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ABSTRACT. We define and study, for & an odd number, an elliptic genus @, for Z /k-
manifolds. We show that this elliptic genus defines a M SO.-module epimorphism
from oriented bordism with coefficients in.Z /k to the ring of mod k-modular forms
of Serre and Swinnerton-Dyer.

§0 Introduction. Z/k-manifolds are singular manifolds that represent the geo-
metric cycles for bordism with coefficients in Z/kZ (see for example [Sul70b], [Bas73],
[BRS76]). They can be intuitively described as spaces that look locally like open sets
of R™ or open subsets of R"™! x ' (Z/k), where C (Z/k) is the cone over the space
formed by k points. This pattern of singularities is mild enough so that some classical
invariants of smooth manifolds that depend on the existence of transversality, such
as the signature, adinit a natural extension to Z/k-manifolds. The importance of the
existence of these extensions is that they can be used to detect torsion information
in the theory of characteristic invariants of manifolds. This fact has motivated the
use of Z/k-manifolds in geometric topology [MD74](see also [Sul70a] for a general
overview of the subject). More recently they were used to detect the torsion part
in Witten’s anomaly formula [Fre88]. and, based on this work and the results of
[APST76], Dan Freed and Richard Melrose developed in [FM92] a version of the index
theorem for Z /k-manifolds.

The universal elliptic genus ¢ @ M SO. — Q[é,¢], where M SO. is the oriented
bordism ring and é and ¢ are two indeterminates of degree 4 and 8 respectively, is
the rational genus, in the sense of Hirzebruch, associated to the formal power series
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This genus is a subtle invariant of manifolds. When X is a closed, compact, oriented,
spin manifold representing a class [X] € MS5O,, the universal elliptic genus ®([X])
evaluated on [X] has a natural [Wit88] geometric interpretation as the formal S!-
equivariant index of the Dirac-Ramond operator on the space of smooth free loops of
X. This index, which is a formal power series ¥,,5 ¢n¢™, corresponds to the power
series expansion at the cusp ¢co of a modular form for the congruence subgroup
I'o(2) of matrices (2]) € SL(2,Z) such that e is even. The ring Mod (F0(2),Z [%])
of modular forms for I'y(2) whose coefficients in the power series expansions at 100 are
in Z [%] 1s isomorphic to Z {%] [6, €], where § and € are two algebraically independent
modular forms of weight 2 and 4 respectively!. This description of the ring of modular
forms provides the link between the algebraic and geometric description of the elliptic
genus. In fact, using some results about formal group laws, one can show [LRS] that
the image of ¢ is equal to Z [%J [6,€] C Q[8,¢€]. The elliptic cohomology of a finite
CW-complex X is defined by

S (X) = MSO™(X) & Z H 6.e.a7.
MSO* -

where M .SO*(.X) denotes the oriented cobordism ring of the space X, A = ¢(62 — 6)2,

and the ring £00* = Z B] [6,¢, A7 is considered as a graded module over MSO*
via the canonical ring homomorphism ®gp @ MSO* — £00* induced by the elliptic
genus?.

It this paper we will define, for &£ an odd number, a natural extension, the Z/k-
elliptic genus @y, of the universal elliptic genus to Z/k-manifolds. We shall show
that @, is a cobordism invariant and that it induces a M.SO*-module homomor-
phism @y : MSO.(pt,Z/kZ) — Z/KZ [[ q ]], where MSO.(pt,Z/kZ) denotes ori-
ented bordism with coefficients in Z/kZ and Z/kZ [[ ¢ ]] is the ring of formal power
series In an indeterminate ¢ with coefficients in Z/kZ. Our main results (theorems 1
and 2) are that @ takes values in the ring Mod ([o(2),Z/k) C Z/kZ [[ ¢ ]], where
Mod (T'o(2), Z / k) denotes the ring of “mod A" modular forms of Serre and Swinnerton-
Dyer, and that @ : MSO.(pt,Z/kZ) — Mod (I'4(2),Z/k) is an epimorphism. We
shall finally analize the connections between the Z /k-elliptic genera for different &’s.

A different approach to “mod & elliptic genera has been proposed by Peter Braam
and Brian Steer. We can, superficially, describe their approach as follows. Instead of
using the mod k index theorem of [FM92] they fix a flat bundle L over a smooth spin
manifold X and apply the mod k index theorem for flat bundles of Atiyah, Patodi
and Singer to the formal power series of elliptic operators Ynyo Dn ¢, where D,

't is important to keep in mind that the grading used by topologists is twice the weight of the
modular form.

?In this definition one must use the gradings defined by MS0Y = MSO_,, 16| = —4, and
le] = —8.
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is the twisted Dirac operator whose index gives the n-th coefficient of the elliptic
genus evaluated on X. [ would like to express my gratitude to Peter Braam for
the communication of their work. There is also a “mod 2” elliptic genus defined by
Ochanine in [Och91] using real A'-theory.

I wish finally to express my gratitude to Dan Freed for his encouragement, to the
Institute des Hautes Etudes Scientifiques, where this paper was written, for providing
a magnificent working environment. And my special gratitude to Alberto Verjovsky
who taught me about the importance of geometric methods in topology.

§1 The Z/Fk elliptic genus. Let X be a smooth n-dimensional manifold and let
0X be its boundary. A Z/k-structure on X consists of

a: a closed manifold Y of dimension n — 1,
b: a decomposition X = [[i, Y; of the boundary of X into k disjoint man-
ifolds Y7,

c: a set of diffeomorphisms 0, : Y — Y, i=1,..., k.

An equivalent description of a Z/k-structure on a manifold X is given by a decom-
position dX = [I%, Y of the boundary of X as in b together with a set of diffeo-
morphisms 8;; 1 Y; — Y] satislying the cocycle condition 0;;0; = 0, 1,7,1 =1,... k.
A Z[k-manifold is a manifold with a Z/k structure. To any Z/k-manifold X one
can associate a singular space X formed by attaching X to Y via the functions 6;.
Spaces like X is what Sullivan originally defined as Z [ k-manifolds. Two particularly
important examples of Z/k-manifolds are S, where X is the sphere S™ with & discs
removed and Y = 5" and Moore’s space My = S' U, D? ( see [MD74] for a de-
scription of Moore’s space). Removing a point from S™ one obtains a non-compact
space R™. The “plane” R? will play for us the intuitive role of a “point” in the sense
that, for any Z/k-manifold X, there is a “collapse map” p* : X — R? [FM92]. A
Z[k-vector bundle ' — X over a Z/k-manifold X is a vector bundle £ — X to-
gether with isomorphisms 0;; : (Ely,) — (Ely,) covering 0;;. The basic example of a
Z [k-vector bundle on a Z/k-manifold X is the tangent bundle TX [FM92]. Recall
that for each component Y; of the boundary of X there is an exact sequence

(1) 0—=TY, - 1Ty, X - NY, — 0,

where NY; is the normal bundle of Y7 in X. The differentials (6;;). fit into commu-
tative diagrams

0 » T'Y

J

(2) (o,,).J 5,,J j

0 — 7Y, — T}, X —— NY; —— 0.

Ty, X —— NY; —— 0
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These commutative diagrams define a structure of Z/k-vector bundle on TX (see
[FM92] for the details). The cohomology theory connected to vector bundles is K-
theory. From the topological point of view the K-theory, with compact supports,
of a Z/k-manifold X can be computed using the long exact sequences of the pairs
(X,0X) and (X,Y). For example the reduced K-theory of 5% is given by [FM92]
(3) R1(37) = {ZﬁtlZ, zf ¢ = n (mod 2)
Y/ if ¢ #n (mod 2)

and, as we are working with A-theory with compact supports K*(R") ~ K*(S™).
On the other hand the definition of Z/k-vector bundles provides a natural geometric
description of the I'-theory of Z/k-manifolds that allows us to generalize easily some
constructions of A-theory. In particular if v : NO* — KNO* (or x : KO* — K*)
is any exponential stable K-theoretical characteristic class, then one can define y(E)
for any real Z/k-vector bundle £ in the obvious way. We shall need to work with
something slightly more complicated than K-theory. Let us define, for X a topological
space, KO;(X) = KO (X,Z B]) [ ¢1], where KO'(X, Z B]) [[ ¢ ]] denotes the ring

of formal power series in an indeterminate ¢ with coefficients in ]\'O*(X,Z [%]), the
KO~ theory with compact supports (with coefficients in Z [%] ) of X. We define K

in an analogous way replacing real K-theory by complex N-theory. If E is any real
Z [k-vector bundle over X we define Witten's characteristic class 6(F) by

(4) HE)=| & (00 | Q| R A AE@C) |,

n>0 n>0
n even n add

where Syn(E ¢ C) = Tiso ¢S (£ ¢ C), and Ap (E 0 C) = k>0 ¢** A" (E @ C).
This class depends ouly on the isomorphisin class [E] of I/ and has the properties
that O(E & F) = 0(E)O(F) and that 0([1]) is a unit in K,(X). Therefore 0 has a
unique extension # : NO*(X) — N (X).

In [FM92] D. Freed and R. Melrose defined for any Z /k manifold X a topological
index, t-index‘,\\'— : K(TX) — N(R?). As we are working with & odd this index admits
a factorization

t-in(lv.\“[x\'- ——

N(TX) K (R?)
(5) ,l H
KNTX)oZ [%] tindexi K (R?).
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Using this index we can define a topological index t-indexq’\_' : K(TX) — K,(R?) by

t-index;}'_ (Z [£,] q") =Y t—indexf([E]) q".

n>0 n>0

Recall that, as BSpin — BSO is an odd primary homotopy equivalence, any Z/k
manifold X that is oriented, in the usual sense of the word, has also an orienta-
tion class 0 € K*(TX) & Z [4], ie. there exists 0 € K*(TX) @ Z [4] which re-
stricts to a generator on each fiber of the projection TX_L X. This K-theoretical
orientation class induces a direct image map m : K;(E) — K;(R?) defined by

m([E]) = t-index(’l\_’(a.p"([E])). We define the Z/k-elliptic genus Oy by
(6) P4 (X) = m(0([TX] = [n]) € Z/KZ [[ ¢ 1]

where [n] is the isomorphism class of the trivial real Z/k vector bundle of dimension
equal to the dimension of Y.

The other cohomology theory of iuterest for us is cobordism. The (co)bordism
relation for Z /k manifolds is given by the following definition ®. In this definition the
word manifold will mean manifold with general corners.

Definition 1. A Z/k manifold X obtained from a pair (X,Y) is the boundary of a
Z [k manifold M formed from (M, N) if and only if N is a manifold with boundary
ON diffeomorphic to ¥ via 9N L ¥ and M = X U [UZ, N;] where N; is a copy of
N glued to the ith part 9.X; of the boundary of X via 0, f.

This definition of bordism induces a well defined equivalence relation between the
isomorphism classes of Z/k-manifolds (sce for example [Bas73] lemma 3.1). The
bordism groups of Z/k manifolds are isomorphic to bordism with Z [ kZ coefficients
[MD74], [BRS76]. Let us briefly explain the geometrical origin of this isomorphism.
From the point of view of spectra the bordism (cobordism) with coefficients in Z/kZ
is defined as the bordisim (cobordism) of Moore’s space M. Let ¢ : S'UD? — M; be
the projection to the quotient, let "y C D, be the cone with vertex 0 over the k-th

roots of 1 and let Sy = ¢({1}UC) C Mi. Then, if M EN M} 1s a map from a smooth
manifold M to M we can, using two stage transversality with respect to Sk, deform
fin such a way that X = f=1(5;) has a natural structure of Z [k manifold. The set
Sk is also included in R2 (see [FM92]) and the collapsing map p¥ : X — R2is “equal”
to flx: X — Si € R2 Using the relation between cobordism of Z [k manifolds and
cobordism with coefficients in Z/kZ we shall prove in section 4 that the Z [k elliptic
genus 1s a cobordism invariant of Z/k manifolds. If we restrict ourselves to certain
spin Z/k manifolds and spin cobordisin a direct, analytical proof of the cobordism

3See [Bas73] for a more precise definition.
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invariance of ® is possible and we shall give it in section 3. In the oriented case
what is missing is a “gluing formula” for the elliptic genus.

§2 Mod * modular forms and the elliptic cohomology of S2. Let k € N
be any natural number different from 1 and let T' € SL(2,Z) be any congruence
subgroup of the modular group SL(2,Z). The “mod k” modular forms for I' were
defined in [SD73] and [Ser73] in the following way. Let O be the ring of k-integer
rational numbers and let 7 be an integer. The Og-module Mod; is the set of formal
power series

flg) = Z anq™ € Oy [[ q ”
n=0
for which there exists a modular form ¢ of weight j for the group I' such that the
power series expansion of g at 100 is f(q). Il f(¢) € Mod; then the reduction f(q)
modulo & belongs to the algebra Z/kZ [[¢]] of formal power series with coefficients
in Z/kZ. In this way, taking the mod & reduction of all the elements in Mod., we

= i
obtain a Z/kZ module Mod; of Z/kZ [ ¢ ]]. We define?

Mod(T,Z/k) = 3~ Mod;.

J€L

It is not difficult to show that, if k is odd, then the ring Mod (Ts(2), Ok) of modu-
lar forms for I'4(2) whose power series expansions at 700 have coefficients in Oy is
isomorphic to 3~ ..z Mod; >~ O,[é.¢], where

1
o ; n L 3 n
(5_—§—.3 E d | q". € = E d q".
¢ n>1 din n>1 d|n
d odd 4 odd
n

and therefore one obtains the same Z/k-algebra Mod(T',Z/k) if one takes only the
mod k reductions of the power series expansions of the elements in Mod (FO(Q), Z [%D
instead of all the elements in NMod (I'y(2), Oy).

Let us now study the elliptic cohomology of the Z/k manifold S§2. We shall use,
in general, elliptic cohomology with compact supports, i.e. for a Z/k manifold X we
define £00*(X) = (S?(T[’*(Y+)7 where X7 is the one point compactification of X and

£00" denotes reduced elliptic cohomology.

It is important to keep in mind that the sum is not a direct sum, power series expansions of
modular forms of different weights can have the same reduction mod k.
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Proposition 1. The elliptic cohomology E60*(S?) of §% = (X2, 81, where X? =
S\ (Uf;l Di) and D; is a disk, is given by

EC(pYQRLZ/kZ if q is even

0 (5?) =
{ECt=2(pt)}® ==V 4f ¢ is odd.

Proof. The idea of the proof is similar to the idea of the proof of proposition 1.7 of
[FM92]. Let us remove from S? a set {/ which is the union of k disjoint open disks
such that each one of them contains in its interior one of the excised disks D;, and let
V denote the interior of X2 Then V N U7 is homotopically equivalent to the disjoint
union of &k copies of S and hence

{Eepiyph=t if ¢ 1s even

SNV~ (DX =
( ) (9X7) {ECt=Y(p)}F F if ¢ is odd.

The Mayer Vietoris exact sequence in elliptic cohomology associated to S2 = U UV
18, for ¢ odd,
(1) oo = E0H(S?) — S o1 EXNV) — ENNTT N V) —

41 “‘j‘/q-H —— q+1

— SIS S Ty g ERCTTH VY —

From the suspension isomorphism and the long exact sequence for the pair (S?, pt)
it follows that £0(°(S?) ~ £¢(° = (. Therefore, taking ¢ odd, we obtain from (7)
an exact sequence

(8) 0— EW”(V) — {gf("l—l}rf‘)’f 2, gp(u/—l _
— {ECHYL g ELTTH (V) s (g0t yert g,

where the homomorphism s assigns to an element (ay,...,ax) € {E00471}9F jts sum
Y a; € £ As s is an epimorphism the exact sequence (8) splits into two short

exact sequences and we can conclude that, for ¢ odd, £001(V) = {£01-1}#k=1 and
=t

ECCT (V) = 0. Therefore E(¢1(X2) = {£601=1}#4=1 and £0¢""'(X?) = 0. Then the

exact sequence, for ¢ odd, for the pair (X2, 0.X?) is equal to

UL DU a2 o e pg=1 k=1 i
(9) 0 — E0" (DX?) — E(11(X?,9X?) — {Erea=1y#h-1 1,

; 5 q+1

L {Eee1 Y S0 (X2 0X%) — 0,
where the homomorphism i can be seen as the isomorphism of {€00171}¥+=1 into
the subgroup of {£€(1=1}#* of the elements (ay,...,ax) such that S a; = 0. From

this exact sequence it follows that £0¢¢(X?% 9X?) ~ 6'«(7("('_1(8}(2) = {Epa-1}0lk-1)
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pryyiad) - Sy VS < /ey — T . . 9 .
and 00 (X2, 0X?%) ~ £((1=". The long exact sequence for the pair (52, 51) is, as
0X?* — ST C 5?15 the trivial k covering, isomorplic to

F7pt1

0 — {0071 )P g9 (82) — g0t I gopet — 00T (§7) — 0,

where m; is multiplication by k. The proposition follows immediately from this
sequence. [

Recall that there exists a natural transformation, the elliptic character of H. Miller
[Mil89], of cohomology theories A, : £00(X) — KO*(X,Z [%])[[q]] When X is a
point the elliptic character of 0 € £0¢* is the power series expansion of é at ic0. The
elliptic character composed with the transformation ¢ : KO* — K* induced by the
complexification of vector hundles induces a natural transformation A = ¢hg : £€0* —
K. This “character” can be used to give a modular interpretation of £00* (R2).

Proposition 2. The image A(EC(""(S?)) is cqual to the ring Mod(To(2),Z/k).

Proof. The K:-theory of S2 s given by

Z/KZ | ¢ ]] if nis even
K?(RE) =
{Z {l] ([ ¢ NFPE=Dif s odd.

2

This result can be computed using the Mayer Vietoris sequence in K,-theory for the
decomposition S* = V U U, where V and {7 are the same open sets that we used for
the computation of the elliptic cohomology of §2. Using the same argument that we
used in the proof of proposition | we obtain an exact sequence

(10) 0= 2 ([q )" — KyME) = 2( ¢ )] 25 2 ([ ) = Ke™(F) = 0

Y
where m; denoted multiplication by k. The elliptic character A induces an homo-
morphism of exact sequences

. e e —— even e
5{(9\(1; AR E((men g((/ (‘g ,,,) 0

,\l ,\J ,\l
—— Z([q)] == Z{q])] — Z/FZ[[q])] — O
The proposition follows immediately from the fact that the first two terms in the

morphism of exact sequences correspond to taking the power series expansion of a
modular form at the cusp ioc. O
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§3 The Z/k-elliptic genus and Dirac operators. Let us suppose now that X
is an even dimensional spin Z/k-manifold with a metric ¢ that is a product near the
boundary and let us write

NTX)=)Y R(TX®C)q
n>0
The metric ¢ induces an hermitian structure and a compatible connection in each
one of the complex vector bundles R, (TX & C). We can then consider the formal
power series of Dirac operators

(11) De(X) =3 Du(X) ¢" =3 Dx(R(TX @C)) ¢",
n>0 n>0

where D, (X') = Dx (1, (T X :C)) is the Dirac operator on X twisted by R.(TX®C).
This formal power series can be leuristically interpreted as the “localization” of the
Dirac-Ramond operator on the loop space £X [Wit88], [Wit87] at the set of points
fixed under the natural S' action on £X. A more rigorous geometric interpretation
can be given using the operator defined by Taubes in [Tau89).

Due to the assumption on the metric, the formal power series of twisted Dirac
operators D (X') induces a formal power series [F’MS)‘Z]

(12) D.u( Z DY) ¢" =" Dy(Ra(TX Q) ¢,

>0 n>0
of self-adjoint operators on Y with numerable spectra. Let Sp(D,(Y)) C R be the
spectrum of D, () and let Sp(Dy(Y)) = Upso Sp(D(Y)). Then Sp(Dy(Y)) is a
numerable set and fixing r € R in the complement of this set we can define a coherent
family of global boundary conditions® such that all the operators D, (X) have a well
defined index mod k. We can now define

(13) 7]!”()/') = Z 7,'1()") (/"7
n>0

where 1, is the 5 invariant [APS75] of the operator Dy (R, (T'X ¢ C)). Corollary (5.4)
of [FM92] applied to this formal series gives an analytical formula for the mod k
elliptic genus

(14) Ou(X) = /\ A(X)eh (QF/2) el (QO(T.X')) — k(Y (mod 1),

where L is the line bundle corresponding to the spin®-structure induced on X, QF
is its curvature, and QY = v (R, (TX & C)) ¢" is the formal power series
whose coefficients are the curvature forms Q(R(TX & C)) of the vector bundles
R (TX @ C). It is not difficult to see (see for example [Bry88},[Zag88]) that the

expression [y (\’ ch (QL/7) ch (Q” () ) is the power series expansion of a modular

5See for example [FMY2] section 3 or [APSTS)] .
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form, hence its reduction mod £ is a mod & modular form; in the next section we
shall show that also ®.(.X) is a mod k modular form, we can therefore conclude that

Proposition 3. The formal power series kne(X) € Z/KZ [[ ¢ )] is @ mod k modular
form.,

Suppose now that the spin Z /k manifold X is the boundary® of a spin Z /k manifold
M with OM smooth and let us fix an extension of the metric ¢ and the spin structure
to M. This choice induces a metric and spin structure on each of the copies N; of
N included in the boundary of M and we can suppose that the metric on N; is a
product near the boundary. Then the disjoint union N = LX_, N; has a structure of
Z [k spin manifold such that the orientation in the boundary is the opposite to the
orientation of the boundary of X aund therefore Neu(ON) = —knau(Y). Tt follows that
if we denote by L; — N; the line bundle corresponding to the spin® structure induced
on /V;, then

O (N) =" / /i(J\’,-)ch(Q’”/Q)crh(Q”(T"V'))+l.-z;,,,(N) mod 1
JN
= k(index Der(N)) = 0 mod 1 '

If = denotes congruence mod &, then

indg(Dog( X)) = / ACX el (QF/2) eh (QT9) k(v
X
= /X ACX)eh (05 2) ch (Q7T9) — k()
+ OL(N)
= [ A(X)ch (Q8/2) eh (Q%TX) Z g (Y
AR (98 72) e (07T — k(1)
+3 / A(N)el (b /2) e (TN 4 k(Y
~ /N,
=ind (Do(9M)) = S(IN) = 0.

This shows that the elliptic genus for Z /k-spin manifolds is a spin cobordism invari-
ant.

Remark 1. It should be possible to give a more conceptual approach to the proof
using the gluing formula for the index of the Dirac operator of [Ire92].

5The conventions will be the same ones as in section 1 definition 1.
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§4 Modular properties of the Z/k-elliptic genus. We shall now define, for
any Z/k compact manifold X, a topological index,

tindexgy, : E0(TX) — Mod(Io(2), k).

The definition of t-index$,, follows closely the definition of the topological index in
[FM92] so we shall only outline the construction. The precise details can be found in
[FM92] or [ASGS]. Let X = (X,Y) be a compact Z/k-manifold and let i : X — X'
be an inclusion of X into a Z/k-manifold X' = (X’,Y"). Let N be an open tubular
neigborhood of X in X’ and let N’ be an open tubular nelgbmhood of Y in Y’
such that N = (N, N’) is an open tubular neighorhood of X in X' . By the tubular
neigborhood theorem N can be scen as the normal bundle over X. The bundle
TN — TX has a natural structure of Z [k complex vector bundle (see [FM92] pg
287). The morphism

(15) T £ (TX) - E0(TX)

is defined as the composition of the Thom isomorphism E¢(TX) — &te*(TN)
with extension by zero E((*(TN) — E((<(TX'). Let V be a real vector space such
that there exist an embedc dding 7+ X' — V. Then the > map ¢ induces an embedding
T x pT’\ TX — TV x R2 The bundle TV x R?Z — R? admits a complex structure
and hence there is a Thom isomorphism ¢ : E00*(TR*) — E£0*(TV x TRZ). We

define

t-indexy, = o Vo (Ti x p

Remark 2. If £* is any complex oriented generalized coliomology theory and X is
a Z/k manifold we can define a topological index

t-in(lex;g. : EX(TX) — E7(R?)

in exactly the same way as we did for elliptic cohomology. In particular we can define
a topological index in oriented cobordism which we shall denote by t-index};so. Recall
that there exists a natural transformation g, @ MSO*(=) — E00*(—) that sends
Thom’s classes into Thom’s classes and therefore one can fix a choice of Thom’s classes
in cobordism and elliptic cohomology such that @4 0 t-indexy go = t-index2y, 0 Pegp.

Theorem 1. Let X be any oviented Z[/k-manifold. Then the Z [kelliptic genus @y
evaluated on X is a Z/k-modular form for the group Ty(2).
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Proof. The proof will be based on a “Riemann-Roch” formula relating the topological
indices in elliptic cohomology and Ky-theory. Let us fix a choice of Thom’s classes
teee 1n elliptic cohomology and tx in K7-theory. We shall do this by giving their
values on-the universal line bundle L — CP®. Once this is done it is easy to show
(see for example [Dye69]) that there exists a characteristic class R, in K theory with

the property that for any complex bundle £ -2 X we have
(16) PYR(E) U (tk(E)) = Mtew(E)).

The class R, also has the property that if # 2 X is the inclusion of any point, then
J*(Ry(E)) = R,(j*(E)) = 1. Let us note that due to the difference of conventions our
class R,(E) is the multiplicative inverse of the class considered in [Mil89], therefore,
if V' is a real vector bundle, then (R, (£ @5 C))™' = O(L). As the natural transfor-
mation A @ £ — N* commutes with extension by zero we can deduce from (16)

that it X < X is an inclusion and « € E((TX), then

(17) (T)!(Ma) U B(TN)) = A((Ti)]" (a)

where (7'7){ is the analogue in K theory of the morphism (Ti) of (15). Let R2? EN pt
be the projection of R? onto a point let TV — & be TV considered as a vector
bundle over a point. Then TV x R? = j*(T'V) and by naturality R (TV x R?) =
J(R,(TV)) = 1. Therefore if o : K7 (R?) — KTV x R?) denotes the Thom
isomorphism in Ky theory, then o(Aa)) = Mo(a)), Yo € £06~(R?). From this
equality and (17) follows immediately that

(18) At-index§, () = t-indexX (Ma) U R, (TN)).
Considering V' as a trivial bundle over X and using that

L=R,(VwxC) = R,((NHTX) g C) = R(N ¢x CO)R,(TX g C)
= 0(

and that R, (TX ¢x C)™! TX) we find that

(19) A(t-index (a)) = t-in(lexx(,()\((l,) UoTX)),

and therefore, if ¢ € £00*(TX) is an orientation class, then
Pu(X) = A (tindexf (o)) € A(ECes=m).

The theorem follows immediately from this formula and proposition 3. O

Theorem 2. Let X be an ovienled Z [k-manifold which is the boundary of a oriented
Z [k-manifold M. Then &,(X) = 0.
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Proof. The isomorphisms

MSO"(pt,Z[kZ) ~ MSO_,(pt, Z/kZ),
MSO,(pt, Z/kZ) ~ MSO. (M),
MSO™(pt,Z/kZ) ~ MSO™(My)

induce an isomorphism MSO™(My) ~ MSO_,(My). We can therefore represent
any class [X] € MSO~"(My) by a pair (X,?) formed by an n-dimensional smooth
manifold with an orientation in the stable normal bundle together with a map ¢ :
X — M. It is easy to see that the class [X] is zero if and only if there exists a smooth
manifold M’ and a map ' : M’ — M, x R such that t""'(M, x {0}) = X, t/|x =t
and '"1(M), x {1}) = 0. Let X 5 M, the class in MSO™(M,) that corresponds
to the Z/k manifold X by the geometric construction defined in section 1 and let
M5 My xR be the manifold that represents the cobordism from X to 0. Let M 5 V
be an embedding of A/ into a real vector space V and define p: M — V x M, xR by
p =1 x1t. For each s € R we can. by an arbitrary small perturbation of p, make it
transversal to V' x ¢ x {s}. [u this way we obtain an oviented Z /k-manifold X, and
an embedding i, : X, — V with normal bundle N, — X,. This family can be defined
in such a way so that Xy, = X and X; = 0. Let o, be the Thom class in cobordism of
the complex bundle TN, — T'X,. Then. by the homotopy invariance of cobordism,
the one parameter family of classes p, = (T7, x p! X< )(os) € MSO.(SY x R?) is
constant. Therefore py = p; = 0. The theorem follows immediately using that

D (X) = A (cfl‘b:‘u'(/’o)) :
O

It is trivial to see that if X and X are two Z [ k-manifolds then ®.(X U YI) =
@, (X) + &(X') and that if M is a smooth manifold considered as a Z/k-manifold
with empty Bockstein then ¢4 (M) is equal to the mod & reduction of ®gp(M). From
the multiplicativity properties of the topological index in K-theory (axiom B3 of
[FM92]) and the fact that R, is an exponential characteristic class it follows that
O(M x X) = & (M)D(X). Therefore the inod k elliptic genus is a M SO,-module

homomorphism.

Theorem 3. The MSO.-module homomorphism
Oy MSO(pt.Z]k) — Mod(I'4(2),Z/k)

ts an epimorphism.
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Proof. Let U be a mod & modular form and let @ € £00* be a modular form whose mod
k reduction is 9. Then there exist an oriented manifold M such that Qepe(M) =0
and thelefoxe o (M)=49. O

Remark 3. The universal coefficient theorem implies that there is an isomorphism
EC(pt,Z[k) = £ (pt) @ Z [k % Mod(Ty(2),Z/k) so there is a difference between
the mod % elliptic genus and the usual one. The difference is due to the fact that
A 8 (pt,Z[k) — Mod(T'v(2),Z/k) is not an isomorphism. In order to explain
the difference, and give a modular interpretation to elliptic cohomology with coef-
ficients in Z//\ let us recall an algebro-geometric definition of modular forms (see
[Kat73]). A modular form f of weight k for Ty(2) is a rule that assigns to each triple
(E Q[)CC(H @, M) formed by an elliptic curve £ 2 spec(R) over the spectrum
of a ring R such that § € R together with a cyclic subgroup (/2] € E[2], where
E2] = ker[2) : £ — E is the kernel of multiplication by two in the group-scheme
structure of £, and a basis w of wrjspee(ry = pu(Qp lspecr) an element of R in such a
way that the following conditions are fulfilled

1: the element f(E|spec(R), ¢, w) depends only on the R-isomorphism class
of the triple (F|spec(R), o, w),

2: f is homogeneous of degree —k in the third variable,

3: the formation of [ commutes witli arbitrary extensions of scalars.

Let us call HO(M |;pecp ™) this group. Then the ring of modular forms (in this lan-
guage) is mod(R) = Hiso HO \l|spﬂ[‘,w ). There is, for each &, a group homomor-
phism (we shall call it the expansion) HY( M|, w*) — R (¢ ]] which is obtained
by evaluating a modular form on Tate’s curve with its canonical subgroup of order
two. The difference with the usual case is that modular forms of different weights can
have the same expansions (see 101 example Deligne’s congruence E,_; = 1 mod p).
It is not difficult to show that if 1 ; € I then mod(R) = R[é,¢]. In particular taking
R = Z/k we obtain a modular 111t(1])1<t(1t10n of the olhptlc cohomology of a point
with coefficients in Z/k.

§5 Final Remarks. Let us make some final remarks about the relation of the
elliptic genera for Z/k manifolds and the theory developed in [Sul70b] chapter 6.
This remarks are only the “top of the iceherg” of a relation between elliptic coho-
mology and Sullivan’s theory that we shall explain elsewhere. Let n be an odd num-
ber. Then there arc two natural homomorphisms of groups r : Z/knZ — Z/AZ

and 7 : Z/k — Z/knZ iduced by the ]10111011]01])111%11% Z % ZandZ 5 7.
These homommplnsms can be extended, for cach j ] i the obvious \vay to group ho-

momorphisms Mod;(I'y(2),Z/kn) == Mod;(I'y(2),Z/k) and Mod;(T'4(2),Z/k)



ELLIPTIC GENERA FOR Z/k-MANIFOLDS I 15

Mod;(T'o(2),Z /kn). Sullivan showed in [Sul70b] that r¢ and ic can also be ge-
ometrically defined on Z/kn-manifolds and Z/k-manifolds and that they induce

“coefficient homomorphisms” M SO;(Z/knZ) 1S MSO;(Z/k) and MSO;(Z/k) s,
MSO;(Z/knZ) and an exact ladder

. —— MSO.(-) —— MSO.(-=) —— MSO(—-,Z/nZ) —— ...

| < 1

. —— MSO.(=) % MSO.(=) —— MSO.(=,Z/knZ) —— ...,

It is easy to see that there exists a commutative diagram
MSOZ/k)  —5s  AMSOJZ/knZ)
(20) q"l %J
Mod(To(2).Z/k) —= Mod(T'o(2). Z /knZ).

Recall now that
1 )
vz[}]= @ z-= @ imz,.
= P oodd prime p odd prime T

and that one can [Sul70b] define, using the exact ladder and the coefficient homo-
morphisms, oriented bordism with coefficients in Q/Z [%] by the equality

M SO, (—,Q/Z H) = lim MSO.(=,Z/nZ).

n odd

If we define

Mod; (1(2), @/2 H) = lim Mod(T'o(2), Z).
= n odd

then by diagram (20) we obtain a A/SO” module homomorphism

Gir - MSO;(pt,Q/Z B}) — Mod(T'y(2),Q/Z [%J)

Taking the limit in the exact sequence given by the exact ladder we obtain an exact
sequence

L MSOL(~.Z H) s MSO(=.Q) 5 MSO.(=,Q/Z B]) -

From the definition of mod k modular forms it follows that there exists a sequence

Mod, (T'o(2), Z B]) — Mod;(To(2), Q) 5 Mod,(Te(2), Q/Z E])
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From these exact sequences and the compatibility of all the constructions involved
we see that the elliptic genera considered fit into a commutative diagram

MSO;(pt,Q) —25  Mod(T4(2),Q)

| |

MSO,(pt, Q/Z [1]) 2 Mod(Ty(2),Q/Z B

The existence of this square is an “integrality” condition for the polynomials in the
Pontrjagin classes that defines the elliptic genus.
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