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Abstract

Starting from a complete set of possible parametrisations of the quark-
mass matrices that have the maximum number of texture zeros at the
grand unification scale, and the Georgi-Jarlskog mass relations, we clas-
sify the neutrino spectra with respect to the unknown structure of the
heavy Majorana sector. The results can be casted into a small number of
phenomenologically distinct classes of neutrino spectra, characterised by
universal mass-hierarchy and oscillation patterns. One finds that the neu-
trino masses reflect the natural hierarchy among the three generations and
obey the quadratic seesaw, for most GUT models that contain a rather
unsophisticated Majorana sector. A scenario with v, as the missing hot
dark matter component and v, < v, oscillations accounting for the solar
neutrino deficit comes naturally out of this type of models and is very
close to the experimental limit of confirmation or exclusion. In contrast,
in the presence of a strong hierarchy of heavy scales or/and some extra
symmetries in the Majorana mass matrix, this natural hierarchy gets dis-
torted or even reversed. This fact can become a link between searches
for neutrino oscillations and searches for discrete symmetries close to the

Planck scale.
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1 Introduction.

The quest for understanding the Yukawa sector of the Standard Model (SM), which
could mean finding, as a first step, simple fermion-mass and quark-mixing relations
among the members of the three known families, represents an equally significant
challenge to the standard model (SM) as the prospect of unification of the three gauge
couplings within the scope of a more fundamental theory. As a matter of fact, the two
problems are related to each other, as most grand-unified (GUT) models imply also
some partial unification of Yukawa couplings. The by now famous my = m- equality
between the mass of the bottom quark and the corresponding charged lepton of the
third family at Mg, the scale of grand unification, has been one of the early successes
of minimal SU(5) [1]. For the first two families, where it is empirically known that
mq/me ~ 10m,/m,, rather than ~ m,/m,, the hope was (and still is) that some
other effect may modify these simple mass relations, without significantly altering the
two-Yukawa coupling unification scheme. A most promissing attempt in this direction
has been the Ansatz of Georgi and Jarlskog (GJ)[2], subsequently implemented also
into other (so-called predictive) GUT models [3]-[8]. In some models based on the
SO(10) group one is even led towards a unification of all three Yukawa couplings of
e.g. the third family: [9] h:(Mg) = ho(Mg) = h.(Mg).

The structure of the three-generation Yukawa matrices, which parametrise the
couplings of the fermions to the Higgs sector, is commonly attributed to the existence
of U(1) - axial horizontal symmetries, broken at some intermediate scale between
the electroweak and the unification scale, or/and to the existence of discrete symme-
tries that often appear after compactification of the superstring (10]. In the hope of
finding some fundamental symmetry of this type, a different approach has been put
forward lately [4, 11, 7]. Instead of trying to accomodate the empirically known mass
and mixing parameters in different GUT models, the procedure has been to first find
appropriate Ansdtze for the structure of the Yukawa matrices at Mg which give the
correct values at low energies. In order to limit the number of possible choices, and
be predictive with respect to an expected improvement of the experimental values
of the 13 mass- and mixing-parameters of the SM in the near future, the principle
of economicity has again been applied, meaning as few input parameters as possible.
One way to meet this requirement is namely to have as many zero entries as possi-
ble and/or some extra symmetry, e.g. in flavour space, as this is natural for models
of the SO(10) group. Ansdtze of this type have been made in the past by Fritzsch
[12] and Stech [13] for the quark mass matrices at the electroweak scale. More re-
cently, Dimopoulos, Hall and Raby (DHR)[4] and Giudice [11] have proposed new

parametrisations of the Yukawa sector at Mg with seven or six parameters only, to



describe the six quark masses, the three mixing angles and the CP-violating phase
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. For the running of the Yukawa
couplings between Mg and the low energy scale, additional assumptions on the Higgs
sector and particle content of the theory are needed. Since it was shown that precision
data from LEP are consistent with unification of the three gauge couplings within
the minimal supersymmetric standard model (MSSM) [14], it has become the most
popular candidate for a description of the physics between the electroweak scale Mz
and the unification scale Mg, which in this context turns out to be of the order of
Mg ~ 10'¢ GeV. However, as most SUSY-GUT models share the same particle con-
tent with the MSSM at energies below Mg, while all nonsupersymmetric GUTs suffer
from the so-called hierarchy problem, this choice is representative for the evolution

of a whole class of models [9].

In a recent paper Ramond, Roberts and Ross (RRR)[7] have reversed this ap-
proach and, starting from what is measured at low energy, have provided a classifica-
tion of all possible sets of quark-Yukawa matrices, which are hermitian, i.e. symmetric
in flavour space, and have five or six texture zeros at Mg. In this way a unified picture
in terms of a perturbative generation of the quark-Yukawa sector at the scale Mg has
been achieved, which incorporates the Fritzsch, the DHR, and the Giudice Ansaize,
and sets the level of accuracy needed to discriminate between them by improved

measurements of the CKM matrix elements.

By means of the Georgi-Jarlskog Ansatz, which successfully relates the Yukawa
couplings of the charged leptons to those of the down quarks at Mg, the DHR [5] and
other groups [6] have in addition to the quark sector been able to make predictions
concerning also the existence of mixing in the lepton sector, if the three ordinary
left-handed neutrinos of the SM were to obtain a small mass through mixing with
extra heavy (right-handed) neutrino-like states by the so-called seesaw mechanism.
Predictions for this sector are possible only because the very idea of grand unification
naturally implies some proportionality relations among the Higgs-Yukawa couplings
of the fermions belonging to the same multiplet. Thus in models with an SO(10)
symmetry, the neutrino-Yukawa couplings which are of the Dirac type are usually
proportional to those for the up-type quarks. However the structure of the Majorana-
type Yukawa matrix, responsible for giving large masses to the right-handed neutrino
states, thus leading to seesaw-suppressed values for the masses of the ordinary neu-
trinos, is in general not known ® and has been chosen, as a matter of convenience, to
be diagonal or proportional to the up-quark (or down-quark) mass matrices [6], [17],
(18]. Due to its fundamental importance in providing the only known mechanism for

suppressing the unacceptably large neutrino masses implied by most GUT models,

I¥or counter examples see refs.([5], [15], [16]).
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one would like to know the full phenomenological impact also of this Yukawa sector,
whose scale and structure are most likely determined by the physics at the Planck
scale. Moreover, it seems to be the case that different models give similar neutrino
spectra [5], [6], pointing towards some universality that may follow on one hand from
the simple GUT relations and on the other hand from some extra symmetries at the
Planck scale. It could well be that a new classification scheme with respect to the
structure of the heavy Majorana-mass sector and its predictions for the masses and
the mixing of the leptons could shed some more light on the latter. With the prospect
of getting close to probing interesting regions of Am?, the mass-difference squared of
two neutrino species, and sin?20, the parameter which gives their mutual mixing, in
coming neutrino-oscillation experiments (the NOMAD, the CHORUS, the ICARUS
and other proposals) [19], the possibility of testing one of the basic ideas of grand
unification through a classification of such maximally predictive GUT models could

become an interesting project. This paper will be devoted to these questions.

We will start in section (2) with a review of the expectations on neutrino masses
and mixing from theory, experiment and observation and discuss the common preju-
dices. We will then in section (3) extend the RRR approach to the lepton sector such
that the structure of the charged-lepton Yukawa matrix is fixed by the GJ relations
to the matrix of the down-type quarks and the one of the Dirac-neutrino states to the
up-type quarks as implied by the simplest implementation of the GUT idea. The un-
known heavy Majorana-neutrino sector is first chosen to be arbitrary and general, to
be subsequently classified according to the mass- and mixing-patterns it leads to after
diagonalisation of the effective neutrino mass matrix. In section (4) we will examine
four cases leading to universal neutrino mass and mixing patterns characterised by a
specific hierarchical order. In section (5), we discuss the implications for the coming

neutrino oscillation experiments, and in section(6), we give the conclusions.

2 Massive neutrinos between hope and prejudice.

The absence of a gauge or any other principle that could justify a zero mass for the
neutrino as it does for the photon may be one of the strongest theoretical prejudices in
favour of massive neutrinos. The exasperation with the “overly” successful Standard
Model and a general attitude of looking forward to seeing “new physics” has been the
prejudice’s driving force. Three neutrino-deficit phenomena based on astrophysical
observation and cosmological considerations have become the nurishing substance of
this hope. The three experimental uper bounds on the masses of the tau- muon- and
electron neutrino of 32 MeV, 270 keV and 1 eV (from double-beta decay) respec-

tively have along with other data on neutrino oscillations severly limited the range



of beyond-the-SM speculations [20]. The latter have also helped to articulate new
questions, as to why for example the electron neutrino is so much lighter than the
electron -at least some five orders of magnitude- , adding some extra power to the

mass-hierarchy puzzle, to which the seesaw mechanism [21] became a common reply.

2.1 The seesaw mechanism.

The idea of the seesaw, first implemented in partially or completely unified theories
with a left-right symmetry such as SO(10) [21], is based upon the simple fact that

for a mass matrix of the type:
M = ( 0 a ) : (1)
a b

where a < b, a simple rotation leads to eigenvalues with a large mass splitting:

a2

My~ ma b, (2)

and a simple mass and mixing-angle relation:

1 a
3 tan26 ~ . (3)
and therefore to:
sind ~ 0 ~ |2 (4)
mo

So the main lesson of this trivial exercise is the twofold quadratic scaling behaviour

of the mass ratio my/ma,, that is at the same time proportional to a?/b? and to sin?f.

When M represents the mass matrix for one generation of neutrinos, written in
the left- and right-handed neutrino basis (v, N°¢), a is a small Dirac mass mp that
is proportional to a quark or lepton mass, and b a large Majorana mass R for the

right-handed neutrino that is proportional to some scale Mx > Mz :

M,,:( 0 mD). (5)
mp R

The fact that the entry in the upper left corner of M, is usually zero, signifies the
absence of an SU(2); Higgs triplet that could give a Majorana mass also to the left-
handed neutrino. It is interesting to note that the “seesaw” notion, i.e. that the
mixing of a light state with a heavy state in the mass matrix can render the former

even lighter, is employed only in the context of a Majorana-neutrino sector and/or in

the presence of heavy singlets, mixing with the quarks [22], but never in the context
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of the quark-Yukawa matrices which are nevertheless of the same perturbative type
(see e.g equ.(33)

In the case of a two-generation or three-generation neutrino mixing, where mp
and R are replaced by the corresponding 2 x 2 or 3 x 3 matrices M, and Mg, one

finds similar relations among the masses and the mixing of the light neutrinos if, after

0 M,
M, = , 6
( MI Mg ) (6)

and assuming that the matrix Mg is not singular, the effective light-neutrino mass

block diagonalisation of:

matrix:
M ~ M, Mgt M7, (1)

is fully or partly of the same perturbative type as M 2. In this case however, the
light-neutrino mass eigenvalues will in general be proportional to a more complicated
function of the entries of the matrices M, and Mg. Considering the case of weak
intergenerational mixings in Mg and a perturbative structure (@ la Fritzsch) for M,

the ratio of any two light neutrino masses exhibits a simple scaling behaviour:

My(z) _ (M, M, ) () _ Bim(y) i

M) (MuMu)w) L)

Q(zy) + (8)

where i...n are generation indices, z and y label the two neutrino species, and a(zy)

may be any ratio of additional heavy Majorana scales participating in the seesaw.

Now in the case where Mz has only one scale, equ.(8) reduces either to the

quadratic seesaw:

Mu(z) my,
- ) _ _m2 , (9)
’-’(U) uy
or to the linear seesaw:
My(z) Ty,

=—, (10)

My(y) Mo,

or to the mixed case:
Myfz) _ Ml (11)

; 2
ml’('y) muk

Futhermore it is easy to check that when the matrix Mg can be diagonalised simul-
taneously with the matrix M, one obtains the quadratic seesaw with a neutrino mass

hierarchy corresponding to the quark or charged-lepton mass hierarchy, t.e. ¢ =7 and

2When M, is chosen to be a real matrix, as this is a common choice for the mass matrix of the
up-quark sector, MY is its transpose. In general though, M, might not even be a hermitian matrix,

in which case one will have to diagonalise the matrix M,,MJ which is hermitian for any complex
matrix M, .



y = J, and a simple proportionality relation between the quark- and lepton-mixing

matrices:
Vi Verku . (12)

This is indeed the simplest version of seesaw that one can have. In contrast, in
the presence of a strong hierarchy and/or strong intergeneration mixings in Mg, one
would rather expect a distortion of this rather “natural” hierarchy pattern, up to the
point that it actually gets reversed. This is an interesting possibility to explore that

would have important implications for future neutrino-oscillation experiments [23].

2.2 The neutrino-deficit problem.

Let us now come to the observed neutrino deficits. The most prominent one, since
it has been confirmed by four different experiments involving three different targets
(CI*7, e~ in H,0, and Ga™) [24], is the solar neutrino deficit: The flux of the neutrinos
coming from the sun and measured sofar is half to one third of the expected number of
SNUs calculated by two groups using the standard solar model (SSM) [25]. Apart from
a ever decreasing probability of resolving this discrepancy by altering the parameters
of the SSM [26] and while waiting for the calibration of the two Ga™ experiments,
the most promissing solution seems to be the Pontecorvo or the Mikheyev-Smirnov-
Wolfenstein (MSW) mechanism of vacuum or matter-enhanced oscillations of the
electron neutrinos from the sun into some other neutrino species in their way to the
earth [27]. Analysing the latest data of the four experiments Krastev and Petcov have
found three disconnected areas in the Am? and sin®26 plot where such two- or even
three-neutrino-flavour oscillations are allowed [29]. The vacuum-oscillation solution

(VOS) is characterized by very small mass differencies and a large mixing angle:

Am? ~ (0.5 —1.) x 10710V?

13
sin220,,_,. ~ 0.75 = 1., (13)

while in the case of matter-enhanced oscillations there is a small-angle non-adiabatic

MSW solution:
Am? ~ (0.3 — 1.2) x 107%eV?

14
sin?20,,_,, ~ (0.5 — 1.6) x 1072, (14)

and a large angle solution:

Am? ~ (0.3 —3.) x 107%eV?

15
sin220,,_,. ~ 0.6 — 0.7, (15)

where the upper range of sin?260 in the last equation has been reduced from 0.9 to

~ 0.7 due to the non-observed effect of double conversion of the electron neutrinos



from the supernova SN87A (30]. The quoted numbers strictly hold for transitions of
v.’s into v,’s or v,’s. For a transition into a sterile neutrino state (with respect to
the electroweak interaction) vy, the allowed range for sin?26 shrinks to smaller values

in the case of a small-angle solution and to larger values in the case of a large-angle

MSW solution [29].

Compared to the Cabibbo quark-mixing angle sinf, = s12 ~ 0.22, the value of
the neutrino-mixing suggested by the small-angle MSW solution is smaller and could
indeed correspond to a lepton-mixing angle: ® sj, ~ 0.04 — 0.07 =~ \/—T—T:_—j, unless 1t
represents the mixing between the first and third generation, in which case it is larger
than the corresponding one in the quark sector. In contrast, the values suggested by
the large-angle solution always exceed the values of the CKM matrix elements and,
given the very small mass differences they correspond to, they would rather represent
an anomaly in any attempt to find universal relations for all fermion sectors among the
fermion masses and the mixing angles. A second general remark concerns the range
of the masses that one would expect for neutrinos participating in such oscillations.
Unless there is a symmetry to guarrantee small mass differences between masses whose
scale lies much higher, and in order to avoid fine tuning, one would expect at least
one of the neutrinos to have a mass in the range of m,, ~ (Am?)'/2 which in the

case of matter-enhanced oscillations implies a mass scale A; = (2 — 3) x 1072 eV.

A second neutrino deficit - a more controversial topic due to the large experimental
error bars and counter evidence from two experiments - has been reported by several
experimental groups [31] with respect to the expected ratio of muon- to electron-
neutrino flux produced by hadronic collisions in the upper atmosphere and measured
deep underground. Again a straight forward explanation of this can be given if one
assumes that the muon neutrinos oscillate into other light-neutrino species with the

values of:

Am? =~ (0.5 — 0.005)eV?

sin?20

(16)

~ 0.5

vp—vz

Since the option of a v, — v, oscillation in the range of Am? < 0.007eV? for sin?20 = 1
and of large Am? for s1n?20 < 4x 1072 has been excluded from reactor and accelerator
experiments [33], there remain only two possibilities, i.e. a transition into a tau
neutrino or a sterile neutrino-like state. However the possibility of v, or any other
active neutrino component oscillating into a light sterile neutrino state according to
the range of parameters suggested by equ.(16) seems to be excluded from the data on

nucleosynthesis, which imply that the effective neutrino degrees of freedom consistent

3We use the following short-hand notations: sinf;; = si; and costi; = cij.
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with the measured H, abundance is less than 3.3, and lead to a constraint of [34]:
Am? sin?20 < 3.6 x 107% V2.

It should also be noted that the latest results of the BAKSAN and IMB background
measurements of upcoming muons seem to narrow down the allowed range for such

oscillations to a vanishingly small area [20].

Now if both neutrino deficits were to be confirmed and interpreted as neutrino
oscillations between massive SM neutrinos this would naturally imply the following
mass hierarchy in the neutrino sector: m,, < m,, ~ 1072 eV < m, ~ 1071 eV. This
scenario is however at odds with the possibility of resolving as well the third observed
deficit, known as the hot dark matter (HDM) problem, in a scenario with three
light neutrinos only. The COBE results on the anisotropy of the cosmic microwave
background radiation and the data on the angular correlations of galaxies and galactic
clusters can be best fitted by a “coctail” of 70% cold dark matter and 30% hot dark

matter [32], the latter consisting of neutrinos with mass of a few electronvolts:
Eimm‘ >~ 7€V, (17)

the sum being over all light neutrino components. Assuming a “natural-hierarchy”
scenario for the neutrino masses [23], to be discussed in more detail later on, this
would point towards a 7 eV tau neutrino which can therefore not fulfill its role as a
participant in a v, — v, oscillation in the earth’s atmosphere [35]. If all three observed
deficits were to be of the same origin, i.e. related to non-standard neutrino properties
and in particular to oscillations between different mass eigenstates, another light
(sterile) neutrino state would be needed in order to avoid a fine-tuned mass matrix
and one would be left with two scenarios [35]: Either the three known neutrinos
participate in oscillations which allow for a resolution of the solar and atmospheric
neutrino deficits so that a massive sterile neutrino would be needed to account for
the HDM, or the muon and tau neutrinos have masses of a few electronvolts so as to
be the main components of the HDM and participate in oscillations such as required
for the atmospheric neutrino puzzle to be resolved, in which case there should exist
v, — v, oscillations, responsible for the solar neutrino deficit. It seems that in the
first scenario it is very hard to reconcile the nucleosynthesis constraint with the HDM
requirement. On the other hand the second scenario requires a slight fine tuning of
the muon and tau neutrino masses. So there is no scenario which would naturally
satisfy all three requirements. Of course once the requirement of resolving all three
puzzles via neutrino masses and oscillations, which is by no means compelling, is

dropped, more scenarios are available to speculation.



Since the existence of an atmospheric neutrino deficit is experimentally disputable
we would like in what follows to focus on scenarios which could do away only with
the solar neutrino puzzle and provide the relativistic component needed in order to
resolve the dark matter problem, assuming the existence of three light neutrinos only.
Let us denote by m,,, m,, and m,, the corresponding mass eigenstates in increasing
mass order. We first notice that in order to satisfy both requirements there should
be at least two mass scales, e.g., * A} ~ (2 —-3) x 1073 eV and A, > 7 eV and thus a
hierarchy of: .

A=t A (3—-4)x107, (18)
1’\2

This hierarchy could then be realised in two different ways: One possibility would be
that the light-neutrino masses follow a similar hierarchy pattern as the three up- or
down-type quarks,

m,, <m,, ~ A L my, ~ A, (19)

where m,, , is the dominant component of m,, , and m,, ~m,,. We shall refer to this
as the “natural hierarchy”pattern. The alternative then would be to have a reversal

of the natural hierarchy pattern, i.e to have:
m,, <m,. ~A <my, ~ A, (20)

or
my,, <m,, ~NA L<my, ~ Az (21)

Such an “inverse hierarchy” would naturally imply a strong v, — v, mixing.

We would like now to consider the possibility that there is indeed a natural hier-
archy among the neutrino masses and see whether it could more likely originate from
a quadratic or a linear seesaw mechanism. Assuming that the heavy Majorana sector
has only one scale R, the quadratic seesaw would yield a neutrino-mass ratio in terms
of the masses of the up-type quarks,

m,, m:

~ £~ (0.5-3) x 107~ O(4), (22)

My mg

that is compatible with the value of A as required by the two MSW solutions to
the solar neutrino problem, while the linear seesaw in terms of masses of any of the
three fermion sectors leads to values that are considerably larger (~ 107%), and the

quadratic seesaw in terms of down-quark or charged-lepton masses leads to smaller

1For the moment we consider only the MSW solutions to the solar neutrino problem.
5Notice that the upper bound on the electron-neutrino mass is such that it cannot at the same
time be the heaviest neutrino and an HDM candidate.



values of order 107°. Despite the uncertainty coming from the charm- and top-quark
masses - evaluated at the electroweak scale Mz -, clearly the hierarchy suggested by
equ.(19) seems to follow from the quadratic rather than the linear seesaw and involves
the masses of the up quarks. On the other hand, if one would try to understand the
small-angle MSW mixing in equ.(14) in terms of some power of the mass ratio of the

corresponding up-type quarks one would find that:

m, My
3112 ~ [~ — (23)
My, Me

a relation which is typical for a linear seesaw. Apparently the way neutrino masses
are generated, seems to differ when going from the third to the second generation or

from the second to the first. The simplest mass pattern giving rise to such a scenario

could e.g. be:
My, ~ mRm (24)
2
m,, ~ rg (25)
My, ~ % (26)

Using again the naive mass and mixing-angle relations of equ.(4), one can estimate
the remaining two neutrino-mixing angles and compare them to the corresponding

quark-mixing angles [36]:

Sha ~ E < 893 ~ 0.03 —0.05 (27)
shy ~ m;;n & sz~ (2 -7.) x 1073 (28)

The scale of the Majorana sector can be fixed by requiring that the heaviest neutrino
be the HDM candidate:
my, ~m,, ~TeV. (29)

This gives:
R~ O(10") GeV, (30)

and masses to the other neutrinos:
m, ~ 107%eV (31)

m,, ~ 107%eV. (32)

We turn next to alternative scenarios, that could also provide a solution to the

solar neutrino problem and the HDM, but do not follow directly from the simple
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seesaw relations, eqs.(9,10,11). Under this category fall the two large-angle solutions
to the solar neutrino problem, eqs.(13,15), simply because they indicate that the two
neutrinos participating in such oscillations are linear combinations of mass-degenerate
eigenstates: vy ~ %(Ve + v;) with m,, ~ m,,. This is only possible in the context
of a more elaborate heavy Majorana sector, where for example Mg or some of its
subdeterminants could be singular, and/or the presence of a large-scale hierarchy can
compensate the hierarchy in M,. Obviously the same is true also of any inverse-
hierarchy scenario. Therefore these options require a full treatment of the neutrino

mass matrix within the context of a particular model or at least of an Ansatz.

On the other hand, the semi-quantitative treatment of the natural-hierarchy sce-
nario should be also viewed with a great deal of caution, for two main reasons: First
because even in the quark sector the simple relations we have employed are only valid
in the approximation of two-generation mixing. As an example we take the original
Fritzsch model [12], where the mass matrices for the up- and down-type quarks were

parametrised according to:

0
Mp=| A (33)
0

o
Qe

with A, B, C written in terms of the up-quark (down-quark) masses:

A My M) K B~ VMe(s) - Mas) K C ~ Mi(b) - (34)

For the large Cabibbo-mixing angle one does indeed recover the simple Gatto-Sartori-

Tonin-Qakes relation [37]:
my

S1p X~ -, (35)

ms

but for the small mixing angles so3 and s13 a fine-tuning of the quark phases ¢; is

ms e [Me My
Sp3 > —[— 4+ [— sz -— e’ - 593, (36)
mp my me

for obtaining the values that have been measured.

needed

The second and more substantial criticism concerns the very existence of any such
relations that could be scale independent. There is namely no apriori reason why
any relation among the various observables of the fermion-mass and mixing matrices
should remain invariant under the renormalization group (RG) equations which re-
late them to the structure of the Higgs-Yukawa interaction at some more fundamental
scale. In fact, Olechowski and Pokorski [38] have shown that such approximate low-

energy relations can be preserved in the presence of a strong top- Yukawa coupling, or
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more generally, when the Yukawa couplings of one fermion family become predomi-
nant, a fact that holds true for the third generation. This was shown by expressing
the masses and mixing angles in terms of invariants of the Yukawa matrices and then
study their evolution, assuming that the latter is governed by the radiative correc-
tions to the gauge and the Higgs-Yukawa couplings coming from the MSSM, or other
models containing two doublets of Higgs bosons, or simply the SM. Interestingly, they
obtained some universal results. First, the evolution of the Cabibbo angle is for all

models negligible. Writing the CKM matrix in the Wolfenstein parametrisation [39]:

1—\2/2 A AN(p +1in)
Vexm = —A 1—A?/2 AN , (37)
AN(1—p+in) —AN 1

where the small expansion parameter A ~ 0.22 is approximately the Cabibbo angle,
one finds that only the parameter A ~ 0.9 (and the CP phase) evolves when going

from a low-energy scale My to a high-energy scale Mx:

dA 360 2 2
I _T(ht + hy)A, (38)
while: I
Lo, (39)

dz

where ¢ = 1/167% In(Mx /My), h: and h, are the top and bottom Yukawas, and the
constant ¢y is determined by the gauge couplings of the model, e.g. ¢o = 2/3 for the
MSSM. An interesting consequence of this evolution behaviour is that in the MSSM
the small mixing elements |Vy3] and |V,3| become smaller with increasing energy. This
may suggest a mass-generation mechanism where due to some yet unknown symmetry
principle at ultra-high energies, i.e the Planck scale, only the fermions of the third
generation are having a mass, but as their mixing with the fermions of the first and
second generation gets stronger at lower energies they too develop a (smaller) mass.

As for the evolution of the quark-mass ratios the following approximate equations

hold [38]:

A1y ¢ 3 2
= aé:c/mt) = —5(‘31/%2 + cohy) (Mue/ma) (40)
and
d(ma 3
%@ ~ =2 (coh? + e1hd) (/) (41)

where m, . stands for m, and m., and myy;, for my and m,, and where for the
MSSM ¢; = 2. So in the approximation where only the Yukawa couplings of the
third generation are considered, the different mixing elements run in the same way
as the corresponding fermion-mass ratios and talking about the existence of such

approximate relations makes indeed sense.
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3 Implementing the neutral-lepton sector into the Yukawa
quilt.

While the search for Ansitze for the up- and down-quark mass matrices and for
the charged leptons beyond the electroweak scale needs some extra motivation, for
the neutral-lepton mass matrices, this approach represents a necessity, as they are
not part of the SM. The particular choice of the grand-unification scale as the scale
where such Ansatze are formulated follows of course from the same arguments that
motivated the RRR work [7], namely the unification of the gauge couplings within
the MSSM and some of the Yukawa couplings in grand-unified theories. The major
difficulty that one is faced with is the lack of uniqueness in the choice of the three 3 x3
Yukawa matrices Yy, Yy and Y, whose diagonalisation should lead to the observable

quark and charged-lepton masses:

Méss = 97Uy yly, AT

My, 0 0
= 0 ml/\ 0 , (42)
0 0 m} /A8

m! ~ mA\* my ~ mA®

M¥es = o-Uryuby, Rl

my O 0

0 miA 0 |, (43)
0 0 my/N

ll

2 4
m, ~ mgA my ~ mpA”,
and:

Mées = 27V UL Y, UM

M, 0 0
B S (44)
0 0 m’ [\
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/
m., ~ m,A* m! ~m,A°,

where v, and vy are the two vacuum expectation values giving mass to the up- and
down-type fermions. The masses have been parametrised a la Wolfenstein [39] so that

the order of magnitude of the various elements becomes manifest.

In order to determine the unitary transformation matrices Uy 4., anomalous and
hence the structure of the original Higgs-Yukawa interaction sector, simplifying as-
sumptions are needed. Since the guiding principle has always been to look for sym-
metries and to be able to make predictions the requirement of looking for Ansdtze
with a maximal number of zeros compatible with the non-singularity of the ¥;’s seems
to be a reasonable approach to this problem [12},[4],{11],{7]. In order to limit the pos-
sible choices any further it has been also assumed that the Yukawa matrices should
be hermitian, so that UY = UR = U. This would be the case if the Higgs-Yukawa
interactions were symmetric in generation space. Analysing all possible choices which
satisfy these requirements and are in agreement with the present experimental data,
RRR [7] found a set of five distinct classes, each characterised by a particular struc-
ture for Y, and Y at Mg. For convenience we write the Yukawa matrix of the up-type

quarks in the following way:

0 ar® 6A
Y, =| ar® BA* +A? |, (45)
SAY 4?1

where the parameters o, 3, v and § help to classify the different cases according to
table (1). It is interesting to note that in the solutions (I), (II) and (IV) found by
RRR the up-quark mass matrices are of the (generalized) Fritzsch-type [12], while in
the solutions (III) and (V) they are of a different type, first proposed by Giudice [11].
It is basically the parameter § that distinguishes between the two type of models,
being equal to zero in the first case and different from zero in the latter. In contrast

the down-quark matrices are always of the Fritzsch-type:

0 o'\ 0
Y, = o'\ 5//\3 7//\3 , (46)
0 'A% 1

with the corresponding values of the parameters o, 3', 7' shown also in table (1).

Before turning to the lepton sector of these five classes of models some conceptual
clarification is needed. The attentive reader must have namely noticed that so far

there has been no ingredient whatsoever in the above classification which could justify
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them being refered to as GUT models. First they do not represent models but mere
classifications of possible models. Second, as long as the different fermion sectors are
treated as being apriori independent from each other, the idea of grand unification
has not been, strictly speaking, implemented. This will be the case when we relate
the lepton to the quark sector. Of course the simplest and most natural realisation
of the idea of grand unification would lead to all fermion masses of each generation
being equal, a case already ruled out by experiment. Therefore in the construction
of phenomenologically viable GUT models a “rich” Higgs sector is needed in order
to differentiate between the up- and down-quark masses on one side, and between
the quark and lepton sectors on the other side. In the original GUT models based
on the SO(10) group this has been e.g. achieved by introducing more Higgs fields
in the 10, 16, the 45 and the 126 representations of the group [40]. For some of
the superstring-derived or superstring-inspired GUT models, like those based on the
SU(4) x SU(2)z x SU(2)r and the flipped SU(5) x U(1) groups [41] - when they are
embedded into the SO(10) -, the absence of Higgs bosons in adjoint or any higher
representations became a problem and alternative mechanisms have been employed
(42]. In any case, and independently of the chosen path, the most economic way in
doing so is to keep the two up-type Yukawa sectors and the two down-type Yukawa

sectors separately, and up to minor modifications, proportional to each other :
YO =Yoo Y)Yy, (47)

where Y,j%, are the Dirac-type Yukawa couplings of the neutral lepton sector. In order
that the left equality leads to phenomenologically acceptable light neutrino masses,
there must also exist a mechanism that generates heavy masses of O(R) for the right-

handed singlet states, so that the seesaw mechanism of equ.(6) becomes effective.

These mass terms can come from different sources, - directly from tree level cou-
plings to Higgs fields or radiatively from loop contributions -, and can a priori lie in
any energy range above a few TeV. In grand-unified models that have been inspired
from the superstrings they have been linked to nonrenormalisable operators that are

abundantly present after string compactification [43]:

c -
Mg, = — N[ Nr, < H>< H >, (48)
lw_s 1 7

where My is the string unification scale, H a Higgs field in the 10 representation
of SO(10) developing a vacuum expectation value at Mg, and C ~ "B/ a scale
related to the radius R, and the string tension a, of the Calabi-Yau space. For values

of €' ~ 10~3 — 1, the entries in the heavy Majorana matrix will be of the order:
Mpg,, = (10" = 10'%) GeV . (49)
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In this type of models, but also in general, the structure of Mg is unknown. Only
in special cases where e.g. the matrices Mp and M, () are proportional due to some
constraints, one can make definite predictions. Given this fact, the best way to satisfy
the “principle of minimality” is to leave Mp as general as possible, i.e., allowing for
arbitrary entries R;; (7,7 = 1,2,3) as long as the determinant of Mg is nonzero,
and disregard any possible phases. The requirement of no extra phases in the lepton
sector with respect to the quark sector limits the number of free parameters, thus

improving predictibility. We write Mg as follows:

R Ri Rs
Mp=| Ry Ry Rs |- (50)
Rs Rs Rs

If the heavy Majorana mass matrix Mg is not singular, then all the heavy mass
eigenstates of O(R) will decouple at energies below their mass scale, leaving behind

(after block diagonalisation) an effective mass matrix for the light Majorana states:

M~ M MM (51)

Denoting the inverse of the heavy Majorana matrix as:
R s SO =5
Mg, = (52)

with:
Ty =T = R2R3 - Ré 4

— _ 2
To == To9 = R1R3 — R5 Ts

r3 =733 = By Ry — R? Te

T2 =721 = RsRe¢ — R3 R4
ri3 =731 = Rqfle — Rofis (53)
Tos = rag = Rqfs — R Rs ,

o

i

and A = det Mg, the effective light-neutrino mass matrix is given by:

2
M = ZZ\L mij . (54)

with:

myy = 6%r3zt + a?ry2t
M1z = Mgy = v6r32° + (88 + ay)rezt + afrz® + ory2®
mas = ma = 67322 + (@ +78)rez> + (ayrs + 6%rs)2*
Mag = ¥2r3z? + 2Byrez® + B%ryzt + 20yrsz* + 2afBryz’ + o’riz
Moz = may = yraz + (72 + B)rez? + (Byre + ars + v6rs)2® + (B8 + ay)rez?
mas = T3 + 2vrez + (72ry 4+ 267s)z? + 2y6r4z3 + 612t

6

and where we have set A2 = z ~ 0.05. The matrix elements of M¢// are polynomials

in the small parameter z with the minors of the matrix Mg, the ri;’s, as coeflicients.
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We can now start with the discussion on possible classification schemes of the
neutrino sector of maximally predictive GUT models. The first thing to notice is
that when

r3 # 0 and T3 2 Tij, (56)

it sets, independently of the model, the scale for mas3, which being of zero power in z
is anyway the largest entry, and for the entire matrix. This condition is in particular
satisfied when all the entries of the matrix Mg are of the same order of magnitude
and there are no cancellations among them so that none of its invariants becomes

singular.

The first case (i) that we will therefore consider is defined through the conditions:

Mg, ~ O(R)

r 0, (537)

which imply that the heavy Majorana sector contains one mass scale only and no
extra symmetries. Under these two assumptions the overall scale of the effective
light-neutrino matrix is given approximately by:
2

t

=5 (58)

R )

13

Mo = M

The structure of M/ to lowest order in z is shown for the five different classes of
maximally predictive GUT models (from ref.([7])) in table (2) and is written in terms
of the ratios:

ay = — dg = az = gy = — d5 = .
T3 T3 T3 T3 T3

) Ts T4 Ts ™

(59)
There are two things that one notices immediately. First, there is a strong hierarchy of
the Fritzsch-type among the entries of the second and third generation (mga ~ mi; <
mas) in all five classes, given by A? or even by A*. As far as the mixing with the first
generation is concerned, there is a breaking of the usual pattern of only nearest-
neighbour generation couplings, known from the quark sector, where in particular
mis < mogy. Depending on the class, the my3 element can be larger than moo (classes
(I) and (IIT)), while it is always larger than mqs. This is an interesting example of a
nontrivial case where the heavy Majorana matrix was not chosen to be proportional to
the up-quark mass matrix so that one does also expect the proportionality between
the mixing matrices Vi and Vogar to be broken, a situation leading to interesting
phenomenological consequences. For the same reason a small mq; entry appears in

the effective light-neutrino matrix .

The structure of the effective neutrino matrix is significantly altered in some cases

when either of the two conditions given by equ.(57) or both are not satisfied. We

17



study the different possibilities separately, and start with the case where some of the

r;’s are zero, except for r3, meaning that the matrix Mg has some extra symmetries.
In this case (ii), defined through:
~ O(R) orzero

r, = 0 0 C {1,2,4,5,6}, (60)
the hierarchy among the entries of M¢// may be altered with respect to the previous

case, but not as drastically as to lead to a complete reversal of the natural-hierarchy

pattern.

The situation may differ for the case (iii):

R, —~ n
- 01)- 0@, (61)

where the matrix Mg is having more scales, characterised by a strong hierarchy, so
that some of the r; minors can be considerably enhanced with respect to others, thus
changing completely the structure of M*/f - to leading order in z - that is shown
in table (2). In some special cases the distortion of the perturbative structure of
M2 could go as far as to render all the matrix entries comparable to each other, or
even reverse their hierarchical order. This possibility is limited though by the fact
that the same r;; minors enter as coefficients to different powers of z in the various
m;; elements, thus protecting to a certain degree the inate hierarchy of the matrices.
Another interesting possibility is the enhancement of r3 and the matrix scale from
mo to:

mg = p X Mg (62)

by a factor p considerably larger than one, so that, if my would be the scale of the

heaviest neutrino as the HDM candidate, that would correspond to a scale:
R ~px 1012 GeV , (63)

that can nicely fit within the range expected from residual nonrenormalisable terms

from the Planck scale, equ.(49).

Finally the last and most interesting case (iv) arises when:
T3 = O, (64)

because this may imply a very light tau neutrino and therefore a realisation of the

inverse hierarchy scenario of eqs.(20,21). This is in particular the case for the first
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RRR class of models for which ma3 = 0, while mqo3 ~ O(z?) and mq ~ O(23).
Another case of this type arises for models belonging to class (1I1), because the leading
order behaviour of the corresponding m;; entries contains different r;; coefficients.
For example, if rs = 0, but re or ro are nonzero, then mo; > mas. Notice that
for models belonging to any of the other RRR classes (1), (I1I), (IV) and (V), an
“anomalous” ordering: ma3 € ma3, Mgy is not possible as long as mzz # 0. On the
other hand, for all classes except for class (V), mss can, due to extra symmetries
in Mg, be zero without all the other entries being necessarily zero. The breaking
of the natural ordering among the generations appears as an interesting possibility,
common to four out of five classes of maximally-predictive GUT models, that will be
discussed separately. In contrast, for those cases where ms; maintains its role as the

predominant entry, the overall scale of the matrix is reduced from myq to:

=", (65)

where r;; and the power of z are model dependent, and the second equality holds in
the special case of no hierachy in Mg. This obviously modifies the range where R
should lie if m§ were to be the scale of the heaviest neutrino that would correspond to
a HDM candidate. Instead of equ.(30) one would then obtain a smaller intermediate

scale:

R~ " x 1012 GeV . (66)

4 The spectrum of light neutrinos in different classes of

maximally-predictive grand-unified models.

After the classification of the heavy Majorana sector into four classes, cases (i - iv),
with respect to the structure of the effective light-neutrino mass matrix, we turn to
the determination of the masses and mixings of the latter. The mass eigenvalues of
the matrix M¢// can be found from a perturbative determination of the roots of its

characteristic polynomial, written as:
P=2z%—ryfz® + 2*rfgs — A, (67)

where by A, we have denoted the determinant of M&//, by ry = rory — g the corre-

sponding minor of the matrix r;; and f and g are polynomials in z:

f o= 14 2vaz+[(1+ a7y’ + 28a4)2> + 2v(as + Basy)z®
+[(1 + as)8* + 3%ay + 2avay)z + 2a(3as + baq)z®
+(a1 + (l5)0£236 (68)
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g = 1- 2‘1’{(0"7’2 —af + 3v6 — 2v%)z
+O(2*) + .+ O,

with a] = (rary — rsre)/r7.

4.1 Case (i): Neutrino spectra with a “natural” mass hierarchy.

We start our discussion with the first case (i) of a single scale R and no symmetry
for Mp so that f and g are now functions of order one. Redefining next z — z/R?

and using the fact that:

A, ~ 2212, det&[le
k= a?+ 38% — 2av6 ~ O(1),

equ.(67) reduces to:

Py 2 — 2?4 2 — 217, (70)

which is the same for all five RRR classes of models. Therefore under the minimality
condition of no hierarchy and no symmetry for the heavy Majorana sector, one obtains

an entirely model-independent neutrino-mass spectrum:

9
m? .
m,, ~ —z°
R
2
m? -
m,, =~ th* (71)
m;
m,, ~ —.
© R

The hierarchy implied by eqs.(71) is of the quadratic-seesaw type:

3I\'J

Doy Ty o (72)
ml,g mc

2
N (73)
m,, m?

This result strictly holds at the unification scale Mg and approximately at the scale
My at which the heavy states decouple. For deriving the right-hand side we have
used the fact that the running of the quark-mass ratios from the electroweak scale
My to Mg, when the top-Yukawa coupling is assumed to be constant and threshold
effects are neglected, is controlled by the parameter x = (N[G/N[Z)“h?/16”2 ~ 0.7 [7] :

mu,c y mu.c
(Mg) ~ *—5(My) (74)

my My
md s md.s e
L Mg) ~ x—=(Mz). (75)

My My



We turn next to the determination of the lepton-mixing matrix V;. Motivated by
the successes of the GJ Ansatz, the texture structure of the charged-lepton Yukawa
matrix Y. at Mg will be chosen to be the same as for Y except for the (2,2) entry
which will be multiplied by a factor of minus three. For the same minimality reasons

we mentioned before we will assume no extra CP-violating phases. Defining by:

1 0
Up=| 0 1 0 . (76)
0 0 e

the matrix relating the basis where M2// is diagonal to the basis where M/, is real,
Vi=U,UpU, (77)

where U, and U, are the matrices diagonalising MeHS and M, respectively. Written

in powers of A and to lowest order,

[/rg = /\/3 1 - /\2/18 __',.\//\3 - (78)
0 v A3 1

Except for class (V) the structure of the lepton-mixing matrix, again under the as-
sumption of no hierarchy and no symmetry for the heavy Majorana sector. is universal:
First, the mixing between the first two generations is always:

(I-1V)
1 VVI —p ‘2 3112 =

Lo >~

~ 0.07, (79)

where the factor-three reduction with respect to the Cabibbo angle is a direct conse-

quence of the GJ relation. This leads to a v, — v, mixing of:
sin?20._, ~ 0.02, (80)

which falls naturally within the range required by the small-angle MSW solution to
the solar neutrino problem, equ.(14). In contrast, in models of the class-(V) type the

mixing is two to three times too large.

sin?20,_, ~ 0.05. (81)

The mixing between the second and third generation is:

| VU(ZI D~ g~ 4A® ~ 0.03 (82)



for models belonging to the classes (I) and (III), giving rise to a v, — v- mixing angle:
sin®20,_, ~ 7.x107%, (83)
while it is somewhat larger in models of the type (II) and (IV):
| P ULIV)

e e A sin?20,_, ~ 9. x 107°. (84)

For the anomalous case (V) the mixing between v, and v, is negligible. Finally the

mixing between the first and third generation is:
|V sy ) (85)
for models of the type (1), (II) and (IV), giving rise to a v, — v, mixing angle:

sin?20,_. ~ (0.5 —1.)x 107", (86)

In models of the type (III) and in particular of the type (V) the first-to-third gener-

ation mixing is considerably enhanced:

VD~ N sin®20,, 22 % 107 (87)
VO~ A sin?20,, ~ 9. x 107 (88)

For the last type of models the value of the v, — v, mixing angle is rather representative

of what one would expect for v, — v, mixing.

One can summarise these results by saying that apart from a certain variation in
the values of the lepton-mixing angles, the four classes (I - IV) of GUT models, in
the presence of a single scale R and the absence of any extra Wpg symmetries, lead to

the following universal mixing pattern:
A )
Vil 5 31 Vo [~ N =00 > Vipp [~ X =00 (59)

The numerical range of the mixing angles is close to the naive seesaw-based estimates
in section 2.2 , resulting from a scenario that incorporates the small-angle solution to
the solar neutrino problem and the tau neutrino as a candidate for the HDM. They

confirm the simple guess that:
5112 < 819 3523 < $o3 3113 & $13 - (90)

However, due to the running of the up-quark masses, the hierarchy of the light neu-
trino masses at Mg is best described by the quadratic seesaw rather than the low
energy mixed-seesaw relations, egs.(24 - 26).

Only the “anomalous” class (V) models break this pattern. Due to the predictions
of a vanishing v, — v, mixing and a rather large v. — v. mixing they represent a quite

distinct case.



4.2 Case (ii): Neutrino spectra with a slightly distorted mass hierarchy.

In the preceding section we have examined classes of maximally predictive GUT
models with the least number of constraints imposed upon the structure of the heavy-
neutrino Majorana mass matrix, namely the case of no hierarchy of scales and no
underlying symmetry principle, and we have obtained a universal spectrum of masses
and mixing angles for the three light neutrinos. Their hierarchy was considered as
the most natural since it corresponds to what was expected from the simplest seesaw
scenario. In this and the following section we shall discuss classes of models with
a more elaborate structure in what concerns the heavy Majorana-mass sector which
give a distorted neutrino spectrum with respect to the previous case (i). It is to be
expected that such cases will arise in the presence of a strong (inverse) hierarchy of

large mass scales and/or in the presence of extra symmetries.

We will first focus on the possibility that as a result of such symmetries some of
the subdeterminants of My are zero and therefore certain powers of A in the effective
light-neutrino mass matrix are suppressed. We start with the case (ii) where there
is a single scale R and r3 # 0, but allow some of the ratios a; to be zero rather than
of order one, equ.(60). The characteristic polynomial of the matrix Mg/ assumes to
leading order now the more general form:

Py~ 2® - 2t pe — 2 (91)
where n is an integer between four and six. Though the overall scale of M/, set
by the heaviest state, the v, remains unchanged, as given by equ.(58), the split-
ting between the mass eigenstates can be in general different from the case studied

previously:
My, n My, ~ ~12-n

~ n=4d4256 , (92)

mV3 mVE

depending upon the leading power of the polynomial g, equ.(68). In addition to the
spectrum of equ.(71) which corresponds to the case n = 4, there are namely two more

neutrino-mass spectra:

po
~

: o1
rm:mz:mg:{ 6 . .6 . 1 }Xmm (93)

wn

I

[

where the first exhibits a reduced hierarchy with respect to the natural hierarchy and
the second an approximate mass degeneracy among the neutrinos of the first- and
second-generation. In table (3) we show possible values for the lepton-mixing angles in
the five type of models considered before, setting the parameters a; subsequently equal

to zero. We have limited ourselves to those cases, where the perturbative structure
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of M¢/J is considerably altered with respect to table (2). In general, we have not
found any substantial distortion in the spectra as compared to case (1), except for
some special cases where the mixing angle between the first and third generation or
the second and third generation are zero. Otherwise, one finds also for the case (ii)

a universal lepton-mixing pattern:

. A . . 5
| VV-:“‘U IN E >>l V’/u—»” 1'\/ /\3 >>‘ Vye-—T |N /\3 - ’\Dv (94)

which qualitatively resembles the one of case (i). For the models belonging to class
(V), for which r3 # 0 enters as a coefficient in all m;; elements to leading order, the
resulting spectrum is basically the same as in the previous case (i). It should be
pointed out that the cases shown in table 3 require the existence of precise relations
among the entries of Mg, implying that some of the R;’s are equal to each other and

some are not, though all of them are chosen to be be of the same order of magnitude.

4.3 Case (iil): Neutrino spectra in the presence of a strong hierarchy of

large Majorana-mass scales.

We consider next the case (iil) where, due to a strong hierarchy among the entries of
heavy Majorana matrix Mg, there is an even stronger splitting among the r;; coeffi-
cients in M/, equ.(61). If p and ¢ are enhancement (suppression) factors resulting
from such splittings in the polynomials f and g¢, the characteristic polynomial is given
by:

Py~ 2® —pa? + gz — 217 (95)

Then, for g2 > 4z*'p, one obtains the following neutrino mass eigenstates:
My, @ My, : My, =(— : =" 1 p) X myg, (96)

that explicitly reflect the distortion of the quadratic seesaw spectrum, found in case
(i). Notice that, for certain values of p and ¢, two of the neutrino states can become

mass degenerate: m,, =~ m,, or m,, ~ m,,, while, when p and ¢ are both zero, all

three neutrinos would be mass degenerate.

A detailed analysis of the lepton-mixing sector is complicated, by the existence of
a too large number of possible hierarchical orderings of the entries of Mpr. We will
therefore adopt a more schematic approach and concentrate first upon the question of
the breaking of the natural ordering for the second and third generation only. Let us

consider the following types of a mass-matrix structure that arise naturally in models



belonging to classes (I - IV):

zm ozt zm 1
My = M, =

One can easily check that, while for a mass matrix of the type M, the mixing between

the two neutrino states:
vq ~ cosfly, — sinfv, vy >~ sinfv, + cosfv. | (98)

is small, sinfoy ~ z", for matrices of the types M;, Mz and M3 1t Is maximal,
sinf(y.2,3) ~ 2-1/2 as this would be required for a solution to the atmospheric neutrino

deficit, if it would persist.

For models belonging to class (I), a large v, — v mixing can also come from a

matrix structure of the type:

0 0 1
Mi=|0 = 1/z |, (99)
1 1/z 1

or in models belonging to class (III) from:

<
183
(V)
&
[ 3]

My =] =2 (100)

— O
[

One finds also cases leading to large v, — v, mixing, like e.g for models belonging

to classes (II) and (IV) having a mass structure of the type:

0 z 1
Mg=1] 2z 2% 2z |. (101)
1z 1

These would be good candidates for a scenario that could explain the solar neutrino
deficit via the large-angle vacuum-oscillation or MSW solution. In order to also im-
plement a solution to the HDM problem into this type of scenario the muon neutrino
should be the heaviest state. Such cases of a completely reversed hierarchy will be

discussed next.
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4.4 Case (iv): Neutrino spectra with an inverse mass hierarchy.

As mentioned previously, an important role in our classification scheme is attributed
to the r3 subdeterminant of Mp. When it is zero the leading order behaviour of the
effective light-neutrino mass matrix changes in all five classes of models. It is zero
when, irrespective of the other entries and of fine-tuning, one has one of the following

nonsingular textures:

0 0 R,; Rl 0 *
Mr=1|0 R, = or Mg = 0 0 Rs |- (102)
* * x * * *

As a result, the (3,3) entry of M/ will be zero (e.g in models of class (I)) or
suppressed by some power of z. Let us concentrate on the first possibility and assume
the more general situation where the other entries can, but need not, be zero. Let
us further assume an “anomalous” ordering ma3 < mas, moy that is possible for any
model belonging to classes (I - IV), and for simplicity concentrate on those cases
with a zero-mass neutrino state. being some linear combination of v, with the other
two neutrino flavours. This is then equivalent to the matrix M/ being singular.
Requiring this to be achieved without fine tuning and through a small number of

texture zeros one is led to the following textures for M&//:

0 = 0 * ok
W=t s % x| IW=]x 00
0 = 0 * 0 0
O -+ > O
LY'=10 0 = [P=1] % 0 (103)

*
*

o
o
o
o

0 = 0 0

*
L= %0 «] LP=]+%«00
0 = 0 * 0

with four or five texture zeros respectively. The star symbol stands for an entry of
order one or some power of z, implying strong mixing or weak mixing. Notice first
that the texture Lf) will always give a zero mass tau neutrino that does not mix with

the other species, and a more or less strong mixing between the electron and muon
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neutrinos:
vy = U, vy = cosfy, —sinfu, vs = sinfv, + cosfv,, . (104)

On the other hand, the two block diagonal textures L(14) and Lgs) will give a zero-mass
eigenstate v; that is a linear combination of the electron and tau neutrinos, and a
muon neutrino (with a small admixture of the other two components) as the heaviest
state.

vy ~ cosfy, — sinfv, vy ~ sinfv, + cosfv, V3~ My, (105)

The spectra of eqs.(104,105) are examples of an inverse mass hierarchy in the neutrino
sector, egs.(20,21). Of the remaining three matrix textures, Lf_f) and Léb) will be never
encountered, and ng) will give a zero-mass eigenstate that can be a linear combination

of all three neutrinos with varying degrees of mixing.

4.5 Radiative corrections

All our results on neutrino masses and mixing were obtained by assuming an exact
tree-level proportionality between the quark and lepton Yukawa matrices at the grand
unification scale Mg and by subsequently diagonalising the latter. The resulting mass
eigenstates and mixing angles need therefore to be corrected before any attempt to
relate them to the low-energy observables. As is well known, corrections to the fermion
masses come from two sources, the gauge and the Higgs-Yukawa couplings. Gauge
corrections can be applied to individual eigenvalues, because apart from differences
in mass thresholds they are “family-blind”. Higgs corrections are proportional to
the Yukawa couplings, but are practically negligible except for the couplings of the
third generation [38]. However the treatment of the running of the light neutrino
masses from Mg or Mx down to Mz or even to the much lower energy scale My
where experiments hope to measure them, has been somewhat ambiguous. Some of
the authors [17] have chosen to treat ratios of light neutrino masses simply as ratios
of up-quark masses and consider radiative corrections only to the latter. Others
(16] (8] decided not to consider any radiative corrections to the neutrino masses and
mixings, most likely because they found themselves faced with the problem of a
conflicting evolution behaviour of the M, and Mg parts of the full neutrino mass
matrix. One is namely faced with the peculiarity of the seesaw that only part of the
physical spectrum will give measurable effects at low energies and therefore receive
radiative corrections, while the other part effectively decouples already at the scale
My . The most reasonable approach seems therefore to consist in calculating radiative
corrections only to the eigenstates of the effective light-neutrino matrix M T s

then obvious that this should not be translated into treating only the nominator of the



seesaw masses, since there are no physical up-quark mass eigenstates contained in a
neutrino. In particular there is no Yukawa coupling for the light neutrinos at the tree
level; this is generated only through radiative corrections. We will therefore adopt
the approach used in ref.([3]) and complement the evolution equations for the mass
ratios and mixing elements, given by Olechowski and Pokorski [38] for the quarks, to
include also the leptons. Following the notation of the latter we write the one-loop
RGE for the Yukawa matrices Y., where A = e{v) stands {or the charged leptons

(neutrinos), as follows:

d .
—Y4 =(cal+ ) aspHp)Ya, (106)
B

dx

where Hy4 = Y_,;Yj is a hermitian matrix, and z = (1/167%)In(Mx/My). In the

MSSM the radiative corrections to the gauge couplings c4 = G4 — T4 are:
L a2 9, .
Ge =395 + —g; T.=TrH.+TrH, (107)
5
for the charged leptons and:
f a9 2 3 2 )
Gy =395 + ggl‘ T,=TrH, (108)

for the neutrinos. where ¢g; and g, are the electroweak gauge couplings. The correc-
tions to the Yukawa couplings are specified by a.. = —3 and a., = 0 for the charged

leptons, and a,, = —1, a,, = 0 for the neutrinos.

Using the weak-basis invariants and their relations to the mass and mixing ob-
servables, that have been introduced in ref.([38]) and are based upon the usual re-
quirements of unitarity and hermiticity and the presence of hierarchy, which remain
valid also for the lepton Yukawa matrices. we obtain the following evolution for the

Yukawa ratios and the mixing elements of the latter:

d

P

—In(==) = 3(h% —-h%)~3A? 109

7 3(hy —he) = 3h: (109)

d h,, 3

el vy - _ 2 V’_14 2 ‘/1 2 110

R = S IVAR D) (110)
~ RV =1 Va ) (111)
~ hZ. (112)

In going from the first to the third line of the last equation we have made use of the

predominance of the third generation Yukawa coupling and the fact that the | V,,. |

(8]
(0.8}




mixing element is of order one. Neglecting the small corrections to the tau-Higgs

Yukawa coupling and defining y; = (Mx /M)~ /167 we obtain:

Py, hy., ., ,

h“ (Mx) ~ —h—'*(ﬂo) ; (113)
and:

he 3 hew

Notice the difference in the evolution of the up-type and down-type lepton-mass ratios
to the one in the quark sector. Again in the presence of a predominantly large third-

generation Yukawa coupling also the lepton-mixing angles undergo a slow evolution:

d o d i . ,

while the evolution of | Vi, | is negligible as in the quark sector. Since the numerical
value of y; is so close to one and given the uncertainty stemming from the unknown
Majorana sector, we conclude that radiative corrections to the neutrino masses and

mixings are less important in this context and will be neglected.

5 Implications for neutrino-oscillation experiments.

Our previous discussion of the dependence of the light-neutrino mass matrix on the
structure of the heavy Majorana sector has revealed at least four distinct classes of
neutrino spectra, that span the range of predictions expected from realistic GUT
models, that satisfy the principle of economicity. The question now is how to distin-
guish between models that belong to different classes, due to a different quark-Yukawa
or/and heavy Majorana sector, with the help of neutrino-oscillation experiments. For
this, one first needs to know the kind of neutrino-flavour transition that is most likely
to occur in each case in order to decide on the type of experiments that are best

suited.

In ref.([23]), it was shown, that, if there is hierarchy among the neutrino masses

the largest transition probability will be into the heaviest neutrino:

. , Am?L
P(vi = v;) = 65 = 2| Vig—j 2 (85— [ Vigi [*) x [1 = cos(——)], (116)
where p and L are the neutrino momentum and distance from the source to the
detector, and Am? ~ m? —ml ~ ml — m] ~ mj is the only relevant mass

parameter. This implies that if the natural mass-hierarchy scenario of equ.(19) is

realised in nature, as predicted by GUT models classified under our cases (i) and
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(i1), the transition will be preferably into the tau neutrino. On the other hand. if
an inverse mass-hierarchy scenario according to eqs.(20,21) is present, as suggested
by models obeyving the conditions that define case {iv) and partly case (ii1), the

transition will be predominantly into the muon neutrino.

Another consequence of equ.(116) is the existence of hierarchy in the transition
probabilities as a result of the hierarchy of the mixing-matrix elements. Therefore, for
models belonging to the classes (I - IV) and fulfilling in general the conditions of case
(1) or (ii) - except for the special case where | V, _, | -, the hierarchy of the mixing

elements, eqs.(89,94), implies the following hierarchy of transition probabilities:
P (e — v) < PPN (v — vr) < PG (v = vr). (117)

So the best way to test these classes of models is to look for v, «» v, oscillations.
Given the present experimental sensitivity [44], one can deduce from the fact that no
v, — v, oscillations have been observed that the mass of the tau neutrino cannot lie
above a few eV. On the other hand, for models belonging to class (V) the transition

probabilities will always satisty the anomalous pattern:
Poy(ve = vy) € Pvy(vy — vr) K Pvy(ve — v:) (118)

and v, « v, oscillation experiments would have been the best place to look for them.
Unfortunately, the sensitivity of present and planned experiments [45] is off the range

predicted by these models.

What are the experimental prospects for the future? The range of Am? and sin*26

that could be explored for v, < v, oscillations with the two CERN experiments

CHORUS and NOMAD that are scheduled for next year is [19]:
sin®20,, ., > 23 x 107 for Am® > (TeV)?, (119)

and Am? ~ 2x107'eV? for maximal mixing. With respect to GUT models belonging
to the classes (1 - IV) that predict a natural or an only slightly distorted neutrino-mass
hierarchy (our cases (i) and (ii)), these experiments represent a very exciting testing
ground. If the tau-neutrino mass is of the order of a few electronvolts, then v, < v-
oscillations should be measured in accordance with eqs.(79 - 87) and the values given
in table (3) respectively. Then the solar neutrino problem would be as well resolved,
in terms of matter-enhanced small-angle v, « v, oscillations. This would indeed be
the most satisfying scenario. solving simultaneously the two neutrino-deficit problems.
It could however well be that the tau-neutrino mass is substantially below the scale
that is relevant to the solution of the dark matter problem, in which case coming

experiments will be insensitive to such oscillations and the solar neutrino problem
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will not be resolvable, since the predicted mass hierarchy is too large, eqs.(72,73,93).
This of course does not exclude such models. On the contrary, it leaves us with the
option that the scale of the heavy Majorana sector is closer to Mg, r.e. 10M* — 106,
a possibility, which looks in fact more natural for SUSY GUT models that do not
contain an intermediate scale. Even if the sensitivity to this transition could be
increased by an order of magnitude with the ICARUS detector, that is planned to
settle the dispute on the atmospheric-neutrino deficit and distinguish between the
three possible solutions to the solar-neutrino deficit [19], this would not significantly
improve the testing of this type of models. On the other hand, there are currently
also long-range oscillation experiments with the CERN v, beam send to Gran Sasso
and/or Superkamiokande under investigation [19], that could reach Am? ~ 107*eV?
for full mixing in vacuum and push the Majorana scale beyond M, bringing GUT

models with a single Majorana scale into difficulties.

On the other hand, one can with the sensitivity reached by experiments like the
CDHS and CHARM, that have searched for v, < v, oscillations, set a limit of
my, .. < 2.—05 eV for sin’20,, ~ 0.1 — 1 for models belonging to case (iii),
that predict a strong mixing between the muon and tau neutrino. The corresponding
limits for models belonging to case (iv) that predict maximal mixing between v, — v,
equ.(104), and between v, — v-, equ.(105), are: Am? < 7. x 107%eV? and Am? < 2. x
10~2e V2 respectively [33], [46]. Of the cited limits the first two exclude the possibility
that any combination of the SM neutrinos can resolve the HDM problem, while the
third limit leaves us with the option that the muon neutrino is the HDM candidate.
Maximal mixing between v, — v, or between v, — v, could also be the explanation for
the observed solar neutrino deficit according to the large-angle MSW or the vacuum
oscillation solution. It is interesting to note that the expected sensitivity of future
7. « DUy experiments is getting close to testing the first of these two options. A
detailed account of the potential contained in cases (iil) and (iv), as far as theory

and experiment is concerned, will be given elsewhere.

6 Conclusions

The new classification scheme of supersymmetric grand-unified models, that has
emerged from the requirement of having a most economical quark-Yukawa sector
at the unification scale [7], has been extended also to the lepton sector such as to
include neutrino masses and lepton mixing through the use of the Georgi-Jarlskog
relations and assuming the most general structure for the heavy Majorana sector.
The discussion of the latter has revealed yet another classification scheme in terms of

four distinct cases, that lead to universal mass ratios and mixings for the three light
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neutrinos. The universality manifests itself through the fact that models belonging
to different classes with respect to the structure of their quark- (and charged-lepton-)
Yukawa sectors can give the same neutrino spectrum if the heavy Majorana sector
satisfies certain requirements. The first case for example, which is characterised by
the presence of only one heavy Majorana scale and the absence of any special symme-
tries for the heavy Majorana-mass matrix, gives neutrino-mass ratios that are typical
for the quadratic seesaw, while in the other cases, that are characterised by a hierar-
chy of heavy Majorana scales and/or extra symmetries of the Majorana mass matrix,
they get more or less distorted up to the point that the natural mass hierarchy among
the generations can become reversed. In view of a possible testing of such maximally-
predictive GUT models through neutrino-oscillation experiments, a comparision with
existing and planned experiments has and could soon throw some more light on the

structure of the Yukawa interactions at energies close to the grand-unification scale.
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