Chapters 2

and 3 introduce the general concepts of accelerator physics which are related to

this thesis. Within these chapters, elements of beam dynamics, the beam-beam

interaction and the CERN accelerator complex are introduced. The chapters

following these introductions, contain research undertaken during this PhD and

provides the main topic of this thesis, which is the performance limitations of the

luminosity due to beam-beam effects. The work in this thesis can be summarised

as follows;

• Chapter 4 contains work detailing an alternative method of obtaining ana-

lytical expressions for the electric field in the rest frame of the bunch, whilst

including a non-Gaussian charge density distribution. In the HL-LHC, the

particular choice of operational parameters such as β∗, will result in a cou-

pling between the transverse bunch size to the longitudinal position. This

is known as the hourglass effect. The hourglass effect can limit luminosity

performance because the particles may not collide at the minimum β∗. In

order to study the luminosity performance, accurate models of the hour-

glass effect are required. Currently no analytical formula exists to describe

this effect. As a result, computationally expensive multi-particle simula-

tions are required. This chapter provides a method of obtaining analytical

solutions to describe the hourglass effect. The theory is used to re-derive
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electric field for a fixed Gaussian distribution and is then applied to the

case the hourglass effect is present. The derived expressions are discussed

and compared to the known round bunch expression.

• Chapter 5 presents experimental work that was collected during the 2015

and 2016 LHC runs. This chapter details two long-range beam-beam ma-

chine studies. These studies were performed to determine the maximum

luminosity reach as defined by the long-range beam-beam interactions in

the LHC for two optic set ups. From these studies, the minimum crossing

angle was identified for a β∗ = 0.8 m and β∗ = 0.4 m. The minimum opera-

tional crossing angle was identified at α = 260 µrad during the 2016 study.

For crossing angles smaller than this value, the long-range beam-beam in-

teraction reduces the beam and luminosity lifetimes. Identifying the limit

before additional beam losses occurred allowed the operational crossing an-

gle to be reduced during luminosity production runs. The crossing angle

was reduced to α = 280 µrad. Operating at this reduced crossing angle will

improve the luminosity performance of the LHC by approximately 10−15%.

• In chapter 6, the results from the 2016 long-range beam-beam machine

study were compared to dynamic aperture simulations performed in Sixtrack.

This chapter introduces and discusses the topic of dynamic aperture in ac-

celerator physics and its relationship to the beam lifetimes. A method

of calculating the dynamic aperture from measured intensity loss is dis-

cussed, before the measured data is compared to tracking simulations. The

dynamic aperture is simulated for every crossing angle step during the long-

range beam-beam machine study, as discussed in chapter 5. The impact

of magnetic errors, linear coupling and the beam-beam interaction the dy-

namic aperture is evaluated. These studies show that the magnetic errors

play a important role in defining the dynamic aperture and hence the choice

of operational parameters for the LHC and future machines.
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Finally, a summary chapter is provided overviewing the main findings of this

thesis.



Chapter 2

Beam Dynamics

2.1 Single Particle Dynamics

Beam dynamics concerns the behaviour of charged particles in an accelerator.

Providing an accurate description of the beam dynamics is a vital requirement

of any machine to ensure that design, operation, machine performance, and pro-

tection goals are all achieved. Before collective effects can be considered a brief

overview of single particle dynamics are introduced in this chapter. The trans-

verse beam dynamics are primarily a concern in the LHC as the bunches are

relativistic. These are discussed and reviewed in the following chapter.

2.1.1 Maxwell’s Equations

The dynamics of charged particles moving within an electromagnetic field is de-

scribed by Maxwell’s equations [1, 2]. Maxwell’s equations in differential form

24
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are given by the following set of coupled partial differential equations;

∇⃗ · E⃗ =
ρ

ϵ0
, (2.1)

∇⃗ × E⃗ = −∂tB⃗, (2.2)

∇⃗ · B⃗ = 0, (2.3)

∇⃗ × B⃗ = µ0j⃗ + µ0ϵ0∂tE⃗, (2.4)

where µ0 and ϵ0 are the magnetic and electric permeability in free space, E⃗ and

B⃗ are the electric and magnetic fields respectively, j⃗ is the current density and ρ

is the charge density distribution.

Since Maxwell’s equations are a system of coupled partial differential equations,

analytic solutions can often be difficult to find and depend on the boundary

conditions of the system. Maxwell’s equations can be used to describe both the

single particle behaviour as well as the collective behaviour of many particles. The

behaviour of many particles in a bunch are difficult to model and would require

extensive computational simulation in order to calculate the electric fields of all

of the particles. The problem can be simplified by considering the bunch as an

ensemble and transforming to the rest frame of the bunch. This reduces the

number of equations that need to be solved, since the magnetic field can be set

to zero under fixed time, t = 0. In this case, Maxwell’s equations reduce to

∇⃗ · E⃗ =
ρ

ϵ0
, (2.5)

∇⃗ × E⃗ = 0. (2.6)

Written in terms of the scalar potential φ, where the charge density distribution

ρ describes the distribution of the particles in the bunch results in Poisson’s
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equation,

∇2φ =
ρ

ϵ0
. (2.7)

From the scalar potential or the electric field of the bunch, the dynamics of the

interaction with other particles can be calculated.

The understanding of a number of the key concepts of single particle dynamics in

a colliding beam storage ring like the LHC will allow more complicated collective

effects like the beam-beam interaction to be described.

2.1.2 Transverse Dynamics

In a colliding beam storage ring like the LHC, the beam dynamics are dominated

by the transverse motion of particles, since the beam energy is sufficiently large,

the bunches travel close to the speed of light. The transverse motion of a particle

inside a bunch is complicated and can be non-linear in nature [3].

2.1.2.1 Linear Dynamics and Hill’s Equations

An accelerator like the LHC contains different types of magnets which are ar-

ranged in such a way, as to ensure that a beam of charge particles will pass

through, and survive for many turns. The particular layout of these magnets

around the whole ring is known as a lattice. For periodic particle motion around

an accelerator lattice, the transverse linearised equation of motion can be de-

scribed in terms of the spatial components x, y and x′, y′, which represent the

angle from the transverse spatial plane. The coordinate space (x, x′, y, y′) is

known as trace space. Later in the chapter the concept of phase space will be

introduced which is a coordinate space in (x, px, y, py). In phase space the co-

ordinates px,y are used and these are the momentum components in the x or y
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plane. The coordinates x′, y′ and px, py are related through.

px = m0cβrγx
′, (2.8)

with a similar expression in y. Here βr =
v
c
, where v is the particle speed, γ is

the relativistic factor, and m0 is the rest mass of the particle. In the absence of

any coupled motion Hill’s equations [4] are given by

x′′ + κx(s)x = 0, (2.9)

y′′ + κy(s)y = 0. (2.10)

Where κx,y is a an arbitrary function that depends on the longitudinal position

s. These equations can be solved using the ansatz that includes an s-dependent

amplitude and phase as given by [4, 5],

x(s) =
√
ϵβ(s) cos(ψ(s) + ψ0), (2.11)

where the phase advance through the lattice is ψ(s), β is the β-function, and ϵ

and ψ0 are constants of integration. A similar equation will be given in terms of

y. If the machine has a circumference of length L, the β-function in the x or y

plane will have the periodic condition

β(s) = β(s+ L).

Differentiating the ansatz given by equation 2.11 and requiring that the trigono-

metric terms vanish result in two conditions that must be satisfied. These con-

ditions are

1

2

(
ββ′′ − β

′2

2

)
− β2ψ

′2 + β2κ = 0, (2.12)
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and

β
′
ψ

′
+ βψ

′′
= 0. (2.13)

Integrating the second condition since

β
′
ψ

′
+ βψ

′′
= (βψ

′
)′

shows that βψ
′
must be constant. Hence the relationship between the phase

advance ψ(s) and the β-function is given by

ψ(s) =

∮ s

0

1

β(s)
ds. (2.14)

In addition to the phase advance, the β-function can be related to the machine

tune. The tune is defined as the total number of transverse particle oscillations

around the reference trajectory per revolution. The tune is related to the β-

function by

Qx,y =
1

2π

∫
1

β(s)
ds. (2.15)

Using the condition that the derivative of the β-function and the phase advance

(βψ
′
) is constant and substituting back into equation 2.12, yields a new differen-

tial equation in β only. The equation is

1

2
ββ

′′ − 1

4
β

′2 + β2κ = 1. (2.16)

Introducing α = −1
2
β

′
and γ = (1+α2)

β
gives

β
′′
+ 2κβ − 2γ = 0, (2.17)
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which can be simplified to

β′′ + 2α′ = 0. (2.18)

These parameters α, γ and β and their relationship to the coordinate s yields

the Courant-Snyder invariant [4, 5]. In the horizontal plane, the Courant-Synder

invariant is

γxx
2 + 2αxx · x′ + βxx

′2 = ϵx. (2.19)

The parameters αx, γx and βx have an important physical interpretation for ac-

celerator physics; they correspond to particle motion and introduce the topic of

betatron motion and the single particle emittance. The single particle emittance

is related to the single particle action by

2Jx,y = ϵx,y. (2.20)

The invariant given by equation 2.19 describes how a single particle moving

through trace space will travel along the contour of an ellipse [4]. The ellipse

itself will rotate in the x − x′ plane but the area of the ellipse will remain con-

stant. Liouville’s theorem states that for a particle beam undergoing conservative

forces, the particle density in phase space will remain conserved [4]. A schematic

of the particle phase space ellipse is shown in figure 2.1. The Courant-Snyder

parameters α, β and γ are dependent on the longitudinal position s. This depen-

dence can be removed by transforming to the Floquet coordinates, Transforming

the particle trajectories along the (x, x′) plane from ellipses to circles [6]. The
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Figure 2.1: Particle ellipse along the x, x′ axis showing the relationship be-
tween the Courant-Snyder parameters α, β, γ.

transform to the Floquet coordinates {x̄, ȳ} and {x̄′, ȳ′} is given by

 {x̄, ȳ}

{x̄′, ȳ′}

 =


√
βx,y(s) 0

− αx,y(s)√
βx,y(s)

1√
βx,y(s)

 ·

 {x, y}

{x′, y′}

 , (2.21)

where · represents matrix multiplication. From the Floquet coordinates labelled

F , a one turn matrix can be derived that describes the particle phase space ellipse

around a circular accelerator. A one turn matrix is defined as a mapping of one

of the accelerator coordinates from one position in the ring to the same position

after a complete turn. The normal form transformation can be written as

Mturn = FR(Φ)F−1, (2.22)

where R(Φ) is the rotation matrix,

R(Φ) =

 cosΦ sinΦ

− sinΦ cosΦ

 , (2.23)
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and Φ is the angle of rotation.

To further develop the understanding and properties of the Courant-Snyder in-

variant, the evolution of the Courant-Synder ellipse during acceleration is con-

sidered.

As the particles in the machine are accelerated the Courant-Synder invariant ϵx

will decrease. This is sometimes called ”Adiabatic Damping”. The shrinking of ϵx

can be understood by considering the particle momentum p(x, z). The particle

momentum before and after the acceleration in shown in figure 2.2. As the particle

	

!! + !"′	
!! + !!!	
	

!!	
	!!	 !!	

	
!!	

	
Figure 2.2: Evolution of momenta before a particle is accelerated (left) and

after the particle has been accelerated (right).

is accelerated its momentum pz along the longitudinal will increase by pz + δpz,

however the transverse component px will not change. Since the longitudinal

momentum component pz has increased and the transverse component of the

momentum px has not changed, x′ must change. The angle between pz and px

must decrease and hence the length of the hypotenuse will increase by x′ + δx′.

This new value of the hypotenuse is given by

δx′ = −x′ δp
p
. (2.24)

This will reduce the Courant-Synder invariant ϵx. However if a beam of particles

with the same ϵx but random phases φ are introduced as described in ref [7],

then the emittance of the beam can be written in terms of an invariant, nor-

malised emittance which decreases as a function of momentum. This normalised
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emittance is written as

ϵn = βrγϵ, (2.25)

where βr =
v
c
is the particle speed v, over the speed of light c, γ is the relativistic

boost factor, and ϵ is the physical emittance. This normalised emittance does not

change during acceleration and hence does not violate Liouville’s theorem. In the

LHC the bunches can be considered to be Gaussian. For a Gaussian distribution

the bunch size can be written in terms of σ as,

σx,y =
√
ϵx,yβx,y. (2.26)

The discussion above is derived considering that the particles all move along the

design momentum which is labelled p0. In reality however, this will not be the

case and particles will have a spread in momenta, this is typically denoted as δ,

where

δ =
∆p

p0
. (2.27)

Deviation from the reference momentum can introduce chromatic effects which

will impact the particle dynamics [3, 4, 8, 9]. One chromatic effect that arises

in dipoles due to momentum deviation is called dispersion. Particles in a bunch

will have a momentum spread and this momentum spread will result in particles

following a different trajectory through the magnetic elements. This in turn will

lead to particles following different orbits around the accelerator lattice. The

impact on the particle momentum due to dispersion is given in terms of the

dispersion function [8, 9] as

∆{x, y} = Dx,yδ. (2.28)
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Dispersion effects are just one result of a monochromatic beam in an accelerator.

In the next section other chromatic effects and coupled betatron motion are

considered along with the Hamiltonian formalism of a particle moving in an

accelerator. The Hamiltonian formalisation is often more suitable to describe

these effects than Hill’s equations.

2.1.3 The Accelerator Hamiltonian

The Hamiltonian H, of a physical system corresponds to the total energy within

that system in terms of a set of canonical variables. Similarly the Lagrangian, L,

corresponds to the dynamics of a particular system and is the difference between

the kinetic energy, Ek and the potential energy, Ep. The Lagrangian of a system

is given by equation 2.29

L = Ek − Ep. (2.29)

The Hamiltonian of a system is written in terms of the position and momentum

of that particle as given by equation 2.30,

H = Ek + Ep. (2.30)

These two formalisations have many important uses in physics [10]. The Hamil-

tonian and Lagrangian of a system are related to one another by a Legendre

transformation [11], namely

H(qk, pk; t) =
∑
i

q̇ipi − L(qk, q̇k; t), (2.31)

where the position and momentum are denoted by q and p respectively, q̇ corre-

sponds to the time differential of the position (i.e the velocity), with t representing
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the time. The time component is often considered as the independent variable, so

that the total energy of the system is considered to be conserved. If the Hamil-

tonian of a system is known, the time evolution of that system will be defined by

Hamilton’s equations [12],

dtp = ∂qH, (2.32)

dtq = −∂pH. (2.33)

If the Hamiltonian of a system does not contain any coupling terms, then Hamil-

ton’s equations can be applied easily. If, however, the components p and q can

not be separated, then Hamilton’s equations will become non-trivial and may

be difficult to solve. A simple application of the accelerator Hamiltonian is to

consider a magnetic field within the thin lens approximation [4], where this ap-

proximation treats the magnetic element as having a small length compared to

the focal length. The magnetic field for a multipole of any order is given by

By(x, y, s) + iBx(x, y, s) = (Bn(s) + iAn) (x+ iy)n−1, (2.34)

where the normal and skew coefficients are An and Bn respectively. The variable

n is the multipole of interest, i.e n = 1 corresponds to a dipole, n = 2 is a

quadruple etc. Thus the linear Hamiltonian H0 for a quadrupole can be written

in terms of some focussing function κx,y as,

H0 =
1

2

(
p2x + p2y + κ(s)x2 − κ(s)y2

)
, (2.35)

where px,y are the momentum components and x, y are the position components.

The contribution from the real magnetic field to nth order can hence be written
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as,

Hn =
q

p
ℜ
[
n−1 (Bn(s) + iAn) (x+ iy)n−1

]
. (2.36)

From equation 2.36, the momentum change with s can then be calculated from

Hamilton’s equation as

dsp{x,y} = −d{x,y}H. (2.37)

For some higher-order multipoles, such as sextupoles (n = 2) and octupoles

n = 3, this will introduce an amplitude dependent detuning along with other

non-linear effects. These higher-order magnets are all found in the LHC and can

affect the particle dynamics [3, 13]. Some of the non-linear effects that arise from

sextupoles and octupoles will be reviewed in the following section.

2.1.4 Non-Linear Dynamics

As discussed previously, the tune Qx,y of a machine is the number of betatron

oscillations of a particle around the reference trajectory. Much like a harmonic

oscillator, resonances exist that can cause the betatron oscillations to become

driven [14]. This can lead to particle motion becoming unstable, with unstable

motion leading to particle loss from the machine if the oscillation is not damped

by a correcting magnet or some other physical process. Resonance behaviour

in an accelerator arises due to non-linearities in the lattice. For example mag-

netic errors can excite resonance as well as higher-order multipoles or beam-beam

interactions. The resonance condition is given by [3, 4] as

aQx + bQy = c, a, b, c ∈ Z (2.38)



Chapter 2. Beam Dynamics 36

where the order of the resonance (n), is given by

|a|+ |b| = n. (2.39)

The resonance diagram for c values up to 5 is shown in figure 2.3. In figure 2.3

Qy

Qx

Figure 2.3: Non-integer resonance diagram up to 5th order between 0 and 1 in
the horizontal (Qx) and vertical planes (Qy) with the LHC fractional working

point identified at Qx = 0.31 and Qy = 0.32 at collision [15].

it can be seen that the resonance lines are not all the same thickness. Resonant

behaviour does not just occur at the non-integer resonance but at some finite

region around that resonance. This is known as the stop band width and is

discussed in detail in reference [4]. For hadron machines like the LHC, the higher-

order resonances could have a significant impact on beam stability which may lead

to particle losses.
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2.1.4.1 Chromaticity

Energy dependent effects such as dispersion arise from difference between the

particle momentum and the reference particle momentum p0. Additionally, off-

reference momentum particles will experience a variation of tune which is depen-

dent on the deviation from the reference momentum; this is called chromaticity.

For example, particles travelling through a quadrupole with momenta that lies

off-reference will experience a different quadrupole field to that of the ideal parti-

cle. As a result each particle will have a different focal point after the quadrupole.

A schematic of chromaticity is shown in figure 2.4. Considering the tune variation

Figure 2.4: Schematic showing chromatic effects due to a quadrupole for
different off-reference momentum particles [4].

with momentum deviation

δ =
p1 − p0
p0

,

then the linear and non-linear chromatic terms can be written from the Taylor

expansion of the tune as,

Qx,y (p̄) = Qx0,y0 + ∂p̄Qx,y · p̄+
∂2p̄Qx,y

2
· p̄2 + ...+

∂np̄Qx,y

n!
· p̄n. (2.40)
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The differential ∂np̄Qx,y is often denoted in the literature as Q′, where Q′ is called

the chromaticity and higher-order primed terms are often referred to as the non-

linear chromaticity [4]. Higher-order magnets such as quadrupoles and sextupoles

introduce chromaticity which can impact a particle’s trajectory through the field.

In the LHC, these higher-order terms can all have an impact on the beam dy-

namics [13].

In addition to chromaticity, non-linear and collective effects such as the beam-

beam interaction can also introduce a detuning with amplitude. The detuning

with amplitude is defined as the tune variation as a function of the particle action.

Similarly to the chromaticity the detuning with amplitude can be derived using a

Taylor expansion about the unperturbed tune as a function of particle emittance

ϵx,y. Expanding the tune around the particle emittance in the horizontal and

vertical planes gives

Qx,y(ϵx, ϵy) = Qx0,y0 + ∂ϵxQx,yϵx + ∂ϵyQx,yϵy+

+
1

2

(
∂2ϵxQx,yϵ

2
x + ∂2ϵyQx,yϵ

2
y + 2∂ϵxϵyQx,yϵxϵy

)
+ ... . (2.41)

The amplitude detuning arising due to non-linearities in the magnetic and elec-

tric fields can cause particles to diffuse to large amplitudes, or be pushed onto

resonances. It should however be noted that amplitude detuning is not the only

mechanism capable of causing particles to move onto resonant tunes. Additional

mechanisms include the effect of changing chromaticity for particles with non-

zero δp/p, power ripple in the magnets, and linear coupling. The concept of

linear coupling will be introduced in the following section. Amplitude dependent

detuning can however be beneficial and can minimise coherent motion of the

bunch. In the LHC, a common source of amplitude detuning arises due Landau

damping produced by the octupole magnets and the beam-beam interaction [16].

The beam-beam interaction and Landau damping will also be discussed in more
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detail later in section 2.2 and 2.1.6.

In addition, another mechanism which is often confused with Landau damping is

called beam decoherence. Decoherence occurs when a beam is excited by a single

kick. This kick excites betatron oscillations and these oscillations combined with

amplitude detuning and chromaticity cause the particles in the bunch to oscillate

out of phase with one another and the beam is said to have decohered. Unlike

Landau damping, decoherence will lead to an emittance growth.

2.1.5 Linear Coupling

In the previous sections only uncoupled motion has been considered, however

in a real machine coupled motion between the x and y plane can arise due to

some magnetic components in the lattice. Linear coupling can have a significant

impact on the particle dynamics and can lead to resonant motion and dynamic

aperture reduction. The topic of dynamic aperture will be introduced in more

detail in chapter 6 but the impact of linear coupling on the particle motion is

described briefly. Linear betatron coupling can arise from a number of magnetic

elements in a machine. Solenoid and skew-quadrupole fields are such examples

of magnetic elements which can lead to coupled motion [8]. To include coupled

motion due to a skew quadrupole, a simple derivation from Hill’s equations 2.9

can be considered. Hill’s equations when coupled are no longer a function of

one coordinate and instead will lead to two coupled differential equations in the

transverse planes. These equations are

x′′ + kxx+ κ̄xy = 0, (2.42)

y′′ − kyy + κ̄yx = 0, (2.43)



Chapter 2. Beam Dynamics 40

where the function κ̄x,y is the focussing strength of the skew quadrupole and is

given by

κ̄ =
φ2

z2
. (2.44)

Following the approach by Wiedermann [4] the ansatz is chosen of the form

x = a1 cosφ+
b1√
κ̄
sinφ+ c1 coshφ+

d1√
κ̄
sinhφ, (2.45)

y = a2 cosφ+
b2√
κ̄
sinφ+ c2 coshφ+

d2√
κ̄
sinhφ, (2.46)

where φ varies from 0 to length L of the quadrupole and the constants a1,2, b1,2, c1,2

and d1,2 account for the focussing and defocussing components of the skew quadrupole

in both planes. These constants must be related to each other and hence at the

beginning of the quadrupole when z = 0 the constants relate to one another

through

x0 = a1 + c1, y0 = a2 + c2, (2.47)

x′0 = b1 + d1, y′0 = b2 + d2. (2.48)

Since the motion is coupled, the position dependent coefficients must be related to

one another. Similarly the momentum dependent coefficients will also be related.

This leads to

a1 = a2, b1 = b2, c1 = −c2, d1 = −d2. (2.49)

Now the coefficients have been constrained, the transformation matrix can be

derived for a skew quadrupole and is given as in ref [4]. The matrix Mskew will

transform the original coordinates x0, x
′
0, y0, y

′
0 to the new coordinates x, x′, y, y′,
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as a particle travels through the skew quadrupole. This matrix is given by

Mskew =



C+ 1√
κ̄
S+ C− 1√

κ̄
S−

−
√
κ̄S− C+ −

√
κ̄S+ C−

C− 1√
κ̄
S− C+ 1√

κ̄
S+

−
√
κ̄S+ C− −

√
κ̄S− C+


, (2.50)

where C± = cosφ ± coshφ and S± = sinφ ± sinhφ. The terms |C+| and |C−|

can generally be considered as the direction of the tune shift due to the linear

coupling. In the LHC, due to the choice of working point, the |C−| coupling is

generally more of a concern as this tune shift can cause particles to move closer

to the third order resonance.

2.1.6 Landau Damping

As a bunch travels through the elements of an accelerator lattice, wake fields can

excite coherent waves which can displace the bunch centroid from its equilibrium

position [14, 17]. The wake fields will act on all of the particles in the bunch,

importantly however, there is a frequency spread meaning that all particles will

have slightly different frequencies. As a result each individual particle will have a

different response to the coherent wave. This frequency spread means that some

particles will gain energy from other particles whilst others will loose energy

from surrounding particles. This exchange of energy between the particles in

the bunch will damp the coherent motion of the bunch centroid and act in a

way to stabilise the coherent oscillation. An in-depth discussion along with a

mathematical description can be found in ref [14, 17, 18].

This concludes the single particle dynamic part of the introduction. In the next

section, the dynamics of the beam-beam interaction will be discussed.
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2.2 The Beam-Beam Interaction

For a colliding beam storage ring like the LHC, the main objective is to generate

luminosity by colliding two proton beams at dedicated interaction points (IPs)

around the machine. The resulting interaction between beams produce particle

collisions that are of interest to the high-energy physics community. The collisions

between the bunches result in the interaction of the electromagnetic fields of the

two beams. This interaction is known as the beam-beam interaction and cannot

be avoided in the LHC. These effects can be strong and non-linear and can impede

machine performance. In the following section, luminosity and the beam-beam

interaction are introduced. The concept of luminosity is discussed along with a

number of simple calculations corresponding to operational scenarios which may

impact luminosity performance. Then the beam-beam force is derived and the

effects that arise from this force are reviewed.

2.2.1 Luminosity

The luminosity is a key machine performance indicator for the LHC. Luminos-

ity is generated through head-on collisions between bunches in counter rotating

beams. In a standard operational physics fill in the LHC, the bunches will collide

at 4 IPs around the ring. IP1 and IP5 house the two low β experiments, AT-

LAS and CMS. These detectors were responsible for detecting the Higgs boson

and require tightly squeezed beams with small β∗. This generates high luminos-

ity in order to study rare physics events. The experiment ALICE is located at

IP2. This experiment investigates heavy ion collisions between lead ions. Finally

LHCb, located at IP8 investigates physics involving the bottom quark. There are

a total of seven experiments located around the LHC ring all requiring different

operational requirements from the machine in order to study different particle
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physics processes. This provides a number of operational challenges for the ma-

chine that must be addressed. Firstly the concept of luminosity in a colliding

beam storage ring like the LHC will be discussed.

The luminosity is defined as the ratio of the number of events detected over a

specified time period to the interaction cross section. The luminosity can hence

be written as

dtR = L · σcross, (2.51)

where R is the number of collisions, L is the luminosity, and σcross is the cross

section for a given interaction rate. Luminosity in the LHC is generated by

colliding bunches and is dependent on the colliding bunch distributions. The

instantaneous luminosity can be calculated following the procedure in [16] from

L ∝ κ

∫ ∞

−∞
ρ1(x, y, z; z0) · ρ2(x, y, z; z0)dr4, (2.52)

where r = (x, y, z, z0) and z0 is the time-like component, ρi is the charge density

distribution with the subscripts 1, 2 denoting which beam, and κ is the kinematic

relativistic factor,

κ =

√
(v̄1 − v̄2)2 −

(v̄1 × v̄2)2

c2
.

Since the bunches in the LHC can be considered to have a Gaussian charge density

distribution with equal bunch sizes in the transverse planes, then the integral 2.52

is re-written as

L = κN1N2frevNb

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

[
−x

2

σ2
x

− y2

σ2
y

− z2

2σ2
z

− z20
2σ2

z

]
dxdydzdz0,

(2.53)
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where κ = 2, since v̄1 = −v̄2 and the collisions are in the absence of any crossing

angle (α = 0). The parameters N1,2 correspond to the bunch population, frev

is the frequency of revolution around the machine, and Nb is the number of

bunches in the beam assuming all of the bunches have the same population. The

transverse bunch size at the IP is

σx,y =
√
ϵx,yβ∗

x,y, (2.54)

where β∗
x,y is the β-function at the IP. Excluding any coupling between the planes

and using the identity

∫ ∞

−∞
e−at

2

dt =

√
π

a
, (2.55)

and integrating equation 2.53, leaves

L =
N1N2frevNb

4πσxσy
. (2.56)

Equation 2.56 gives the instantaneous luminosity for a round bunch. Extending

the equation to include elliptical bunches can be performed by considering equal

bunch lengths σ1,z = σ2,z but unequal bunch sizes σ1,x ̸= σ2,x and σ1,y ̸= σ2,y.

This will give the luminosity formula for an elliptical bunch as

L =
N1N2frevNb

2π
√
σ2
1,x + σ2

2,x

√
σ2
1,y + σ2

2,y

. (2.57)

The approach detailed in [16] is easily extendable to include more realistic col-

lision scenarios such as in the presence of a crossing angle and transverse offset.

Including these effects will be discussed in the next section.
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2.2.1.1 Luminosity with Crossing Angle and Transverse Offsets

The result obtained in equation 2.56 is an ideal case in which there is no transverse

offset between the two beams and no crossing angle. To provide a more realistic

interpretation of luminosity in a colliding beam storage ring, the additional effects

from crossing angle and offset are included. Following the method in [19], an

adjusted coordinate system is introduced and the schematic of these coordinates

is shown in figure 2.5. The adjusted coordinates include the crossing angle α

and the transverse offset δ1,2 with respect to the reference orbit. The subscripts

1, 2 denote which beam. The transformation between Cartesian and the modified

	

		 		

z1	 z2	

α	

x1	 x2	

Figure 2.5: Schematic of the coordinate system of two bunches colliding with
an offset and a crossing angle α.

Cartesian coordinates is given by

x1 = δ1 + x cosα− z sinα, z1 = z cosα+ x sinα,

x2 = δ2 + x cosα+ z sinα, z2 = z cosα− x sinα.
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Starting from equation 2.52 and transforming to the modified coordinate system

gives

L = κN1N2frevNb

∫ ∞

−∞
ρ1,x(x1)ρ1,y(y1)ρ1,z(z1 − z0) · ρ2,x(x2)ρ2,y(y2)ρ2,z(z2 + z0)dr̂

4,

(2.58)

where κ is the kinematic factor and r̂ = (x1,2, y1,2, z1,2, z0). To initially treat

this problem, the offset in the horizontal and vertical plane will be set to zero

( δ1,2 = 0) and the crossing angle will be assumed to be in the horizontal plane

only. Then for a 3-dimensional Gaussian charge density distribution, the y and

z0 integrals can be be evaluated using the identity

∫ ∞

−∞
e−(at2+bt+c)dt =

√
π

a
e

b2−ac
a .

This gives the luminosity with only the x and z integrals to be performed. With

the offset set to zero, substituting the coordinate transform, x1,2 and z1,2 into the

x and z Gaussian charge density distribution gives,

L =
N1N2frevNb

8π2σzσ2
xσy

κ

∫∫
e
−x2 cos2 α+z2 sin2 α

σ2
x e

−x2 sin2 α+z2 cos2 α

σ2
z dxdz. (2.59)

For small values of x and α the paraxial approximation can be used. The paraxial

approximation gives sinα ≈ tanα ≈ α. The resulting equation is comparable

to the expression 2.56 , but includes an additional reduction factor. Hence, the

luminosity varies with crossing angle α as,

L =
N1N2frevNb

4πσxσy
· Fred(α), (2.60)
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where the approximation σz ≫ σx,y can be used since in the LHC at IP1, σx ≈

16 µm and σz = 7.5 cm, then the reduction factor Fred(α) is expressed as,

Fred(α) =
1√

1 +
(
σz
σx

tanα
)2
. (2.61)

For LHC-like bunches, the function Fred(α) will improve as the crossing angle

is reduced. The dependence with crossing angle for bunch lengths of σz = 7.5

cm and various operational β∗s are shown in figure 2.6. The reduction factor
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Figure 2.6: Variation of Fred(α) with full crossing angle α for various different
β∗ options in the LHC and HL-LHC

calculated above only includes a crossing angle; in reality the bunches may also

collide with an offset. Following the same method but for a non-zero δx, and

assuming the crossing angle and offset is in the horizontal plane yields, after the

y and z integration,

L =
N1N2frevNb

8π2σzσ2
xσy

κ

∫∫
e
−x2 cos2 α+z2 sin2 α

σ2
x e

−x2 sin2 α+z2 cos2 α

σ2
z ×

e
−

δ21,x+δ22,x+2(δ1,x+δ2,x)x cosα−2(δ2,x−δ1,x)z sinα

2σ2
x dxdz. (2.62)
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Performing the integration over the x variable first and introducing additional

variables A,B, and W from [16],

A =
sin2 α

σ2
x

+
cos2 α

σ2
z

, B =
(δ2 − δ1) sinα

2σ2
x

, W = e
− (δ2−δ1)

2

4σ2
x , (2.63)

leaves the luminosity integral in the form,

L =
N1N2frevNb

8π3/2σz
κ

∫ ∞

−∞
W
e−(Az2+2Bs)

σxσy
dz. (2.64)

This can be written in terms of equation 2.56, again with additional reduction

terms cast in terms of W, exp B2

A
and Fα. The luminosity including these reduc-

tion factors is written in equation 2.65,

L =
N1N2frevNbunch

4πσxσy
·W · e

B2

A · Fα. (2.65)

Equation 2.65 enables the instantaneous luminosity to be calculated whilst also

including crossing angle and an offset. Figure 2.7 shows the luminosity as a func-

tion of different offsets and crossing angles. The luminosity can be considered as
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Figure 2.7: Luminosity variation as a function of offset and crossing angle

the product of the round beam head-on colliding case and the reduction factors.



Chapter 2. Beam Dynamics 49

The reduction factors are sometimes collectively labeled as the luminosity reduc-

tion factor Floss. In a machine like the LHC, the luminosity reduction factor is

approximately of the order of Floss ∼ 0.8, with the largest luminosity reduction

factor arising due to the crossing angle α.

2.2.1.2 Integrated Luminosity

In addition to the instantaneous luminosity, the integrated luminosity is another

useful parameter for determining the luminosity performance of a machine over an

extended period of time. The instantaneous luminosity will define the luminosity

at a given moment in time, i.e between two colliding bunches or two colliding

beams. The integrated luminosity on the other hand, defines the luminosity over

a given period of time and will include operational aspects such as turn-around

time between fills [16]. The integrated luminosity is expressed as

Lint =
∫ τ

0

L(τ)dτ. (2.66)

Figure 2.8 shows the integrated luminosity and the luminosity performance of

the LHC from the 2011 to 2016 runs. Throughout the operational runs, the lu-

minosity performance has increased, exceeding expectations significantly. One

contributing factor to the high luminosity performance is due to tight controls on

the long-range beam-beam interaction, the suppression of instabilities and oper-

ational experience from previous runs of the LHC [20]. The interaction between

the two colliding beams will also impact the particle dynamics over the duration

of a fill. In the next section, the beam-beam force is introduced.
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Figure 2.8: Integrated luminosity in the LHC [21].

2.2.2 The Beam-Beam Force

The beam-beam force can be computed by considering the charge density dis-

tribution of a bunch and calculating the electric field that a counter rotating

test particle will experience, as it traverses the bunch. From this, the change

in momentum imparted to that test particle can be obtained. There are a

number of possible approaches that allow the electric field of a charge distri-

bution to be calculated. Traditionally, as in the literature, Poisson’s equation is

solved [16, 22, 23], although an alternative approach from Maxwell’s equations

is proposed and outlined in Chapter 4. Poisson’s equation is a second order,

inhomogeneous partial differential equation given by

∇2φ =
ρ

ϵ0
, (2.67)

where the Laplace operator is given by ∇2 = ∂2xi + ∂2xi+1
+ ... + ∂2xn , φ is the

electric scalar potential, ϵ0 is the permittivity of free space. and ρ is the charge

density distribution. This equation can be solved by applying the superposition

principle through a convolution of a Green’s function with the charge density
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distribution [24]. The electric potential is calculated using

φ(x, y, z) =
1

ϵ0

∫∫∫
G(x, y, z, x′, y′, z′)ρ(x′, y′, z′)dx′dy′dz′, (2.68)

where G is the Green’s function [1, 24] and the primed coordinates represent the

integral over the charge density distribution, and the unprimed coordinates are

the integral over the potential. Following the method in [16, 25], this can be

expressed using the δ-function in the 3-dimensions as,

G(x, y, z, x′, y′, z′) = 1

4π3/2

∫ ∞

0

1

q3/2
e−

|x−x′|2−|y−y′|2−|z−z′|2
q dq. (2.69)

Taking the Green’s function and substituting a Gaussian charge density distri-

bution into equation 2.68 gives the integral to be evaluated as

φ(x, y, z) =
1

ϵ0

1

4π3/2

∫∫∫∫
1

q3/2
e−

|x−x′|2−|y−y′|2−|z−z′|2
q e

− x′2

2σ2
x
− y′2

2σ2
y
− z′2

2σ2
z dx′dy′dz′dq.

(2.70)

For a simple Gaussian charge density distribution, the integrals can be written

separately in terms of x′, y′ or z′, and can be solved individually. The x′ integra-

tion can be solved using the identity 2.71,

∫ ∞

−∞

1√
2πσ2

x

e
− x′2

2σ2
x

1
√
q
e−

|x−x′|2
q dx′ =

e
− x2

2σ2
x+q√

2σ2
x + q

. (2.71)

Applying this integral identity to the remaining variables, the 3-dimensional po-

tential can be expressed with just the integral over q to be performed. The

integral is often left in the form given by [16, 22, 25],

φ(x, y, z) =
nq

4πϵ0

1√
π

∫ ∞

0

e
−x2

qx
− y2

qy
− z2

qz

√
qxqyqz

dq, (2.72)
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where n is the number of particles in the bunch and the qx,y,z terms are,

qx = 2σ2
x + q, qy = 2σ2

y + q, qz = 2σ2
z + q.

For simplicity and brevity, the 2-dimensional round bunch case is considered here,

with the elliptical beam case shown in [22]. The round bunch potential can be

calculated by setting z = 0 and transforming to cylindrical coordinates through

x = r cosϑ, y = r sinϑ. This gives the round bunch potential as

φ(r) =
nq

4πϵ0

∫ ∞

0

e−
r2

qr

√
qr

dq, (2.73)

where qr = 2σ2
r + q. This potential is related to the electric field of the bunch by

the gradient of the scalar potential. Hence using

E = −∇φ, (2.74)

the electric field in the rest frame of the bunch is

E(r) = − nq

4πϵ0

1

r

[
1− e

− r2

2σ2
r

]
. (2.75)

To calculate the force experienced by a counter rotating test particle traversing

the Gaussian bunch, the force generated by the electric fields must be computed.

To achieve this, the electric field is boosted into the collision frame. A schematic

of the electric field before and after the boost in the two reference frames is shown

in figure 2.9. In the rest frame of the bunch the electric field lines propagate out

in all directions. After the boost, the field lines are confined almost entirely to

the transverse planes, orthogonal to the direction of the boost. A longitudinal

component of the electric field will however be introduced for non-zero crossing

angles. The Lorentz boost of the electromagnetic field tensor to the collision
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Rest Frame of the bunch 
! = 0 

Co-moving Frame 
! ∼ ! 

 
Figure 2.9: Schematic of the electric field lines in the rest frame and after

the boost. The opening angle of the field line varies with 1/γ.

frame is given by

F
′

µν = LρµFρσL
Tσ
ν , (2.76)

where Fpσ is the electromagnetic field tensor and Lpµ is the boost matrix [26]. Re-

quiring that the boost acts in the z direction yields the following transformation

of the electric fields,

E =


γ(Ēx + vrB̄y)

γ(Ēy − vrB̄x)

Ēz,

 , (2.77)

B =


γ(B̄x − vr

Ēy

c2
)

γ(B̄y + vr
Ēx

c2
)

B̄z,

 , (2.78)

where vr is the velocity and barred terms (Ē, B̄) represent the electric and mag-

netic fields in the rest frame. Hence the Lorentz force in the collision frame of
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the bunch acting on a counter rotating test particle with charge q is given by


Fx

Fy

Fz

 = q


γrEx (1− uzvr/c

2)

γrEy (1− uzvr/c
2)

Ez + γrvr(Exux + Eyuy)/c
2

 . (2.79)

Now these expressions have been obtained, the round bunch electric field obtained

in equation 2.75 can be used to calculate the force. If the particles in the bunch are

at rest with respect to one another, the problem can be considered electrostatic

and hence the magnetic field can be set to B̄=0 in the rest frame. Using the

expressions for the electric and magnetic field, 2.77 and 2.78 respectively, and

boosting along the z axis gives the electric and magnetic fields in the collision

frame as

Er = − γnq

4πϵ0

1

r

[
1− e

− r2

2σ2
r

]
, Bϑ = −nqβrcµ0

4π

1

r

[
1− e

− r2

2σ2
r

]
,

with the beam-beam force given by

Fbb = −nq
2(1 + β2

r )

2πϵ0

1

r

[
1− e

− r2

2σ2
r

]
. (2.80)

Equation 2.80 gives the beam-beam force that a counter rotating test particle

will experience. The beam-beam force is shown in figure 2.10 and can be seen

to be non-linear towards larger test particle amplitudes. Hence, due to the non-

linearity of the beam-beam force, the distance of a test particle from a Gaussian

bunch will have an important impact on the bunch dynamics. Particles with

small radial amplitude experience a linear beam-beam force and this applies to

short range interactions and is known as the head-on beam-beam interaction. The

maximum and minimum of the force is located at 1.59 σ and this numerical result

is a consequence of the Gaussian distribution. Large amplitude particles observe

a non-linear force acting over large distances, this is known as the long-range
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beam-beam force. The details of the two types of interactions will be discussed

in detail in the next section. In order to consider the impact of the long-range
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Figure 2.10: The beam-beam force in arbitrary units for a radial symmetric
bunch versus the radial coordinate R in units of bunch sigma. The maximum

and minimum of the beam-beam force is located at R = ±1.59 σ.

and head-on beam-beam force on the particle dynamics, the momentum kick

to the particle should be derived. The momentum kick imparted by the bunch

onto the counter rotating test particle can be calculated easily by integrating the

beam-beam force over the time taken for the test particle to move through the

length of the bunch. Introducing the time-like variable z = s− ct, then the kick

is calculated from the integral

∆r′ =
∆P

P
=

∫ ∞

−∞
Fbb(r, t)dt, (2.81)

which when evaluated, yields in Cartesian coordinates,

∆x′ = −2r0N

γr

x

r2

(
1− e

− r2

2σ2
r

)
, (2.82)
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where the classical particle radius r0 is introduced and given by

r0 =
1

4πϵ0

q2

mec2
. (2.83)

From the momentum change or kick due to the beam-beam force described above,

the impact of the head-on and long-range beam-beam interaction on particle

dynamics is discussed in the next section.

2.2.3 Head-On Beam-Beam Effects

The head-on (HO) beam-beam interaction occurs when two counter rotating

bunches collide at the IP and generate luminosity. A schematic of the head-on

beam-beam interaction is shown in figure 2.11. The head-on beam-beam interac-

tion is characterised by the linear part of the beam-beam force, since this applies

to small amplitude particles as shown in figure 2.10. To determine the behaviour

of particles at small amplitude the impact on the tune will be considered.
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Figure 2.11: A schematic of the head-on beam-beam interaction between
two colliding beams.

Particle tracking simulations can allow the tune footprint to be calculated. The

tune footprint can be calculated by tracking particles of various amplitudes in

phase space through the elements of a machine over several turns. Details of
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particle tracking will be discussed later in chapter 6. From the resulting tracking

simulations, a Fourier transformation can be performed over the particle oscil-

lation as a function of turn number to obtain the frequency data. Using the

frequency data, the tune shift (non-linear detuning) due to the beam-beam force

can be calculated. The non-linear detuning with the particle amplitude RJ can

be obtained using the derivation given in ref [16], and is given as

∆Q(RJ) =
2ξbb
RJ

(
1− I0

(
RJ

2

)
e−

RJ
2

)
, (2.84)

where I0 is the modified Bessel function, ξbb is the beam-beam parameter which

will be introduced later, and RJ = ϵβ
2σ2 , where ϵ in this case represents the single

particle emittance. Restricting ourselves to the 2-dimensional case, to a particle

with tune shifts ∆Qx,y and amplitudes x, y, the detuning can be calculated and

mapped from amplitudes x, y to tune space Qx,y. An example of the tune foot-

print for a head-on colliding bunch is shown in figure 2.12. In this figure 2.12,

Figure 2.12: The tune footprint for a single head-on beam-beam interaction
at injection tunes Qx = 0.28 and Qy = 0.31 from ref [16].

each intersection point of the lines represents a pair of amplitudes denoted by
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the coordinates (x, y). These amplitudes are mapped to the tune space Qx, Qy

and show the detuning due to the head-on beam-beam interaction. The head-

on beam-beam interaction is stronger than the long-range interaction and hence

provides the largest tune shift to a counter rotating particle. This is because

the maximum change in momentum of the the beam-beam force, which can be

calculated by differentiating the beam-beam force, is located at r = 0 [16]. Parti-

cles that have the smallest radial amplitudes will have the largest tune shift and

hence will be shifted further away from the unperturbed tune. The unperturbed

fractional tune in figure 2.12 corresponds to the LHC tunes at injection with

Qx,y = 0.31/0.32. For particles at large amplitudes and no long-range beam-

beam interaction, the tune shift will tend towards the unperturbed tune. The

value of this tune shift given within the asymptotic limit is

∆QHO = ± Nr0β
∗

4πσxσy
, (2.85)

where the sign of the tune shift depends on the relative beams’ charges. When far

from resonances and dynamic beta effects [16], this tune shift is approximately

equal to the beam-beam parameter ξbb × np, where np is the number of inter-

action points. This is a useful parameter for characterising the strength of the

beam-beam interaction in colliding beam storage rings. The linear beam-beam

parameter can be calculated by taking asymptotic limit of equation 2.82. For

a round bunch in polar coordinates, the linear beam-beam parameter for small

amplitudes r is

ξbb = ±Nr0β
∗

4πγσ2
. (2.86)

Table 2.1 shows the beam-beam parameter for various colliding beam storage

rings for comparison. From table 2.1 it can be seen that for the various machines

the beam-beam parameters are the same order of magnitude with the exception
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Machine ξbb per IP
LHC [ p-p ] 0.0034
RHIC [ Au-Au ] 0.0015
LEP [ e-e ] 0.07
FCC [ h-h ] 0.005

Table 2.1: Beam-Beam parameters quantifying the strength of the beam-
beam interaction in various previous and future colliding beam storage rings.

of at LEP. The beam-beam parameter in LEP is larger than the LHC. This arises

due to the smaller vertical beam emittances which are achievable from radiation

damping and almost no problems with resonances [27]. For LEP the damping

time was approximately 20 turns together with strong detuning.

Now that the head-on beam-beam interaction has been characterised, the long-

range beam-beam interaction can be discussed in the next section.

2.2.4 Long-Range Beam-Beam Effects

The long-range beam-beam interaction occurs when bunches in the two beams

experience the electromagnetic field from a counter rotating bunch at a distance.

A schematic of the long-range beam-beam interaction is shown in figure 2.13.

The long-range beam-beam interaction is characterised by the non-linear part
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Figure 2.13: A schematic of the long-range beam-beam interaction between
two colliding beams.

of the beam-beam force shown in figure 2.14. The non-linear force provides
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Figure 2.14: The force diagram for the beam-beam interaction with different
values of dsep.

an amplitude dependent tune shift to the particles [16]. Unlike the head-on

beam-beam force, the beam-beam distance will vary from the inner triplet to the

collision point, the inner triplet will be introduced in chapter 3. Normally the

beam-beam separation is calculated as the distance between the bunches at the

first long-range beam-beam encounter.

The tune shift due to the long-range beam-beam interaction at large separations

can be determined by considering the beam-beam force as seen in equation 2.80.

For large separations the exponential term will become small, e
− r2

2σ2
r ≪ 1 and

hence the tune shift from the long-range interaction to first order, will vary with

the inverse square of the beam-beam separation distance dsep as

∆QLR = − Nr0β
∗

2πγ(dsep)2
. (2.87)

For small separations however, the exponential term will no longer be small and

will provide an amplitude dependent tune shift. The amplitude dependent tune

shift will affect the tune footprint in a different way to that of the head-on in-

teraction. Figure 2.15 shows the long-range beam-beam tune footprint. The
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long-range tune shift causes the tails of the footprint to extend and potentially

cross resonances, which may lead to emittance growth and particle losses. The

tails of the bunch in this case refer to particles found at amplitudes larger than

∼ 3 σ. This extension of the tails is further exacerbated with the number of

long-range collisions. In addition, the long-range beam-beam tune shift can have

a different sign compared to the head-on tune shift as seen in equation 2.87. The

change in sign compared to head-on interactions arises due to the opposite gra-

dient of the beam-beam kick found at larger amplitudes (r > 2 σ). The strength

Figure 2.15: Example of the tune footprint for only long-range beam-beam
interactions for a vertical separation and amplitude between 0 and 20 σ [16].

of the long-range beam-beam interaction depends on the collision configuration

for the machine and is closely related to the β-function (β∗) at the IP and the

emittance (ϵn) of the beam. For a colliding beam storage ring like the LHC, the

beam-beam separation is one of the factors that define the luminosity perfor-

mance of the machine. The impact of the long-range beam-beam interaction on

the LHC luminosity performance is discussed in detail in chapter 5.

2.2.5 Coherent Beam-Beam Effects

Two colliding beams will not only exert a single particle kick but also a coherent

kick to the bunch itself. If the colliding bunches have a slight offset with respect
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to the other, or there is an asymmetry between the particle distributions of the

two bunches, coherent oscillations can be introduced which may lead to unstable

motion and closed orbit effects [8, 16]. The strength and effect of the coherent

oscillations depend on a number of factors. One factor which affects the nature

of the oscillations is the phase advance between the colliding bunches. Coherent

beam-beam effects can drive different types of motion and these are normally

described as coherent modes. The dipolar and quadrupolar are two examples

of coherent modes that are described schematically in figure 2.16. The dipole

modes arise when the bunches meet every turn either in or out of phase with one

another. If the bunches arrive in phase with one another the distance between

the bunches does not change from turn to turn, hence there is no net force that

drives the oscillation. Since there is no coherent kick in this case, the mode is

called the Σ-mode and is found at the unperturbed tune. In the LHC at collision,

this is located at a fractional tune of Qx0,y0 = 0.31/0.32. The unperturbed tune is

denoted using Q0. The second dipole mode is known as the π-mode. This mode

arises when the bunches meet out of phase with one another each turn and there

is a force difference between the two bunches. This leads to a driven oscillation

that can cause significant beam stability issues, if not controlled and damped.

The coherent tune shift is denoted by ∆Qπ and the direction of the tune shift

depends on whether there is a focussing or defocussing effect between the colliding

bunches. In the LHC, the π-mode is defocussing as the colliding bunches both

have positive charges. The coherent tune shift calculation is non-trivial and can

be difficult to calculate. An exact derivation will be strongly dependent on the

charge density distribution of the colliding bunches. For a simple calculation the

LHC bunches can be considered to have a Gaussian transverse bunch distribution,

in this case the tune shift characterised by the π-mode can be calculated when

bunches arrive out of phase with one another. The tune shift for the π-mode is
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given by [28]

Qπ = Q0 + β∗ 1

2π
∂x∆x

′
coherent(x0, y0). (2.88)

where x0, y0 are the coordinates of the closed orbit, β∗ is the β-function at the

IP, and ∂x∆x
′
coherent is the derivative of the beam-beam kick. The derivative of

the kick ∂x∆x
′
coherent is given by the expression 2.89 and is calculated as

∂x∆x
′
coherent(x, y) = −2Nr0

γr

[(
1

r2
− x2

r4

)(
1− e

− r2

4σ2
r

)
+

x2

2r2σ2
e−

r2

4σ2

]
. (2.89)

The tune change for the rigid bunch model is hence just the quadrupolar com-

ponent of the beam-beam kick. However this does not take into account the

additional non-linear terms of the beam-beam kick. To account for the non-

linear terms the π-mode tune shift is often quoted in terms of a factor Y . If the

bunches collide head-on then the π-mode including the factor Y is

Qπ = Q0 + Y ξbb. (2.90)

This factor Y is called the Yokoya factor and has a values between Y = 1.21−1.33

for round σx = σy and flat (σx ≫ σy) beams [8, 29]. For a simple calculation

shown in equation 2.89, the rigid bunch model underestimates the Yokoya factor.

This occurs due to the assumption that the bunch distribution does not change

throughout the interaction with a counter rotating beam. In fact, the beam

distribution will change and hence in order to obtain a more realistic, but still

analytical calculation, higher-order moments of the bunch distribution should be

considered. The impact of the higher order moments can be calculated through

an expansion as described by Yokoya [30] or through numerical particle in cell

methods [31].

Taking a Fourier transform of the bunch oscillation enables the Σ and π-modes
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Figure 2.16: Schematic of the beam motion during dipole and quadrupole
coherent oscillations.

to be located. The result of this Fourier transform is shown in figure 2.17 and

was calculated using the strong-strong simulation code combi [32]. The coherent
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Figure 2.17: The tunes of the dipolar coherent modes generated using a
strong-strong simulation code. The Σ-mode can be clearly identified at the
unperturbed machine tune Q = 0.31. The undamped π-mode lies outside of

the incoherent spectrum at Q = 0.286.

modes shown in figure 2.17 shows the spectrum for HL-LHC bunch parameters.

The π and Σ modes can be seen clearly and are separated by the incoherent

spectrum. The size of the incoherent spectrum is given by ξbb and defines the

spectrum of frequencies in which particles will be Landau damped. The peak on

the left hand side of the figure shows the π-mode at approximately ∆Q = 0.286

whilst the peak on the right corresponds to the Σ-mode at ∆Q = 0.31 at the
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unperturbed tune. The incoherent spectrum is found between these two modes

and arises due to the tune spread created by detuning. Particles with frequencies

that lie within the incoherent spectrum will no longer oscillate coherently with one

another and are stabilised by Landau damping [16]. The frequency width in which

the particles are Landau damped is approximately equal to the linear beam-beam

parameter ξbb. The collision configuration shown in figure 2.17 corresponds to two

collisions at IP1 and IP5 with an asymmetric phase advance between collision

points. The beam-beam parameter for a HL-LHC-like bunch is ξbb = 0.0125 per

IP, which is approximately a factor of 3 larger than the LHC.

2.3 Discussion

This chapter has provided a brief overview of the key topics of collider physics.

The simple linear and non-linear dynamics that a charged particle experiences as

it travels around a machine lattice has been reviewed and the general equations

of motion were introduced. This included the concept of the invariant emittance,

phase advance and betatron motion. Following this, the Hamiltonian formalism

was discussed. This formalisation was used to describe dispersive effects that

arise due to off-momentum particles in a bunch as well as the dynamics of a

particle moving through an nth order magnetic multipole. Non-linear effects such

as linear coupling and higher order chromaticity are also briefly introduced and

discussed.

Following this, the topic of this thesis, the beam-beam interaction was introduced.

The beam-beam interaction is first described by introducing the concept of lumi-

nosity, which is a key parameter that can be used to determine the performance

of a colliding beam storage ring like the LHC. Firstly, the luminosity is derived

for the simplest possible collision configuration, that is, the collision between two
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round, Gaussian bunches colliding head-on and without offset. Following this,

additional effects which arise in a real in the LHC are also introduced. The impact

of crossing angle and transverse offset on the luminosity are quantified. These

effects are usually categorised into reduction factors, which reduce the instanta-

neous luminosity between two head-on colliding bunches and can limit luminosity

performance. In addition to the luminosity, the beam-beam interaction exerts a

force on the counter rotating beam. This kick is calculated, firstly by considering

the electric field of a Gaussian bunch. The electric field is calculated by finding

the scalar potential in the rest frame of the bunch and then performing a Lorentz

boost along the z-direction. From this the kick can be derived. The kick will

result in a tune shift and this is shown for both the long-range and the head-on

beam-beam interactions. The concept of a tune footprint is also introduced here

and analysed with regard to both the long-range and head-on interactions. Fi-

nally this chapter concludes by considering coherent motion between two colliding

bunches.

The effects and beam dynamic processes in this chapter are found in many differ-

ent types of accelerators that generate luminosity through collisions with counter

propagating beams. In the next chapter, specifics of the Large Hadron Collider

at CERN will be presented.



Chapter 3

The Large Hadron Collider

3.1 Outline

This chapter briefly discusses the LHC injection chain and introduces LHC in

more detail. The LHC injection chain consists of one linear accelerator and three

circular machines that accelerate protons and inject them into the LHC. The

accelerators in the injector chain are discussed along with the relevant energies

from injection to extraction. In the following section, the LHC is introduced.

Firstly the machine layout and typical procedures during standard operation

are presented along with some of the nominal beam parameters. The relevant

beam instrumentation that is used throughout this thesis is introduced. The

methods and equipment used to analyse the intensity, emittance and luminosity

data are presented. A closer review of the interaction point is also discussed; at

these locations beam-beam interactions occur. Additionally, beam-beam effects

that are observed in the LHC are discussed. Finally, one of the proposed future

machines at the LHC are introduced. The HL-LHC is discussed along with the

luminosity performance. In particular a number of luminosity levelling scenarios

are reviewed.

67
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Figure 3.1: The accelerator facilities at CERN and the injection process into
the LHC [33]

3.2 The CERN accelerator complex

The Large Hadron Collider (LHC) is the largest of the particle accelerators based

at the CERN laboratory. The CERN laboratory contains multiple particle ac-

celerators, with many providing protons for the LHC. In addition to the current

working machines, CERN and others also research and develop new state of the

art particle accelerators [33]. A schematic of the complex is shown in figure 3.1.

The protons start in LINAC2 and are accelerated to a kinetic energy of 50 MeV

before being injected into the Proton Synchrotron Booster (PSB). Here they are

accelerated up to 1.4 GeV, before being injected into the Proton Synchrotron

(PS). The PS accelerates the protons to 25 GeV and injects them into the Super

Proton Synchrotron (SPS). Finally the protons are injected into the LHC at an

injection energy of 450 GeV.
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3.3 The LHC

The LHC is a 26.6 km twin ring colliding beam storage synchrotron that produces

luminosity to study the physics of the Standard Model, as well as potential physics

beyond the Standard Model [34]. The LHC first became operational in 2008 and,

as of 2017, is currently the largest particle accelerator in the world. The LHC is

the successor to the Large Electron-Positron Collider [35] that ceased operation

in 2000.

3.3.1 Machine Layout

The LHC is split into 8 octants with 8 Insertion Regions (IRs). Each IR performs

some principle function, whether it be beam cleaning or collisions. The particle

physics experiments are located in IR 1, IR 2, IR 5, and IR 8. ATLAS and

CMS are located in IR 1 and IR 5; these experiments require high luminosity to

study rare physics by colliding tightly squeezed beams with a low β-function at

the IP [36, 37]. The ALICE experiment is located at IR 2 and does not operate

with tightly squeezed beams during proton physics runs (β∗ = 3m) [38]. The

β-function at the IP is however, reduced during ion (Pb-Pb) and proton-ion runs

(p-Pb). The LHCb experiment is located at IR 8 and similarly to the Alice

experiment does not require tightly squeezed beams with β∗ = 8 m [39].

To obtain the small β∗ at IP1/5 the beams must be focussed. This is achieved

by using a triplet configuration of quadrupoles in the IR that increases the β-

function in the surrounding elements before focussing to the required β∗ at the

IP. The particular magnet configuration and arrangement is discussed later in

section 3.4.1. The β-function variation for beam 1 and beam 2 as a function of

longitudinal position along the beam pipe is shown in figure 3.2. The remaining

IRs contain LHC diagnostic, beam quality, injection and extraction systems. IR
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Figure 3.2: β-function through IP1 where the ATLAS experiment is located,
with a β∗ = 0.6m for both beams in horizontal and vertical planes [13].

3 and IR 7 are reserved for momentum cleaning and betatron cleaning respec-

tively. The momentum cleaning section cleans off-momentum particles from the

bunches, whereas the betatron cleaning section cleans high amplitude particles.

The machine Radio-Frequency (RF) instrumentation is located at IR 4 and the

LHC beam dump is located at IR 6. The systems are all designed to monitor

and control the bunches as the beams circulate round the machine. This helps to

ensure that the machine is not damaged by the high energy beams and that per-

formance is optimised. The design parameters for the LHC are given in table 3.1.

3.3.2 Operational Configuration

Whilst operating during the proton physics run (p-p), the bunch intensities are

of the order of np ≈ 1011 compared to the np ≈ 107 during the ion physics run.

The smaller bunch intensities during the ion runs lead to significantly weaker

beam-beam effects (since the beam-beam parameter is proportional to intensity,
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LHC parameter Value
Beam Momentum at Injection [GeV/c] 450
Beam Momentum at Collision [GeV/c] 6500
Peak Dipole Magnetic Field [T] 8.33
Bunch Intensity [ppb] 1.15×1011

Number of Bunches per beam 2808
Bunch Spacing [ns] 25
Peak Luminosity [cm−2 s−1] 1034

Total Crossing Angle [µrad] 280
Tunes [QH/QV ] 64.31/59.32
Emittance ϵn [µm] 2.5
β-function at the IP1/5 [m] 0.40
β-function at the IP2/8 [m] 3/8

Table 3.1: Typical operational parameters for the LHC during the 2015-2016
run.

see chapter 2). Hence the proton physics collisions are of particular interest to

this thesis. Each beam in the LHC, during a nominal luminosity production fill

consists of 2808 bunches separated by 25 ns. The beams are further split into sets

(or trains) of bunches that need to be spaced appropriately, such that bunches

collide at the correct IPs around the ring. In addition to this, the size of the

spacing between the trains are required to ensure that there is a large enough

abort gap to dump the beam in the event of equipment failure. To avoid any

damage to the machine due to the high energy beam, an abort gap spacing of

3 µs is required. This spacing allows for the rise time of the extraction kicker

magnets. There are two types of beam extraction methods in the LHC. The first

type of dump is called the synchronous beam dump and occurs during normal

operation. In this type of extraction, the kicker magnets will execute at the same

time and will be fired in synchronisation with the 3 µs abort gap [40]. Secondly,

there is an asynchronous beam dump. This occurs with all kicker magnets firing

out of synchronisation with the LHC abort gap [40]. This can lead to a large

number of bunches hitting the collimators and potentially causing damage to the

collimators themselves.
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3.3.3 LHC Operational Cycle

During a standard luminosity production fill, the beam undergoes the standard

operation cycle. This standard operational cycle is described by five different

beam flags; Injection, Ramp, Squeeze, Adjust and Stable beams. These processes

are highlighted in figure 3.3 along with the corresponding main dipole and oc-

tupole powering. In addition to dipoles and octupoles, many different multipoles

exist in the LHC [41]. Quadrupoles are used around the ring to focus or defocus

the beam in the arcs or at the IP. Sextupoles and other higher order magnets are

used in the lattice to correct chromaticity and errors from the dipoles and other

non-linearities of the machine. During the injection and ramp operational stages,

the optics are set to maximise the aperture and hence, as a result, the β-function

at the IP is large and will remain so throughout the ramp [42]. Once the beams

have been ramped up to a flat top energy of 6.5 TeV, the β-function at the IP is

reduced with the crossing angle remaining fixed in IP1 and IP5, in preparation

for luminosity production. This reduces the beam size down, however the beams

are still not in collision. The next stage is the adjust operational procedure. Dur-

ing this stage, the parallel separation orbit bumps are collapsed at IP1 and IP5.

This brings the bunches into collision and begins to produce luminosity. Once

the beams have been adjusted and the bunches are colliding, the operational flag

will be set to stable beams. Throughout the stable beams flags, the luminosity

will be optimised to ensure that the bunches are colliding without an offset until

finally, the beams are dumped at the end of the fill.

3.3.4 Beam Instrumentation

There are a number of different systems and instruments in the LHC that enable

the beam quality and losses to be observed. These are vital to determine the

efficiency of the machine by analysing the the beam data obtained from dedicated
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Figure 3.3: The standard operational cycle for the LHC during a normal
luminosity production fill in 2012 [13]. The β∗ at the IP is shown in black

along with the powering of the main dipoles and the octupoles.

machine studies and during luminosity production runs. The individual bunch

intensity can be measured using the Fast Beam Current Transformer (FBCT).

This instrument measures the intensity of every bunch in the beam every second,

to a high degree of accuracy and has an error smaller than < 1% [42]. The

FBCT measures the bunch intensity by detecting the change in magnetic field

as a bunch moves close to a magnetic torus. This in turn generates a current in

the secondary coil of a transformer, which has a known number of turns. This

measured current in the coil can hence be used to calculate the bunch intensity.

A schematic of the FBCT is shown in figure 3.4.

In addition to the bunch intensity it is also possible to measure the single bunch

emittance. The emittance can be calculated using the Beam Synchrotron Radi-

ation Telescope (BSRT). This device does not have the accuracy of the FBCT

but is capable of making measurements with an accuracy of ∼ 10% [44]. The

BSRT is useful mostly for relative measurements with the bunch size obtained

on a bunch by bunch basis. A schematic of how the synchrotron light from a

bunch in the LHC is used to calculate the emittance is shown in figure 3.5. Each
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Figure 3.4: Schematic of the Fast Beam Current Transformers (FBCT) that
are used to analyse the beam and bunch current [43].

Figure 3.5: Schematic of how the synchrotron light from a proton bunch is
obtained [45].

beam of the LHC will travel through a small, superconducting undulator close

to the edge of a dipole magnet. This will cause synchrotron light to be emitted

by the bunch and to be extracted through a viewport to the BSRT. The BSRT

will observe the synchrotron light and calculate the transverse bunch profiles over

some integration time. From the transverse bunch profiles the emittance of the

bunch can be calculated.

As discussed in chapter 2, the tune Qx,y is another useful parameter that can be

measured. The machine tune can be measured using the base band tune (BBQ)

system. This piece of equipment allows the passive monitoring and measurement

of the beam tune as well as linear coupling [46, 47]. The BBQ system calculates

and measures the beam tune using two specific beam position monitors (BPMs).

These BPMs are located with other beam instrumentation at IR4. The difference
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signal between the two BPMs is measured and used to calculate the betatron

modulation of the beam position.

3.4 The Interaction Points

There are 8 interaction regions around the LHC and 4 IPs where the beams

collide. At these points, a number of high energy physics experiments exist to

study various particle physics processes [36–39].

3.4.1 The Inner Triplet and Surrounding Region

The low β experiments are located at IP1 and IP5. Here the beams are squeezed

down to approximately σr ≈ 16µm. To achieve such a small beam size, a system

of very strong quadrupoles are used to blow the β-functions of the beams up

so that they can be squeezed down at the IP. Since the beam size is inversely

proportional to the luminosity, reducing the beam σ to a size as small as possible

will maximise the luminosity production rate. Figure 3.6 shows a schematic and

arrangement of the inner triplet. The separation dipoles are labelled as D1 and

Figure 3.6: Schematic and arrangement of magnets to the right of IP1 where
the ATLAS experiment is located [48].

D2 and these dipoles enable the two beams to be moved in and out of collision

at the IR. The inner triplet quadrupoles are responsible for blowing up the β-

function and focussing the beam sizes at the IP. These quadrupoles are labelled
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Q1,2,3. Finally the additional Q4,5,6,7 labels indicate matching quadrupoles, which

ensure that beam parameters at each end of the IR match the connecting arcs.

3.4.2 Collimation in the LHC

The LHC was designed to collide two beams at 7 TeV. This corresponds to a

beam energy of 360 MJ making the beams capable of significantly damaging the

LHC, if not controlled properly. In addition to the destructive capabilities of

the beams, the superconducting magnets that control the beam are sensitive to

beam losses and will quench if a relatively small number of protons collide with the

superconducting magnetic cores [49, 50]. To prevent magnetic quenching, beam

cleaning using a collimation system is used. The collimation system is split into

three parts, with the primary, secondary and tertiary collimation components

shown schematically in figure 3.7. The collimation system is designed with a

	

Primary	 Secondary	 Tertiary	Shower	absorbers	

Primary	beam	
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beam	halo	

Tertiary	beam	
halo	

Figure 3.7: Schematic of the primary, secondary and tertiary collimation
system in the LHC.

number of aims in mind. Firstly, the collimation system must protect the super-

conducting magnets and sensitive equipment. This is achieved by cleaning the

beam halo (particles at large amplitudes) during LHC operation. The beam

halo will continually be filled by various beam dynamic processes throughout the

duration of a fill. Many different beam dynamic processes can cause particles

to diffuse to higher amplitudes; beam-beam effects and magnetic errors are two

examples. Removing the beam halo will also improve the particle physics data by
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minimising any halo induced background at the experiments [49]. Secondly, the

collimator system must protect the machine aperture itself from any additional,

unexpected, abnormal particle losses. If a significant number of losses are detected

by the beam loss monitors located at the collimators, a beam abort trigger will be

executed to protect the machine. Additionally the collimation system is required

to perform abort gap cleaning.

Beam cleaning by the collimators occurs in a number of stages as seen in the

schematic shown in figure 3.7. The beam cleaning process is executed by three

different types of collimators, each with different principle design goals. The

primary collimators are required to remove the high energy protons from the

beam and generate a secondary proton halo [49]. This secondary proton halo

will be removed by the secondary collimators and any leakage from these are

absorbed by the tertiary collimators. Tertiary collimators are usually located at

specific points around the ring in order to remove halo that arises due to aperture

bottlenecks at the triplets [49].

In addition to the requirements mentioned above, separate cleaning systems are

located at IR3 and IR7 to provide optimised beam cleaning. In IR3, the collima-

tion system is optimised to perform beam cleaning for off-momentum protons. In

IR7, the collimation system is designed to clean protons that have large betatron

amplitudes [49].

3.5 Beam-Beam interactions in the Large Hadron

Collider

The beams collide at 4 IPs around the ring and at these points the bunches will

experience the electromagnetic field of bunches in the counter rotating beam.

The number of interactions and strength of these interactions will depend on a
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number of different factors. Factors that affect the strength and number of the

beam-beam interactions include: the bunch spacing, the number of bunches in

the train, intensity, emittance, and the crossing angle. An example of a typical

filling scheme during a normal luminosity production fill is shown in figure 3.8.

In the 2015-2016 machine configuration, a train of 48 bunches with 25 ns bunch

Figure 3.8: Example of a typical bunch filling scheme during a normal lumi-
nosity production fill from [51].

spacing will experience a varying number of long-range and head-on beam-beam

interactions. During luminosity operation, the bunches in the centre of the train,

called the nominal bunches, will experience a maximum of 34 long-range interac-

tions per IP and up to 4 head-on interactions. Bunches at the front of the train

will experience less long-range interactions with a minimum of 17 interactions.

Bunches which do not experience the maximum number of long-range beam-beam

interactions are known as Pacman bunches. The number of head-on and long-

range interactions for a typical luminosity production fill is shown in figure 3.9.

The variation of the number of long-range interactions depending on the position

in the train is shown in figure 3.10. This section summarises some aspects of

the LHC as in current operation. However, the accelerator physics community

always seeks to push machine performance and build more powerful machines. A
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Figure 3.9: Number of head-on (figure(a)) and long-range (figure(b)) interac-
tions for each bunch for a typical luminosity production fill during the 2015/6

run, with a bunch spacing of 25ns.
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Figure 3.10: Variation of the number of long-range beam-beam interactions
for bunches in a single train depending on the position in the train.

number of upgraded machines have been proposed to push the energy range and

the luminosity performance. In the next section, one of those machines is briefly

discussed.
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3.6 Future machines at CERN

After the LHC, a number of machines have been proposed to push the luminosity

reach and the energy performance. The next planned update for the LHC is the

HL-LHC [52].

3.6.1 HL-LHC

The High Luminosity Large Hadron Collider (HL-LHC) is a proposed upgrade

for the LHC to increase the luminosity performance [52]. A comparison between

the beam parameters in the LHC and HL-LHC are shown in 3.2. Aside from the

Parameter LHC HL-LHC
Bunch Intensity [ppb] 1.15×1011 2.2×1011

Number of Bunches per beam 2808 2748
Peak Luminosity [cm−2 s−1] 1× 1034 5× 1034

Total Crossing Angle [µrad] 375 → 280 590
ξbeam−beam with Crab Cavities 3.8× 10−3 1.1× 10−2

Emittance ϵn [µm] 3.75 2.5
β-function at IP1/5 [m] 0.55 0.15

Table 3.2: Comparison of the beam parameters between the nominal LHC
and the HL-LHC. The value for the HL-LHC assumes levelled luminosity.

increase of the bunch population and reduction in emittance, a number of meth-

ods of increasing the peak and integrated luminosity have been suggested [53].

One method of increasing the luminosity is to include crab cavities [54]. These

cavities provide a kick to the head and the tail of the bunch, changing the an-

gle between the bunches and maximising the head-on beam-beam collision. The

crab cavities and an increase in the emittance and bunch intensity will increase

the strength of the beam-beam interaction. This could lead to emittance growth

and an increase in particle losses. These effects could have a negative impact

on the luminosity and bunch lifetimes, causing a large decay at the beginning of

the fill. Instead, luminosity levelling has been proposed to counteract the effects
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of a quickly decaying luminosity [52, 53]. The luminosity will instead be held

constant throughout the duration of a fill by using luminosity levelling. Some of

the luminosity levelling options are discussed in the next section.

Luminosity levelling is likely to play an important role in the machine perfor-

mance. In order for the luminosity levelling to be effective it should not impact

beam stability and performance. Several luminosity levelling scenarios are dis-

cussed along with the performance implications.

3.6.1.1 Luminosity Levelling in the HL-LHC

As discussed in Chapter 2, the maximum luminosity can be achieved by minimis-

ing the reduction factor Floss. Luminosity levelling proposes to provide constant

luminosity production throughout the duration of a fill, whilst making small cor-

rections to the parameters in equation 2.65. Some options for luminosity levelling

are presented next.

One possible luminosity levelling option is to use crab cavities [55]. RF crab

cavities are due to be installed in the HL-LHC and these could be used to level

the luminosity. Crab cavities could be used to adjust the crossing angle over the

duration of a fill [56]. A schematic of crab cavity crossing is shown in figure 3.11.

The crab cavities provide a kick to the head and tail of the bunch and tilt the

bunches towards the IP, hence reducing the geometric loss factor and providing a

head-on collision. Crab cavities can be used to level the luminosity by changing

the tilt of the bunches and hence the geometric loss factor. Increasing the tilt

will reduce the overlap between the two bunches and reduce the luminosity. Crab

cavity levelling would be used to reduce the tilt throughout operation as the bunch

intensity decays and hence keep the luminosity fixed throughout a luminosity

production fill.
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Figure 3.11: Schematic of crab cavity crossing.

Crab cavities have been used successfully at the KEKB electron collider [57],

however they are yet to be tested in a hadron collider. Introducing and using

crab cavities in the LHC will change the beam-beam effects and could potentially

induce a number of issues. One of the main advantages of using the crab cavities

is that the cavities will be located at each IP. With a crab cavity located at each

IP, bunches can be crabbed at all IPs independently of one another by simply

varying the voltage across each cavity [56]. At present however, there are several

significant limiting factors which can cause issues for the detectors and from the

perspective of the beam dynamics. Firstly, the longitudinal vertex density will

vary with the crossing angle as shown in figure 3.12. The longitudinal vertex

density is defined by the number of collisions along the length of the bunch.

Varying the longitudinal density distribution during a luminosity production fill

	

Figure 3.12: Schematic of the longitudinal vertex density variation with
crossing angle. Here the arrows indicate the direction of the bunches. Reduc-
ing the crossing angle increases the longitudinal vertex density meaning that
collisions occur along the entire length of the bunch, instead of a large number

of collisions occurring in a very small area.

can introduce calibration issues for the detectors. If the crossing angle is large,
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then the longitudinal vertex density will be small. This can make it difficult for

the detector to discern the number of collision events. The changing crossing

angle over the duration of the fill will also result in the tunes changing at each

levelling step. This could provide issues operationally as the constantly changing

tune would have to be corrected during operation. Additionally, the crab cavities

themselves could impart noise to the bunches as well as introducing phase jitter,

which is caused by a transverse offset mismatch [56, 58]. These effects could all

provide issues with stability and may reduce the maximum achievable beam-beam

tune spread ξbb and affect the luminosity production.

An alternative option for levelling in the HL-LHC is called β∗-levelling. A

schematic of β∗-levelling is shown in figure 3.13 with the different β∗ at each

step. This levelling scenario is performed by reducing the β-function at the IP

over the duration of the fill and squeezing the beam as the bunch intensity de-

cays. One of the benefits of this process is that it is adiabatic and hence does not

change the bunch emittance. This means that as the particle spatial component

x decreases, the momentum component x′ increases, meaning that the emittance

remains constant through each change in β∗. Luminosity levelling through β∗

variation is currently the most likely method of levelling for the low β experi-

ments [55]. During β∗-levelling, the longitudinal vertex density will remain fixed

as desired by the experiments. Additionally reducing the β∗ keeps the tune fixed

at each levelling step and the head-on beam-beam tune spread remains constant,

as this is not dependent on β∗ for the round bunch optic (σx = σy). For the

flat bunch optic (σx ̸= σy) however, changing the β∗ at each levelling step will

change the coherent tunes. This could cause operational issues and needs to be

controlled during operation to ensure that the π-mode is damped. One of the

drawbacks of β∗-levelling is the variation of the closed orbit at each levelling step.

This will need to be tightly controlled operationally to ensure that the beams do

not drift substantially, in order to avoid driving coherent oscillations and creating
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a transverse offset between the two colliding bunches. The coherent modes for

two different levelling steps are shown in figure 3.14 for a round and flat bunch

optic. In the round bunch option shown in figures 3.14(a) and 3.14(b), the coher-

!

Δx 

α!

!∗=0.55m!
!

!∗=0.15m!
!

Figure 3.13: Schematic of β∗-levelling at the IP.

ent tunes in the horizontal and vertical planes do not change with the levelling

step. For the flat bunch option this is not the case. In the horizontal plane the

beam-beam tune shift ξbb,x increases, whereas in the plane in which the β∗ is held

constant the beam-beam parameter ξbb,y will decrease. The coherent tune shifts

for the flat and round optics are shown in figure 3.14 using the method described

in [59]. The different ξbb in each plane could impact particle stability. There has

also been some experience operationally using β∗-levelling during normal opera-

tion in IP2 and IP8. This makes β∗-levelling an appealing method of obtaining

constant luminosity throughout the duration of a fill.

Levelling with offset is the simplest option proposed for the HL-LHC [56]. Due

to the nature and goal of the experiments located at the IPs, different luminosity

performance targets are required. The experiments located at IP2 and IP8 have

much lower luminosity tolerances than at IP1 and IP5 and hence luminosity

levelling by offset is already implemented at these points [60]. Similarly to crab

cavities, offset levelling can be applied independently at all IPs through a local

orbit bump. The individual orbit bump can also be implemented easily, providing

a simple method of changing between offsets. Crucially, levelling with offset keeps

the longitudinal vertex density fixed throughout the levelling steps. The main

issues with this levelling option concern the beam-beam interaction and stability.
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Figure 3.14: The coherent modes from simulations in combi during β∗-
levelling. The coherent modes for the round bunch are shown in 3.14(a)
and 3.14(b) and the flat bunch coherent modes are shown in 3.14(c) and

3.14(d).

Levelling with offset changes the strength of the beam-beam interaction with

every step. Different beam-beam separations can have a significant impact on

beam dynamic processes in the beam and can induce losses and emittance growth.

The tune spread during the levelling will also vary appreciably as the radial offset

changes. This can once again impact stability and lead to losses as was observed

in the 2012 operation [60]. The stability issue was cured by ensuring bunches

underwent a head-on collision at IP1 and IP5. This provided the required Landau

damping to stabilise the bunches as discussed in section 2.1.6. This suggests that
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offset levelling would not be a viable option for levelling at the low β∗ experiments.

!

Δx 

Figure 3.15: Schematic of offset levelling at the IP.

3.7 Summary

In this chapter, the LHC layout and the injectors that provide protons to the

LHC have been introduced. Firstly, the purpose of the main IRs are discussed,

along with the basic operational cycle and the various beam flags which are used

during normal luminosity production runs. Following the section concerning the

layout of the LHC, key beam instrumentation such as the FBCTs, the BBQ and

the BSRTs are introduced along with a basic explanation of how the equipment

works. In the section following the LHC and the CERN accelerator complex, the

performance parameters of the proposed upgrade of the LHC to the HL-LHC and

the impact on the beam-beam effects and luminosity is considered. The HL-LHC

will aim to provide an even larger luminosity performance reach. To achieve the

increase in luminosity, the bunch emittance is reduced to ϵn = 2.5 µm compared

to 3.75 µm in the nominal LHC, whilst the bunch population is increased to np =

2.2× 1011 ppb. These bunch parameters have a direct impact on the strength of

the head-on interaction, leading to a much larger beam-beam parameter. Strong

beam-beam interactions can decreases the bunch lifetime and limit the integrated

luminosity, if the luminosity decay is large. To prevent a fast decay in luminosity
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and to provide constant luminosity production throughout the duration of a fill,

luminosity levelling was proposed. The concept of luminosity levelling along with

three methods in which levelling can be implemented are discussed and reviewed

briefly. The advantages and disadvantages of the the three proposed methods

are evaluated. The impact on the coherent modes is also assessed for β∗-levelling

with a simple collision scenario.



Chapter 4

Analytical Expressions for the

Beam-Beam Interaction

4.1 Introduction

The luminosity performance in a colliding storage ring like the LHC is depen-

dent on a number of factors such as bunch population, emittance and geometric

loss factors arising from transverse offset and crossing angle [61]. The impact of

typical bunch parameters and operational scenarios are discussed in chapter 2.

In addition to the transverse bunch parameters, bunch length effects can also

further limit the luminosity performance [62]. One example of an effect that can

limit the luminosity performance is the hourglass effect; the impact of this effect

will be discussed in detail later in the chapter. In the first section of this chap-

ter, the preliminary mathematics required to understand the later sections are

developed. These preliminaries are then applied to derive a new method of ob-

taining analytical solutions to Poisson’s equation. This method derived is based

on using the general complex solutions to the Laplace equation. An ansatz is

chosen with a number of unknown functions to be constrained and found. Some

88
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of these functions are holomorphic and analytic, and are shown to satisfy the

Cauchy-Riemann and Laplace equations. These functions are then used to con-

strain Maxwell’s equations including a source charge term. This yields a system

of equations which can be solved in the most general, n dimensional case. These

equations are then projected down to 2 and 3 dimensions, where the method is

applied to a number of different charge density distributions. This allows analyt-

ical expressions to be obtained for the electric field. These expressions are then

compared to literature where possible.

In order to obtain the luminosity requirements for future machines like the HL-

LHC, beam parameters such as the β∗, emittance must be reduced and the beam

intensity increased. The reduced β∗ can impact the luminosity performance if

this parameter becomes comparable to the length of the bunch. Within this

regime, the hourglass effect can prevent particles colliding at the minimum β∗.

One proposed option for the HL-LHC is the flat bunch option [52]. This used in

combination with β∗-levelling could result in a bunch length comparable to the

β-function at the IP. The hourglass effect will introduce a coupling between the

transverse bunch size and the longitudinal position, causing a parabolic variation

towards the IP. Until now, no analytic method is available to describe this effect.

The method presented in this chapter is used to describe the hourglass effect

and an analytic expression for the electric field is obtained and compared to the

standard Gaussian distribution.

4.2 Outline

The beam-beam force is traditionally derived by solving Poisson’s equation where

the source charge ρ is given by a fixed Gaussian charge density distribution. Ana-

lytically it is possible to obtain solutions to Poisson’s equation for a 2 dimensional
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Gaussian bunch. This approximation is usually suitable for most high energy col-

liders as the longitudinal electric field will be confined to the transverse planes,

since the bunches travel close to the speed of light within the ultra-relativistic

limit [16, 63, 64]. However in a real collider, coupling between the bunch planes

is possible and the non-zero crossing angle can introduce longitudinal effects that

may no longer be negligible [62]. Some symplectic methods have been derived so

far but are only approximate and do not calculate the exact electric fields [65].

To obtain an exact electric field calculation the full 3 dimensional case should be

considered.

The chapter is laid out in the following way; firstly the general derivation in n

dimensions is described. Here all the preliminaries are outlined, along with the

mathematical framework that will allow analytical solutions involving the beam-

beam interaction to be obtained. A brief introduction to the Cauchy-Riemann

equations and the Laplace equation are provided, initially from the well known

2 dimensional and then later extended to the general n dimensional case based

on hypercomplex coordinates. The hypercomplex coordinates are shown to solve

the n dimensional Cauchy-Riemann equations and the Laplace equation by in-

troducing two separate arbitrary functions, g and h, that depend only on one of

the hypercomplex coordinates. From this, a general complex coordinate trans-

form is described that can then be applied when one of the Cauchy-Riemann

equations are no longer homogenous and instead depends on some term ρ. A

general ansatz is introduced with functions that need to be constrained. One

of the functions can be shown to correspond to the particular solution, when

ρ ̸= 0. A system of equations are obtained from substituting the ansatz into the

modified Cauchy-Riemann equations and these equations are solved. A relation-

ship between the particular solution and the Cauchy-Riemann equations is found

through the method of characteristics. This is used to solve one final equation

relating the homogenous general solution to the particular solution.
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In the section following the general outline, the method of unconstrained functions

is applied to the two dimensional transverse Maxwell’s equations in the presence

of various source charge terms. Firstly, setting the source charge ρ to take the

form of a Gaussian charge density distribution allows the well known round bunch

derivation for the electric field to be obtained. This provides proof of principle

for the method. Following this, alternative, non-linear but simple distributions

are used to find the electric fields and are once again compared to results from

literature.

Using the mathematical framework of the method of unconstrained functions, the

electric field for a 3 dimensional Gaussian charge density distribution is obtained

without requiring the complex coordinate transformation. Finally, a preliminary

approach to obtaining analytical expressions including the hourglass is discussed.

The charge density distribution including the coupling is included into the frame-

work of the method of unconstrained functions and an expression is obtained and

discussed.

Finally the chapter is summarised and discussed with regard to further work.

4.3 General Complex Formalism

Here, the general mathematical framework is outlined for the method of uncon-

strained functions. This framework is an extension of the method by B. Muratori

et. al, which was used to find analytical expression for fringe field magnets [66].

Unlike the fringe field case however, Maxwell’s equations must be considered in

the presence of a source charge term ρ. This requires Poisson’s equation to be

solved, as opposed to the Laplace equation. Poisson’s equation is an inhomo-

geneous linear second order partial differential equation and analytical solutions
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are often difficult to obtain. Instead, an approach solving a system of equations

from Maxwell’s equations is proposed in a similar method to [66].

The Cauchy-Riemann equations form the cornerstone of complex analysis and

determine whether a function is analytic and holomorphic [67]. An analytic func-

tion is defined as a function that is infinitely differentiable [68]. Additionally, a

function that is also analytic in the complex plane is said to be holomorphic and

these have found a multitude of applications in physics and applied mathemat-

ics [69]. The Cauchy-Riemann equations in 2 dimensions are written as

∂xfp − ∂yfq = 0, (4.1)

∂xfp + ∂yfq = 0. (4.2)

Cross differentiating these equations allows the Laplace equation to be obtained

∇2f = 0, (4.3)

where the Laplace operator is defined as ∇2 = ∂2x + ∂2y . The Laplace equation

occurs throughout the theory of electromagnetism, heat theory and gravitational

theory [70]. A general solution to the Laplace equation in 2 dimensions can be

found by introducing the complex variables u and v, which are written as

u = x+ iy, v = x− iy. (4.4)

Transforming equations 4.1 and 4.2 to the complex coordinates yields a general

solution in terms of holomorphic functions that satisfy the Laplace equation 4.3.

The coordinate transformation of the Laplace equation yields

∂2uvf = 0,
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and the general solution to equation 4.3 is given by

f = g(u) + h(v), (4.5)

where g and h are arbitrary functions of u and v only. This approach can be

further extended to n dimensions by introducing hypercomplex coordinates [71–

73]. These hypercomplex coordinates in n dimensions are written as

w =
n∑
j=1

αjxj, w̃ =
n∑
j=1

ᾱjxj, (4.6)

where αj and ᾱj may be complex constants, n is the number of dimensions and xj

is the real coordinate. Considering the n dimensional Laplace equation, namely

∇2
nf = 0,

and for simplicity considering that f is a function of one hypercomplex coordinate

w only, transforming to the new coordinate using the chain rule gives

∂xjf = ∂xjwf
′,

∂2xjf = ∂2xjwf
′ + (∂xjw)

2f ′′,

where the prime denotes differentiation with respect to the argument. Substitut-

ing these results into the n dimensional Laplace equation gives,

∇2f =
n∑
j=1

[
∂2xjwf

′ +
(
∂xjw

)2
f ′′

]
= 0.

This yields the same result as ref [71–73]. Furthermore this gives two conditions

that need to be satisfied to ensure that f satisfies the Laplace equation. These
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conditions are,

n∑
j=1

∂2xjw = 0,
n∑
j=1

(∂xjw)
2 = 0. (4.7)

The first condition states that w must be a particular solution of the Laplace

equation. The second condition states that the square of the sum of the coeffi-

cients αj must be equal to zero. This method of solving the Laplace equation

using the hypercomplex coordinates can also be applied to solve the homogeneous

wave equation. The wave equation is similar to the Laplace equation in terms

of structure, but has positive spatial dimensions and a negative time-like dimen-

sion giving a Lorentzian signature (+,+,+,−), whereas the Laplace equation

including time has both positive space and time components giving a Euclidean

signature (+,+,+,+) [74]. These two equations can be related to one another

through the Wick rotation [75] by introducing an imaginary transformation of

the time component t = −iτ . If the 4 dimensional wave equation is considered

□φ = 0,

where □ is the D’Alembertian operator □ = ∂2x+∂
2
y+∂

2
z− 1

c2
∂2t , then this equation

can be solved using the hypercomplex coordinate

w = δt+ iαx+ iβy + iγz. (4.8)

Then from equation 4.7, the constants must satisfy

δ2 − α2 − β2 − γ2 = 0. (4.9)

The solutions to either the Laplace or wave equation can hence be transformed to

one another by a Wick rotation of the hypercomplex coordinates, w and w̃ [75].

This changes the signature from Lorentzian to Euclidean.
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The higher-dimensional approach to obtaining holomorphic functions to the Laplace

and homogenous wave equations have long been known and have been studied in

depth over the years [76]. Whittaker and others developed a real n dimensional

general integral solution to the Laplace equation [77–79], of which Penrose later

re-derived a more mathematically sophisticated complex contour integral [80].

The contour integral derived by Penrose has a geometrical interpretation. This

geometrical interpretation was used to found twistor theory. This theory was

originally developed in order to provide a framework for quantum gravity [81–

83], but was later extended to describe twistor string theory [84]. Unfortunately

twistor theory has been unable to provide a framework to describe quantum

gravity, but the theory has had a significant impact on the field of mathematics,

especially in the areas of differential equations and integrable systems, as well

as in some areas of physics such as fluid dynamics [85, 86]. The real Whittaker

integral in 3 dimensions is written

f =

∫
F (αz + iβx cosϑ+ iγy sinϑ, ϑ) dϑ, (4.10)

where α, β, γ and ϑ are arbitrary constants [87]. The Penrose integral takes the

form shown in ref [81–83] and is given by

f =

∫
g(w, λ)dλ,

where the function λ = eiϑ is the spinor coordinate and is closely related to

the ϑ constant in the Whittaker integral. The Laplace equation is often found

in the theory of electromagnetism. In the next section, the general complex

contour integral solution to the Laplace equation and its relationship to Maxwell’s

equations are investigated.
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4.4 Application to Maxwell’s Equations

Maxwell’s equations containing only the electric field components can be written

in 2 dimensions, without any source term as

∂xEy − ∂yEx = 0,

∂xEx + ∂yEy = 0,

where Ex,y is the electric field. These equations are comparable to the Cauchy-

Riemann equations shown in equation 4.1 and 4.2. It is possible to use the general

solutions of the Laplace equation to seek solutions of Maxwell’s equations. A gen-

eral n dimensional approach is derived in the following section. This framework

will then be applied to describe the beam-beam interaction with an arbitrary

charge density distribution. Consider the following modified Cauchy-Riemann

equations in n dimensions as from ref [88],

n∑
p,q

ϵab,...,pq∂pEq = 0, (4.11)

n∑
p,q

∂pEp = ρ, (4.12)

where ϵab,...,pq is the Levi-Civita symbol [89] written as

ϵab,...,pq =


+1 if (a, b, ..., p, q) is an even permutation of (1, 2, 3, ..., n)

−1 if (a, b, ..., p, q) is an odd permutation of (1, 2, 3, ..., n)

0 otherwise.

(4.13)

If the inhomogeneous term ρ is set to zero, these equations reduce to the Cauchy-

Riemann equations in n dimensions and can be solved using traditional methods.
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If however ρ ̸= 0, then in 2 or 3 dimensions these equations are comparable to

Maxwell’s equations with a non-zero source charge term. The regime in which

this source charge term is non-zero is of particular interest to problems involving

the beam-beam interaction, in which the counter rotating beam needs to be

considered. Solutions of E are sought by making an n dimensional ansatz with

a number of unconstrained functions. The ansatz takes the form

Eα(xj, ..., xn) = fj(xj, ..., xn) [1−H(xj, ..., xn)] , (4.14)

where α = {x1, x2, ..., xj}, fj are unconstrained functions that need to be found

and H is a function that relates to the particular solution for a non-zero charge

density distribution ρ ̸= 0. The function H is set to H = eH for the initial

derivation, since the beam-beam interaction is considered here. Introducing the

functional form of the particular solution that is comparable to a Gaussian dis-

tribution may further reduce the degrees of freedom and help to constrain the

system of equations. Non-Gaussian distributions are also considered later in the

chapter. Substituting the ansatz in equation 4.14 into equations 4.11 and 4.12

and collecting terms containing the function H gives two sets of equations to be

solved. These equations are

e0 :

n∑
p,q

ϵab,...,pq∂pfq = 0, (4.15)

n∑
p,q

∂pfp = 0, (4.16)
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eH :

n∑
p,q

ϵab,...,pqfp∂qH = 0, (4.17)

n∑
p,q

fp∂
pH = −ρe−H , (4.18)

where, once again, ϵab,...,pq is the Levi-Civita symbol [89], a, b, ..., p, q take values

between 0, 1, 2, ..., n, and n represents the number of dimensions. Tensor notation

is used here to express the curl operator such that when p and q take values from

1 to 2, equations 4.15 and 4.16 will reduce to the 2 dimensional Cauchy-Riemann

equations,

∂xfp − ∂yfq = 0,

∂xfp + ∂yfq = 0.

Hence, it can be seen that the first set of equations with the e0 terms are the

Cauchy-Riemann equations in n dimensions and upon cross differentiation and

substitution can be shown to give the n dimensional Laplace equation. The n

dimensional Laplace equation is given as

q∑
j=1

∇2
nfj = 0. (4.19)

The functions f1, ..., fn will satisfy the Laplace equation and can be solved by

introducing the hypercomplex coordinate

w = σ + iξ, w̃ = σ − iξ, (4.20)
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where σ and ξ take the form σ = αnxn and ξ =
∑n−1

j αjxj. Thus the general

solution for each of the functions fj can be written as,

fj = gj(w) + hj(w̃), (4.21)

under the condition that,

a2n +
n−1∑
j=1

i2α2
j = 0. (4.22)

Substituting these functions back into the homogenous Cauchy-Riemann equa-

tions allows transformations between all the functions fj to be found. All the

functions fj, can be expressed in terms of just one function, labelled f1. The

transformation between the functions are given by a linear combination of the

complex constants αj and ᾱj. The general solution to f1 is hence written as,

f1 = c1g(w) + c1h(w̃), (4.23)

with the remaining functions fj given by,

fj = cjg(w) + cjh(w̃), (4.24)

where c1,2,..,j are linear functions of αj obtained from the hypercomplex coordi-

nates 4.20. The first set of e0 equations have been solved and yield solutions

to the Laplace equation that in turn can be used to further constrain the equa-

tions in the eH set. The homogenous equation in the eH set of equations can be

solved through the method of characteristics [90], if the Jacobian of the system

is defined. The Jacobian can be written as

J =

∣∣∣∣∣∣∣
∂σw ∂ξw

∂σw̃ ∂ξw̃

∣∣∣∣∣∣∣ ̸= {0,∞} . (4.25)
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This can be seen to be true in general by using the hypercomplex coordinate 4.20.

Substituting the hypercomplex coordinates 4.20, gives the Jacobian as

J ≡ −2i. (4.26)

Transforming equation 4.17 to the complex coordinates (w, w̃), substituting all

the functions fj in terms of just one function f1, and applying the method of char-

acteristics allows the relationship betweenH and the functions fj to be found. For

a full description and discussion of the method of characteristics see appendix A.

Applying the method of characteristics yields a system of ordinary differential

equations to be solved, namely

n∑
p,q

fpdp + fqdq = 0, (4.27)

when p ̸= q. This gives the functional form of H in terms of the general solutions

to the Laplace equation

H = H

(∫
gdw +

∫
hdw̃

)
. (4.28)

The method of characteristics used here also introduces a geometric relation be-

tween the functions H, g and h. This states that functions fj must lie orthogonal

to the characteristic surface H.

Equation 4.28 gives the relationship between the general solutions to the Laplace

equation, denoted by the functions f and g, and the particular solution H. How-

ever, in order to find the particular solution, equation 4.18 must be solved. Trans-

forming equation 4.12 to hypercomplex coordinates and substituting all the func-

tions fj in terms of f1, yields after simplification,

(
eH

)′
= − µρ

gk(w)hk(w̃)
, (4.29)
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where µ is a combination of the constants αi and ρ is the source charge term.

This can be further split into integrals using the functional form of H,

∂wH = gH ′,

∂w̃H = hH ′.

This gives the two separate integral equations as

∫
∂wHe

H = −
∫

µρ

h(w̃)
dw, (4.30)∫

∂w̃He
H = −

∫
µρ

g(w)
dw̃. (4.31)

This is as far as the system of equations can be reduced without introducing the

source charge term ρ and the functions g and h. The functions g and h can be

expressed in a general form as contour integral solutions that satisfy the Laplace

equation [77–79, 81–83], namely,

g =

∫
ĝ(w, λ)dλ, h =

∫
ĥ(w̃, λ)dλ. (4.32)

Equations 4.30 and 4.31 can be solved independently of one another. Importantly,

these equations establish a relationship between the solutions to the Laplace

equation and the inhomogeneous term ρ, in terms of a complex contour integral.

In 3 or more dimensions this contour integral gives the particular solution over a

complex surface.

In summary, the set of equations 4.15 to 4.18 have been solved with the aim of

keeping the expressions and conditions as general as possible before introducing

a specific form of ρ. The first set of equations are the Cauchy-Riemann equa-

tions and therefore Laplace equations can be derived from these. The Laplace

equations can be solved by introducing the functions g and h, which are contour
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integral functions of the hypercomplex coordinates w and w̃, respectively. Since

these functions also satisfy the Cauchy-Riemann equations they are analytic and

holomorphic. The second set of equations relate the general Laplace equations

to the particular solution H. The homogenous equation in this set of equations

was re-written in terms of the hypercomplex coordinates and solved using the

method of characteristics. This allows the functional form of H to be obtained.

Finally the inhomogeneous equation is expressed in terms of the hypercomplex

coordinates and the functions g and h are related to the function H and the

source charge term ρ. The full system of equations have been left with just the

inhomogeneous equation to be solved in terms of the ρ, g and h.

In the next section, the method described above is applied to the 2 dimensional

transverse Gaussian bunch and the well known round bunch electric field is re-

derived based on the new method. The framework is then applied to alternative,

non-exponential, non-linear charge density distributions and the electric fields are

compared to the literature.

4.5 2 Dimensional Gaussian Bunch

To ensure that the method derived in section 4.3 is valid, the mathematical

method was used to derive the standard round Gaussian bunch electric field [16].

Initially considering the hypercomplex coordinate given by expression 4.20 and

setting n = 2 gives

w = α1x+ iα2y, w̃ = α1x− iα2y,
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where the constants must satisfy condition 4.22, hence

α2
1 − α2

2 = 0. (4.33)

From inspection it can be seen that α1 = 1 and α2 = 1. The hypercomplex

coordinates become the standard complex coordinates,

w = x+ iy, , w̃ = x− iy. (4.34)

Working in the rest frame of the bunch to negate any magnetic fields yields an

electrostatic problem. Within this limit, equations 4.15 and 4.16 in 2 dimensions

reduce to

e0 :

∂xf2 − ∂yf1 = 0, (4.35)

∂xf1 + ∂yf2 = 0. (4.36)

eH :

f1∂yH − f2∂xH = 0, (4.37)

f1∂xH + f2∂yH = −ρe−H . (4.38)

The e0 set of equations are the Cauchy-Riemann conditions and show that f1

and f2 must be holomorphic and analytic. Cross differentiating equations 4.35

and 4.36 yields two Laplace equations in terms of f1 and f2.

∇2f1 = 0, ∇2f2 = 0.
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Equations 4.5 can be satisfied using the general solution to the Laplace equation,

which can be written in terms of two separable functions g1,2 and h1,2. The

functions g1,2 contain the complex coordinate w only and h1,2 contains w̃ only.

The Laplace equations for f1,2 are solved in the form

f1 = g1(w) + h1(w̃), (4.39)

f2 = g2(w) + h2(w̃). (4.40)

Substituting 4.39 and 4.40 into equations 4.35 and 4.36, results in a complex

linear transformation relating the functions f1 and f2. The function f1 is related

to f2 through

f1 = g + h, (4.41)

f2 = ig − ih, (4.42)

where the subscript is now dropped such that g1 = g and h1 = h. This solves the

Cauchy-Riemann equations in f1,2. Considering next, the homogenous equation

in the eH set. Equation 4.37 can be solved via the method of characteristics.

This gives

dx

f2
=

dy

f1
=

dH

0
, (4.43)

which yields the ordinary differential equation

f1dx+ f2dy = 0. (4.44)
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Transforming to the new coordinates and substituting the expressions for f1 and

f2 in terms of g and h, gives the functional form for H as

H = H

(∫
gdw +

∫
hdw̃

)
. (4.45)

This leaves the inhomogeneous equation to be solved. Transforming to complex

coordinates and substituting f1,2 into equation 4.38 gives

g∂w̃H + h∂wH = −ρe
−H

√
2
. (4.46)

Using the functional form of H and differentiating, allows the expressions for

∂wH and ∂w̃H to be used. These expressions are

∂wH = H ′g, ∂w̃H = H ′h,

which results in the final inhomogeneous equation, which can be simplified to,

(
eH

)′
= − 1

2
√
2

ρ

g(w)h(w̃)
. (4.47)

This equation can be separated into two integrals that can be solved indepen-

dently of one another. These equations are

eH = − 1

2
√
2

1

h(w̃)

∫
ρdw,

eH = − 1

2
√
2

1

g(w)

∫
ρdw̃.

The equations can be simplified no further without the functions g and h. These

functions are general solutions to the Laplace equation and can hence be obtained

through either the Penrose or Whittaker integral. The integral over the complex
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coordinate can be solved to give

f1 =
x

r2
, f2 =

y

r2
, (4.48)

where r =
√
x2 + y2. Substituting complex coordinates for x and y, and simpli-

fying yields

f1 =
1

w
+

1

w̃
. (4.49)

Thus from inspection, the functions g and h are

g =
1

w
, h =

1

w̃
. (4.50)

Now that both g and h have been obtained, the inhomogeneous equation can

be solved. The inhomogeneous equation given by equation 4.47 relates these

functions g and h to the particular solution of Poisson’s equation, H. The integral

to evaluate is

eH = − 1

2
√
2
w̃

∫
e−4ww̃dw.

This integral can be evaluated trivially and gives H as

H = −1

2
r2, (4.51)

where r =
√
x2 + y2. The complete system of equations has now been solved and

the functions f1, f2 and H have been constrained in terms of the charge density

distribution ρ. Substituting the functions f1,2 and H back into the original ansatz
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for the electric field gives the well known function form, as shown in [16] as

Ex =
x

r2

[
1− e−

x2

2
− y2

2

]
, (4.52)

Ey =
y

r2

[
1− e−

x2

2
− y2

2

]
. (4.53)

This method has provided an alternative approach to deriving the electric fields

in the rest frame of the bunch. Using analytic expressions from the Laplace

equation and the relationship of these functions to the source charge term allows

the complete system of equations to be constrained allowing the electric field to

be derived in a compact and concise manner. To obtain the beam-beam kick

a Lorentz boost is applied in the direction of movement and the force applied

to a counter rotating test particle is calculated. Since the method was derived

for an arbitrary charge density distribution and the hypercomplex coordinates

can be written in n dimensions, the method can easily be extended to include

higher dimensions and can include complicated coupling in the charge density

distribution. These aspects will be discussed in the following sections.

4.5.1 Non-Linear Distributions

The method of unconstrained functions described above is not necessarily limited

to studying beam-beam effects and can also be applied to space charge. Space

charge occurs when particles within a bunch exhibit an electric field on them-

selves [91]. This electric field can be calculated in the same way as the beam-beam

interaction, by solving Poisson’s equation. Beam-beam effects in the LHC occur

at a flat top energy of 6.5 TeV and the electric fields are almost entirely confined

to the transverse planes, since the bunches are within the ultra-relativistic limit.

Space charge effects at flat top energy in the LHC can be considered to be negli-

gible. However, in machines operating at lower energies, space charge effects will
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impact performance. Space charge effects, much like the beam-beam interaction

can lead to emittance growth, which can limit machine performance and bunch

lifetimes [17]. Much like the LHC, understanding and accurately modelling such

effects is vital to assess machine performance and identify possible issues during

operation. In this section, the electric fields generated by non-linear distribu-

tions prevalent in the space charge literature are re-derived using the method of

unconstrained functions.

The Kapchinskij-Vladimirskij (KV), waterbag, and parabolic distributions are

distributions that have been studied with regard to space charge [92]. The

dynamics of non-linear bunches with space charge has been considered exten-

sively [91, 93]. The method of unconstrained functions will be used to derive the

electric field for non-linear distributions of the form

ρ =
m

πσxσy

[
1− x2

σ2
x

− y2

σ2
y

]m−1

, (4.54)

where depending on the value of m, this distribution yields a number of non-

linear distributions [92]. When m = 1, expression 4.54 takes the form of the KV

distribution, for m = 2, this distribution is called the Waterbag distribution, and

finally, when m = 3, the distribution is parabolic.

As an example, the parabolic distribution is considered. For a 2 dimensional

round bunch of the form 4.54, with m = 3, gives the charge density distribution

as,

ρpb(x, y) =
3N

πσ2

(
1− x2 − y2

)2
, (4.55)

where the term outside the bracket represents the line density and x and y are in

number of sigma. Normalising to the line density, transforming to the complex
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coordinates,

x = w + w̃, y = i(w − w̃),

gives

ρpb(w, w̃) = (1− 4ww̃)2. (4.56)

The inhomogeneous equation in 2 dimensions is given by equation 4.47 and re-

placing the exponent eH with the general function H yields the two separable

modified equations,

H = −µ
∫
w̃ρdw, (4.57)

H = −µ
∫
wρdw̃. (4.58)

As a 2 dimensional bunch is being considered, then the result from section 4.5

can be exploited and the functional form of H relating the Laplace solutions

to the particular solution can be used. Using expression 4.45 and choosing the

integration over w (although the choice of integration does not vary the resulting

form) and substituting the charge density distribution gives

H = − w̃

2
√
2

∫
(1− 4ww̃)2dw. (4.59)

Performing the integration over w gives H in the form of equation 4.60,

H = − 1

2
√
2

(1− 4ww̃)3

12
. (4.60)

Transforming back to real Cartesian coordinates, substituting f1,2 from the 2

dimensional solution to the Laplace equation, and H into the adjusted ansatz,
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written as,

Eα(x, y) = fα(x, y) [1−H] ,

yields the electric field in the x and y plane as,

Ex =
x

r2

[
1− 1

2
√
2

(1− r2)3

12

]
, (4.61)

Ey =
y

r2

[
1− 1

2
√
2

(1− r2)3

12

]
. (4.62)

This gives the same functional form as seen in ref [92], when x2 + y2 ≤ σ2 and

is within some constant scaling factor. Note, that the choice of the constants α1

and α2 is arbitrary, however these must satisfy condition 4.22. The method of

unconstrained functions can also be applied to higher dimensional cases. In the

next section, the method of unconstrained functions will be applied to find the

electric field of a 3 dimensional Gaussian charge density distribution. The results

will be compared to the literature.

4.6 3 Dimensional Gaussian Bunch

One of the benefits of the method of unconstrained functions is that the frame-

work is based on the hypercomplex coordinates and can be extended to any

number of dimensions. The method of unconstrained functions can be applied

to higher dimensional problems, in which solutions to the Laplace equation via

the Green’s function method may become challenging. Extending to an n dimen-

sional space does however present difficulties when considering odd dimensional

complex surfaces, such as the case for 3 dimensions [94]. To effectively describe a

3 dimensional complex surface an additional geometrical interpretation must be

considered [81, 82, 94]. This geometrical interpretation, although interesting, can
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be avoided by not relying on the hypercomplex coordinates to solve the system

of equations given by 4.15 to 4.18. Instead, if a solution to the Laplace equation

can be generated through the Whittaker solution or the Penrose integral, this can

be used to constrain the entire system of equations and still find solutions in the

presence of a charge density distribution, without requiring that the functions

g and h are completely separable. For a 3 dimensional electric field in the rest

frame of the bunch Maxwell’s equations take the form,

∂yEz − ∂zEy = 0, (4.63)

∂xEz − ∂zEx = 0, (4.64)

∂xEy − ∂yEx = 0, (4.65)

∂xEx + ∂yEy + ∂zEz = ρ(x, y, z). (4.66)

The ansatz given by expression 4.14 can be written as

Eα(x, y, z; t) = fj(x, y, z; t)
[
1− eH(x,y,z;t)

]
, (4.67)

for j = 1, 2, 3 and α = {x, y, z}. Using the 3 dimensional ansatz will result in the

system of equations given by 4.15 to 4.18 for n = 3 becoming

e0

∂yf3 − ∂zf2 = 0, (4.68)

∂xf3 − ∂zf1 = 0, (4.69)

∂xf2 − ∂yf1 = 0, (4.70)

∂xf1 + ∂yf2 + ∂zf3 = 0. (4.71)
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eH

f2∂zH − f3∂yH = 0, (4.72)

f1∂zH − f3∂xH = 0, (4.73)

f1∂yH − f2∂xH = 0, (4.74)

f1∂xH + f2∂yH + f3∂zH = −ρe−H . (4.75)

The first set of equations in e0 are the Cauchy-Riemann equations in 3 dimensions

and hence Laplace equations. The 3 dimensional solution to the Laplace equation

can be obtained using [95] and is given as

f1 =
x

r3
, f2 =

y

r3
, f3 =

z

r3
, (4.76)

where r =
√
x2 + y2 + z2. This provides solutions to the first e0 set of equa-

tions without requiring a transformation to the hypercomplex coordinates and

a separation of the coordinates. Substituting the solutions given in 4.76 into

equations 4.72, 4.73 and 4.74 gives equations 4.77 to 4.79,

y∂zH − z∂yH = 0, (4.77)

x∂zH − z∂xH = 0, (4.78)

y∂xH − x∂yH = 0. (4.79)
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Since the r term has cancelled, these equations can be solved using the method

of characteristics allowing the functional form of H in terms of f1,2,3 to be deter-

mined. This gives H as

H = H

(∫
xdx+

∫
ydy +

∫
zdz

)
→

H = H

(
1

2
x2 +

1

2
y2 +

1

2
z2
)
. (4.80)

The Laplace solutions given by 4.76 have fixed the relationship to the characteris-

tic surfaceH. Finally, to obtain the exact form ofH, the inhomogeneous equation

in terms of the charge density distribution ρ must be solved. Substituting f1→3

into equation 4.75 gives

H ′
( x
r3
x+

y

r3
y +

z

r3
z
)
= −ρe−H ; (4.81)

collecting terms and simplifying yields

(
eH

)′
= −re−

1
2
r2 .

This leaves one integration over r to be evaluated. Integrating equation 4.6 over

r, yields a direct relationship between r and H, which is given by,

eH = e−
1
2
r2 . (4.82)

This gives the form for eH which can be substituted into the ansatz. Hence, the

electric field written in component form is

Ex =
x

r3

[
1− e−

1
2
r2
]
, (4.83)

Ey =
y

r3

[
1− e−

1
2
r2
]
, (4.84)

Ez =
z

r3

[
1− e−

1
2
r2
]
. (4.85)
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These expressions derived here can be compared directly to the alternative deriva-

tion through Poisson’s equation detailed in Ref [25]; this is shown in figure 4.1.

The functional form of the electric field is equivalent to [25] for a particle with no

transverse offset and restricted to Ez(0, 0, z). The solutions are equivalent in the

absence of any coupling between the planes. The method of unconstrained func-
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Figure 4.1: Comparison between the expressions obtained for the longitudi-
nal electric field between the new analytic method and traditional method of

solving Poisson’s equation.

tions as detailed earlier in the chapter has been applied to a 3 dimensional charge

density distribution without requiring a complex coordinate transformation. In-

stead the system of equations were constrained by obtaining the 3 dimensional

solutions to the Laplace equation through the general solution provided by Whit-

taker/Penrose integral. The solution to the Laplace equation has allowed the

system to be constrained in a similar way to the 2 dimensional derivation. The

Laplace solutions constrain the relationship to the particular solution of Poisson’s

equation, allowing the functional form of the particular solution to be obtained

through the method of characteristics. Finally, the functional form of H and the

Laplace solutions were used to solve the inhomogeneous equation containing the
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charge density distribution ρ, allowing the electric field in the rest frame of the

bunch to be obtained. This method has so far been applied to simple distribu-

tions without any coupling. In the final section of this chapter, a first attempt

approach of describing the hourglass effect using the method of unconstrained

functions is discussed along with analysis and discussion.

4.7 The Hourglass Effect: A First Approach

The beam-beam interaction is a strong dynamic effect in which the electric

and magnetic fields produced by the proton bunch will cause the charge density

distribution of the counter rotating bunch to vary throughout the interaction. For

most cases in the LHC, the standard fixed Gaussian charge density distribution

provides an accurate description of the beam-beam interaction, as the bunches

can be considered to be ultra-relativistic and with negligible coupling between

the planes. However as the high energy community demands for more luminosity

increases, the machine performance must be pushed. To obtain more luminosity,

the strength of the beam-beam interaction and its impact on performance is likely

to increase. To produce more luminosity the bunches must be squeezed more at

the IP or the bunch population must be increased. Squeezing the bunch more

can lead to bunch length and coupling effects which can no longer be ignored [62].

These effects can cause a drop in luminosity at the IP since the bunches may not

collide at the minimum β-function. The luminosity for a head-on colliding bunch

including offset and crossing angle is discussed in detail in chapter 2. From the

discussion presented there, the luminosity can be written as

L =
N1N2frevNbunch

4πσxσy
F (ϑ, σz),
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where the function F (ϑ, σz) is the geometric loss factor. The loss factor in the

LHC during normal operation is about F (ϑ, σz) = 0.80 [61]. The components

required to calculate this factor are usually obtained during machine operations

and dedicated experiments, or through numerical computation. The luminosity

reduction due to the hourglass effect can be included in this loss factor. The

hourglass effect is not well understood analytically and often requires computa-

tionally expensive calculations. An analytical expression describing the hourglass

effect could significantly improve computation speed of the beam-beam effect in

simulation. An analytical expression including the hourglass effect could greatly

benefit computational speed for both tracking codes such as Sixtrack and multi-

bunch and particle strong-strong simulation codes such as combi. Particle in cell

methods for strong-strong simulations can be time consuming, especially when

trying to simulate many bunches [32].

The method of unconstrained functions can be applied to the problem of the

hourglass effect to find analytical expressions for the electric fields, in the pres-

ence of a complicated charge density distribution. The hourglass effect causes a

parabolic behaviour in the transverse bunch size. This parabolic effect arises due

to the change of β-function with the distance from the collision point and couples

the transverse bunch size to the longitudinal position [16]. The hourglass effect

arises when the transverse bunch size becomes comparable to the length of the

bunch σr ∼ σz. The β-function will vary over the interaction length and depend

on the longitudinal position. The β variation about the IP can be written as

β(z) = β∗
(
1 +

z2

β∗2

)
. (4.86)

This will cause the transverse bunch size to vary though the IP as

σr =

√
ϵrβ∗

(
1 +

z2

β∗2

)
. (4.87)
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Figure 4.2 shows the variation of the transverse bunch size (σr) as a function

of the longitudinal position towards the collision point at z = 0. The bunch

size varies parabolically away from the IP. For smaller values of β∗, the larger

the variation of the bunch size with longitudinal position. One possible optics

option for the HL-LHC is to use a flat bunch. If this choice of optics is chosen

and luminosity levelling is performed by reducing β∗ in steps, the final step of the

luminosity levelling will have β∗
x,y = 0.150/0.075m. The final step leaves the β∗ in

the vertical plane comparable to the length of the bunch, resulting in the vertical

plane varying following equation 4.87. In this scenario, the bunch length effects

will no longer be negligible and could impede luminosity performance. In order

to understand the impact from the perspective of the beam dynamics, this effect

needs to be understood. The variation around the IP will result in a different

electric field, since the bunch will not remain a fixed Gaussian throughout the

interaction. The charge density distribution including the parabolic variation
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Figure 4.2: Variation of the transverse beam sizes for various LHC and HL-
LHC optics.

around the IP is shown in figure 4.3. Particles with a small radial amplitude will

observe an approximately Gaussian charge density distribution and hence the

electric fields these particles experience will be largely unchanged. For particles
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at larger amplitudes, the charge density distribution deviates significantly from

the standard Gaussian distribution and behaves comparatively like a bi-Gaussian

distribution. The electric fields that these particles experience may no longer be

well described by the fixed Gaussian distribution from the literature [16]. The
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Figure 4.3: Gaussian charge density distribution including the coupling due
to the hourglass effect in the rest frame of the bunch for particles of different

radial amplitudes.

charge density distribution including the transverse bunch size coupling to the

longitudinal position in Cartesian coordinates can be written as

ρ(x, y, z) = ρn exp

[
− x2

2σ2
x(1 +

z2

β2∗ )
− y2

2σ2
y(1 +

z2

β2∗ )
− z2

2σ2
z

]
. (4.88)

For an axially symmetric round bunch, polar coordinates can be introduced and

will transform the charge density distribution to,

ρ(r, z) = ρn exp

[
− r2

2σ2
r(1 +

z2

β2∗ )
− z2

2σ2
z

]
. (4.89)

Following this, the hypercomplex coordinates w and w̃ can also be recast in terms

of the polar coordinates. The Cartesian coordinates in terms of the hypercomplex
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coordinates are

x = α1(w + w̃), y = α2(w + w̃), z = α3(w − w̃),

where the complex constants are α1 = 1√
2
, α2 = 1√

2
and α3 = i. The polar

coordinate transformation to complex coordinates will be given by,

r =
√

(w + w̃)2, z = i(w − w̃). (4.90)

The charge density distribution including the hourglass effect is given by equa-

tion 4.89 and hence the method of unconstrained functions can be used to ob-

tain an analytical expression of the electric field in the rest frame of the bunch.

Whether the charge density distribution can be obtained in closed form depends

on the integration of the source charge term. Since the derivation is in 2 dimen-

sions, the initial steps detailed in section 4.5 can be applied. Starting from the 2

dimensional inhomogeneous equation,

(
eH

)′
= − 1

2
√
2

ρhg
g(w)h(w̃)

, (4.91)

then the integrals can be separated using

H ′ =
1

g
∂wH,

H ′ =
1

h
∂w̃H.



Chapter 4. Analytical Expressions for the Beam-Beam Interaction 120

Substituting the equation 4.89 into the inhomogeneous equation 4.91, gives the

following two integrals

eH = − w̃

2
√
2

∫
exp

− (w + w̃)2

2σ2
r

(
1− (w−w̃)2

β2∗

) +
(w − w̃)2

2σ2
z

dw, (4.92)

eH = − w

2
√
2

∫
exp

− (w + w̃)2

2σ2
r

(
1− (w−w̃)2

β2∗

) +
(w − w̃)2

2σ2
z

dw̃. (4.93)

Note that the choice of integral is arbitrary and both will yield the same functional

form of eH . The two integrals in fact correspond to different hemispheres of the

Riemann sphere; however this is beyond the scope of this thesis. More details can

be found in [81, 82, 94]. Either one of these integrals will provide the function eH .

The charge density distribution including the hourglass effect can be re-written

in the form

ρhg = ρn exp

[
(w2 + w̃2)

(
1− 1

σ(w, w̃)

)
− 2ww̃

(
1 +

1

σ(w, w̃)

)]
, (4.94)

where σ =
(
1− (w−w̃)2

β2∗

)
and the complex coordinates are in units of the bunch

sigma. If σ(w, w̃) = 1, then there is no coupling between the bunch planes

and the Gaussian bunch expression in complex coordinates is re-obtained as in

section 4.5. Unfortunately, this integral is not trivial and it is unlikely that a

closed form expression can be found. There are two possible options to proceed;

initially an expansion to a required order can be made around small values of the

complex coordinates w and w̃. This will provide a good approximation for small

values of w and w̃. Realistically, only small order terms can be evaluated as each

higher order term will require multiple integration by parts. Small order terms

will however likely contain the most dominant terms from the charge density

distribution. This will allow the model to be evaluated to some degree. The

second option is to evaluate the integral numerically providing an exact solution

to the integral. Both approaches will be attempted and the two results compared.
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Firstly, the expansion of the exponential function is discussed. Selecting equa-

tion 4.92 and expanding around the complex coordinates w provides an area in

complex space in which the analyticity of the function will be preserved. However,

H will not be analytic throughout all of w and w̃ and will be limited to when the

complex coordinates are small. The Taylor expansion of the exponential function

can be written as

e−µψ =
∞∑
n=0

(−µψ)n

n!
,

e−µψ ≈ 1− µψ +
µ2

2
ψ2 − µ3

6
ψ3 +

µ4

24
ψ4 +O(ψ5),

where ψ is the argument of the exponential shown in equation 4.94 and µ is a

constant coefficient of ψ. Substituting the expansion into equation 4.92 yields

eH = − w̃

2
√
2

∫ (
1− µψ +

µ2

2
ψ2 − µ3

6
ψ3 +

µ4

24
ψ4 +O(ψ5)

)
dw. (4.95)

These integrals can then be treated by splitting into separate integrals labelled

I0, I1, I2 respectively, with the subscripts denoting the polynomial order of the

function. Considering integrals up to second order gives the following integrals

to evaluate,

I0 = − w̃

2
√
2

∫
1dw, I1 =

w̃

2
√
2

∫
µψdw, I2 = − w̃

2
√
2

∫
(µψ)2dw.

The first integral, I0 is trivial is

I0 = − ww̃

2
√
2
. (4.96)

This is the same result as when there is no coupling present, or when σ = 1. The

effect of the coupling will be retained in the higher order moments of the distri-

bution. The remaining integrals I1 and I2 are not trivial and require integration
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by parts. Consider the integral I1 first leaving the w̃
2
√
2
outside and integrating

gives

I1 =

(
w3

3
+ w̃2w

)(
1− 1

σ

)
+

∫ (
w3

3
+ w̃2w

)
· ∂w

(
σ−1

)
dw...

−w2w̃

(
1 +

1

σ

)
+

∫
w2w̃ · ∂w(σ−1)dw. (4.97)

From the integration by parts it can be seen that the integral cannot be evaluated

in closed form. Upon each iteration of the integration, additional integrals arise,

which in turn need to be evaluated by parts. Evaluating the most dominant terms

up to second order allows the electric field including the coupling in the charge

density distribution to be analysed. Taking the expression for H and substituting

into the ansatz in equation 4.14 gives

Er =
r

r2 + z2
[1− (−I0(r, z) + I1(r, z)− ...)] , (4.98)

Ez =
z

r2 + z2
[1− (−I0(r, z) + I1(r, z)− ...)] . (4.99)

The radial electric field in the rest frame of the bunch including the additional

coupling in the charge density distribution is shown in figure 4.4. In figure 4.4,

the radial electric field is shown for particles along various longitudinal positions

in the bunch. Particles with a large value of z have a smaller radial electric field

profile compared to particles with a small longitudinal displacement which have

a short, sharp radial electric field profile.

From figure 4.4, the radial electric field profile for a particle at σz1 corresponding

to a small z undergoes a large electric field around r = 0. However the radial

electric field tends to zero quickly towards larger amplitudes. For a particle

located at σz4 , which corresponds to a large value of z, the electric field is much

more sustained between −1 ≤ r ≤ 1, although the total magnitude of the field

is much smaller than the σz1 case. Similarly to the previously mentioned case,
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the electric field falls to zero quickly towards larger radial amplitudes. For radial
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Figure 4.4: The radial electric field including a coupling due to the hourglass
effect in the charge density distribution.

amplitudes that are considerably larger, the electric field will diverge as the Taylor

expansion of the hourglass function diverges. Qualitatively, the electric field

behaves in a similar way as the standard fixed Gaussian distribution. There is

however an imaginary component to the field. On closer inspection the magnitude

of the imaginary part of the field is of the order of 10−21 and can hence be

negated. Initial investigation of the distribution does not appear to show any

significant deviation of the functional form from the fixed Gaussian model. The

comparison between the Gaussian distribution and the hourglass distribution

will be considered later. To determine the impact of the higher order terms on

the distribution, the integral is also evaluated numerically and compared to the

expansion. This will signify how well the expansion represents the integral.

4.7.0.1 Numerical Integration of the Hourglass Exponential

As previously shown, the integral cannot be evaluated in closed form. Instead the

integral was evaluated numerically using global adaptive quadrature to determine



Chapter 4. Analytical Expressions for the Beam-Beam Interaction 124

an approximate value of the integration [96, 97]. The integral has a defined

range in the complex planes w, w̃ between 0 → 1 as shown in figure 4.5. Values

outside of this range 0 ≥ {w, w̃} ≤ 1, diverge and tend to infinity. Using this
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Figure 4.5: The value of the numerical integral as a function of w̃ from 0 → 1
with the integration over w from 0 → 1 .

numerical integration and substitution in place of eH allows the accuracy of the

Taylor expansion used in the previous section to be evaluated. A comparison

between the numerical integration and the expansion is shown in figure 4.6. The

difference between the two curves is approximately 4% with the higher order

terms reducing the electric field profile with respect to the expansion towards

larger radial amplitudes. The difference accounts for the higher order terms that

are neglected from the expansion. The higher order terms reduce the value the

electric field as r → ∞. At small values of r however the agreement is very good

as these terms are well accounted for during the expansion. To determine the

impact of the hourglass effect on the electric field, a direct comparison between

the fixed Gaussian distribution and the distribution including the hourglass effect

is discussed in the next section.
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Figure 4.6: The transverse electric field calculated from the numerical inte-
gration compared to the expansion of the exponential.

4.7.0.2 Comparison to the Fixed Gaussian Model

In order to determine the impact of the coupled charge density distribution on

the electric field profile, the analytical expansion of the electric field including

the hourglass coupling in the charge density distribution is directly compared to

the fixed Gaussian expression. The radial and longitudinal electric field profiles

for the two charge density distributions are shown in figure 4.7 and figure 4.8.

The radial electric fields shown in figure 4.7 compares well towards larger radial

amplitudes as the field tends to zero at ∞. At smaller radial amplitudes however,

there is some difference between the two field profiles. The coupling between the

planes in the charge density distribution appears to have an effect on the small

amplitude particles. For these particles, the linear part of the field is stronger

in comparison to the electric field caused by the fixed Gaussian charge density

distribution. The linear part of the electric field also acts over a smaller region

of r. This implies that more particles in the bunch at a particular longitudinal

position will experience a non-linear electric field. For particles at radial ampli-

tudes r > 3σ, the long-range effect of both electric fields are almost identical and
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will tend to zero at ∞.
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Figure 4.7: Comparison between the radial electric field profile for the cou-
pled charge density distribution and the fixed Gaussian charge density distri-

bution.

The longitudinal electric fields from the two different models are compared to

one another in figure 4.8. There is no difference between the longitudinal electric

fields.
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Figure 4.8: Comparison between the longitudinal electric field profile for
the coupled charge density distribution and the fixed Gaussian charge density

distribution.
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4.8 Discussion

The purpose of this chapter was to address the difficulties in deriving analytical

solutions when the charge density distribution is coupled. As the LHC and HL-

LHC strives to push luminosity performance, effects such as the hourglass effect

will become more significant. Therefore in order to evaluate the impact on the

dynamics, numerical evaluation is often required. This will require large compu-

tational resources in order to evaluate the effect, since an analytical expression is

not available. Throughout this chapter, a mathematical framework for obtaining

analytical expressions based on complex coordinate transforms and contour in-

tegrals has been derived. The first section introduces the required fundamentals

of complex analysis in order to derive the mathematical framework. Initially the

2 dimensional Cauchy-Riemann equations are stated and from these the Laplace

equation is derived. The Laplace equation is shown to be solved analytically

through a complex coordinate transformation, with the general solution to the

Laplace equation shown in 2 dimensions, expressed as two arbitrary functions g

and h. The solution to the Laplace equation is further generalised to n dimensions

by introducing the hypercomplex coordinates given by equation 4.20, along with

the corresponding conditions 4.22. Not only this, but a connection between the

hypercomplex coordinates satisfying the Laplace equation and the wave equation

can be made through a Wick rotation. The Wick transformation is not used

for the work in this thesis as the derivations of the electric field are performed

in the rest frame of the bunch, however, this connection maybe useful for other

problems. These generalised hypercomplex coordinates are then applied to the

scenario when one of the Cauchy-Riemann equations is no longer homogeneous.

A solution to the modified Cauchy-Riemann equations with an inhomogeneous

term ρ can be found by introducing the ansatz given by expression 4.14. This

ansatz contains a number of unknown functions labelled f1,...,n and a function H
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that corresponds to the particular solution of Poisson’s equation. Substituting

the ansatz into the n dimensional modified Cauchy-Riemann equations allows

a system of equations to be obtained. The first set of equations contain only

fj and are the standard Cauchy-Riemann equations. From these expressions

the n dimensional Laplace equation can be derived. The functions f1,...,n are

transformed to new hypercomplex coordinates and are shown to be holomorphic

functions that satisfy the Laplace equation. This provides solutions for the first

set of equations. In the second set of equations the homogeneous equation is

approached first. This can be solved through the method of characteristics and

relates the general solution of the Laplace equation to the particular solution

of Poisson’s equation. From the method of characteristics, the functional form

of H is calculated and contains the holomorphic functions f1,...,n. Finally, only

the equation that contains the inhomogeneous term ρ remains. Transforming

this final equation to the new hypercomplex coordinates and substituting the

functions f1,...,n, allows two independent equations to be obtained which need

to be solved. Simplifying this equation yields a direct relationship between the

general solution to the Laplace equation and the particular solution to Poisson’s

equation.

This provides the general mathematical framework that can allow analytical so-

lutions for a general charge density distribution to be obtained. The method is

then applied for a few different charge density distributions and the electric fields

were calculated. The electric fields recovered using this method agree with results

in the literature.

Finally the method was applied to a charge density distribution that included

the hourglass effect, which is characterised by a coupling of the transverse bunch

size to the longitudinal position. The electric field was obtained and evaluated

both numerically and through an expansion and the results compared. The new
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electric field expression was then compared to the standard fixed Gaussian case

and discussed.

This chapter concludes the theoretical investigation of the luminosity perfor-

mance in the LHC and its future upgrade the HL-LHC. In the following section,

experimental and simulation research is conducted with regard to the long-range

beam-beam interaction.



Chapter 5

The Long Range Beam-Beam

Limit in the LHC

5.1 Introduction

The long-range beam-beam interaction is one effect that will dictate luminosity

performance and the choice of operational parameters for the LHC [98]. This

chapter will discuss some of the relevant findings from two dedicated machine

studies that took place during the 2015 and 2016 proton physics run. In the first

section, a review of the long-range beam-beam effects and the impact of these

effects during luminosity production runs in the LHC is provided. Then in the

following section, luminosity observations during the 2012 LHC run are discussed,

which provides the motivation for the study. Since this chapter discusses the

luminosity decay, a number of the different luminosity decay models are discussed.

Then the results from two dedicated machine studies, which took place in 2015

and 2016, are introduced. The machine study procedures will be discussed in

chronological order with the 2015 study results presented first. The intensity,

130
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luminosity, and emittance during the study is analysed and the long-range beam-

beam limit is determined. The impact of the long-range beam-beam interaction

as a function of crossing angle and collision pattern is discussed and analysed.

In the 2015 machine study, the impact of chromaticity and Landau octupole

strength on the lifetimes are also reviewed.

The procedure and analysis from the 2016 machine study is then discussed in

the following section. The difference in optics and collision schemes between the

2015 and 2016 machine studies is highlighted. Again, the bunch by bunch in-

tensity and luminosity data is reviewed, as well as the emittances. The analysis

is summarised and the long-range beam-beam limit is identified. This provided

evidence and justification that the crossing angle in the LHC could be reduced

during normal operation without interference from the long-range beam-beam

interaction. Initial results from early fills at the reduced crossing angle are dis-

cussed and reviewed.

5.2 The Long Range Beam-Beam Limit in the

LHC

Summarising the discussion of beam-beam effects in chapter 2 and 3, the strength

of the long-range beam-beam interaction will be dependent on the normalised

beam separation in the drift space at the IP. The normalised beam separation

depends on the β-function at the IP (denoted by β∗) the normalised emittance

ϵn, the crossing angle α and the relativistic factor γ. The beam-beam separation

for small crossing angles within the paraxial limit (tanϑ ≈ ϑ) can be written as

dsep ≈
√
β∗γ

ϵn
α. (5.1)
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The strength of the long-range beam-beam interactions can be varied using the

parameters in equation 5.1. During long-range beam-beam machine studies, the

strength of the long-range beam-beam interaction is increased by reducing the

crossing angle α. This reduces the beam-beam separation, dsep, which is mea-

sured in units of the RMS beam size and calculated using equation 5.1 [99]. To

provide a comparison to different configurations and for consistency, a normalised

separation in the drift space is used throughout this chapter.

Bunches in the LHC form trains that undergo combinations of head-on and

long-range beam-beam interactions, as discussed earlier in chapter 1 and 3. A

schematic of the collision configuration is shown in figure 5.1. All bunches in

the train will undergo head-on collisions, however bunches do experience differ-

ing numbers of long-range interactions depending on their position in the train.

The number of long-range interactions will depend on the filling scheme during

that particular time of operation. During the 2016 luminosity production run,

bunches in the train had 17 to 34 long-range beam-beam interactions per IP. This

means that the beam-beam effects will vary depending on the bunch position in

the train. The bunches not in the centre of the train, that have less than 34

long-range beam-beam interactions, are often called Pacman bunches. Pacman

bunches will exhibit different lifetime behaviour to those bunches in the centre

of the train. Pacman bunches at the front and end of the train had the smallest

number of collisions with 17 interactions. The number of long-range beam-beam

interactions increases for bunches towards the centre of the train up to 33 in-

teractions per IP. The bunches in the centre of the train with the most number

of head-on and long-range beam-beam interactions are called nominal bunches,

and these bunches experience 34 interactions per IP. The number of head-on and

long-range interactions for a bunch during a typical luminosity production fill is

shown in figure 5.2, with the long-range pattern for a single train isolated and

shown in figure 5.3. In figure 5.3, the long-range pattern can be observed clearly,
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Figure 5.1: Beam-beam interactions in the LHC.

with nominal bunches having the largest number of collisions over one turn in

the machine. The aim of this chapter is to describe how the long-range beam-
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Figure 5.2: Number of long-range and head-on interactions for each bunch
for a typical luminosity production fill during the 2015/6 run, with a bunch

spacing of 25 ns.

beam effects depend on the beam separation, dsep, which will allow the necessary

margins to be defined in terms of separation and parameter choices for the LHC.

The motivation for this chapter is reviewed in the next section.
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Figure 5.3: Single train from a luminosity production fill and the total num-
ber and pattern of the long-range beam-beam interactions.

5.2.1 Motivation

During the 2012 LHC run, the optics, operational parameters and relatively small

beam-beam separations of 9.5 σ to 12.5 σ lead to strong beam-beam interactions.

This was characterised by a large beam-beam parameter of approximately ξbb =

0.007 per IP. This coupled with high Landau octupole and chromaticity settings,

resulted in beam-beam effects that had a significant impact on the beam and

luminosity lifetimes. This dependence was most strongly observed in the first

hour of luminosity production fills during 2012 operations. This can be seen

clearly in figure 5.4, which shows the luminosity decay rate, λ = 1
τ
as a function

of the bunch position along the train, where there is a sensitivity to the tune

spread at IP2 and IP8 during the first hour of the fill. In order to retain long fill

lengths and reduce losses, the beam-beam separations were increased at IP2 and

IP8 [100].
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Figure 5.4: Luminosity decay rate (λ) dependence on the long-range beam-beam interaction during the 2012 LHC run [100]. The
lifetimes of the bunches depend strongly on the bunch position (or slot number) in the train and the luminosity decay rates are the

largest in the first two hours of the fill.
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A number of machine experiments were proposed with the aim of identifying the

minimum crossing angle achievable in the LHC for a defined optics [101–103].

Reducing the crossing angle in steps increases the strength of the long-range

beam-beam interaction. With the beam-beam separation reduced, the impact

on the intensity and luminosity lifetimes can be observed and the operational

tolerances can be defined. Unlike the previous long-range beam-beam studies

undertaken at the LHC to determine luminosity reach, the lifetimes were observed

for 10-15 minutes at each crossing angle step during the 2015 and 2016 machine

studies. This allows the intensity losses to stabilise, resulting in the decay rates

over a period of time to recover to some converged value at each crossing angle

step. The long-range beam-beam interaction would eventually limit the recovery

of the decay rates measured at the previous crossing angle step. This could be

explained by the non-linearity of the long-range beam-beam interaction reducing

the dynamic aperture. This can cause particles to undergo chaotic and irregular

motion. It can also result in particles in the core of the bunch diffusing to the

tails where the particles can then be scraped off by the collimators. The non-

linearities of the long-range beam-beam interaction can cause these tails to be

replenished with particles from the core. Operationally it is beneficial from the

perspective of luminosity production to operate at the smallest possible crossing

angle. This will increase the geometric loss factor from crossing angle given by

S =
1√

1 +
(
σs
σx
tanα

2

)2
. (5.2)

The geometric factor increases with crossing angle as shown in figure 5.5. Op-

erating the machine at a smaller crossing angle does impact the strength of the

beam-beam interaction. As shown previously from equation 5.1, a smaller cross-

ing angle results in stronger long-range beam-beam effects, which in turn can

induce particle losses. To maximise luminosity production, the machine should
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be operated at the smallest possible crossing angle before additional losses are ob-

served due to the long-range beam-beam interaction. This defines the long-range

beam-beam limit and the minimum beam-beam separation.
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Figure 5.5: Geometric loss factor variation with crossing angle.

Discussed in the next section is a review of some of the luminosity decay models

that have been used for previous studies and at other accelerators.

5.2.2 Decay Models

A number of different models are available to describe luminosity and intensity

decay rates, some of these are described and summarised in [104] and references

therein. Here a few of the key models are reviewed and discussed to provide an

overview of the literature and previous attempts to model luminosity evolution

in colliding storage rings.
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5.2.2.1 Simple Exponential Decay

An effective method of fitting the decay of some function with time, i.e intensity or

luminosity, is the simple exponential model. The model provides a lot of freedom

in the fitting parameters with more complicated models often just variations of

this model. The simple exponential decay model is written as

N = N0e
−λ·t + c(t), (5.3)

where N is the parameter being studied i.e, intensity or luminosity, λ is the decay

rate, which corresponds to the inverse of the lifetime τ , t is the time, and c is

a non-zero constant that accounts for the fact that the bunch intensity does not

decay completely to zero. The constant in this case will tend to zero as the decay

time tends to infinity. An example of the fitting using the simple exponential

decay model applied to a single bunch is shown in Figure 5.6. The fitting describes

the decay well and is calculated using a least squares method [105, 106].
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Figure 5.6: Example fit of the simple exponential decay model to the inten-
sity data. From this the intensity decay rate λ can be calculated.
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Figure 5.7: The left hand plot fig 5.27(a), shows the calculated bunch by
bunch (bbb) decay rate λ convergence over the duration of a crossing angle
step. The right hand plot fig 5.27(b) shows the decay rate variation over
crossing angle when calculated at the beginning of the crossing angle step

compared to the end of the crossing angle step.

The simple c variable exponential decay model used in this chapter was found to

describe the intensity and luminosity decays well, during the long-range machine

studies and throughout luminosity production fills.

For the 2016 machine study, the fitting method was further refined to account

for the variation in calculated lifetime throughout each crossing angle step. The

decay rates were calculated using a similar method as in the previous machine

study by fitting equation 5.3 to the intensity or luminosity data; however unlike

the previous analysis, each crossing angle step was further divided into smaller

steps called segments. The decay model was fitted over each segment and the

value of λ could be obtained as it varied throughout the crossing angle step. The

additional fitting would allow possible decay regimes to be identified throughout

each crossing angle. The variation of the decay rate λ as a function of segment

is shown in figure 5.7. The first segment corresponds to the first initial min-

utes of the crossing angle step, whilst the last segment corresponds to the last

few minutes of the crossing angle step, with each crossing angle step lasting ap-

proximately 10 − 15 minutes. The decay rate can be seen to converge to some
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final value. The decay rates quoted for the 2016 machine study and the 2016

luminosity production fills are the final converged values of λ.

5.2.2.2 Tevatron Model

One particular luminosity model that has had success is the Tevatron model [107].

This model was developed with the aim of characterising the luminosity decay

over long fill lengths, specifically with the aim of determining how the antiproton

intensity reduction impacted the ”luminosity burn-off” . Three models were

derived and include a time dependency in the decay rate λ. The first two models

are essentially extensions to the simple exponential decay model, including a

time dependancy of various forms in λ. The second model allows a polynomial

dependence on the time dependence. The third and final variation of the model

is different to the simple exponential decay and includes a linear function of time.

The three models are given by

L(t) = L0e
− t

τ , (5.4)

L(t) = L0e
− t

T (t) , (5.5)

L(t) = L0 ×
(
1 +

t

τ0C3

)−x(t)

. (5.6)

In the second variation of the model T (t) = T0 + C1 × tc2 and the four fitting

parameters L(0), T0, C1 and C2 are free variables. In the final model of the

luminosity, the function x(t) is written

x(t) = C3 + C4t, (5.7)

where once again, C3 and C4 are free variables. These models provide a number

of different options that could potentially describe the luminosity evolution in

the Tevatron. Out of the three models given by equations 5.4, 5.5, and 5.6, the
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luminosity stores in the Tevatron were best described by equation 5.5. Further

details of these models can be found in [104, 107] and the references therein.

5.2.2.3 Brightness Model

Similarly to the Tevatron model, the brightness model developed by X. Buffat also

includes a variation of the decay rate with time [104]. The decay rate variation

with time in this model is dependent on the brightness, which is closely related

to the luminosity of the bunch. The brightness of the bunches can be written as

B =
ninj

8π2ϵiϵj
, (5.8)

where ni,j is the number of particles in the bunch, i, j corresponds to beam 1

and beam 2 respectively and ϵi,j is the emittance of bunch. The decay model can

then be separated into two distinct regimes given by

B(t) =


Bc

[
τ1

τ1+τ2
+
(
1− τ1

τ1+τ2

)
e
(tc−t) τ1+τ2

τ1τ2

]
, t < tc,

Bce−
t−tc
τ1 , t > tc,

(5.9)

where τ1,2 correspond to the two lifetimes of the processes, tc is the critical time

at which the decay rate changes from one regime to another, and Bc corresponds

to the brightness at the point of the regime change, B = B(tc). At t = tc the

transition from one decay regime to another is assumed to be instantaneous and

continuous such that there is no impact on the brightness from the transition

alone. The brightness of the bunch can be affected by a number of different

processes that act over different time scales. For example, a slow process such as

intra-beam scattering will act over a lifetime τ1, whereas a fast process, such as

emittance growth due to close proximity of a resonance will have a significantly

smaller lifetime, τ2. The brightness is also closely related to the luminosity,
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allowing luminosity lifetimes to be obtained. The bunch luminosity is related to

the bunch brightness following L ∝ B2.

The simple exponential model is used throughout the analysis here for simplicity

and speed of calculation. This model provides an accurate fit and calculation of

the decay rate, as shown in figure 5.6. Including the additional sub-fitting as used

in the 2016 machine study further refined the calculation, allowing the decay rate

variation over the duration of crossing angle step to be quantified, avoiding the

complexities involved with using the Tevatron or brightness models.

In the next section, the decay rates calculated by the simple exponential model

is applied to measured data from two dedicated long-range beam-beam machine

studies.

5.3 Results

In this section, the analysis from two dedicated long-range beam-beam machine

studies are presented and discussed. The impact with regard to luminosity pro-

duction and performance in the LHC is highlighted.

5.3.1 LHC 2012 Run: Long-Range Beam-Beam Effects In

Stable Beams

Throughout luminosity production fills during the 2012 LHC run, the lifetimes

depended strongly on the number of long-range beam-beam interactions. An

example fill from the 2012 LHC run was selected and analysed in ref [104], with

the worst lifetimes observed during the first hour of stable beams. This is shown

in figure 5.4. In order to observe which bunches had the worst lifetimes, the bunch

by bunch luminosity decay rate as a function of bunch number was investigated,



Chapter 5: The Long-Range Beam-Beam Limit in the LHC 143

as seen in figure 5.8. Figure 5.9 shows the luminosity lifetime dependency of two

Figure 5.8: Decay rate dependence for a luminosity production fill during
the 2012 LHC run, showing a clear dependence on the number of long-range

beam-beam interactions [104].

different bunch trains, with collisions at different IPs. Figure 5.9(a), shows a

bunch train with only collisions at IP1 and IP5. Here the lifetimes do not vary

strongly with the number of long-range beam-beam interactions. Figure 5.9(b)

shows the lifetimes for a train with additional collisions at IP2 and IP8. Here

there is a strong dependency on the long-range beam-beam interaction which

causes the lifetimes to reduce below 10 hours. The beam-beam contribution from

IP2 and IP8 are causing additional losses and effecting the luminosity lifetime.

The beam-beam separation during this fill at IP2 and IP8 was 10 σ and 12 σ

respectively. In order to make IP2 and IP8 transparent from the perspective of

the beam-beam interaction, the beam-beam separation was increased to > 26 σ at

IP2 and IP8, by increasing the crossing angle [100]. This crossing angle increase

and an emittance reduction from ϵn = 3.75 µm to ϵn = 2.5 µm, mitigated the

lifetime dependency on the long-range beam-beam interaction.
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(a) (b)

Figure 5.9: Zoom of specific bunch trains and the long-range dependence for
during the first hour of fill 2710 detailed in reference [104]. Figure 5.9(a) shows
a train with no collisions at IP2 and IP8 and figure 5.9(b) shows a train with

collisions at IP2 and IP8.

During the 2015/6 run of the LHC, the lifetimes were well controlled and insta-

bilities were suppressed. A dedicated long-range beam-beam study was proposed

towards the end of the 2016 run, in order to identify the minimum beam-beam

separation at IP1 and IP5 and push the luminosity performance. This is discussed

in the next section.

5.3.2 Machine Study 1: LHC 2015

To identify the long-range beam-beam limit and the luminosity reach with the 80

cm β∗ optics, a dedicated machine study was performed with a train of 48 bunches

per beam (fill 4368). These trains were injected and ramped up through the

standard physics operational cycle and collided at 6.5 TeV at IP1 and IP5 only.

The single train of 48 bunches was used to reflect nominal operation for luminosity

production in 2015. The first two bunches in the train were reference bunches,

with the first bunch only undergoing head on collisions and the second bunch

a non-colliding witness bunch. The rest of the bunches in the train experience

a combination of head-on and long-range beam-beam interactions depending on



Chapter 5: The Long-Range Beam-Beam Limit in the LHC 145

the position along the bunch train. The nominal bunches in the centre of the

train underwent 34 long-range collisions per IP as seen in figure 5.10.
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Figure 5.10: Number of long-range beam-beam for a train of bunches during
the 2015 machine study.

The crossing angle at IP1 and IP5 was then reduced simultaneously in steps.

Unlike previous machine studies machine studies of the luminosity reach through

crossing angle scan, during these machine studies the crossing angle steps were

fixed for 10−15 minutes. This enabled extended and more accurate measurements

of the bunch lifetimes to be made. The crossing angle steps were:

290 → 260 → 234 → 224 → 212 → 192 → 174 → 158 → 144 → 118 [µrad].

(5.10)

This corresponded to a reduction in the normalised beam-beam separation of

13.2 σ → 5.5 σ,
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for an emittance ϵ = 2.5 µm and β∗ = 0.8 m. At each crossing angle step, the

decay rates of the luminosity and intensity were monitored and observed. In

addition to the crossing angle scan, at the end of this machine study and at the

smallest crossing angle, the impact of chromaticity and Landau octupoles on the

decay rates was also investigated. At the minimum crossing angle of 118 µrad,

the chromaticity was reduced from 15 units to 2 units in one step and the impact

on the decay rates were observed. At this value of chromaticity and crossing

angle, the Landau octupole strength was koct = 16.27 Tm−3 and the current was

reduced from 476 A down to 0 A, and once again the impact on the beam intensity

and luminosity decay rates were observed. A full description of the procedure is

found in references [108, 109].

5.3.2.1 Bunch by Bunch Intensity

The bunch by bunch intensity data allows the impact of the crossing angle scan

on individual bunches to be observed, as well as characterising how the bunch

position can affect particle losses. The bunch by bunch intensity data was fitted

with equation 5.3 and the decay rate was calculated and plotted for each bunch

as a function of crossing angle. This is shown in Figure 5.11.

Figure 5.11(a) shows that as the crossing angle is reduced, no significant increase

in decay rate is observed between the angles of α = 280 µrad to α ≈ 190 µrad. At

crossing angles smaller than α = 190 µrad, the impact on the decay rates varies

depending on the bunch, with some bunches suffering more than others. The

smallest crossing angle of α = 118 µrad, corresponds to lifetimes below τ < 10

hours for some bunches. Bunches in beam 2, shown in Figure 5.11(b) exhibit a

similar trend as beam 1, however the impact on the decay rate for crossing angles

smaller than α = 190 µrad is much larger, with the majority of bunches reducing

to lifetimes of approximately τ = 6 hours and some bunches experiencing lifetimes
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(b) Beam 2

Figure 5.11: Bunch by bunch intensity decay rate as a function of crossing
angle for beam 1 and beam 2.

as small as τ ≈ 4 hours. From these figures it can be seen that not all bunches

are affected by the reduction in crossing angle equally and the position of the

bunch in the train may play a significant role.

The bunch decay rate as a function of position in the train and the number of long-

range beam-beam interactions, is shown in Figures 5.12 and 5.13. Figure 5.12

shows clearly a strong dependence of the decay rates on the number of long-range

beam-beam interactions and the size of the crossing angle. Nominal bunches in

the centre of the train suffer more than the bunches at the head or tail of the train.

The dependence of the decay rates on the long-range beam-beam pattern arises

more clearly with reducing crossing angle. For nominal bunches in the centre of

the train, lifetimes drop below τ = 10 hours at a crossing angle of α = 118 µrad.

This crossing angle corresponds to a small beam-beam separation of dsep = 5.5 σ.

Figure 5.13 shows a similar trend as seen in beam 1, with nominal bunches

experiencing the largest decay rate. The intensity data retrieved for beam 2 did

however suffer from measurement issues, providing spurious calculations of the

intensity. This resulted in some of the bunch intensity data being excluded.

In beam 1 (fig 5.12), it can also been seen that there is some asymmetry between

the head and tail of the train. There are a number of possible explanations
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Figure 5.12: Beam 1: bunch by bunch decay rates as a function of bunchslot
and the number of long-range interactions

for this. Electron cloud effects act along the bunch train and could cause the

asymmetry. The cumulative effect of electron cloud could be impacting bunches

towards the end of the train, causing these bunches to experience larger losses. An

alternative explanation is the closed orbit drift caused by the increased strength

of the long-range beam-beam interaction. The long-range beam-beam interaction

provides a kick to each bunch that will change its orbit around the LHC. This

may also introduce a transverse offset between the bunches which will further

affect the lifetimes.

Figure 5.14 highlights the strong dependency of the decay rate with increasing

number of long-range beam-beam interactions. The bunch at the front of the

train has 17 long-range beam-beam interactions per IP and the impact from

the crossing angle reduction is small to negligible. For this bunch, the decay

rates remain approximately fixed throughout the crossing angle variation. The

value of the decay rates correspond to lifetimes around 50 hours. Alternatively,

the nominal bunches in the centre of the train, undergo a significant increase in

decay rate resulting in lifetimes reducing to below 10 hours.
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Figure 5.13: Beam 2: bunch by bunch decay rates as a function of bunchslot
and the number of long-range interactions
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Figure 5.14: Beam 1: Decay rate dependence on the number of long-range
comparison between nominal bunches and PACMAN bunches.

A similarly important figure indicating the decay rate as a function of the number

of long-range beam-beam interactions at various crossing angles, is figure 5.15.

The points corresponding to bunches with less than 20 long-range beam-beam

interactions per IP remain approximately fixed as the crossing angle is reduced,

with almost negligible variations. For long-range beam-beam interactions larger

than 20 the crossing angle reduction begins to have an impact on decay rates.
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At the smallest crossing angle α = 118 µrad, a non-linear dependence of the

decay rates on the number of long-range interactions can be observed as seen

in figure 5.15. In order to confirm that the behaviour is indeed non-linear, the

polynomial best fit of the measured intensity decay rates is calculated and shown

in figure 5.16. The difference between the measured decay rates and the decay

rates calculated by a polynomial line of best fit and a linear line of best fit is

shown in figure 5.17. The polynomial fit agrees well with the measured decay
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Figure 5.15: Beam 1: Decay rate dependence on the number of long-range
beam-beam interactions at different crossing angles.

rates and the difference between the polynomial line of best fit and the data

is smaller than 0.5% and gives χ2 = 6.65 × 10−5. The linear fit is accurate to

within approximately 3% of the measured decay rates, giving χ2 = 1.4 × 10−3.

This confirms that the behaviour of the decay rates with the number of long-

range beam-beam interactions is indeed linear for small crossing angles, when

the beam-beam separation is small.

There is a clear correspondence between the strength of the long-range beam-

beam interaction and the intensity decay rates and losses that the bunches expe-

rience. The nominal bunches in the centre of the train clearly suffer more than

the Pacman bunches as the crossing angle is reduced. However all bunches retain
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Figure 5.16: Polynomial line of best fit of the measured bunch by bunch
intensity decay rates for the nominal bunches at the smallest crossing angle of

the 2015 long-range beam-beam machine study.
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Figure 5.17: Difference square comparison of the measured decay rates
at α = 118 µrad to the polynomial and linear lines of best fit. The poly-
nomial fit provides a more accurate fit and better describes the non-linear
behaviour of the intensity decay rates with the number of long-range beam-

beam interactions.

good lifetimes and undergo no significant effect from the crossing angle reduc-

tion, until a crossing angle of α = 190 µrad is reached. Above crossing angles

of α = 190 µrad, the lifetimes remain above 10 hours. From the intensity data

alone, this suggests that the crossing angle and hence the beam-beam separation
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can be reduced without introducing any significant impact on the intensity decay

rates. The analysis of the bunch by bunch intensities suggest that the beam-beam

limit is at approximately α = 190 µrad, which corresponds to a beam-beam sep-

aration of 7.5 σ. Before the luminosity lifetimes are investigated, it is important

to investigate the emittance and cause an emittance growth. Since the long-range

beam-beam interaction can affect both particle losses and emittance growth, the

principle reason for any drop in luminosity lifetimes should be considered. In the

next section, the emittance data will be considered.

5.3.2.2 Emittances

The bunch emittances were calculated using data obtained from the BSRT. The

nominal and head-on only colliding bunches are shown in Figures 5.18(a), 5.18(b), 5.18(c)

and 5.18(d). From figure 5.18(a), 5.18(b), 5.18(c) and 5.18(d), a noticeable asym-

metry in the bunch planes can be observed, most apparently in the beam 2 data.

In the beam 2 data, the horizontal plane emittance is ϵx = 3.5 − 4.0 µm during

the crossing angle scan. In the vertical plane, the emittance remains approxi-

mately fixed throughout the crossing angle scan just below ϵy = 3 µm. In beam

1, the asymmetry between the bunch planes is not as pronounced, with emit-

tances between ϵx,y = 2.4− 3 µm. The asymmetry between the emittance planes

could have an impact on the long-range beam-beam interaction and affect the

loss mechanism. If the bunch emittance is large in one plane, then long-range

beam-beam interactions in this plane could have a smaller beam-beam separation

and hence experience a stronger long-range beam-beam interaction.

The emittances do not remain constant throughout this long-range beam-beam

machine study, with the most significant changes observed in the larger plane. In

the horizontal plane, the bunch remains approximately constant until a crossing

angle of α = 190 µrad is reached. This crossing angle corresponds to the location
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(a) Beam 1: horizontal
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(b) Beam 1: vertical
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(c) Beam 2: horizontal
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(d) Beam 2: vertical

Figure 5.18: Mean beam emittance as a function of crossing angle in each
plane for the nominal bunches and the head on only.

of the long-range beam-beam limit, with a separation of 7.5 σ. Below this beam-

beam separation, the nominal bunches emittance in beam 1 and beam 2 undergo

an apparent emittance reduction. A similar observation was obtained in the

high brightness head-on beam-beam limit machine study [110]. The emittance

reduction implies that the long-range beam-beam interaction behaves in a similar

way to a collimator, cutting into the core of the bunch. The long-range beam-

beam interaction at small crossing angles provides a strong non-linear beam-beam

kick to the particles. This causes particles in the core (r < 2 σ) to diffuse to larger

amplitudes where they will then be lost. In the horizontal beam planes, the head-

on bunch undergoes an emittance increase of approximately δϵx ≈ 16% in beam

1 and δϵx ≈ 14% in beam 2. The vertical emittance for this bunch remains
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approximately constant throughout the machine study. Much like the head-on

bunch, the emittances in the vertical plane for the nominal bunches remain stable

throughout the machine study and do not change significantly.

Next, the luminosity lifetimes are considered in order to determine whether it

is the geometrical emittance change or the intensity loss which determines the

luminosity performance..

5.3.2.3 Bunch By Bunch Luminosity

The bunch by bunch luminosity data was obtained from ATLAS at IP1 and the

decay rates for the nominal bunches was plotted against the crossing angle as

shown in Figure 5.19. The nominal bunches show the same trend as found in the

bunch by bunch intensity data, with decay rates and lifetimes corresponding well

to what was previously observed in the intensity data. The luminosity through-

out the machine study suffered from significant orbit drifts, which will impact

the quality of the luminosity data [108, 109]. The luminosity is dependent on

intensity, emittance, and the geometrical overlap between the two beams. Many

different mechanisms in the LHC exist which can impact any one of these pa-

rameters and deteriorate the luminosity. This introduces an uncertainty in the

luminosity data which hence impacts the decay rate calculation. One example

of such an effect is a transverse offset caused by an orbit drift at the IP between

the two beams. A transverse offset will lead to a reduction in luminosity. When

the data was fitted to calculate the decay rate, any sudden reduction in luminos-

ity was removed to prevent spurious decay rate calculations. The sudden drops

in luminosity data often arise due to the re-optimisation of the luminosity. To

re-optimise the luminosity, the bunches are brought in and out of collision un-

til the maximum luminosity is found. It is also difficult to actually determine

whether the bunches do or do not collide with an offset without performing these



Chapter 5: The Long-Range Beam-Beam Limit in the LHC 155

luminosity scans. The luminosity is optimised regularly to ensure that the trans-

verse offset between the bunches is minimised. Even with the possible transverse

offsets, the same trend is observed in the luminosity data as in the intensity

data. There is no significant variation in the decay rate above a crossing angle of

α = 190 µrad, for beam-beam separations > 7.5 σ. However, below this beam-

beam separation, the decay rates begin to increase and correspond to a reduction

in lifetime. The lifetimes calculated from the decay rate are similar to those ob-

tained in the intensity data, with the minimum lifetime observed calculated to be

approximately of the order of 4 hours, which corresponds to lifetimes measured

in the beam 2 data. Hence the luminosity lifetimes appear to be dominated by

the intensity losses and not by the changes in emittances.

130 150 170 190 210 230 250 270 290
0

0.05

0.1

0.15

0.2

0.25

Crossing Angle [µ rad]

bb
b 

Lu
m

in
os

ity
 D

ec
ay

 C
on

st
an

t [
H

rs
−1

]

Figure 5.19: Bunch by bunch luminosity for the nominal bunches in the
train.

5.3.2.4 Impact of Chromaticity and Landau Octupoles on Decay Rates

At the final and minimum crossing angle of α = 118 µrad, corresponding to a

beam-beam separation of approximately 5.5 σ, the impact of chromaticity and

Landau octupoles on the decay rate was characterised in two experimental steps.
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In the first step, the chromaticity was reduced from Q′ = 15 units to Q′ = 2

units and the decay rates were once again observed. The chromaticity is quoted

in terms of units as in ref [111]. In the subsequent experimental step and after

a small tune trim to beam 2, the strength of the Landau octupole were reduced.

The chromaticity remained at Q′ = 2 units as the Landau octupole strength was

reduced from koct = 16.27 Tm−3 to koct = 0 Tm−3. Again, the decay rates were

monitored for a period of time. The length of this experimental step was limited

as the non-colliding bunch became unstable, as expected since the octupoles are

the source of Landau damping for this bunch.

Figures 5.20 and 5.21 shows the decay rates including the final experimental steps

in which the Landau octupole and chromaticity were varied. The reduction of

the chromaticity and strengths of the Landau octupoles results in a significant

lifetime recovery for the nominal bunches in both beam 1 and beam 2. At reduced

chromaticity and Landau octupole strength, the decay rates completely recover to

lifetimes that were previously observed at the initial crossing angle α = 290 µrad.

The lifetimes improve from below 10 hours back to above 30 hours. The colliding

bunches remain stable even with Landau octupole strength and chromaticity

reduced, with only the non-colliding bunch becoming unstable.

Figure 5.22 shows the improvement of the decay rates as a function bunch position

in the train. When the chromaticity is reduced to Q′ = 2 units, the decay rates

improve for the nominal bunches in the centre of the train by approximately

∼ 50%. In the following experimental step, when the strength of the Landau

octupole is reduced, the decay rates fully recovered to the values found at the

largest crossing angle α = 290 µrad. From the analysis of this machine study,

the colliding bunches remain stable, even with chromaticity and Landau octupole

strength significantly reduced and at a small crossing angle. This suggests that

the LHC could be operated at a smaller crossing angle if the chromaticity and

strength of the Landau octupoles were decreased. However the reduction of the
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Figure 5.20: Beam 1: Decay rate improvement with reduced chromaticity
and Landau octupole strength as a function of crossing angle.
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Figure 5.21: Beam 2: Decay rate improvement with reduced chromaticity
and Landau octupole strength as a function of crossing angle.

chromaticity and strength of the Landau octupoles on the head-on and non-

colliding bunches may impact stability. This is discussed in the next section.
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Figure 5.22: Beam 1: Decay rate improvement with reduced chromaticity
and Landau octupole strength as a function of bunchslot.

5.3.3 Head-On Only and Non-Colliding Bunches

In this machine study, a non-colliding and a head-on only colliding bunch were

also included by leaving a suitable number of bunch slots free between the col-

liding trains. These bunches can be used as reference bunches to analyse the

effect of crossing angle reduction on the decay rates when there is no long-range

beam-beam interaction present and also when there is no beam-beam interac-

tion at all. Figure 5.23 shows the measured intensity decay rate as a function

of crossing angle for both the non-colliding and head-on only colliding bunch.

The non-colliding bunch has consistently small decay rates throughout the ma-

chine study and undergoes a negligible amount of particle losses. As expected

the decay rate does not have any dependence on the reducing crossing angle. The

head-on only colliding bunch does have some dependence on the crossing angle

with decay rates improving towards smaller crossing angles. The lifetimes for

the head-on only colliding bunch improves from τ > 30 hours to τ = 100 hours.

As the crossing angle is reduced, the tune spread from the head-on beam-beam

interaction increases. This provides a larger area for Landau damping and hence
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improves the lifetimes. In addition to this, any longitudinal effects arising from

synchro-betatron modes may be suppressed [112].
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Figure 5.23: Head on and non colliding bunch decay rate variation with
crossing angle.

Figure 5.24 shows the RMS emittance for both the head-on and non-colliding

bunch in beam 1 throughout the crossing angle scan. The non-colliding bunch,

much like the decay rates, show no significant variation with crossing angle.

The head-on only bunch undergoes a small emittance growth for crossing an-

gles smaller than α = 240 µrad. The emittance increase for the head-on bunch

from a crossing angle of α = 290 µrad to the final crossing angle of α = 190 µrad

is of the order of about δϵrms = 14%.

As the chromaticity and Landau octupole current is reduced the colliding bunches

remain stable and see an improvement in lifetime after a small tune trim to beam

2. The only bunch that experiences a reduction in lifetime is the non-colliding

bunch as seen in Figure 5.25. The chromaticity reduction does not appear to

have a significant impact on the decay rate for the non-colliding bunch with only

a small increase in decay rate with lifetimes remaining above 10 hours. As the

Landau octupole current is reduced the decay rate increases significantly for the
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Figure 5.24: Emittance variation for the beam 1 head-on and non-colliding
bunches as the crossing angle is reduced.

non-colliding bunch, resulting in a lifetime below 10 hours. The Landau oc-

tupoles provide a source of Landau damping for the non-colliding bunch which

keeps the bunch table. When the octupole current is reduced there is no mecha-

nism like the beam-beam interaction to provide the required damping, hence the

bunch becomes unstable. The high chromaticity and Landau octupole operation
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Figure 5.25: Beam 1: decay rate with crossing angle and reduction of chro-
maticity and Landau octupole current
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clearly limits the crossing angle at which the LHC can operate. However, high

chromaticity and octupole operation is required to prevent instabilities [113].

The analysis from the 2015 long-range beam-beam machine study has identified

the minimum operational beam-beam separation for a β∗ of 0.8 m. The mini-

mum beam-beam separation is found at approximately 7.5 σ. This beam-beam

separation corresponds to a crossing angle α = 190 µrad. For crossing angles

and separations smaller than this, the long-range beam-beam interaction begins

to dictate particle losses and reduce the lifetimes. The chromaticity and strength

of the Landau octupole current also has a significant impact on the lifetimes and

prevents the beam-beam separation being reduced further. However, this high

chromaticity and octupole settings are required in order to prevent instabilities

during the squeeze.

5.3.4 Machine Study 2: LHC 2016

In the 2016 run of the LHC, the long-range beam-beam machine study was re-

peated, with the aim to once again determine the long-range beam-beam limit for

the LHC whilst operating at a β∗ of 0.4 m. This experiment was categorised into

two separate fills (5136 and 5137), the first fill was a repeat of the 2015 machine

study, with a single train of 48 bunches, with one head-on only colliding bunch

and one non-colliding bunch with collisions at IP1 and IP5 only. The second

fill investigated the additional impact on the intensity and luminosity lifetimes,

with additional collisions at IP2 and IP8, as is typical for nominal operational

fills. The second fill consisted of three trains of 48 bunches, with the first train

colliding at IP1/2 and 5, the second train colliding at IP1/5 and 8, and finally the

last train colliding at all 4 IPs. The additional IPs are not expected to contribute

to the reduction in lifetimes as the beams are separated by > 10 σ, with the

β-function at these IP2 and IP8, 3m and 11m, respectively.



Chapter 5: The Long-Range Beam-Beam Limit in the LHC 162

Unfortunately, the first fill did not reach the long-range beam-beam limit, as

discussed in ref [114], so only the second fill of the experiment is discussed here.

The crossing angle was reduced simultaneously in both IP1 and IP5, in the same

way as the 2015 machine study. The crossing angle steps during the second fill

are given by

310 → 280 → 270 → 260 → 250 → 240 → 230 → 210 → 190 [µrad]. (5.11)

These crossing angles correspond to a beam-beam separation for a fixed emittance

ϵ = 2.5 µm and β∗ = 0.4m at flat top energy of

10.65 → 9.32 → 8.99 → 8.65 → 8.32 → 7.99 → 7.65 → 6.99 → 6.32 [σ]. (5.12)

Once again, the lifetimes were observed for 10-15 minutes at each crossing angle

step. At a crossing angle of α = 210 µrad, the Landau octupole current was

reduced from operational settings of Joct = 476 A down to Joct = 188 A, cor-

responding to koct = 16.26 Tm−3 → koct = 6.43 Tm−3, and the impact on the

lifetimes was observed. At the same chromaticity and Landau octupole powering,

the crossing angle was reduced again, down to α = 190 µrad.

The tune footprint calculated for a nominal bunch as the crossing angle is reduced

is shown in figure 5.26. As the crossing angle is reduced, the size of the tune

footprint becomes larger as the strength of the beam-beam interaction increases.

As the crossing angle is reduced, the impact from the long-range beam-beam

interaction increases, causing the footprint tails to spread out. This can cause

the particles to cross many resonance lines. This can impact particle stability

and lead to losses [16].

Figure 5.27 shows the total beam intensity as a function of time as well as the

orbit corrector magnet current over the duration of the fill. The corrector magnet
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Figure 5.26: Tune footprint variation as a function reducing the crossing
angle for a bunch undergoing head-on and long-range beam-beam interactions.

currents indicate when the crossing angle change was applied by the machine

operators. The corrector magnet strengths were then used as a guide to determine

over what time interval the fitting windows need to be applied.

In the following sections, the bunch by bunch intensity, luminosity and emittance

data obtained from the long-range beam-beam machine study are discussed and

the long-range beam-beam limit is identified.

5.3.4.1 Bunch By Bunch Intensity

The bunch by bunch intensity decay rate for all bunches in beam 1 and beam 2

at different crossing angles is shown in figure 5.28. In beam 1, there is no real

effect of the reduction in crossing angle until approximately α = 260 µrad. For

angles below α = 260 µrad the decay rates decrease non-linearly and depends

strongly on the crossing angle, with some bunches undergoing significant losses

at the smallest crossing angle of α = 190 µrad, even with the reduced Landau

octupole strength at the smallest crossing angle. Alternatively beam 2 does not
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Figure 5.27: Total intensity and luminosity variation over the duration of
the second fill: 5137 with the crossing angle steps indicated by the horizontal

and vertical corrector powering labelled RPLB.

appear to have such a strong dependence on the crossing angle. During this long-

range beam-beam machine study, beam 2 appears to be unaffected until the final

crossing angle of α = 190 µrad. At the final crossing angle the lifetimes finally

drop below 10 hours for a large proportion of the bunches.

An isolation of some of the Pacman and the nominal bunches is depicted in fig-

ure 5.29, showing the same trend as previously observed during the 2015 machine

study. The decay rates observed during the 2016 machine study were considerably
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(a) Beam 1
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(b) Beam 2

Figure 5.28: Bunch by bunch intensity decay rate as a function of crossing
angle.

larger than those observed at a smaller crossing angle during the 2015 machine

study. This behaviour is expected due to the different machine optics. In the

2016 machine optics the β∗ = 0.40m, whereas in the 2015 machine study the

β∗ = 0.80m. A smaller β∗ will result in a smaller beam-beam separation and

hence a stronger long-range beam-beam interaction. In these plots, the mean de-

cay rate of the nominal bunches is plotted with error bars given by the standard

deviation over all of the nominal bunches. Figure 5.29 shows the dependence of

the decay rates on the crossing angle for the different bunch trains in the fill.



Chapter 5: The Long-Range Beam-Beam Limit in the LHC 166

Each train underwent a different collision pattern, in order to determine the im-

pact of the additional collisions at IP2 and IP8. In beam 1, no real effect on

the decay rates was observed until a crossing angle of α = 260 µrad is reached.

This corresponds to a beam-beam separation of 8.5 σ. Below this crossing angle,

the decay rates in beam 1 deteriorate significantly with each crossing angle step.

As expected bunches with a large number of long-range beam-beam interactions

suffered the worst decay rates, shown in figure 5.29. Pacman bunches in beam

1 with less than 20 long-range interactions do not really experience a significant

increase in decay rates and the lifetimes τ remain above 10 hours. This is con-

sistent with what was previously observed in the 2015 machine study. Beam 2,

does not show any significant effect from the crossing angle reduction with decay

rates remaining acceptable throughout. This is until the final crossing angle of

α = 190 µrad is reached. At the final crossing angle, bunches in beam 2 with

more than 20 long-range interactions also experience lifetimes τ < 10 hours; how-

ever these bunches do not suffer the same small lifetimes as bunches in beam 1.

The decay rate for the Pacman bunches as a function of crossing angle and

the number of long-range interactions is shown in figure 5.30. The relationship

between the number of long-range and the decay rate is non-linear in beam 1,

with the decay rates suffering considerably for a crossing angle of α = 210 µrad

or less. Beam 2 shows some dependence of the decay rates with the number of

long-range but it clearly does not follow the same non-linear trend observed in

beam 1. However even at the smallest crossing angle of α = 190 µrad, bunches

with more than 24 long-range interactions suffer decay rates that correspond to

less than τ = 10hours. Comparing the decay rate as a function of bunch slot,

crossing angle, and the number of long-range beam-beam interactions as seen

in figure 5.31, shows a strong long-range pattern in beam 1. In this case, the

nominal bunch decay rates reduce significantly below τ = 10 hours in all trains.
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(a) Beam 1: train 1
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(b) Beam 1: train 2
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(c) Beam 1: train 3
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(d) Beam 2: train 1
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(e) Beam 2: train 2
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(f) Beam 2: train 3

Figure 5.29: Variation of the decay rate λ for the pacman and nominal
bunches as a function of crossing angle for both beam 1 and beam 2.
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(a) Beam 1: train 1
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(b) Beam 1: train 2

(c) Beam 1: train 3
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(d) Beam 2: train 1
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(e) Beam 2: train 2
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(f) Beam 2: train 3

Figure 5.30: Bunch by bunch intensity decay rate for the pacman bunches
as a function of crossing angle for beam 1 and beam 2. Bunches in beam 1
with the 34 long-range beam-beam interactions have the largest decay rates

which corresponds to a small intensity lifetime.
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(a) Beam 1: train 1
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(b) Beam 1: train 2
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(c) Beam 1: train 3
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(d) Beam 2: train 1
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(e) Beam 2: train 2
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(f) Beam 2: train 3

Figure 5.31: Bunch by bunch intensity decay rate as a function of bunchslot,
crossing angle and the number of long-range beam-beam interactions for beam
1 and beam 2. The decay rates in beam 1 follow closely the long-range beam-

beam pattern
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5.3.4.2 Emittances

The RMS mean emittance for the bunches in trains 1,2, and 3, were plotted as a

function of crossing angle in figure 5.32, where the RMS emittance is defined by

ϵn,rms =
√
ϵ2n,x + ϵ2n,y. (5.13)

A number of interesting observations can be seen in the emittance data. Firstly

the RMS emittance appears to show a reduction in emittance for all colliding

bunches during the crossing angle scan. This similarly was observed in the 2015

machine study, as well as in the head-on beam-beam limit study [110]. This

is most strongly observed in beam 1, with the RMS emittance reducing by ap-

proximately 18% in train1, 22% in train 2 and 18% in train 3. Some emittance

reduction is also observed in beam 2, corresponding to 7%, 10% and 10% in

train 1, 2, and 3 respectively. The head-on bunch remains approximately fixed

throughout the crossing angle scan. In addition to the reduction in emittance

observed throughout beam 1 and beam 2, there is some emittance split between

the bunches in the train. With bunches grouping into families of slightly smaller

or larger emittances depending on the injection pattern of machines earlier on

in the injection chain. The bunches are normalised with respect to their initial

emittance to remove the dependency.

Figures 5.33 and 5.34 show the normalised change in emittance in the horizontal

and vertical, with the injection pattern from the PS removed. The change in

emittance is plotted as a function of bunch slot at each crossing angle. Figure 5.33

shows a reduction in emittance for bunches in beam 1 which appears to follow

the long-range beam-beam pattern. Bunches in the centre of the train, which are

most sensitive to the strength of the long-range beam-beam interaction, undergo

the largest change in emittance, with emittance loss increasing with reducing

crossing angle. The horizontal plane suffers larger variations of emittance than
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(a) Beam 1: Train 1
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(b) Beam 1: Train 2

200 220 240 260 280 300
1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

Crossing Angle [ µ rad]

N
or

m
. r

m
s 

E
m

itt
an

ce
 [ 

µ 
m

]

 

 

Head−on bunch
Nominal bunch

(c) Beam 1: Train 3
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(d) Beam 2: Train 1
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(e) Beam 2: Train 2
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(f) Beam 2: Train 3

Figure 5.32: RMS beam 1 and 2 mean emittance as a function of crossing
angle.

compared to the vertical plane. Figure 5.34 shows the emittance change in the

horizontal and vertical planes for beam 2. For bunches in the second beam, no

long-range beam-beam pattern is observed, although an emittance change with

each crossing angle step is present. Similarly to the 2015 study, the long-range
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(a) Horizontal beam 1: train 1
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(b) Horizontal beam 1: train 2
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(c) Horizontal beam 1: train 3
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(d) Vertical beam 1: train 1
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(e) Vertical beam 1: train 2
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(f) Vertical beam 1: train 3

Figure 5.33: Beam 1 emittance change normalised to the initial bunch emit-
tances as a function of bunchslot and crossing angle.

beam-beam interaction with beam-beam separations < 8.5 σ, behaves in a way

comparable to that of a collimator which is cutting into the core of the bunch.
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(a) Horizontal beam 2: train 1
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(b) Horizontal beam 2: train 2
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(c) Horizontal beam 2: train 3
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(d) Vertical beam 2: train 1
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(e) Vertical beam 2: train 2
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(f) Vertical beam 2: train 3

Figure 5.34: Beam 2 emittance change normalised to the initial bunch emit-
tances as a function of bunchslot and crossing angle.
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5.3.4.3 Bunch by Bunch Luminosity

Unlike the 2015 machine study, the 2016 machine study also obtained bunch by

bunch luminosity data from the CMS detector to record. The CMS detector

tends to publish luminosity data with a better time resolution than the ATLAS

detector, which in turn will lead to a more accurate fitting of the decay model.

Much like the intensity data, a long-range beam-beam pattern is observed in the

bunch by bunch luminosity data, as shown in figure 5.35. However the impact

is only really observed at the last crossing angle. The decay rates calculated

here will depend on the intensities of the colliding bunches in both beams as well

as the emittance and transverse offset. Since beam 2 did not really observe a

significant impact from the crossing angle reduction, it is likely that this impacts

the calculation of decay rate. In addition to this the luminosity data will also be

affected by transverse offset and emittance effects. These effects can all impact

the calculated value of luminosity decay rate. In the next section, the impact of
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Figure 5.35: Bunch by bunch decay rate as a function of crossing angle
obtained from luminosity data provided by the CMS detector.

the additional collisions at IP2 and IP8 are discussed.
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5.3.4.4 Impact of Additional Collisions at IP2 and IP8.

The strength of the long-range beam-beam interaction is dependent on the beam-

beam separation as defined by equation 5.1 and is dependent on the crossing

angle, the emittance, and the β-function at the IP. In the 2012 LHC run, the

additional long-range beam-beam effects from IP2 and IP8 had a significant effect

on the lifetimes [104]. To mitigate the long-range effect from IP2 and IP8, the

beam-beam separation was increased. The beam-beam separation during the

2012 LHC run in IP2 and IP8 was approximately 12σ and 10σ respectively,

however in the 2015 and 2016 run this separation was increased to approximately

26σ.

The impact from additional collisions at IP2 and IP8 are expected to be minimal

during the machine experiment. This is partly due to the small bunch emittances,

ϵ = 2.5 µm and larger β∗ values at IP2 (β∗ = 10m) and at IP8 (β∗ = 3m).

Since the β∗ value at IP8 is smaller, collisions at this IP are expected to have

a marginally larger effect on the lifetimes than that at IP2. The comparison

between the Pacman bunches at the front of all three of the different trains

is shown in Figure 5.36 at the smallest crossing angle. As it can be seen in

Figure 5.36, the effect on the decay rates from the additional collisions at IP2 and

IP8 are small. Collisions at IP8 do as expected have a slightly larger contribution

to the decay rates, however it is not large and there is approximately a 20%

difference between the decay rates for nominal bunches that collide at IP1,2 and

5 compared to bunches that collide at IP1,2,5 and 8.

5.3.4.5 Head-On and Non-Colliding Bunches

As in the 2015 machine study, the head-on and non-colliding bunches were anal-

ysed separately to determine their dependence on the crossing angle. Figure 5.37
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Figure 5.36: Comparison of the decay rates for pacman bunches at the front
of all three of the bunch trains of beam 1 at a crossing angle of α = 190 µrad.
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Figure 5.37: Decay rate as a function of crossing angle for the head on and
non colliding bunches.

shows the decay rate as a function of crossing angle for both the head-on only and

non-colliding bunch in beam 1. A comparable trend is observed for the head-on

colliding bunch as seen in the 2015 machine study at a β∗ = 0.8 m. The decay

rate for the head-on only bunch improves as the crossing angle is reduced.There

is no apparent effect on the non-colliding bunch from the crossing angle reduction

as expected and agrees with the 2015 machine study.
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5.3.5 LHC 2015/2016: Stable Beams

In the 2015/2016 LHC nominal luminosity fills, the long-range beam-beam effects

were mitigated during stable beams by increasing the crossing angle at IP2 and

IP8 and increasing the beam-beam separation at these IPs. Figure 5.38 shows

the reduced impact of the long-range beam-beam effects on the decay rates with

a reduced crossing angle at IP1 and IP5, with the beam-beam separations at IP2

and IP8 kept sufficiently large at dsep > 26 σ. Due to the success of the 2015/6

machine run and the two dedicated long-range beam-beam machine studies, it

was decided to push the luminosity reach for the LHC towards the end of the 2016

proton-proton run. Pushing the luminosity reach by reducing the crossing angle

will improve luminosity performance as well as providing a better understanding

of the machine for the 2017 run.

Analysis of the dedicated machine studies show that the LHC can operate at a

smaller beam-beam separation of 8.5 σ at IP1 and IP5, without lifetimes deterio-

rating due to long-range beam-beam interactions. Figure 5.38 shows an example

nominal fill after a crossing angle reduction from α = 370 µrad to α = 280 µrad.

The first hour from a luminosity production fill from the 2016 run is selected and

analysed as shown in figure 5.38. The first hour was selected as it is this time in

the fill that the long-range beam-beam interaction is the most prevalent. From

figure 5.38 some apparent long-range beam-beam pattern can be observed for the

different bunch trains. The decay rates do however remain within acceptable val-

ues above 10 hours. The worst lifetimes obtained correspond to bunch intensity

lifetime of τ = 16.6 hours. Similarly to the 2016 long-range beam-beam machine

study, beam 1 is more sensitive to the crossing angle reduction, whereas beam 2

remains almost unaffected.
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Figure 5.38: Decay rate dependence on the number of long-range beam-beam
interactions after the crossing angle reduction to α = 280 µrad.

5.4 Discussion

In this chapter, the long-range beam-beam limit in the LHC has been identified

by characterising the decay rates for two different operational configurations,

during two dedicated machine experiments. The analysis from the 2016 machine

determined that the crossing angle could be reduced during normal operational

fills. The lifetimes for a recent 2016 luminosity production fill, whilst operating

at the new crossing angle is briefly discussed, along with the impact of the long-

range beam-beam interaction on the fill.

In the 2015 machine study, collisions occurred at IP1 and IP5 only with a

β∗ = 0.80 m. The crossing angle was reduced in steps and the lifetimes were
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measured. As the crossing angle is reduced, the beam-beam separation is reduced

and the lifetimes correspond closely to the number of long-range beam-beam in-

teractions each bunch experiences. The strength and number of the long-range

beam-beam interaction is shown to have a significant impact on the lifetimes. For

beam-beam separations smaller than 7.5 σ, the long-range beam-beam interac-

tion began to dominate and cause particle losses. This separation corresponds to

a crossing angle of α = 190 µrad. At a minimum crossing angle of α = 118 µrad,

the lifetimes in the bunch by bunch intensity and luminosity data falls below 10

hours with beam 2 suffering more. A minimum bunch lifetime in beam 2 mea-

sured at approximately 4 hours. A crossing angle of α = 118 µrad corresponds

to a beam-beam separation of 5.5 σ. These lifetimes were observed whilst us-

ing the standard luminosity production operational settings of high chromaticity

and Landau octupole current. In this study, it was found that reducing the chro-

maticity from Q′ = 15 units to Q′ = 2 units and the Landau octupole strength

from koct = 16.27 Tm−3 to koct = 0 Tm−3, resulted in an improvement in life-

times, without compromising beam stability for the colliding bunches. Lifetimes

improved for the nominal bunches, increasing from τ < 10 hours, to values ob-

served at the initial crossing angle of τ ≥ 30 hours. The high chromaticity

and Landau octupole operation prevents the crossing angle being reduced below

α = 190 µrad. Operating at a smaller crossing angle would be beneficial from

the perspective of luminosity production, however these settings are required in

order to suppress instabilities during the squeeze.

The second machine study took place in 2016 and was split into two fills. The

first fill was a repeat of the first machine study, colliding two trains of bunches but

at a smaller β∗ of 0.4 m. During this fill the long-range beam-beam limit was not

reached due to an unexpected beam dump and time restraints prevented a repeat.

The second fill of the machine study contained three trains of bunches which were

collided at IP1 and IP5. Additionally each train had combinations of collisions
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at IP2 and IP8. The long-range beam-beam limit was reached during this fill

for a beam-beam separation of 8.5 σ. This corresponds to a crossing angle of

approximately α = 260 µrad in beam 1. The long-range beam-beam limit was not

reached for the second beam until the smallest crossing angle α = 190 µrad. For

crossing angles above 260 µrad there was no noticeable impact from reducing the

crossing angle on either beams and the decay rates and bunch lifetimes remained

acceptable, above 10 hours. For beam-beam separations smaller than 8.5 σ, the

decay rates begin to deteriorate. This resulted in lifetimes much less than τ = 10

hours being obtained. Once again there was no obvious impact on beam 2, except

for the smallest crossing angle α = 190 µrad. The reason for the beam asymmetry

is as of yet still unknown. In beam 2, only bunches with 24 long-range collisions or

more experienced lifetimes smaller than τ = 10 hours. From this machine study,

the analysis suggests that it is possible to reduce the crossing angle operationally

in the LHC without inducing additional losses. The crossing angle can be reduced

from α = 370 µrad to α = 280 µrad with the current operational configuration,

without encountering the long-range beam-beam limit and inducing unnecessary

losses.

The crossing angle was reduced for nominal luminosity production runs at the

beginning of October 2016. The crossing angle was reduced from 370 µrad to

α = 280 µrad, outside of the long-range beam-beam dominated region. The

beam-beam separation was sufficiently large at ∼ 9.3 σ, that good lifetimes were

retained, enabling long fill lengths. In addition to the crossing angle reduction,

the emittance was also reduced from ϵn = 3.75 µm to ϵn = 2.5 µm. The emittance

reduction in combination with the crossing angle reduction, results in an increase

in luminosity of approximately 15 − 17%, for a bunch intensity of nb = 1.25e11

protons per bunch.
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In this chapter, the experiment results obtained during the two long-range ma-

chine studies have been discussed and analysed. In order to understand the dif-

fusive processes that particles in the bunches experience, the experimental data

will be compared to dynamic aperture simulations. The results and analysis will

be discussed in chapter 6.



Chapter 6

Dynamic Aperture and the

Long-Range Beam-Beam

Interaction

6.1 Introduction

The analysis of the long-range beam-beam machine studies presented in chapter 5

show small beam and luminosity lifetimes for small crossing angles and beam-

beam separations [108, 109, 115, 116]. The results from those studies enabled the

minimum operational crossing angle in the LHC to be defined for that particu-

lar optics configuration and provided an understanding of the relation between

intensity losses and the long-range beam-beam effect. The particle losses due to

the long-range beam-beam effect arise due to a reduction of the dynamic aper-

ture with crossing angle. It is important to quantify the impact of the long-range

beam-beam interaction and the non-linearities of the machine on the dynamic

aperture. This allows comparisons to be made between the expectations from

182
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models and data obtained during the 2016 machine study. Providing this com-

parison allows the processes which limit dynamic aperture and affect luminosity

performance in the machine to be understood.

6.2 Overview

In this chapter, results and analysis of dynamic aperture studies of the 2016

long-range beam-beam machine experiment are presented with the aim of char-

acterising the dynamic aperture as a function of crossing angle. The measured

dynamic aperture is calculated from intensity loss and compared to weak-strong

long-term tracking simulations.

6.3 Dynamic Aperture

Dynamic aperture in a machine like the LHC is closely related to the onset of

chaotic particle motion [13]. The dynamic aperture after an infinite number of

turns is defined as the boundary in phase space for which particle motion in-

side that boundary is stable and outside that boundary is chaotic [117, 118].

This parameter is often denoted as D∞ as given in ref [119]. Particles that lie

outside this boundary and have chaotic motion can have amplitudes that grow

significantly, resulting in particles being lost from the accelerator. For particles

confined inside the dynamic aperture boundary in phase space, the particle tra-

jectories should remain stable [120]. In reality however, even particles inside the

dynamic aperture can be lost due to the phenomenon of Arnol’d diffusion [121].

Arnol’d diffusion can cause particle amplitudes to increase arbitrarily, which may

result in the particle hitting the physical aperture of the machine, however the
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time scale of Arnol’d diffusion may be so long that it is not relevant for physical

applications.

For accelerator physics however, the concept of survivability or dynamic aperture

after a finite number of turns is more practical. The dynamic aperture as a

function of turn number is given by the inverse of the logarithm and is observed

to have the form,

D(N) = D∞

[
1 +

b

(logN)κ

]
, (6.1)

as given by ref [122, 123], and is based on the analysis of data from numerical

simulations. In equation 6.1, D(N) is the dynamic aperture as a function of

turn number N and D∞ is the asymptotic value of the amplitude of the stability

domain. The fitting variables b and κ are additional free fitting parameters as

in [119]. The fitting parameters (D∞, b, κ) can take positive or negative values,

with the sign of these values dependent on the system being studied. In order to

understand the proposed model [119] and the sign of the fitting parameters, the

KAM and Nekhoroshev theories are introduced briefly.

6.3.1 Kolmogorov-Arnol’d-Moser Theorem

Kolmogorov-Arnol’d-Moser (KAM) theory describes the behaviour of a system

under the influence of a small non-linear perturbation. Under such a perturbation,

solutions to the nearly integrable Hamiltonian system can still be found with the

phase space motion remaining quasi-periodic i.e, stable, and confined to a KAM

surface [124]. The KAM surface is hence defined as an invariant torus (doughnut-

shaped surface) in which the particle’s trajectory in phase space is confined [125].

If a particle’s phase space amplitude trajectory lies on the KAM surface then

the trajectory of that particle is likely to be confined within the bunch and will
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remain stable, in the absence of Arnol’d diffusion. For the parameters given

in equation 6.1, this interpretation of the model corresponds to the case when

the fitting parameters b, κ and D∞ are all positive R>0 = {x ∈ R |x ≥ 0}. If

the fitting parameters are all positive, then the KAM surface corresponds to the

phase space region of the bunch in which the particle amplitude r < D∞.

6.3.2 Arnol’d Diffusion

Arnol’d diffusion is closely related to KAM theory and determines the nature of

some solutions that lie close to the unperturbed solutions of the Hamiltonian. In

KAM theory, some solutions of the perturbed Hamiltonian will remain close to

the unperturbed system, however this is not the case for all perturbed solutions.

This means that perturbed solutions to the system can still exhibit an arbitrary

amplitude growth [121]. As a result a given particle Hamiltonian that lies close

to the unperturbed Hamiltonian may still experience diffusion to a higher ampli-

tude and be lost. Hence even particles within the ”stable” region of the bunch

as described by figure 6.1 may still experience an arbitrary amplitude growth.

Formally for a non-linear Hamiltonian there is no stable dynamic aperture and

diffusion can occur from arbitrary small amplitudes [125].

6.3.3 Nekhoroshev Theorem

Particles outside of the dynamic aperture boundary in phase space will be gov-

erned by a Nekhoroshev-like escape to infinity. Particles will escape to infinity

following

N(r) = N0 exp

[(r∗
r

)κ−1
]
, (6.2)
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where N(r) is the number of stable turns that have an initial particle amplitude

that is smaller than r [119, 126–128]. Particles which have trajectories in phase

space outside the stable core of the bunch r > D∞, will undergo chaotic motion

and diffuse to infinity following the Nekhoroshev-like escape. Eventually these

particles will reach an amplitude where they are intercepted by the collimation

system.

These fitting parameters under some conditions have a physical representation

based on the above mentioned theories. In a 4-dimensional model, the fitting

parameters; D∞, b0 and κ will all be positive and correspond to a partitioning

of the phase space into stable and unstable regions. A schematic of this parti-

tioning is shown figure 6.1, along with the dynamic aperture variation with the

fitting parameters as shown in figure 6.2. Under this regime, the parameter b0

	
	

Stable	particle	motion	
on	KAM	surface	

Chaotic	motion	with	
particles	escaping	to	
infinity	following	
Nekhoroshev-like	estimate	

	!!	
	
!!	
	

Figure 6.1: The partitioning of the bunch phase space for the positive valued
fitting parameters D∞, b0 and κ as discussed in Ref [119].

corresponds to the size of the amplitude interval at which the diffusive mecha-

nism occurs, and κ determines the rate of diffusion. The dynamic aperture varies

significantly with more negative values of b0 causing a larger reduction in dy-

namic aperture after 10 × 106 turns. The κ function on the other hand varies

the slope of the inverse logarithmic function, with more negative values resulting

in a steeper gradient. However the final dynamic aperture at 10 × 106 turns is

within 0.25% for the different values of κ.The dynamics in a real machine will
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Figure 6.2: The relative dynamic aperture evolution over time compared to
the initial dynamic aperture D0, for different values of the free parameters κ

and b0.

however be a 6-dimensional system and hence non-positive values of the fitting

parameters should be considered. This regime allows for negative values of the

fitting parameters; D∞, b0 and κ [123]. If the fitting parameters are permitted to

be negative, this will give two further possibilities,

D∞ > 0, κ < 0, b0 < 0, (6.3)

D∞ ≤ 0, κ > 0, b0 > 0. (6.4)

Case 6.3 is indicative of a scenario with global chaoticity. In a system with

global chaoticity, no stable KAM region is present and hence all particles will

eventually after some finite time, escape to infinity. However the escape rate

to infinity in a real machine could be considerably larger than the length of a

fill [129]. The second case (6.4) goes beyond the physics of the model. Within

this regime, the asymptotic value of the dynamic aperture is negative. If the

parameter D∞ < 0 then this does not correspond to any physical scenario. Hence

in this case, the KAM area reduces to zero and the escape time to infinity will

follow the Nekhorohev-like estimate. These theories all provide the basis of the
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method discussed by ref [119] and references therein, that allow the dynamic

aperture from intensity loss to be calculated. The relationship between dynamic

aperture and intensity loss is discussed in the following section.

6.3.4 Dynamic Aperture from Intensity Loss

A relationship between the dynamic aperture and the intensity loss as a function

of turn number can be established following the method by M. Giovannozzi [119].

The particle intensity as a function of turn can be obtained directly from the

FBCT data, in which the lost particles lie outside the boundary of stability at

some turn N . The relationship between intensity loss and dynamic aperture is

given by the integral

I(N)

I0
= 1−

∫ ∞

D(N)

ρ(x̄)dx̄, (6.5)

where I is the intensity at some turn number N , I0 is the initial intensity, and

x̄ corresponds to the particle position. If the losses are assumed to only occur in

the transverse planes, then x̄ corresponds to the transverse coordinates. Hence,

for a round bunch with a Gaussian distribution, the integral becomes,

I(N)

I0
= 1−

∫ ∞

D(N)

e−
r2

2 rdr.

This yields the exponential relationship between the measured intensity and the

dynamic aperture as

I(N)

I0
= 1− e−

D2(N)
2 , (6.6)
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where D(N) is in units of the bunch sigma. Equation 6.6 is comparable to the

simple exponential model used in chapter 5, equation 5.3. Rearranging equa-

tion 6.6 and introducing the fractional intensity loss (∆I = 1 − I
I0
) gives the

dynamic aperture as a function of turn number as,

D(N) =
√
−2 log(∆I). (6.7)

Using expression 6.7, the dynamic aperture as a function of turn number can be

calculated directly from the intensity loss. The behaviour of equation 6.7 follows

an inverse logarithmic reduction of dynamic aperture with turn and is shown in

figure 6.3. The behaviour close to N = 0 becomes numerically unstable, due to
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Figure 6.3: The inverse logarithmic decay of measured dynamic aperture
as a function of the number of turns calculated. The dynamic aperture after

1× 106 turns is highlighted by the red line.

the nature of the logarithmic function. Ideally N after a large number of turns

(N ≥ 1× 106) is preferred, however for tracking simulations the number of turns

can significantly impact the computational time. Hence, for these simulations

and for measured intensity data, the dynamic aperture calculated at 1 × 106
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turns was used. In the next section, the computational method of calculating the

dynamic aperture is introduced by using Sixtrack.

6.4 Sixtrack

Tracking codes such as Sixtrack are often used for dynamic aperture stud-

ies [130–132]. Sixtrack uses pairs of particles and tracks the pairs over various

amplitudes in the x−y plane. The particles are tracked in pairs in order to deter-

mine at which point in phase space chaotic motion occurs. Sixtrack uses lattice

files generated by MadX [133]. The elements in the accelerator lattice are trans-

formed from thick to thin lens, with the lattice used for these simulations given

by LHC V6.503. The thin lens model used here enables the symplectic tracking

of particles through the lattice and provides a good approximation for the LHC,

since the particles remain close to the nominal design orbit and the deviation

from the closed orbit is small around the ring. In addition to this the symplec-

tic tracking is less computationally expensive than tracking through a thick lens

lattice. This lattice was set up to have the same operational configuration as

the real machine during the long-range beam-beam machine study. This lattice

included beam-beam interactions with a β∗ = 0.4 m at IP1 and IP5. During the

machine studies discussed in chapter 5, additional collisions took place at IP2 and

IP8 with a β∗ of 10 m and 3 m, respectively. In that chapter, the collisions at

IP2 and IP8 were shown to have a negligible impact on the beam lifetimes, since

the beam-beam separation was significantly large, above 26 σ. Hence in order

to reduce computational time, beam-beam interactions at IP2 and IP8 were not

included in the tracking simulations.

The dynamic aperture itself is calculated in Sixtrack using a number of different

methods. The chaoticity of a system is often calculated using the Lyapunov
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exponent [134]. The Lyapunov exponent determines the onset of chaotic particle

motion for two particles located close to one another in phase space [117, 118].

For two particle trajectories in phase space initially separated by δz0, then the

particles will diverge following

|δz(t)| ≈ eλt|δz0|, (6.8)

where λ is the Lyapunov exponent [135]. If the Lyapunov exponent is positive

(λ > 0), this indicates chaotic motion since the phase space separation between

the two particles will continue to increase. When λ < 0, the particle trajectory is

phase space will remain contained in a stable motion, since the particle separation

in phase space will remain small. The Lyapunov exponent or computational al-

ternatives are calculated in Sixtrack using the distance and slope methods. The

distance and slope methods are two viable and efficient alternatives to calculate

the Lyapunov exponent. The distance method determines the certain chaotic

boundary by analysing the final separation of two initially close particles. One

of the draw backs of this method is that the dynamic aperture may be overesti-

mated [136]. Particles that undergo weak, irregular and chaotic behaviour may

not be sufficiently separated after some period of time. An alternative, more

pessimistic computational method is the slope method. This method examines

the evolution of the distance in phase space and calculates the strict chaotic

boundary. Once again, this can also lead to a misleading calculation of the dy-

namic aperture by underestimating the true value. If a pair of particles have a

large, but regular motion, they may be falsely identified as chaotic particles. The

preferred method here used for LHC type studies is the phase space averaged

dynamic aperture and this is calculated using the post-processing tools available

in the sixdb library [137, 138]. The dynamic aperture from the post-processing

is used in the following section to analyse the results from the 2016 long-range

beam-beam tracking study.
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6.4.1 Magnetic errors

Particle motion in an accelerator is sensitive to a number of factors. Small man-

ufacturing errors in the magnets or even the ground motion itself can impact

the stability of a particle moving around the lattice [139]. In a real machine, the

magnets will not be perfect and will sometimes be misaligned or have design man-

ufacturing errors. The errors from the magnets can be categorised as systematic

and random. The systematic errors can be corrected during operation. The ran-

dom errors are more difficult to account for and arise due to imperfections in the

magnets or due to magnetic misalignments, which can introduce additional un-

wanted multipoles. These can all affect the beam dynamics and lead to unwanted

particle losses [140, 141]. To account for this, the errors in a number of the mag-

nets were measured to provide realistic calculations in tracking simulations [142].

To determine the impact and severity of the magnet design errors, a number of

measurements were made for the real LHC magnets. The magnet components

were measured at hot and cold temperatures, as well as at high and low voltage.

From this a linear model was constructed between the two regimes [140]. Due to

the large number of magnets in the LHC, the rest of the magnets were measured

at warm temperatures, with the cold magnet errors calculated using the linear

model. Since not all of the magnets could be measured, 60 realisations of the

lattice, sometimes known as seeds, are used in order to gain a 95% certainty in

the dynamic aperture calculation [143].

Simulating 60 realisations of the lattice allow the range of dynamic aperture to

be defined. The minimum dynamic aperture as a function of angle compared over

two individual seeds versus the 60 seed case is shown in figure 6.4. A single seed

used during tracking simulations, in the presence of magnetic errors can result in

the minimum dynamic aperture being missed. Using 60 realisations of the lattice

results in a dynamic aperture difference of about 1− 2 σ for some angles in the
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Figure 6.4: The minimum dynamic aperture for two different seeds (red and
blue points) compared to the minimum dynamic aperture obtained from 60

realisations of the LHC lattice (green) [144].

x−y plane compared to the single seed case for the bare machine lattice without

beam-beam.

6.4.2 The Symplectic Beam-Beam Map

In addition to the magnetic errors of the lattice, how the beam-beam effect is

modelled in Sixtrack should be considered. Sixtrack uses the thin lens ap-

proximation to study particles travelling around a lattice. In order to study the

beam-beam interaction using Sixtrack, the beam-beam interaction must be de-

scribed as a symplectic map within the thin lens approximation. To derive the

beam-beam map in Sixtrack, it must be expressed in terms of the weak-strong

approximation. The weak-strong approximation states that a moving test par-

ticle receives a kick from a counter rotating bunch, but the bunch distribution

will remain unaffected by the test particle. In the ultra-relativistic limit, for a

head-on collision without crossing angle, the electric field is almost entirely con-

tained to the transverse planes, with the magnetic field component arising due

to the Lorentz boost as detailed in [145]. In this limit, the bunch can be di-

vided into slices, with the intensity of each slice following a Gaussian distribution
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along the longitudinal direction. However in the LHC, the bunches collide with

a crossing angle and coupling between the planes may be present. The impact

of these operational scenarios need to be considered in the tracking simulations.

The 6-dimensional scalar potential for each slice is given by

φ(x, y; Σ11,Σ33;ϑ) = −rp
γ

∫ ∞

0

exp
[
− x2

2Σ11+q
− y2

2Σ33+q

]
√
2Σ11 + q

√
2Σ33 + q

dq, (6.9)

from [65], where q is the integration variable and Σij corresponds to the 6 × 6

phase space envelope matrix of the strong bunch, given by

Σij =< RiRj > − < Ri >< Rj > . (6.10)

Here i, j are integer values from 1, ..., 6, with the transverse 6-dimensional coor-

dinates of the strong bunch denoted R. The coordinates of the strong bunch can

be expressed as

R =



X

PX

Y

PY

Z

PZ


. (6.11)

Hirata developed a symplectic map based on this sliced potential. This symplectic

map allowed bunch length effects to be approximated [65]. The impact of bunch

length effects were shown to be no longer negligible under certain conditions,

such as when bunch sizes vary significantly around the IP [62]. This symplectic

mapping was implemented into Sixtrack and is known as the Synchro-Betatron

Mapping (SBM). The mapping of the coordinates throughout the interaction is
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given by

x∗ → x∗ + Sn∗F ∗
x ,

p∗x → p∗x − n∗F ∗
x ,

y∗ → y∗ + Sn∗F ∗
y ,

p∗y → p∗y − n∗F ∗
y ,

p∗z → p∗z − n∗F ∗
z − 1

2

[
n∗F ∗

x (p
∗
x −

1

2
n∗F ∗

x ) + n∗F ∗
y (p

∗
y −

1

2
n∗F ∗

y )

]
.

In this notation, the ∗ represents parameters at the collision point, S is the slice

number, n∗ is the bunch population, and the functions Fx,y,z represent the electric

field in the x, y, z dimensions. The electric field is given by,

F ∗
α = ∂αφ(x̄

∗, ȳ∗; Σ11(ϑ),Σ33(ϑ), ϑ), (6.12)

where α = {x∗, y∗, z∗}. In order to calculate the electric field of each slice,

F ∗
α must be calculated for every slice. This can be computationally expensive,

especially in the strong-strong regime for multiple collision points. However, as far

as the author is aware, there is no analytical alternative that can be implemented

in Sixtrack. This provides some of the motivation for the theoretical approach

detailed in chapter 4. The SBM includes coupling and was implemented into

Sixtrack using a Lorentz boost Λ, including a longitudinal tilt. The Lorentz

boost as shown in figure 6.5 between the weak and strong bunch is given by

Leunissen, et. al [145], and takes the form,

Λ =



1
cosϑ

− cosα sinϑ − tanϑ sinϑ − sinα sinϑ

− cosα tanϑ 1 cosα tanϑ 0

0 − cosα sinϑ cosϑ − sinα sinϑ

− sinα tanϑ 0 sinα tanϑ 1


, (6.13)
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X*	

Z*	

Figure 6.5: The Lorentz boost with a longitudinal tilt in the strong bunch
to ensure a head-on collision with the test particle

where the crossing plane angle is denoted by α and 2ϑ is the full crossing angle.

The SBM provides the basis for the beam-beam lens implemented in Sixtrack.

Throughout these dynamic aperture studies, a number of the machine and bunch

properties were varied such as crossing angle, emittance, intensity and coupling.

To obtain the most realistic possible simulations bunch length effects were also

included in the simulations using the SBM described above.

6.5 Results from Simulations

In this section, the results of tracking simulations using Sixtrack are presented

and compared to measured dynamic aperture. Firstly, a crossing angle scan is

performed in order to identify the impact of the beam-beam interaction on the

dynamic aperture at different crossing angles. The dynamic aperture obtained
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from these tracking simulations are then compared to measured dynamic aperture

using the formula proposed by M. Giovannozzi [119], described in equation 6.7.

In the following sections, the simulation setup is described along with some of

the systematic and measured errors which could impact the results.

6.5.1 Simulation Setup

The pairs of particles in Sixtrack are tracked over a number of angles in the

x − y plane defined by the variable kmax. The kmax can be converted to degrees

following ref [144]:

θ =
90

kmax + 1
. (6.14)

To ensure that an accurate value of the minimum dynamic aperture was obtained

from the tracking simulations, a reasonable number for kmax must be chosen to

ensure that the computation time is small and the error on the dynamic aperture

is minimised. The minimum dynamic aperture obtained as a function of kmax is

shown in figure 6.6. The dependency on kmax is significant when determining the

minimum dynamic aperture. When only 5 angles are scanned there is a large

probability that the minimum dynamic aperture will be missed. The difference

between kmax=5 and kmax = 59 is approximately 0.7 σ. For the following simula-

tions, kmax = 59 was used throughout, as large sample of angles in the x−y plane

is required in order to compare directly to measured data. This corresponds to

a pair of particles tracked every 1.5 degrees in the x − y plane. Although the

difference between kmax = 30 and kmax = 59 is of the order of 0.02 σ for this simu-

lation scenario shown in figure 6.6, including magnetic errors into the simulation

model introduces significant non-linearities. Selecting a kmax value of 59 ensures

that the minimum dynamic aperture is not missed, whilst retaining acceptable

computational times [144].
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Figure 6.6: Minimum dynamic aperture as a function of kmax. For kmax < 29
the difference in the minimum dynamic aperture calculated is approximately

0.7 σ.

Similarly, in order to reduce the uncertainty in the minimum dynamic aperture

calculation, particles were tracked over a large number of turns with the aim

of minimising both the systematic errors from the simulations and the compu-

tational time required to perform the simulations. Therefore the particles were

tracked over 1× 106 turns.

In order to compare the results from simulation to measurement, the effect of

proton burn-off on the bunches must also be considered. The dynamic aperture

calculated in Sixtrack does not include particle losses due to head-on collisions

with the counter rotating bunches, however these losses were present during the

long-range beam-beam machine study. The losses due to proton-burn off can be

calculated from the luminosity data and the effect of burn-off can be removed

from the dynamic aperture calculation. An example calculation of the proton

burn off is shown in figure 6.7 and is calculated using the simple formula

B(t) = L(t)× σin, (6.15)
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where σin is the inelastic cross section for proton-proton collision and L is the

bunch luminosity. In the LHC, the inelastic cross section is approximately σin ≈

110 mb [146] and the luminosity during the long-range machine study was L ≈ 6

Hz per µb. Here the unit of ”barn” is introduced, with 1 barn equal to 10−24 cm2.

From this, a burn-off rate of about 58 protons per turn per IP is obtained. The

effect of burn off is removed by then adding the particles lost back to the fractional

intensity in equation 6.7 such that,

D(N) =
√
−2 log(∆I + δIburnoff ). (6.16)

The particles lost from burn off after 1×10(6) turns will be approximately 1×108

protons. Including these lost protons back into the dynamic aperture calculation

will increase the measured dynamic aperture marginally by approximately 4 ×

10−4 σ. Proton burn-off is not the only source of difference between the measured
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Figure 6.7: The relative proton burn off calculated for the nominal bunches
over the crossing angle step α = 210 µrad.

data and simulation model, as discussed in the next section.
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6.5.1.1 Errors on Measured Data

In order to calculate the dynamic aperture using equation 6.7 and obtain a re-

alistic calculation, the fractional intensity loss and emittance of the bunches are

required. Details of the relevant LHC beam instrumentation can be found in

chapter 3. In order to calculate the bunch intensity, FBCT data is used and is

accurate to within approximately 1%. The error from the measured intensity will

hence also impact the dynamic aperture calculation. An error of 1% on the bunch

intensity corresponds to approximately 0.01 σ error in the dynamic aperture. In

addition to the measured intensity, the emittance of the bunch is required to nor-

malise the dynamic aperture to the emittance used in the simulations. The error

from the BSRT is more substantial than the FBCT and corresponds to approx-

imately 10% − 20% error [146]. As well as an error in the bunch emittance, an

emittance asymmetry between the bunch planes was also present during the 2016

machine study. The error bars used throughout this analysis took into account

this emittance asymmetry as well as the error from the BSRTs. The error from

the measured bunch parameters were considered, however additional sources of

error which are more difficult to measure should also be discussed briefly. Ef-

fects such as closed orbit drifts, transverse offsets between the colliding bunches

and crossing angle error will all impact the dynamic aperture and the physical

processes that the particles in the bunches experience. Closed orbit drifts will

change the beam trajectory through the IP and may result in a smaller long-

range beam-beam separation and hence a smaller dynamic aperture. Similarly, if

the bunches collide with a transverse offset at the IP, the particles in the bunch

may experience more of the non-linear force of the beam-beam interaction. These

additional sources of non-linearities will all impact the dynamic aperture. These

additional sources and the interplay with the beam-beam interaction is discussed

in the next section.
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6.5.2 Comparison to Tracking Simulations

In order to provide an accurate comparison between the measured dynamic aper-

ture and simulated dynamic aperture, baseline simulations were performed at the

same crossing angle steps as the 2016 machine study. The baseline simulations

initially only included beam-beam interactions. Additional effects were then in-

cluded in the simulation model to better model the accelerator dynamics. The

measured dynamic aperture and dynamic aperture from tracking simulations is

shown in figure 6.8, for the nominal colliding bunch. The measured dynamic

aperture was computed at N = 1× 106 turns, in order to directly compare to the

results from Sixtrack. In figure 6.8, the red, blue and green points correspond

to the measured dynamic aperture normalised to the RMS value, the horizontal,

and vertical bunch emittances. At small crossing angles below α = 260 µrad,

Average Dynamic Aperture

Minimum Dynamic Aperture

Collimator Aperture

Figure 6.8: Comparison of tracking simulations (red shaded area) to the
measured dynamic aperture (red, green, and blue points) at N = 1×106 turns,
for the nominal colliding bunch, including measured intensity and emittance

where the beam-beam separation is smaller than 8.5 σ, the dynamic aperture

compares well for both measured and simulated results. The agreement between

measurement and simulation occurs within the region in which the long-range
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beam-beam interaction is strongest. At small beam-beam separations, the long-

range beam-beam interaction dominates the particle losses and the dynamic aper-

ture, corresponding to losses observed during the 2016 machine study. The small

dynamic aperture causes particles to diffuse to larger amplitudes. These particles

are then lost on the collimators . At crossing angles below α = 220 µrad, the dy-

namic aperture is smaller than 3 σ. This corresponds to a beam-beam separation

of ∼ 7 σ. Here the dynamic aperture is significantly small enough as to cut into

the core of the bunch. This provides a possible explanation as to the apparent

loss of emittance measured by the BSRTs as observed in chapter 5. For dynamic

aperture smaller than 3 σ, the long-range beam-beam interaction behaves like

a collimator cutting into the core of the bunch. At crossing angles larger than

α = 260 µrad, when the beam-beam separation is larger than 8.5 σ, there is a

clear discrepancy between the simulated and measured dynamic aperture that

cannot be explained by the beam-beam interaction alone. The simulated dy-

namic aperture continues to increase towards larger crossing angles whereas the

measured dynamic aperture appears to saturate at approximately 3.75 σ.

Previous studies [115, 116, 147] show that the Landau octupoles and chromatic-

ity are known to limit the dynamic aperture towards large crossing angles. The

impact of the parameters on the dynamic aperture whilst including long-range

and head-on beam-beam effects is shown in figure 6.9 for various operational

scenarios. The simulations presented in this chapter use the same operational

settings as the long-range beam-beam machine study with chromaticity and Lan-

dau octupole currents set to Q
′
= 16 units and Joct = 476 A. This octupole

current gives the octupole strength as koct = 16.27 Tm−3. These sources alone

cannot account for the dynamic aperture difference between measurement and

simulation shown in figure 6.8. Therefore additional physical effects, other than

the beam-beam interaction, which limit the dynamic aperture will be considered,

in order to better explain measured results.
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Figure 6.9: Dynamic aperture simulations for the 2015 LHC operational
configuration, with β∗ = 0.8 m, np = 1.3 × 1011 ppb, and ϵn = 3.75 µm. For
these operational settings, the chromaticity was varied from Q′ = 15 units to
Q′ = 2 units and the impact of Landau octupoles on the dynamic aperture

was also investigated [147].

Figure 6.10 shows the measured dynamic aperture for the head-on and nominal

colliding bunches. For beam-beam separations larger than 8.5 σ, outside the

long-range beam-beam dominated region, the head-on and nominal bunches have

similar dynamic aperture and show no significant differences. The saturation of

the dynamic aperture for these crossing angles is impacting bunches in the beam

irrespective of whether the bunches collide head-on only or experience long-range

interactions. In order to understand the effect limiting the dynamic aperture,

the simplest beam-beam configuration of the head-on only colliding bunch is

considered first.

A comparison between the measured dynamic aperture and the simulated dy-

namic aperture for the head-on only colliding bunch is shown in figure 6.11. In

figure 6.11, the top boundary of the shaded area describes the average dynamic

aperture obtained from tracking simulations. The averaged dynamic aperture is

calculated by taking the mean dynamic aperture over all of the x − y angles.
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Figure 6.10: The measured DA calculated at N = 1× 106 turns, with emit-
tance normalised to ϵn = 2.5 µm for the HO colliding bunch and the mean DA
for nominal bunches colliding at IP1 and IP5 with both HO and the maximum

number of 34 LR beam-beam interactions.

The lower boundary of the shaded area corresponds to the minimum dynamic

aperture. The minimum dynamic aperture is given by the smallest value of the

dynamic aperture in the x − y plane. The black line describes the collimator

aperture at 6.5σ. The error bars are calculated by normalising the measured dy-

namic aperture at N = 1× 106 turns, to the horizontal and vertical emittances,

whilst including a 20% error on the measured emittance.

The comparison shows a clear discrepancy between the dynamic aperture calcu-

lated from tracking simulations and measured data. The dynamic aperture from

tracking simulations is within the range of 7−9 σ, whereas the measured dynamic

aperture lies between 3.5 σ and 4 σ. In a real machine like the LHC, collimators

are located around the ring in order to protect cold magnets and sensitive equip-

ment from particle losses [148]. The physical aperture is set by the collimator

openings and defines the maximum amplitude a particle can reach before being

lost. For an emittance of ϵ = 2.5 µm, the collimator aperture is set at 6.5 σ.

Particles at amplitudes larger than this will be lost onto the collimators. As seen
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Figure 6.11: Comparison of simulation and measured dynamic aperture at
N = 1×106 turns for the head-on colliding bunch including measured intensity

and emittance.

from figure 6.11, the dynamic aperture from simulations suggest that in the real-

istic machine the performance would be limited by the collimator aperture not by

the head-on beam-beam interaction. This suggests that another beam dynamics

process was limiting the measured dynamic aperture during the machine study.

The dynamic aperture as a function of x−y plane is shown in figure 6.12 with the

black line representing the collimator aperture. From figure 6.12 an asymmetry

between the beam planes can be observed with the larger dynamic aperture found

in the vertical plane. The reason for the asymmetry observed in figure 6.12 is

unknown and warrants further investigation. Since the dynamic aperture can not

be explained by the beam-beam interaction alone, additional effects which limit

dynamic aperture are included in the simulation to better explain the discrepancy.

Linear coupling is one such effect that is known to impact the dynamic aper-

ture [149]. In the LHC, the linear coupling is approximately |C−| = 4 × 10−3

during normal luminosity production [150]. Including this value into tracking
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Figure 6.12: Dynamic aperture simulations as a function of x− y plane for
the head-on colliding bunch including measured intensity and emittance.

simulation reduces the dynamic aperture as seen in figure 6.13. The linear cou-

pling introduces an interplay between the horizontal and vertical planes resulting

in an additional degree of freedom. The additional degree of freedom introduced

by linear coupling may reduce the stable region in phase space to zero and hence

impact particle survivability, as described in ref [122]. The dynamic aperture

obtained from tracking simulations show that the linear coupling reduces the dy-

namic aperture by ∼ 1 σ over all crossing angle steps. The average dynamic

aperture from simulation model still remains larger than the physical aperture

defined by the collimators. The minimum dynamic aperture from the tracking

simulations is within the collimator aperture but still differs from the measured

dynamic aperture by ∼ 2 σ. This suggests that linear coupling and the interplay

with the head-on beam-beam is not solely responsible for the limited measured

dynamic aperture that was observed during the long-range beam-beam machine

study. The dynamic aperture as a function of the x − y plane is shown in fig-

ure 6.14. The asymmetry between the planes is still present and does not change

significantly when including the linear coupling. The linear coupling appears to

reduce the dynamic aperture uniformly in the x − y plane by about 1 σ. The
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Figure 6.13: Comparison of simulation and measured DA for the HO only
bunch including measured intensity, emittance, and linear coupling.
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Figure 6.14: Dynamic aperture from tracking simulations for the head-on
colliding bunch including measured intensity, emittance, and linear coupling

as a function of the x− y plane.

dynamic aperture in the x plane is slightly smaller and drops just below the colli-

mator aperture, whereas the dynamic aperture in the y plane remains significantly

above the 6.5 σ collimator aperture.

To further explain the discrepancy between the measured and simulated dynamic
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Figure 6.15: Dynamic aperture from measurement and tracking simulations
for the head-on colliding bunch including multipolar errors, measured intensity,

emittance, and linear coupling.

aperture, multipole errors in addition to linear coupling and the beam-beam in-

teraction were included into the simulation model. Tracking simulations were

performed using 60 realisations of the LHC lattice for each of crossing angle step.

These simulations were computationally expensive, with each crossing angle pro-

ducing approximately 50, 000 jobs. In order to compute such a large number of

jobs the Boinc infrastructure was used for tracking simulations including mag-

netic errors [151].

The tracking simulations including magnetic errors and linear coupling are shown

in figure 6.15. Including the magnetic errors in the simulation model further re-

duces the dynamic aperture by approximately 1−1.5 σ and provides a reasonable

comparison between simulation and measurement. There is still some discrepancy

of approximately 0.5 σ between the two models. There are a number of possibil-

ities which could explain this. One explanation is the working point chosen for

the simulations may not be quite the same as the measured data. During the

long-range beam-beam machine study a tune drift was observed [152]. The tune
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Figure 6.16: Dynamic aperture from tracking simulations in the x − y for
the head-on colliding bunch including multipolar errors, measured intensity,

emittance, and linear coupling.

throughout the experiment drifted towards the third order resonance. If parti-

cles moved close to this resonance then they may be excited to larger amplitudes

and then lost. An alternative scenario that causes a reduction in the dynamic

aperture, arises due to a small transverse offset at the IP between the colliding

bunches. In this case, the bunches are exposed to more of the beam-beam non-

linearities, giving particles an amplitude dependent tune shift, which as a result

could lead to particle losses. The transverse offset between the bunches is difficult

to measure and can only be mitigated through luminosity optimisation.

The dynamic aperture in the x − y plane from tracking simulations including

magnetic errors and linear coupling is shown in Figure 6.16. Initial comparison

between the measured and simulated dynamic aperture suggests that there is

some interplay between the head-on beam-beam interaction, the non-linearities

of the interaction region, and linear coupling that causes the dynamic aperture to

saturate towards larger crossing angles. However this is not conclusive and some

discrepancy between the model and the experimental data still exists, and this

needs to be understood. In order to investigate further this interplay, additional
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effects such as the transverse offset, tune drift, and closed orbit drift will be

studied outside of this thesis.

The dynamic aperture for the nominal colliding bunch was also investigated as

shown in figure 6.17. Here the error bars are calculated by normalising the

measured dynamic aperture at N = 1 × 106 turns, to the measured emittances

in the x and y plane, plus a 10% error on the measured emittance. A similar

saturation of the dynamic aperture was observed for crossing angles larger than

α = 260 µrad, corresponding to a beam-beam separation of 8.5 σ. Figure 6.17

shows the impact of both the head-on and long-range beam-beam interactions on

the dynamic aperture of the nominal colliding bunch at the same crossing angle

steps as the 2016 machine study. Below α = 260 µrad, the dynamic aperture is

well described by the tracking simulations. At these crossing angles the beam-

beam separation is smaller than 8.5 σ and the losses are dominated by the long-

range beam-beam interaction. As a result, the the dynamic aperture reduces

following the crossing angle steps. Above α = 260 µrad, outside of the long-range

dominated region, the dynamic aperture from simulation continues to improve

whereas the measured dynamic aperture becomes limited at approximately 3.75 σ.

Although not conclusive, results from the head-on only case suggest that there

may be an interplay between the beam-beam effects, the non-linearities of the

machine, and the linear coupling, causing a saturation of the dynamic aperture

towards larger crossing angles outside of the long-range beam-beam dominated

region. These effects are then applied to the nominal colliding bunch in order to

investigate the difference between the model and experimental data.

The dynamic aperture from simulation as a function of the x− y plane is shown

in figure 6.18, for a nominal colliding bunch. The dynamic aperture for the

nominal colliding bunch in the x − y plane appears to be uniformly distributed

over the different angles and does not show the asymmetry observed for the

head-on only bunch. The dynamic aperture over the different angles is almost
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Figure 6.17: Dynamic aperture from tracking simulations for the nominal
colliding bunch including measured bunch intensity, emittance, and long-range

and head-on beam-beam effects.

entirely confined below the collimator aperture, and reduces successively with

each crossing angle step. As previously observed for the head-on only bunch,

the beam-beam interaction alone cannot account for the dynamic aperture for

crossing angles above α = 260 µrad.
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Figure 6.18: Dynamic aperture in the x − y plane as a function of cross-
ing angle for the nominal colliding bunch, including measured intensity and

emittance
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Figure 6.19: Dynamic aperture from tracking simulations for the nominal
colliding bunch including measured intensity, emittance, and linear coupling.

Previous investigations including linear coupling for the head-on only colliding

bunch shows that this effect reduces the dynamic aperture for α > 260 µrad. In

figure 6.19, linear coupling with a value of |C− = 4 × 10−3| is included in the

tracking simulations. Including linear coupling as shown in figure 6.19 limits the

minimum and average dynamic aperture towards larger crossing angles by ap-

proximately 1 σ. This is comparable to the observations of the dynamic aperture

reduction for the head-on colliding bunch. The dynamic aperture as a function

of the x − y plane including linear coupling is shown in figure 6.20. The linear

coupling does not impact the smaller crossing angles, below α = 260 µrad, with

the losses continuing to be dominated by the long-range beam-beam interaction.

For the larger crossing angle steps above α = 260 µrad, the dynamic aperture is

reduced and the difference between each crossing angle step is also reduced.

Finally magnetic errors were included in the simulations and were expected to

impact the dynamic aperture outside of the long-range beam-beam dominated

region. The tracking simulations including magnetic errors and linear coupling,

compared to the measured dynamic aperture are shown in figure 6.21 and 6.22.
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Figure 6.20: Dynamic aperture in the x − y plane as a function of crossing
angle for the nominal colliding bunch, including measured intensity, emittance

and coupling

Including 60 realisations of the lattice provides a realistic estimate of the non-

linearities of the machine [144]. The magnetic errors, in combinations with the

beam-beam interaction and linear coupling, impact dynamic aperture for crossing

angles above α = 260 µrad. The magnetic errors act to further reduce the

dynamic aperture for these angles. The dynamic aperture including these errors,

well describes the measured dynamic aperture over all of the crossing angle steps.

The possible interplay between the magnetic errors, linear coupling and the beam-

beam interaction appears to saturate the dynamic aperture outside of the long-

range beam-beam dominated region and may provide an explanation for the

limited dynamic aperture observed during the 2016 machine study.

The magnetic errors and non-linearities in the IRs may be one source of the lim-

ited dynamic aperture for α > 260 µrad and arises due to the crossing angle and

the path of the beams through the triplet. For large crossing angles, the beams

will travel off centre through the inner triplet quadrupoles. The field quality for

these magnets is best towards the centre and hence, if the beams are offset, the

bunches experience stronger non-linearities. These non-linearities can result in
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chaotic particle motion or move particles onto resonant tunes which may cause

particle losses and hence reduce the dynamic aperture. For large crossing angles

and beam-beam separations above 8.5 σ, the dynamic aperture will saturate and

may possibly become limited by the non-linearities of the triplets. For a cross-

ing angle of α < 260 µrad, the beams are no longer offset as much through the

magnet centre, therefore the magnetic non-linearities of the triplet become have

a smaller impact on the dynamic aperture. However, the beam-beam separation

is smaller and the long-range beam-beam interaction will begin to dominate the

losses instead.

The non-linearities will also further affect the dynamic aperture when β∗ is small.

In order to obtain tightly squeezed beams and a β-function at IP1 and IP5 of

0.4 m, the bunches have to be blown up through the triplet. The β-function

through the IP is shown in figure 3.2 in chapter 3. As a result, the bunches again

travel off centre through the triplet magnets causing a feed down effect of the

non-linear magnet errors which scale approximately with (β∗)−
n
2 , where n is the

magnetic multipole order [4, 153]. However in order to conclusively determine

whether it is the interplay between the beam-beam effects, linear coupling, and

magnetic non-linearities, additional studies are required. Other effects should be

considered that may impact the dynamic aperture at larger crossing angles such

as a traverse offset between the colliding beams, closed orbit drift, larger values of

linear coupling, and tune drift. These effects will be investigated further outside

of this thesis and in addition the dynamic aperture model will then be compared

to experimental data from the 2015 long-range beam-beam machine study.
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Minimum Dynamic Aperture

Average Dynamic Aperture

Collimator Aperture

Figure 6.21: Dynamic aperture from tracking simulations for the nominal
colliding bunch including multipolar errors, measured intensity, emittance, and

linear coupling.
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Figure 6.22: Dynamic aperture in the x − y plane as a function of crossing
angle for the nominal colliding bunch, including measured intensity, emittance,

coupling and magnetic errors.

6.6 Conclusion

The aim of this chapter was to investigate and benchmark existing models in

Sixtrack, to measured data obtained during the 2016 long-range beam-beam
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machine study. In order to achieve this, the dynamic aperture from intensity

loss was calculated. To provide a more accurate comparison to the simulation

model, the effect of proton burn-off was removed and the dynamic aperture from

measurement was normalised to the emittance of ϵn = 2.5 µm. For the head-on

only and nominal colliding bunches, a clear discrepancy was observed between

measured dynamic aperture and the simulation model including only beam-beam

effects. The simulation model predicted a continuous improvement of dynamic

aperture for crossing angles larger than α = 260 µrad. Instead however, the

measured dynamic aperture saturates at approximately α = 260 µrad and re-

mains around 3.75 σ. In order to investigate a possible explanation, the simplest

beam-beam configuration of the head-on only colliding bunch was considered

first. Including only the head-on beam-beam interaction in the model predicts a

dynamic aperture of 7.5− 9.5 σ, which lies outside of the collimator aperture at

6.5 σ. However the measured dynamic aperture remains at approximately 3.75 σ.

This suggests that the head-on beam-beam interaction alone cannot account for

the observations during the 2016 machine study. To improve the model, addi-

tional sources that impact the dynamic aperture were introduced. Firstly linear

coupling, with typical values obtained during normal operation were included.

Linear coupling was shown to reduce the dynamic aperture by approximately

1 σ. As a result, the minimum dynamic aperture from the model dropped be-

low the collimator aperture, and remained around ∼ 5.8 − 6 σ. The average

dynamic aperture still remained above the collimator aperture however. This

indicates that both linear coupling and the beam-beam interaction alone cannot

account for the observed dynamic aperture. The LHC machine is complicated

and contains multiple sources of magnetic errors and misalignments. In the pre-

vious simulation models, the non-linearities of the machine, such as magnetic

errors and magnetic misalignments were not included. Finally the non-linearities

of the machine were included into the simulation model and this was shown to
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further reduce the dynamic aperture. Including these errors in the model reduces

minimum and average dynamic aperture almost entirely below the collimator

aperture. There is still approximately a 0.5 σ difference between the measured

dynamic aperture and the dynamic aperture from models. This difference may be

accountable due to a number of issues such as transverse offset or tune working

point that is still to be investigated outside of this thesis. It appears as if the in-

terplay between linear coupling, magnetic errors and the beam-beam interaction

all impact and limit the dynamic aperture at ∼ 3.75 σ.

For the nominal colliding bunch, the model and measured dynamic aperture

compares well below α = 260 µrad. Within this region, the long-range beam-

beam interaction is strong and is the main contribution to the particle losses.

Outside of this region however, for α > 260 µrad and beam-beam separations

> 8.5 σ, the model shows a continuous improvement in dynamic aperture, whereas

the measured dynamic aperture saturates, in a similar way to the head-on bunch,

at 3.75 σ. Linear coupling was then added to the simulation model. This reduced

the dynamic aperture for crossing angles steps larger than α = 260 µrad by

approximately 1σ. In the same way as for the head-on bunch, this suggests

that linear coupling in combination with the beam-beam interaction is not the

sole source responsible for limiting the dynamic aperture. To further improve

the model and hence compare to a more realistic scenario observed during the

machine study, the non-linear errors of the machine were included. These again

impacted the dynamic aperture for beam-beam separations larger than 8.5 σ,

but did not impact separations smaller than this. Outside of the long-range

beam-beam dominated region, the minimum dynamic aperture further reduced

by approximately 0.5−1 σ. Including magnetic errors, linear coupling and beam-

beam effects into the model appears to provides a sufficient explanation for the

observed dynamic aperture obtained during the 2016 machine study, however this

needs to be studied in more detail. The interplay between these effects appear
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to saturate and limit the dynamic aperture for the nominal colliding bunch at

α > 260 µrad. This saturation likely arises due to the trajectory of the bunches

through the inner triplet quadrupoles. At larger crossing angles, the bunches are

off-centred through the inner triplet quadrupoles, resulting in a larger sampling of

the magnetic field errors. This in combination with a small β∗, possibly causes the

non-linearities of the magnets to induce chaotic motion or cause particles to cross

resonant tunes. These mechanisms can result in particle losses and hence limit the

dynamic aperture to 3.75 σ. However further work and additional mechanisms

which limit the dynamic aperture need to be investigated further. Effects such as

transverse offset between the colliding bunches, orbit drift, tune drift, and larger

values of linear coupling can all impact the dynamic aperture. Further work

is due to be conducted outside of this thesis and compared to other long-range

beam-beam machine studies with different β∗ and optics configurations. This

will allow the dynamic aperture model to be improved and benchmarked against

experimental data.

In the context of the LHC luminosity performance, these studies have shown

that the combination of beam-beam effects and the non-linearities of the inner

triplet can saturate the dynamic aperture for a particular machine configuration.

Although the dynamic aperture may not necessarily correspond to particle losses,

it implies that the particle motion may be chaotic for a signifiant proportion of

the bunch. With regard to future performance, the non-linearities of the machine

may further restrict the choice of operational parameters for β∗ and crossing angle

α and impact with luminosity reach.



Chapter 7

Summary and Conclusions

7.1 Summary

The LHC is an intricate and complicated machine that presents a number of chal-

lenges for accelerator physicists working within the field. In order to improve the

machine performance and learn for future machines, a detailed understanding of

the physical processes that the beams undergo is required. The aim of this thesis

was to present some of the challenges from the perspective of the beam-beam

interaction, overcome these challenges, and improve the machine performance.

In this thesis, the luminosity performance limitations due to beam-beam interac-

tion have been investigated. The beam-beam interaction can significantly impact

the machine performance. Understanding the beam-beam interaction and the

limiting factors from this effect, allow the LHC luminosity performance to be

improved, whilst simultaneously gaining experience for the operation of future

machines like the HL-LHC. This understanding of beam-beam effects and other

limiting factors in the LHC has allowed the luminosity reach to be increased

each year, by pushing the optics to smaller β∗ values whilst retaining luminosity

lifetimes larger than 10 hours, ensuring long fill lengths.

219
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Challenges in future machines will be different to that of the LHC, but gaining

vital operational experience now will be invaluable for future colliders. The HL-

LHC will push the luminosity reach even further by increasing the bunch intensity,

reducing the bunch emittance and operating at a smaller β∗. One aspect that

arises when operating at a small β∗ is the hourglass effect. The hourglass effect

will reduce the luminosity and hence impact the machine performance. In order

to describe this effect, a new method was derived in chapter 4, which allowed

analytic expressions to be obtained whilst the charge density distribution did

not remain fixed throughout the interaction. This was applied to a number of

non-Gaussian charge density distributions and where possible, the result was

compared to literature. The standard 2-dimensional Gaussian electric field was

re-derived to validate the theory. The method was then applied to describe

the hourglass effect. An analytical expression in the rest frame of the bunch

was obtained and compared to the standard fixed Gaussian bunch distribution.

Although the method has been successful in allowing an analytical expression for

the hourglass effect to be obtained, further work outside of this thesis is required

to test and refine the calculation using a tracking code. To include the expression

into a tracking code, the electric field should be boosted into the collision frame

and the kick should be derived. This work is on-going outside of this thesis.

In addition to the theoretical work, experimental and simulation work was carried

out, whilst based at CERN. The experimental and simulation work involved inves-

tigating the impact of the long-range beam-beam interactions on the luminosity

performance and the β∗ reach, during the 2015 and 2016 proton-proton run. The

machine studies took place in order to identify the beam lifetime dependancy

on the long-range beam-beam separation and to compare the measurements to

predictions from models. In addition to this, these studies allowed the luminosity

reach to be determined in the LHC, by reducing the crossing angle to the smallest
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value, before additional losses occurred due to the long-range beam-beam interac-

tion. The minimum crossing angle and beam-beam separation was identified for

two different collision optics with β∗ = 0.8 m and β∗ = 0.4 m. During the 2016

proton-proton run, with bunch intensities and emittances of np = 1.3× 1011 ppb

and ϵn = 2.5 µm, the minimum crossing angle was identified at α = 260 µrad,

which corresponds to a beam-beam separation of 7.5 σ. This allowed the crossing

angle to be reduced from α = 370 µrad to α = 280 µrad during normal lumi-

nosity production fills. This lead to an increase in luminosity of approximately

10− 15%, improving machine performance of 2016.

In order to understand the physics processes impacting the beam and luminosity

lifetimes, a computational study was performed comparing measured data, dis-

cussed in chapter 5, to tracking simulations of the long-range beam-beam machine

study. These studies are discussed in depth in chapter 6 and allowed measured

data to be compared directly to predictions from models. Comparing the head-

on colliding bunches to the simulation model showed that there was a significant

disagreement between measurement and model, which could not be explained by

the head-on beam-beam interaction alone. In order to better understand the dis-

crepancy, additional processes that impact the dynamic aperture were included

in the model. Firstly, linear coupling was included. This was shown to reduce the

dynamic aperture by approximately 1 σ. However, this alone could not account

for the dynamic aperture at crossing angles larger than α = 260 µrad. Magnetic

errors were also included in the simulation model and brings the dynamic aper-

ture to within approximately 0.5 σ of the measured data. A number of possible

explanations for the differences between the model and the measured data are

discussed. The dynamic aperture for the nominal colliding bunch was also com-

pared to the simulation model. For crossing angles and beam-beam separations

smaller than α = 260 µrad and 8.5 σ, the dynamic aperture is well described

by the beam-beam interaction. Within this region, the long-range beam-beam
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interaction is strong and dominates the particle losses. For crossing angles larger

than α = 260 µrad, the dynamic aperture predicted by the model continues

to improve, whereas the measured dynamic aperture saturates to approximately

3.75 σ. Including both magnetic errors and linear coupling, provides a good

comparison between the model and measured dynamic aperture for the nominal

colliding bunch. This study suggests that the interplay between the beam-beam

interaction, linear coupling, and the non-linearities of the machine have a signifi-

cant impact on the dynamic aperture for crossing angles larger than α = 260 µrad

and beam-beam separations greater than 8.5 σ. The impact of magnetic errors

on the dynamic aperture is not negligible, especially as the demand for smaller

β∗ increases. For a smaller β∗ the bunches are blown up more in the triplet. As a

result the beams experience more of the non-linearities of the triplet. These non-

linearities can be strong and when combined with beam-beam effects and linear

coupling, limit the dynamic aperture. These studies show that there is a compli-

cated interplay between the non-linearities of the machine and the beam-beam

interaction which significantly impact the dynamic aperture. The measured data

does however, compare well to predictions from models. This allows accurate

predications to be made for future machine configurations.

The research performed in this thesis has provided an improved understanding of

beam-beam effects in the LHC and the impact of these effects on the luminosity

performance for the LHC and the future HL-LHC. This research, collectively, will

enable future machine performance to be pushed, allowing larger luminosity to

be reached.



Appendix A

The Method of Characteristics

The subject of partial differential equations are of great interest to a number

of different fields outside of mathematics, such as physics, financial economics,

computational biology and chemistry among others. This appendix will provide

a brief review of one particular method of solving partial differential equations.

A.1 Method of Characteristics

The method of characteristics is an approach that may allow solutions of partial

differential equations to be obtained. Solutions can be found by reducing the

equation to a family of ordinary differential equations using characteristic curves.

The so called characteristic curves can then be integrated to find solutions to

the original hyperbolic partial differential equation. This method is general for

n-dimensions and can even be extended, under some circumstances to non-linear

equation. Consider the 2-dimensional vector functions f1 and f3 related to one

another through the homogenous partial differential equation,

f3∂xf2 + f1∂yf2 = 0, (A.1)
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where f2 is some hyper-surface. The term hyper-surface in this instance cor-

responds to a plane or surface that can take any number of dimensions. To

find the characteristic curves, the functions f1 and f3 must be orthogonal to the

hyper-surface f2. Hence, the functions f1, f3 and f2 are related to one another

through

(f1 − f3)∇f2 = 0. (A.2)

Equation A.2 can be expressed as equations,

f1∂yf2 − f3∂xf2 = 0, (A.3)

Considering equation A.3 and rearranging for f1/f3 gives

f1
f3

=
∂xf2
∂yf2

. (A.4)

Treating the ordinary differential of the hyper-surface df2 = 0 as constant, then

the ordinary differentials are related to the partial differentials through

df2 = ∂xf2dx+ ∂yf2dy,

∂xf2dx = −∂yf2dy,

∂xf2
∂yf2

= −dy

dx
.

Substituting back into equation A.4 gives

f1dx+ f3dy = 0. (A.5)
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Integrating this gives the equation gives the condition that characteristic curves

must satisfy. Hence,

f2 = f2

(∫
f1dx+

∫
f3dy

)
,

is true under the condition that f1 and f3 are functions of only x and y respec-

tively. Briefly, some examples of the method of characteristics will be provided

in the following sections.

A.1.1 Example 1:

Considering the homogenous partial differential equation

x2∂yg(x, y)− y∂xg(x, y) = 0, (A.6)

where g(x, y) is some arbitrary function. Applying the method of characteristics

gives the ordinary differential equation as,

dx

y
+

dy

x2
=

dg

0
. (A.7)

Collecting functions that contain x and y only gives the ordinary differential

equation under the condition that dg = 0, then the integral to evaluate is

∫
x2dx+

∫
ydy = 0 (A.8)

Hence the function g

g = g

(
x3

3
+
y2

2

)
. (A.9)

This gives the functional form of g, that solves equation A.6.
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