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ABSTRACT

Abstract
Dispersion and the momentum compaction factor have been treated since ages
in the literature of accelerator physics to first order. Since quite some time
dispersion and the momentum compaction factor can be derived via PTC and
thereby in MAD-X to arbitrary order (presently hard-wired to fourth order in
MAD-X). It was realized that little is known about this high order derivation in
the community. This paper attempts to clarify how the higher order momentum
compaction factors are derived from first principle allowing for an alternative
way to calculate them.
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1 Introduction
Dispersion and the momentum compaction factor of higher order have been of interest at many machines,
E.G. Ref. [1]. There have also been theoretical attempts for a better understanding (see Ref. [2, 3]).

After establishing codes that can deal with very high order maps representing the accelerator
lattice with non-linearities, this should now be settled. In fact, the Polymorphic Tracking Code (PTC) by
É. Forest has been part of MAD-X since almost 15 years by now. At CERN it is being used increasingly.
The physics of the PTC code but also many of its essential components like the Full Polymorphic Package
(FPP), Differential Algebra, Lie Algebra and NormalForm are well described in Forest’s books [4, 5].
There is also extensive documentation available for the PTC modules in the MAD-X code [6].

Nevertheless, there remains a gap between the textbooks on accelerator physics and the extended
capability of a more modern code like PTC. We therefore believe that the accelerator community would
profit as a whole by taking first principal formulae of fundamental accelerator physics concepts and
compare them with higher order treatment à la PTC.

The goal of this report is three-fold: first to discuss higher order dispersion and momentum com-
paction from a theoretical point of view and second to follow it up for the CERN Proton Synchrotron
(PS), the Fermilab Booster and Main Injector as examples of existing accelerators with β0 < 1. Last,
an extensive treatment of the smooth lattice approximation allows for an analytical comparisons with the
MAD-X/PTC results.

2 Theoretical Aspects of Dispersion & Momentum Compaction
The fundamental relation between path-length L, the time T and the particle velocity v is:

T = L/v. (1)

In the literature [7–9] the first order momentum compaction factor αc is readily derived:

αc =
1

γ2
tr

, (2)

where γtr, an optics property of each ring, refers to that γ0 where the transition takes place between
earlier arrival time for increasing γ0 (γ0 < γtr) and later arrival for (γ0 > γtr). This is of course due to
the relativistic dynamics and the fact that we consider closed ring accelerators. The relation between αc
and phase-slip factor η is:

αc =
1

γ2
0

+ η, (3)
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while αc together with γtr are properties of the ring optics, η is energy dependent and becomes zero at
gamma transition γtr.

Going beyond the first order derivation a treatment with high order maps becomes advantageous.
In PTC we can treat a non-linear accelerator with arbitrary high order maps. In particular, with a Nor-
malForm decomposition of such a map M up to order no:

M = A−1
1 ◦A

−1
2 ◦A

−1
3−no

◦R ◦A3−no ◦A2 ◦A1, (4)

withA3−no holding non-linear distortions from order 3 till no andR as the amplitude dependent rotation.
In lowest order we have matrices:

M = A−1
1 ◦ A

−1
2 ◦ R ◦ A2 ◦ A1, (5)

withR as the linear rotation by the tunes of the accelerator lattice. Please note that the matrixA1 carries
the first order dispersion values, while the map A1 includes dispersion terms up to arbitrary orders. On
the contrary, for the second order terms the matrix and map are the same A2 = A2 and hold the lattice
dependent Twiss parameters at the longitudinal position s where the map M has been determined.

Coming back to the path-length we can express ∆L
Lo

as a Taylor series to order no:

∆L

Lo
(δ) =

no∑
n=1

1

n!

∂n(∆L
Lo

)

∂δn
· δn, (6)

where δ = p−p0

p0
, αc =

∂( ∆L
Lo

)

∂δ , α′c =
∂2( ∆L

Lo
)

∂δ2 , α′′c =
∂3( ∆L

Lo
)

∂δ3 etc.

Let us now present Eq. 1 in a more convenient form:

cT (pt) · β(pt) = L(δ), (7)

where we use the fact that the variables pt and δ can be expressed as a function of the other variable
respectively (see Eq. 9 and Eq. 10).

At this point we need a short digression to discuss the coordinate system in MAD-X/PTC. On the
left hand side we find cT and the relativistic β as a function of pt, which is the canonical momentum
coordinate of the longitudinal plane. In MAD-X and in PTC (with the “time” parameter set to “true”)
the canonical coordinates of the longitudinal phase space are:

(cT − cT0, pt =
E − E0

p0 · c
=
E − E0

E0 · β0
), (8)

In absence of errors the “time” coordinate cT − cT0 becomes zero for the synchronous particle that
does not exercise synchrotron oscillations since it arrives in the center of the cavity without accelerating
voltage. In the general case, cT − cT0 becomes zero with respect to the 6D closed-orbit.

The necessary canonical choice of pt has the considerable disadvantage that all dispersive param-
eters like dispersion are different by factors of the relativistic β0 causing confusion to many MAD-X
users working for small machines where we typically find β0 < 1.

The pt(δ) and δ(pt) variables can be expressed in the following way:

pt(δ) =

√
(1 + δ)2 +

1− β2
0

β2
0

− 1

β0
(9)

δ(pt) =

√
1 + 2

pt
β0

+ p2
t − 1 (10)
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The relativistic β at any energy can be expressed either in pt or δ:

β(pt) =
β0

√
1 + 2 ptβ0

+ p2
t

1 + ptβ0
(11)

β(δ) =
β0(1 + δ)√

1 + β2
0δ(2 + δ)

(12)

On the right hand side of Eq. 7 we find the path-length L as a function of δ. PTC is offering an
alternative set of canonical variables by setting “time=false”:

(L− Lo, δ). (13)

In this case Lo is the nominal length of the machine, L the path-length, L−Lo is zero without errors and
for the synchronous particle and dispersive parameters like dispersion will have the calculated values.
This is also the ideal set of canonical variables for the momentum compaction factor since by definition
it is the δ derivation of ∆L divided by Lo.

Before we can proceed to calculate αc and η in higher orders it is mandatory first to transform
the one-turn map M onto the δ dependent closed-orbit because the change of the path-length ∆L must
be determined with the respect to the closed-orbit. PTC offers to produce a 6D one-turn map with the
cavity switched off via “icase=56” (see Annex A for the details). For the sake of the argument we
will use an example matrix (of Eq. 14) without coupling, but obviously PTC can do the full case with
coupling between all planes. Therefore, the cross matrix parts like R13, R14, R23, R24, are equal to zero.
Moreover, the argument holds for both sets of coordinates, except that one gets the true dispersion for
(L− Lo, δ) only.

We start with the traditional matrixM representation. 1 Note that due to the symplectic nature of
the matrix there are also the terms R51 and R52 besides the dispersive terms R16 and R26.

M =



R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0
0 0 R43 R44 0 0
R51 R52 0 0 1 R56

0 0 0 0 0 1

 (14)

The first order NormalForm Transformation A1 is non-linear in the sense that the dispersion terms up to
the specified maximum order are included in A1. Here we need the linear matrix part:

A1 =



1 0 0 0 0 Dx

0 1 0 0 0 D′x
0 0 1 0 0 0
0 0 0 1 0 0
−D′x Dx 0 0 1 0

0 0 0 0 0 1,

 (15)

and its inverse matrix:

A−1
1 =



1 0 0 0 0 −Dx

0 1 0 0 0 −D′x
0 0 1 0 0 0
0 0 0 1 0 0
D′x −Dx 0 0 1 0
0 0 0 0 0 1.

 (16)

1PTC does that in a peculiar way, where the component 5 and 6 are exchanged. As a consequence all components of the
line 5 (i.e. relevant for the longitudinal coordinate cT − cT0 or L− Lo) change sign, except for R55 = 1.

3



Internal Note
CERN-ACC-NOTE-2018-0062

FNAL TM-2686-AD

The significance of the red values seen in matrix 14 and 15 are explained below. When the sim-
ilarity transformation is carried out the dispersive terms R16 and R26 but also the R51 and R52 vanish
from the resulting matrix M̂.

M̂ = A−1
1 · M · A1 =



R11 R12 0 0 0 0
R21 R22 0 0 0 0
0 0 R33 R34 0 0
0 0 R43 R44 0 0

0 0 0 0 1 R̂56

0 0 0 0 0 1

 (17)

You will also notice that the “56” component R̂56 has changed, in fact it is the result of the matrix
dot product of the line and column with red values in matrix 14 and 15:

R̂56 = R56 +R51 ·Dx +R52 ·D′x (18)

At higher orders this transformation will eliminate all purely dispersive terms and via symplectic-
ity also the corresponding terms in the 5th component of the map.

After this transformation on top of the dispersive closed-orbit we may go back to Eq. 7. On the
right hand side, i.e. with δ as the longitudinal momentum, the momentum compaction factor αc can
be calculated in the natural way by using the full map M to the desired order. After the similarity
transformation with the high order A1, we may read out the ∆L components to the same order. Last, a
division by Lo provides αc up to the specified order.

For the left hand side, i.e. with pt as the longitudinal momentum, the situation is a bit more
complicated. The single variable map

N(pt) = cT (pt) · β(pt), (19)

where in fact cT (pt) is the 5th vector of the non-linear map of Eq. 4, after the transformation, will give
the η components to the specified order but typically we would rather want the αc components. We
therefore need to make a coordinate transformation from pt to δ. To this end, we make use of Eq.9 and
Eq.12, expand into a Taylor series and simplify.

In first order, we get in Eq. 20 the expression for αc

αc = 1− β2
0 − β2

0 · cT 1/L =
1

γ2
0

+ η, (20)

with cT components expressed order by order as:

cTn =
1

n!

∂n(cT )

∂pnt
, (21)

and with η given by:

η = −β2
0 · cT 1/L. (22)

Plugging Eq. 17 and Eq. 18 one gets:

η = −β2
0 · (R56 +R51 ·Dx +R52 ·D′x)/L. (23)

It is interesting to note that η is calculated in MAD-X in the exact same way (see Annex C).

Last, expanding map (Eq. 19) to higher orders we get the transformations from the η-like terms
to αc in 2nd, 3rd, 4th orders, i.e. to the order it is presented implemented in the “ptc_twiss” module in
MAD-X. Terms to arbitrary high order are readily available.
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α′c = β2
0{3(−1 + β2

0)(1− cT 1/L) + 2β0 · cT 2/L} (24)

α′′c = 3β2
0{(−1 + 6β2

0 − 5β4
0)(1− cT 1/L)+

+ 4(β0 − β3
0)cT 2/L+ 2β2

0 · cT 3/L))}
(25)

α′′′c = 3β3
0{15β0 − 50β3

0 + 35β5
0+

+ (−15β0 + 50β3
0 − 35β5

0) · cT 1/L+

+ (10− 40β2
0 + 30β4

0) · cT 2/L+

+ (20β0 − 20β3
0) · cT 3/L+ 8β2

0 · cT 4/L}

(26)

This transformation has already been implemented and tested in the MAD-X version of February
2017 [11].

It is always good to try out these tools for a real-world example. To this end we have chosen the
PS and collected some results in Annex D, but first we will look at the smooth lattice approximation.

3 SECOND ORDER MOMENTUM COMPACTION AND CHROMATICITY
3.1 Smooth Lattice Approximation
To understand a relationship between the second order momentum compaction and the chromaticity we
consider the simplest possible case with the smooth lattice approximation. We assume that the magnetic
field depends on the relative radial coordinate, x = (ρ− ρ0)/ρ0, where ρ0 is the radius of the reference
orbit:

By(x) = B0(1 + g · x+ s · x2 + . . . ), (27)

where g and s are the coefficients which determine the betatron tune and the chromaticity. We assume a
constant bending radius of the ring, ρ0, so that:

1

ρ0
=
e ·B0

p0c
. (28)

Assuming an absence of betatron motion, we can rewrite Eq. 28 for the orbit with momentum deviation,
δ. Using Eq. 27 we obtain:

p0(1 + δ)c = e · ρ0(1 + x)B0(1 + g · x+ s · x2 + . . . ). (29)

Omitting in the above equation terms above the second order we obtain for the momentum devia-
tion:

δ = (g + 1)x+ (g + s)x2. (30)

In the smooth lattice approximation, the small amplitude betatron tune around the orbit with the
momentum deviation is well-known and is equal to:

Qx(x) =

√
1 +

ρ(x)

B(x)ρ0

∂B

∂x
≈

√
1 +

(1 + x)(g + 2s · x)

1 + g · x+ s · x2
(31)

≈
√

1 + g +
g − g2 + 2s

2
√

1 + g
x.

Consequently, the tune at the reference orbit is equal to:

Qx =
√

1 + g, (32)
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and the horizontal chromaticity is:

Q′x =
∂Qx
∂δ

=
∂Qx
∂x
· ∂x
∂δ

=
g − g2 + 2s

2Q3
x

(33)

Now we can express the first and second order momentum compaction factors through the betatron
tune and chromaticity. Making simple calculations we obtain the first order momentum compaction:

αc ≡
∂x

∂δ
=

1

Q2
x

. (34)

Similarly, the second order momentum compaction is:

α′c ≡
∂2x

∂δ2
=

1− 2Q′x ·Qx −Q2
x

Q4
x

, (35)

where it should be noted that the definition of α′c is in agreement with the MAD-X definition that strictly
considers derivatives and does not include the factorial factors.

3.2 Simplified FODO Lattice
To understand how the second order momentum compaction depends on the chromaticity for the cases
when the beta-function and dispersion are varied along the ring we considered two simple models.

In the first model, FOBO, one lattice period consists of a zero length focusing lens, rectangular
dipole and two equal length drifts separating the lens and dipole. In the second model, FBDB, one period
includes two sector dipoles, and one focusing, F, and one defocusing, D, zero-length lenses with equal
focusing strengths of opposite signs.

3.3 Effect of Sextupoles on the Second Order Momentum Compaction
First, we consider an effect of single sextupole on the Second Order Momentum Compaction. Let a zero
length sextupole with the integrated strength:

(k2l) =
e

pc

∂2By
∂x2

=
1

Bρ

∂2By
∂x2

, (36)

where l is the effective length of the sextupole being placed at a location with the horizontal dispersion
Dx and beta-function βx. In the first order the orbit offset due to relative momentum change results in
particle trajectory bending by the sextupole with an angle

∆θ = −(k2l) · (Dxδ)
2. (37)

That results in the particle location and angle immediately after the sextupole being related by the fol-
lowing equation: (

x
θ −∆θ

)
=

(
R11 R12

R21 R22

)(
x
θ

)
. (38)

The solution of the equation is:(
x
θ

)
=

1

2−R11 −R22
·
(

1−R22 R12

R21 1−R11

)(
0

∆θ

)
. (39)

The corresponding orbit lengthening is

∆s = R51x+R52θ. (40)

The transfer matrix elements for a ring can be parameterized by the ring Twiss parameters:

R11 = cv + αxsv, R12 = βxsv,

6



Internal Note
CERN-ACC-NOTE-2018-0062

FNAL TM-2686-AD

R21 = −(1 + α2
x)
sv
βx
, R22 = cv − αxsv,

R51 = D′x(1− cv − αxsv)−
1 + α2

x

βx
Dxsv,

R52 = Dx(cv − αxsv − 1)−D′xβxsv,
cv = cos(2πQx), sv = sin(2πQx),

D′x =
∂Dx

∂s
, αx = −1

2

∂βx
∂s

,

(41)

where R11, R12, R21, R22, R51 and R52 correspond to the matrix terms of Eq. 14. Here, Qx is the
horizontal betatron tune of the ring. Substituting Equations (37) to (39) and Eq. 41 into Eq. 40 and
simplifying we obtain:

∆s = −(k2l)D
3
xδ

2

2
. (42)

Then the change in the second order momentum compaction is

∆α′c ≡
1

Lo

∂2∆s

∂δ2
= −(k2l)D

3
x

Lo
, (43)

where Lo is the ring circumference. Contributions of different sextupoles are added linearly. That yields
for the total change of ∆α′c as a sum over all sextupoles:

∆α′c = − 1

Lo

∑
n

(k2l)nD
3
xn . (44)

The contribution of sextupoles to the horizontal chromaticity change is well-know and is equal to:

∆Q′x =
1

4π

∑
n

(k2l)nDxnβxn , (45)

where Dxn and βxn are the horizontal dispersion and beta-functions at the location of corresponding
sextupoles. In the case when all sextupoles are located at the same beta- and dispersion functions Eqs. 44
and 45 yield:

∂α′c
∂Q′x

= −4πD2
x

Loβx
. (46)

Substituting dispersionDx ≈ ρo
Q2

x
and beta-function βx ≈ ρo

Qx
for the smooth lattice approximation

one obtains ∂α′
c

∂Q′
x

= − 2
Q3

x
. The same result follows directly from Eq. 35.

3.4 MAD-X Comparison with the Smooth Lattice Approximation
In Appendix B one finds a minimalistic MAD-X example for a smooth approximation lattice. In Tab. 1
one finds the αc and α′c of Eqs. 34 and 35 of the smooth approximation and the MAD-X results respec-
tively.

Table 1: First and second order momentum compaction in comparison between the smooth lattice approximation
and MAD-X.

αc α′c
Q′ Smooth Appr. MAD-X Smooth Appr. MAD-X
– 3.16373318 3.16373318 – –

0.0 – – 6.8454779 6.845341731
10.0 – – -105.70047 -105.6998606
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5 Conclusions
This paper shows that MAD-X/PTC can now derive the dispersion and the momentum compaction fac-
tor both for “time=false” and “time=true” as generally expected with respect to δ, for the time being
implemented up to fourth order (changeable on user request). To convince the accelerator community
we have made a comparison with the smooth lattice approximation for which α′ can be derived analyti-
cally. Equally relevant, we have shown for a realistic low-β CERN PS lattice that the δ dependent closed
orbit components and the path-length ∆L can be calculated with the Taylor series expanded up the order
no = 5.
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Appendix
A PTC Template
PTC template to create 5th order maps for both sets of canonical coordinates. The δ attribute can be set
to produce a 5D closed-orbit or path-length difference ∆L.

!**********************************************
ptc_create_universe;
ptc_create_layout,model=2,method=6,nst=20,

exact=true, closed_layout=true,time=%%time%%;
select,flag=twiss,clear;
select,FLAG=twiss,column=name ,s,l,beta11,

beta22,beta33,disp1,disp2,disp3,disp4,
beta12,beta13;

ptc_twiss,table=twiss,icase=56,no=5,
closed_orbit, writetmap,deltap=%%deltap%%;

ptc_end;
!**********************************************

There are four settings required for the cases studied in this note.

1 Produce η components to 5th order by setting:

a) %%time%% =true
b) %%deltap%% =0.

2 Produce αc components to 5th order by setting:

a) %%time%% =false
b) %%deltap%% =0.

3 Produce 5D closed-orbit for δ = 0.0001:

a) %%time%% =true
b) %%deltap%% =0.0001

4 Produce ∆L for δ = 0.0001:

a) %%time%% =false
b) %%deltap%% =0.0001

B Simple MAD-X Example for a Smooth Approximation Lattice
!**********************************************
title, ’Smooth Model’;
option, -echo, warn, info;

beam,particle=electron,energy:=5.3933035235,
exn:=2.5E-6,eyn:=2.5E-6;

k2c:=0;
bm : SBEND, L=300, ANGLE=twopi, K1=-0.0003,
K2:=k2c;
ring : LINE=(bm);
use,period=ring;
match,sequence=ring;

vary, NAME=k2c, step = 0.00001;

9
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global, DQ1=0;
lmdif, calls = 10000, tolerance = 1.0E-21;

endmatch;
twiss;
ptc_create_universe;

ptc_create_layout,model=2,method=6,nst=20,
exact=true,time=false,closed_layout=true;
ptc_twiss,closed_orbit,no=5,icase=56,
file=ptc_twiss_thick,writetmap;

ptc_end;

stop;
!**********************************************

C Calculation of η in MAD-X
In MAD-X the longitudinal momentum coordinate is pt, i.e. we will get η-like terms. The MAD-X code
snippet is given below:

***********************************************
sd = rt(5,6)
do i = 1, 4

sd = sd + rt(5,i) * disp(i)
enddo
eta = - sd * betas**2 / circ
alfa = one / gammas**2 + eta

***********************************************

Compared to Eq. 23:

η = −β2
0 · (R56 +R51 ·Dx +R52 ·D′x)/L,

and with different but obvious notation conventions one finds agreement, except that in our case the
vertical dispersion disp(3) and disp(4) are zero.

The momentum compaction αc is equal to Eq. 3.

D The CERN PS as an Example
The PS is studied at a kinetic energy of 2 GeV (see Tab. D.1). The first test is how well the closed-orbit

Table D.1: PS Beam Parameters.

Parameter Value
Length [m] 628.32

Kinetic energy [GeV] 2
Relativistic β 0.9486
Relativistic γ 3.13

(cox , copx ) can be reproduced by the following Taylor expansion to order no:

cox(pt) =

no∑
n=1

1

n!

∂n(cox)

∂pnt
· pnt , (D.1)

copx(pt) =

no∑
n=1

1

n!

∂n(copx)

∂pnt
· pnt , (D.2)
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with Dx = ∂(cox)
∂pt

, D2
x = ∂2(cox)

∂p2
t

, D3
x = ∂3(cox)

∂p3
t
· · · and D′x = ∂(coxp)

∂pt
, D′2x = ∂2(coxp)

∂p2
t

, D′3x =

∂3(coxp)
∂p3

t
· · · .

The reader is reminded that here the dispersion is defined for “time=true” and will be different by
factors of β0.

The second and maybe more interesting test is how well the change of path-length ∆L can calcu-
lated from the αc components to order no:

∆L =

no∑
n=1

1

n!

∂n(∆L
Lo

)

∂δn
· δn · Lo, (D.3)

with the derivatives replaced by the αc components as shown in Eq. 6, αc =
∂( ∆L

Lo
)

∂δ , α′c =
∂2( ∆L

Lo
)

∂δ2 ,

α′′c =
∂3( ∆L

Lo
)

∂δ3 etc.

We have chosen a momentum deviation of δ = 0.0001 with the values in Tab. D.2:

Table D.2: Closed-orbit at δ = 0.0001.

Parameter Value
cox 3.303E-04
copx 2.283E-06
pt 9.476E-05

∆L 0.1745E-02

For δ = 0.0001 Fig. D.1 shows the evaluated Taylor series Equations (D.1) to (D.3) for cox,
coxp and ∆L respectively. The tailoring off of the curves at higher orders of no should be addressed to
expected numerical problems at those small absolute errors.
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Figure D.1: The closed orbit components cox, coxp calculated via Equations (D.1) and (D.2) are depicted in
green and blue color respectively. In red is shown the path-length ∆L calculated via Eq. D.3.
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