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Abstract: The Deep Inelastic Scattering 2+1 jet cross-section is a useful
observable for precision tests of QCD, e.g. measuring the strong coupling con-
stant a,. A consistent analysis requires a good understanding of the theo-
retical uncertainties and one of the fundamental ones in QCD is due to the
renormalisation scheme and scale ambiguity. Different methods, which have
been proposed to resolve the scale ambiguity, are applied to the 2+1 jet cross-
section and the uncertainty is estimated. It is shown that the uncertainty can
be made smaller by choosing the jet definition in a suitable way.

1 Introduction

Deep inelastic scattering (DIS) [1] has since long been a way of probing the nucleon struc-
ture and studying the theory of strong interactions, Quantum Chromo Dynamics (QCD).
The hadronic final state has been studied at fixed target lepton scattering experiments
where effects such as high-p, particle production [2] and the onset of jet production 3]
have been observed, but the energy has not been high enough to have a substantial rate
of clear multi-jet events. With the order of magnitude increased cms energy in the HERA
electron-proton collider at DESY (Hamburg) the study of these phenomena enter a new
era.

In fact, multijet events have already been observed at HERA [4] and with increasing
statistics they will be useful for precision test of QCD. In particular, the inclusive rate of
2+1 jet events (where +1 denotes the jet emerging from the proton remnant) can be used
to extract the gluon density zg(z) in the proton [5] or to measure the strong coupling
constant o, and observe its ‘running’ [6], i.e. o, = a,(uk) where p% is the renormalisation
scale. An advantage at HERA is that this running can be observed in a single experiment
to avoid systematic uncertainties that may enter when combining measurements from
different experiments, as has been necessary so far (see e.g. [7]).

In order to perform such analyses the theoretical cross-section has to be precisely de-
fined and calculated with a proper understanding of its uncertainty. This requires the
complete next-to-leading order (NLO) cross-section formalism, which also facilitates a
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well-defined meaning of a,. As with all field theories, QCD has to be renormalised to get
finite answers for the predictions of physical observables. To perform the renormalisation
one has to define a renormalisation scheme which defines how much of the finite parts are
to be kept at each order in the perturbative expansion of an observable and a renormalisa-
tion scale which defines at which point or momentum scale the subtraction of the infinite
parts should be made. From a physical point of view the result should be independent
of the renormalisation scheme and scale, the so called renormalisation group invariance.
This independence will, however, only hold for the complete perturbative series, whereas
a truncation to any given order introduces a dependence on both the renormalisation
scheme and scale (in next-to-leading order a change in the renormalisation scheme is
equivalent to a change in the renormalisation scale).

To solve this ambiguity at least three different methods for choosing the renormalisa-
tion scale have been proposed, the BLM, FAC and PMS scales.

BLM or Automatic Scale Fixing as the inventors Brodsky, Lepage, Mackenzie [8] call
it. The renormalisation scale is chosen so that the second order terms with Ny

dependence (Ny=number of active quark flavors) are absorbed into the running of
a,.

FAC Fastest Apparent Convergence as proposed by Grunberg [9] is defined by requiring
all second order contributions to be absorbed into the running of a, so that the
NLO result is equal to the LO result.

PMS Principle of Minimum Sensitivity as proposed by Stevenson [10]. The renormalisa-
tion scale is chosen so that the scale dependence is minimal, i.e. 8R/8p% = 0 where
R is the physical observable under consideration.

It is the purpose of this paper to apply these alternative scale choosing methods to DIS
and, in particular, use them in order to asses the theoretical uncertainty represented by
this free scale. This is necessary in order to estimate the theoretical error in, e.g., a
measurement of a, or Agcp. Previously, only simple estimates of the uncertainty has
been made by varying the renormalisation scale with arbitrary factors around the simple
choice of Q2 which has no theoretical justification. Here, we perform a dedicated study
where the theoretical uncertainty is more properly obtained by comparing the results
obtained with these better motivated scale choices.

In addition to the renormalisation ambiguities one has similar problems associated
with the factorisation, which defines the way to absorb soft and collinear initial state
singularities into the structure functions. This causes a corresponding scheme and scale
(%) dependence for the truncated perturbative series. The PMS method has also been
applied to deal with these ambiguities, originally by Politzer [11] and later for example by
Aurenche et al [12] who applied the PMS method to set the factorisation scale as well as
the renormalisation scale for large p. processes involving real photons. In this dedicated
study of the renormalisation scale no attempt will be made to optimise the factorisation
scale, instead there will only be some comments on the applicability of the other methods
to resolve that ambiguity.

The paper is organised as follows. In section 2 we discuss the complete O(a?) DIS 2+1
jet cross-section and in section 3 we treat theoretical aspects of different renormalisation
scale choices and comment on the factorisation scale dependence. The numerical results on
scales and cross-sections are presented and discussed in section 4 and finally we summarise
and conclude in section 5.



2 DIS 241 jet production

2.1 Kinematic variables and jet definition

The process of interest is (with four-momenta)

electron(k) + proton(P) — electron(k’) + jetl(p1) + jet2(pz) + remnant(p,)

as illustrated in Fig. 1.

Figure 1: Generic diagram for 2+1 jet production in DIS
The overall ep cms energy squared is
s = (P+k)?
and the inclusive deep inelastic scattering can be expressed in the variables

Q* = —¢=—(k-F)
W? = (P+4g)

giving the squared momentum transfer and invariant mass of the hadronic final state, or
alternatively by the scaling variables
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describe the relative energy sharing of the two jets from the hard scattering and

(p1 + p2)°

T )

is the incoming parton momentum fraction with respect to the proton (p = ¢P). In
inclusive DIS, i.e. disregarding the hadronic final state, there are only two independent
variables. These are usually taken as z,Q? or z,y and they are fully determined by the
energy and angle of the scattered lepton. To describe the internal degrees of freedom in
the 2+1 jet system, three additional variables are needed. These are usually taken as
z, = Q*/2pq = z/¢, z = z; (giving z, = 1 — z) and the azimuthal angle ¢ between the
lepton scattering plane (k, I;’) and the parton plane (7, p1).

E=z(1+

Experimentally, jets can be defined according to the JADE-algorithm proceeding as
follows. First the invariant mass of all pairs of particles is calculated. Then the pair
with smallest invariant mass is identified and if its mass is below some cut-off mass the
four momenta of these two particles are added to form a pseudoparticle (according to
one of several possible schemes [7]). The process is repeated until all pairs of particles
or pseudoparticles have invariant masses above the cut-off and the remaining particles or
pseudoparticles are then identified as jets. The cut-off is given by

(pi +p;)° = 855 > Yeur W2 (1)

where y.y; is a parameter between zero and unity that defines the jet resolution. Since the
proton remnant (p,) is counted as one of the particles in this procedure it is natural that
the jet definition should scale with the total hadronic energy W2, but other choices are also
possible. The proton remnant, which largely escapes in the beam pipe, can be represented

by the momentum vector corresponding to the missing longitudinal momentum in the
event.

A direct comparison of experimental jets with hard parton emissions in matrix element
calculations can be made if the same resolution criterion is applied in the calculation.
Thus, the theoretical cross-section is formulated in terms of the invariant masses of pairs
of partons. The target remnant, with momentum p, = (1 — £)P, is also included in
order to automatically cut against collinear divergences in initial state emissions. The jet
resolution ye,: thereby defines the phase space for resolved parton emissions and sets the
limits when integrating the matrix elements.

2.2 Cross-section formalism

Calculations of QCD matrix elements for jet production in DIS have been made since
several years resulting in tree level diagrams up to order a? (see [13] and references
therein). For our purposes the complete O(a?) DIS 2+1 jet cross-section is needed,
which have only recently been calculated (for one-photon exchange) by Brodkorb, Korner
and Mirkes [13]. Prior to this result, the partial result obtained by Graudenz [14] by
contracting the hadronic tensor with the metric tensor was available. The following results
are mainly based on the complete calculation as implemented in the DISJET [15] program,
but comparison is made with the earlier result as available in PROJET [16]. Since both
calculations are performed in the MS scheme [17] our results for the scales also apply in

that scheme.



Assuming pure photon exchange and integrating over the azimuthal angle ¢ between
the parton plane and the lepton plane the cross-section can be written in the following
general form,

do 2ral ) )
Tody = sy (14 (1= )oves = oo (2)

where oy,r (or Fy) represents the helicity cross-section for unpolarised photons and o
(or Fr) longitudinally polarised photons (the symbol U stands for unpolarised transverse).
The longitudinal structure function F, is a linear combination of the structure functions
F, and F, F;, = F, — 2z F; which is zero in the Quark Parton Model (QPM) with spin
1/2 pointlike constituents (Callan-Gross relation). In terms of the hadronic tensor H*¥
we have

1 6x2
dO'U+L = ('— é_guv + ‘Q_:P“Pu) H“y
422
do; = azﬂp“p,,H“”

where p is the momentum of the incoming parton, p = P and z, = Q?/2pg = z/{. Other
linear combinations are also possible like the one used by Graudenz [14],

do 2ral [1 +(1—1y)? 6(1 —y)+y° Uo] (3)

dedy - z?y?s 2 Ch 2

where o, and o, represents the ‘metric’ and ‘non-metric’ structure functions respectively,

dog = —guwH"
42:2 »
dog = —Q_zpl-lpuH

The two alternatives are related by o, = 20y — 3o and 09 = L.

3 Renormalisation scale choices

To make the dependence on the renormalisation scale g explicit, the leading order (LO)
and next-to-leading order (NLO) 2+1 jet cross section can be written

daszl - A a,(pk) (4)
dr dQ? 27

daé\;ﬁo _ a,(u%) 2 12 a,(p%)

Toags = AT [ (BN + O bnlih/QY) Ty ®

where A, B and C are functions of (z, Q?, Yeur, p%) after the dependences on the internal
jet variables (zp,z,¢) have been integrated out. The scale dependence of the strong
coupling constant is given by a renormalisation group equation, the so called S-function,
which to second order is given by

ahit% k) _ _y, (a,%))z [1 by O‘_g_i_lj_)] (6)




where
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bob = —N.—=N
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and N, is the number of colours in QCD, Ny is the number of light fermions and Cr =
(N2 —1)/2N, is the Casimir factor. The commonly used standard solution to Eq. (6) is

o, (4h) - 1 1— by InIn(uh/A?) (7)
2 boln(uh/A%) boIn(pk/A%)

where A is the QCD scale parameter which sets the normalisation of the strong coupling.
It is convenient to use the dimensionless rescaled renormalisation scale

2
o= (8)

such that a direct comparison is made to the naive choice of Q? as the scale in ,. As an
example the renormalisation scale dependence of the LO and the NLO expressions for the
cross-section are shown in Fig. 2. Although the result displayed is for specific values of
(2, Q% Yeut), it illustrates a general behaviour. With changing (z,Q% Yeut) the curves are
displaced, but their functional dependence of the renormalisation scale is unchanged. As
an illustration the three different scale choices (calculated as discussed below) according
to BLM, FAC and PMS are also shown in Fig. 2. The ‘geometric’ interpretation of the
FAC and PMS scales can easily be seen whereas for the BLM scale there is no such simple
interpretation.
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Figure 2: The renormalisation scale (p* = ph/Q?) dependence of the 2+1 jet cross-section
in leading order (dotted curve) and nect-to-leading order (solid curve) at z, @* and with
Yeuwr as indicated. The three different scale choices are also indicated.




3.1 The BLM scale

The Brodsky-Lepage-Mackenzie (BLM) [8] method is inspired by QED where all fermion
loops (vacuum polarisations) in the photon propagator are absorbed into the running
of the coupling Q... The same condition is applied to QCD after the renormalisation
scheme has been chosen, i.e. all the quark and gluon vacuum polarisations in the gluon
propagator are absorbed into the running of a,. In NLO it is sufficient to keep track of
the N; dependent terms since the vacuum polarisations have the form by K, so the N.-part
follows automatically with the N;-part. This means that all N; dependent terms showing
up are a sign of bad bookkeeping and they should be absorbed into the running of a,.
Although this principle is general it has to be applied with some caution in processes with
gluon-gluon scattering in LO [8]. For the DIS 2+1 jet cross-section, there is however, no
problem to find the renormalisation scale with the BLM method. The cross-section in
Eq. (5) provides the condition

1
BN; — 3 NyIn(up/Q%) = 0 (9)
from which the BLM scale is obtained as
PZBLM = eXP(?’B) (10)

Figure 3: The squared amplitude for the Ny dependent term in the NLO 2+1 jet cross-
section.

To O(a?) the only process which gives an explicit N;-dependence is illustrated in
Fig. 3. The analytic form of this term can be obtained from the explicit cross-section

formulas in [13, 14] and it is given by
Jdz, dz dd Acompton [% In (min {1—:—1’-(1 — z), };—”ywt}) - g]
fd.’l!p dZ d¢ (Acompton + Afuaion)

Where Acompton is the Born cross-section for the QCD Compton process and A fusion 18 the
Born cross-section for the boson-gluon fusion process as seen in Fig. 4. (Comparing with

Eq. (5) we have A = [dz, dz d¢ (Acompton + Afusion)-)

(11)

3.2 The FAC scale

A common way of judging the reliability of a series expansion in physics is to look at the
relative size of the last term calculated. If this term is small then the expansion is consid-
ered as being trustworthy and if it is big then it is not. The method of Fastest Apparent
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(a) (b)

Figure 4: Illustration of the two Born processes for 2+1 jet production on parton level:
(¢) QCD Compton or gluon radiation. (b) Boson-gluon fusion.

Convergence (FAC) [9] makes use of this criterion by choosing the renormalisation scale
so that the last term in the perturbative expansion equals zero. In our case this means
that the FAC scale is obtained from the requirement that the a? term in Eq. (5) is zero,
i€

BN; +C +boIn(p%/Q%) =0 (12)
which gives
BN; +C
Prac = exp (-1 ) (19)

3.3 The PMS scale

The Principle of Minimal Sensitivity (PMS) [10] defines the renormalisation scale by
demanding that OR/8du% = 0 for any physical observable R. This choice is based on
the knowledge that the complete perturbative series is renormalisation scale independent
so one may try to impose the same condition on the truncated series. As showed by
Stevenson in his original paper [10], demanding OR/8p% = 0 will also make the optimised
NLO result for R renormalisation scheme independent. In general the PMS principle
should be applied both to the renormalisation scale and scheme. In that respect the PMS
method differs from the BLM and FAC methods which only set the scale.

A convenient way of parameterising different renormalisation schemes is through the
coefficients (b;) in the 3-function,

o

o — b A2 |1+ b X+ b A+ 14
5l oA? [L+bid + 6222 + . (14)
where we have introduced the short hand notation
2
)= a(ph) (15)
2

The first two coefficients, by and b; are renormalisation scheme independent but the rest
of them (b;,7 > 1) are not. The PMS principle then amounts to requiring

OR
ZT -0
Ou?
OR
= ) 1
B 0, >



The last condition is only applied for the b; which are kept in the B-function (the rest of
the b;’s are set to zero). In our case this means that only the first condition has to be
applied to the cross-section. Taking the derivative of Eq. (5) and using Eq. (6) gives

3UNLO

STy = ~AbN® [b + 201+ Bi) (BN; + C + boln(ui/ Q")] (16)

The PMS scale is then obtained from the requirement

8UNLO

e 17
Oln pk 0 (17)

which gives
bi+2(1+ b)) (BN;+C + boIn(n%/Q%)) =0 (18)

This is a transcendental equation so its solution can not be given as a closed expression
but it can be solved numerically to arbitrary precision. For small A, the pr-dependence

is mainly through the term byln(p%/Q?) in comparison to the biA term, and one can
therefore obtain the following iterative solution,

BN;+C by
A(r+1) = Qs (Qz exp [_ . zbo(1+b,,\(n))]) (19)
2w

with X(® = 0. We have used the second iteration as the solution, i.e.

BNf +C _ b1
5 2bo(1 + 520

(20)

Ppus = €xp (—

which is precise enough for our purposes. Numerically we have (for Ny = 5) bo = %

and b = %, so for the small A ~ 0.02 — 0.03 we are interested in the error is negligible.
In passing we also note that comparing Eq. (13) and Eq. (20) we get the approximate

relation pLyrs ~ 0.72 ph 4o (for Ny = 5).

3.4 Analytic expressions for the scales

It would be instructive to have useful analytic expressions for the scales, but this is
prohibited mainly by the long and cumbersome expression for C. We have therefore
resorted to numerical calculation of the parameters A, B and C to get the different
scales.

There is also the question whether the scales should be calculated for the full 2+1 jet
cross-section or the two Born processes separately. If one divides the cross-section into
two parts, one for the ¢g final state and one for the gg, the following expressions for the

BLM scales are obtained

[dzy dz dd Acompton In (min {5230, 22(1 - 2)}) 5 (21)
= exp [z, dz 49 Acrmpton

2
pBLM,comptan

2 —
PBLM, fusion — 1

In the region of phase space where 1=22(] — z) does not contribute we get the interpre-
F . . LR
tation that the renormalisation scale is simply given by the cut-off in the jet definition,
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Yeut W2, times a numerical factor. Theoretically one can have different scales for different
processes. In fact, there is nothing that says that one should even have the same scale
in the a, and a? contributions. In principle one could therefore also investigate the scale
dependence of these two Born processes separately. We have chosen not to pursue this
line mainly because experimentally one is first of all interested in the inclusive 2+1 jet
cross-section, such that the extra uncertainties of quark and gluon jet identification does
not enter. Furthermore, the use of different scales for the two Born processes will make it
difficult to find a common y.,; where the theoretical uncertainty is small. Having differ-
ent yeu for the two Born processes would be very awkward experimentally, since it would
require a separation of gluon jets from quark jets on an event-by-event basis before the
jet reconstruction with resolution y.,; has been made!

3.5 The factorisation scale

The dependence on the factorisation scale u% comes both from the parton densities and

explicit a? terms of the form Dlnp%/Q%. Thus, the O(a?) DIS 2+1 jet cross-section
takes the general form

o8 _ 4 [1+ (B(#Z Ny + Clud) + bola(“2) + (D(ud oo + E(ub) ln(&)) A]
i PNy Ol Boln(ga) + (Db + Bk (s
(22)
where 2
D(#%) fd.’l:p dz dqb Afusion(/'l‘F) (23)

B fda:p dz d(,'b (Acompton(#%‘) + Afus‘ion(p’%'))

The factorisation scale dependence of the parton density functions is given by the GLAP
[18] evolution equations

o , 2 . 2 14
i 8§ e (]

Ofoles) _ e /:d_z[ch (6)fq(z,#%) \ Pos (é) fG(z,#;)]

Oln p% z z

where P,, etc are the splitting functions which are known to NLO [19]. With this in-
formation it should be possible to minimise the factorisation scale dependence of the
cross-section and therefore extract the PMS scale. However, for the FAC and BLM scales
one needs some kind of analytic form for the structure functions so that the a?- and
Ny-contributions can be identified. In this first step towards a complete understanding of
the theoretical uncertainties in the DIS 241 jet cross-section we have limited ourselves to
the renormalisation scale dependence. Only some preliminary numerical exercises will be
made towards a study of the factorisation scheme and scale dependences that is needed
to make the picture complete.

4 Numerical results

In order to calculate the renormalisation scales and the corresponding 2+1 jet cross-
section the quantities A, B and C in Eq. (5) have been calculated numerically.. This has
been made for fixed (z, Q%,Yeur) using the Monte Carlo program DISJET 1.0 [15], which
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is based on the complete O(a?) calculation [13]. For comparison we have also used the
Monte Carlo program PROJET 3.6 [16] which only includes the a? term proportional to
o, in Eq. (3). The calculations were made for the HERA design energy, 30 GeV electrons
on 820 GeV protons giving a cms energy of /s = 314 GeV. The dependence on the main
DIS variables z,Q? and the jet resolution cut-off y.,; will be of primary importance. We
have therefore chosen (z,Q?)-points to cover most of the kinematic range accessible at
HERA as can be seen in Fig. 5. The z-values considered are 0.0001, 0.0003, 0.001, 0.003,
0.01, 0.03, 0.1, 0.3 and 0.9 and the Q?-values are 9, 90, 900 and 9000 GeV2.

10 % e
QZ

104§ .

Figure 5: (z,Q?)-points in the HERA kinematic range, with polar angle acceptance limits
for the scattered electron and quark-jet (in QPM).

The y.y: values have been chosen to cover what can be considered as a possible region,
ie. Yew = 0.005,0.01,0.02,0.04,0.08. For yy smaller than ~ 0.01 one expects the
perturbative series to break down due to large logarithms of y..: causing a, Inyews € 1
to be invalid. This problem can in principle be solved by a resummation of such terms
(similar to the leading In Q? resummation in the GLAP equations.) For yc.: larger than
~ 0.08 [15] the neglect of terms proportional to ye in the cross-section calculations is no
longer expected to be valid.

For the required proton structure functions we have used parton density parameteri-
sations from the package PAKPDF 2.1 [20], where we select the latest parameterisation
by the CTEQ collaboration [21], set CTEQ2M which is a NLO fit including the first
HERA data. The structure functions are given in the MS scheme and for the QCD scale
parameter we have used their fitted value A% — 0.213 GeV. The choice of parton density
functions should not play a big role for the resulting scales and cross-sections since the
jet definition introduces a cut-off against small momentum fractions ¢,
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and all modern parameterisations more or less agree for £ > 0.01. The factorisation scale
has been set to Q% which is arbitrary, but convenient for our purposes. Some estimates
with other choices will be given below.

4.1 Resulting renormalisation scales

A selection of the scales obtained using the complete second order 2+1 jet cross-section

(DISJET) is shown in Fig. 6. For a complete collection of all the scales calculated see
Table 3, 4, 5 and 6 in appendix A.

Fig. 6 demonstrates that the scales obtained with the different methods may differ
quite substantially. The FAC and PMS scales are quite close, as expected from their
definition (and discussed at the end of section 3.3). The BLM scale has, however, a
different behaviour and in some (z,Q?, y.) points it differs by orders of magnitude. The
following trends are clear from studying Fig. 6.

e The BLM scale decreases with increasing z, whereas the FAC and PMS scale do

not have any simple = dependence.
e All three methods gives u% approximately proportional to Q2.

e The BLM scale increases with increasing y.., whereas the FAC and PMS scales
increase with increasing y.,: for small z but increase with decreasing y..: for large
z.

Comparing the scales one sees that they cross around ye, = 0.01 for small z and around
Yeur = 0.04 for large z. The increase of the FAC and PMS scales observed for large
z at small Y., is unphysical and indicates that the perturbative expansion is breaking
down. On the other hand, the BLM scale behaves in a way which is what we expect
physically, it increases when ¥, is increased and decreases when & is increased. This is
a natural consequence of the jet-definition which is a measure of the typical virtualities
in the process. We are therefore led to believe more in the BLM scale than the FAC and
PMS scales even though the perturbative expansion can be questioned when the PMS
and FAC scales start to grow in this way.

The increase of the FAC and PMS scales at small z and large y..: is different from what
has been obtained by Kramer and Lampe [22] for 3-jet rates in ete™ at LEP energies.
Their result seems to be more like what is obtained for large  ~ 1 as seen in Fig. 7. At first
one might expect that the results in DIS should be similar to ete™ since the processes are
related on parton level through crossing. There are however some important differences.
The ete~ calculation is obtained by contracting the hadronic tensor with the metric one.
This means that the ‘non-metric’ part defined as in Eq. (3) is not present in the ee”
calculation. Furthermore, at small = the boson-gluon fusion process starts to dominate
in DIS due to the increase of the gluon density. It is presumably the large contribution
of this process to the ‘non-metric’ longitudinal part which is the main difference between

DIS and ete™ in this context.

The scales have also been calculated using PROJET [16] which only includes the
contraction of the hadronic tensor with the metric tensor for the O(a?) cross-section.
Therefore only the part proportional to o, in Eq. (3) can be used to determine the scales.
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Figure 6: The renormalisation scales obtained according to the BLM (solid), FAC (dashed)
and PMS (dotted) methods. The lines connect the points actually calculated.
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5 DISJET ete
p x = 0.3, Q% = 9000
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Figure 7: Comparison of the scales obtained from the BLM (solid), FAC (dashed) and
PMS (dotted) methods for (a) 2+1 jet production in DIS at ¢ = 0.3, Q? = 9000 GeV?
and (b) 3-jet production in ete” as given in ref. [22].
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Figure 8: Comparison of the scales obtained in z = 0.001, Q* = 90GeV? according to the
BLM (solid), FAC (dashed) and PMS (dotted) methods with (a) the complete a? cross-
section (DISJET) and (b) the partial result (PROJET).

The values for the BLM scale are almost the same as those obtained with DISJET but the
FAC and PMS scales are quite different. As an example the scales obtained for z = 0.001
and Q? = 90GeV? are shown in Fig. 8. The differences observed can be understood
from the fact that the a? corrections to the ‘non-metric’ part (oo) of the cross-section
are relatively larger than the a? corrections to o,. The differences at large z are much
smaller than at small z which is also natural since the ‘non-metric’ longitudinal part of
the cross-section is relatively larger at small = and therefore gives larger impact there.
For the BLM scale, on the other hand, the Ny-dependent terms are the same for the
unpolarised and longitudinally polarised contributions, so that the resulting scale is the
same. Comparing the scales obtained with PROJET with the ones from ete™ one sees
in this case a closer agreement for all z, as expected when the ‘non-metric’ part of the
cross-section is neglected.
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4.2 Cross-sections with different scale choices

With the scales calculated it is easy to get the cross-sections from Eq. (5) for the respective
scales. The results are shown in Fig. 9 for the same (z,Q?)-points as for the scales in
Fig. 6. The cross-section is seen to increase with increasing « and decreasing y..: as a
consequence of an increased phase space for resolved jets as given by the jet resolution
(8i5 > ycutl—;ﬁQz). The strong decrease of the cross-section with Q? is mainly the trivial
propagator effect from the photon exchange.

In general we observe smaller differences between the cross-sections than between the
scales and the decrease is more than just due to the logarithmic scale dependence of
the running coupling constant. This is also what we expect from Fig. 2 where the scale
dependence of the LO and NLO cross-sections can be compared. However, for large =
and small y..: the cross-section for the BLM scale diverges as the a? corrections become
negative and larger in magnitude than the Born term.

4.3 TUncertainty due to renormalisation scale

It is important to estimate the error in the theoretical calculation of the cross-section in
order to use it for precision measurements of a, etc. There is, however, no ‘correct’ way of
doing this and one is therefore left with some arbitrariness or prejudice (unless the exact
answer is known). In our case we only know the first two terms in a series that may even
not converge properly (see however the fourth paper listed in [10] for a discussion on the
possible convergence of ‘optimised’ approximations and the Borel summability of QCD
and also [23] for a comparison of the NLO and NNLO optimised scales in Re+.-).

As already stated, the FAC method is based on one of the more common methods for
estimating errors, the apparent convergence of the series. If this criterion is used then the
error would be zero for the FAC scale, % for the PMS scale and (C + 32—3B)ABLM
for the BLM scale. One could also be very conservative and compare the three LO and
NLO cross-sections simultaneously and assign the global difference as an error. This is,
however, unnecessarily pessimistic since it ignores some knowledge.

Another possibility is to look at the logarithmic derivative of the cross-section with
respect to the renormalisation scale, 81no/81n p}. By definition the error would then be
zero for the PMS scale, by A%, for the FAC scale and

Olno
Oln p%

B Morm [51 +2(1 + biABLa) (C + 3223))]

= 25
BLIM [1+(C+%B) \pru) )

for the BLM scale. If the renormalisation scale dependence is small, then the situation is
at least more favourable than if it is large. In the latter case it is clear that the theoretical
uncertainty is high, whereas in the former one it can be small even though this cannot be
said with any certainty. In other words, it is a necessary but not sufficient condition that
the renormalisation scale dependence is small.

It has been proposed by Brodsky and Lu [24] that Olno/dln ph| g (i.e. evaluated
at p% = ply@?) is a suitable measure of the theoretical uncertainty. The argumentation
for this is as follows. First of all the BLM scale should be chosen since this is the only
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Figure 9: DIS 2+1 jet cross-sections as obtained for the different scales. The error bars
for the BLM scale corresponds to the derivative §1n o/81n p% in this point

16

x=0.1

0.01

X =

x =0.001

x =0.0001



scale which behaves in a physical way. Secondly §1n ¢/81n p% is a measure of the renor-
malisation scale dependence which indicates the size of the uncalculated terms. Therefore

this has to be small and the ideal case would thus be when the BLM and PMS scales

coincide.

In Fig. 9 this error estimate is plotted for the points referring to the BLM scale and
it is also given in Table 1. Both the figure and the table shows that the theoretical
uncertainty becomes larger when Q? is decreased and z and y..: are held fixed. This
cannot be concluded from just comparing the scales in Fig. 6. The explanation is mainly
that the logarithmic derivative (Eq. (25)) is proportional to a? so that the running of the
coupling gives this effect.

Olno/0In pklpra

z Q2 Yeut
[GeV?] | .005 .01 .02 .04 .08
0.0001 9 10.050 | 0.032 | 0.027 | 0.185 | 0.917
0.0003 9| 0.027 | 0.033 | 0.004 | 0.110 | 0.440
0.001 910.038 | 0.018 | 0.016 | 0.046 | 0.215
0.001 90 | 0.024 | 0.003 | 0.001 | 0.029 | 0.103
0.003 9| 0.238 | 0.029 | 0.020 | 0.006 | 0.101
0.003 90 | 0.085 | 0.014 | 0.009 | 0.002 | 0.048
0.01 9 3.027 | 0.256 | 0.021 | 0.013 | 0.018
0.01 90 | 0.334 | 0.065 | 0.001 | 0.013 | 0.006
0.01 900 | 0.132 | 0.032 | 0.001 | 0.004 | 0.009
0.03 9 - - | 0.227 |{ 0.003 | 0.028
0.03 90 | 4.257 | 0.282 | 0.046 | 0.013 | 0.013
0.03 900 | 0.605 | 0.114 | 0.020 | 0.007 | 0.009
0.1 90 - - | 0.366 { 0.032 | 0.022
0.1 900 - | 0.808 | 0.114 | 0.014 | 0.012
0.1 9000 | 55.21 | 0.271 | 0.068 | 0.014 | 0.001
0.3 900 - - | 0.621 | 0.069 | 0.019
0.3 9000 -1 1.693 | 0.170 | 0.032 | 0.012
0.9 9000 -1 1.442 | 0.134 | 0.174 | 0.164

Table 1: Renormalisation scale uncertainty as defined by 8lno/81n p%|grar, with bold
face to show the region with better than 5% theoretical precision. (Missing values indicate
negative cross-section, cf. Fig. 9.)

4.4 Preferred y.,-values

With the theoretical uncertainty defined in the above described way one can exploit its
dependence on the jet resolution (ycut). It is easy to see from Table 1 that by choosing
Yeut in a suitable way one can always make the theoretical uncertainty small. Letting,
e.g., Olno/0In pk|gry < 5% define a small theoretical error gives the acceptable ycus
values indicated with bold face in Table 1, i.e. for small = one should use ye.: ~ 0.01 and
for large z one should use ycue ~ 0.04.

One can also see from Table 1 that there is an interval of useful y.,, values, especially
at small z there is a clear upper limit which is a new feature previously not encountered.
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The lower limit can be understood from the need to resum large logarithms of yc,: and the
upper limit is probably due to the neglect of terms proportional to ¥ in the calculations
which makes the a? corrections too much negative.

We note that this dependence on ye is actually beneficial from an experimental point
of view. First of all, a smaller y.,. gives a larger rate and thereby statistics. Secondly,
to be able to extract the gluon density at small £ [5] one wants to use a Yo as small as
possible in accordance with Eq. (24).

4.5 BLM scale: parameterisation and analytic expression

Since the BLM scale has been shown to be almost strictly proportional to @2 it is natural
to perform a fit in z with all Q2-points taken into account. The fit has been made for
Yeut = 0.02 since this seems to be the best compromise if one insists on using the same
Yeut 10 the whole kinematic range. The following function has been fitted

?=exp(A+ Blnz+ Cln*z + DIn®z) (26)
with the result A = —9.25, B = —3.37, C = —0.425, D = —0.0191. The fit can bee seen

2
pBLM T”l I lllllll}\ I llllllll 1 llllllll I Illlllll
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Figure 10: Fit (solid) of phpay using Eq. (26) for yew = 0.02 using all ¢, Q*-points together
with the analytic expression Eq. (27) (dotted).

in Fig. 10 together with the analytic expression

Cay

The latter is expected to hold when the Compton process dominates and the term l—;f’ﬁ(l—

z) does not contribute in the integration in Eq. (21). The deviations from these conditi(?ns
explain the behaviour of our numerically calculated BLM scale. At small z the fusion
diagram dominates and therefore we expect the BLM scale to be close to Q2. At large
z, the expression 1;—:*"-(1 — z) is smaller than %y, in parts of the phase space and

consequently the BLM scale gets smaller due to minimum condition in Eq. (21).

)

(27)
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4.6 Comparison of Q? and the BLM scale

To see the potential effects of using the BLM scale instead of Q? as renormalisation scale,
the fit to the BLM scale given above has been used to calculate the 241 jet cross-section
in two (z,Q?)-areas for yo = 0.02. The calculation has been made with the DISJET
program for a high-Q? and a low-Q? bin with the following limits,

low-Q%: 0001 < =z < .02
0 < vy < .9
10 < @* < 100

high-Q%: .001 < z < .1
05 < ¥y < .9
100 < Q% < 9400

The resulting cross-sections are given in Table 2 and show very small differences (~ 1%)
between the two scales.

0241 [Pb]
low Q% | high Q*
ph = Q? 1269 472
LR = Pern@’ | 1257 479

Table 2: Cross-sections, in pb, for the low and high Q* bins.

However, it is important to keep in mind that even if o(p} = Q%) ~ o(ph = phru@Q?),
the Agcp extracted from analysing the running of the coupling will be different in the
two cases. As an illustration, consider a measured 2+1-jet cross-section in one (z,Q%)-
point. With the quantities A, B and C calculated it is then possible to extract a, once
the renormalisation scale is chosen. To a first approximation the extracted value of o, is
independent of y2 since the sum BNy +C +boIn(p%/Q?) is only weakly dependent on 1y,
With «, given, the value of Agcp will therefore scale with p since a, ~ 1/In(pk/Abep)-
To be more quantitative and taking the p%-dependence into account, assume that

d(TNLO

Zz_zdth_z (z = 0.1, Q% = 900, yeus = 0.04) = 1782 pb/GeV?
T

has been measured. Depending on whether @ or p}; @ is used as scale one gets the
following results

ph=Q: a,=0.1307 = AL =213MeV
uh = phpaQt: a, =01370 = AL =74 MeV

where p4r, = 0.05432 has been used. One sees that taking the p%-dependence from
boln(p%/Q?) into account makes Aprp > permAg: = 50 MeV.
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4.7 Factorisation scale effects

Above we have only considered the case p% = Q2. A complete analysis of the scale
ambiguities in the DIS 2+1 jet cross-section would also have to include the effects of the
factorisation scale uncertainty. Referring to Eq. (22) we see that p% # Q? will introduce
extra terms, both Ny-dependent and Ny-independent, in addition to the yr-dependencein
the parton densities. A change of the factorisation scale will influence the renormalisation
scale to an extent that depends on the factorisation scheme through the absorption into
parton densities. As a rough estimate of the influence of the factorisation scale on our
renormalisation scale results we have simply redone the determination of the latter by
using Eq. (22) with p% = 0.1Q? and p% = 10 Q2.

In short the effects can be described as follows. First of all the general (z,Q%, yeu )-
dependencies are not affected, but the renormalisation scales are shifted when the factori-
sation scale is changed. For large z the effects are small but for small z they are quite
considerable (factor 4-5). This big effect is more of a worst case than a realistic estimate.
Physically we expect the factorisation scale to be of the same order as the renormalisation
scale and since u% ~ @* we do not expect the factorisation scale to be very different. As
indicated, part of the up-dependence should presumably be absorbed against other terms
from the structure functions and thus not contribute or affect the renormalisation scale.
It is clear, however, that this deserves a separate study to obtain a complete estimate of
the theoretical uncertainty.

5 Summary and conclusions

In this paper we have investigated the renormalisation scale dependence of the DIS 2+1
jet cross-section and three different methods for how to fix the renormalisation scale, the
BLM, FAC and PMS methods. The different scales are obtained in the following ways:
the BLM scale by absorbing all N;-dependent terms into the running of «,, the FAC
scale by requiring that the LO and NLO cross-sections coincide and the PMS scale by
minimising the renormalisation scale dependence of the cross-section.

The scales were calculated using the complete O(a?) cross-section with the jets defined
according to the JADE algorithm, s;; > y...W?, for representative z, Q? and ycy: values in
the HERA kinematic range. The scales are approximately proportional to Q* whereas the
z and y..; dependencies are more complicated. The BLM scale increases with decreasing
z and increasing ye. which is what we expect physically since the typical invariant mass
of pairs of partons goes as y..W? = Yeur @?2=% from the jet-definition. The FAC and
PMS scales also increase with decreasing z for large yeu, but for small y.. the trend is
the opposite. There is also an unphysical increase of the FAC and PMS scales for large
z when ycu is decreased. This indicates that the BLM scale is a better choice from a
physical point of view.

The scales obtained using the complete O(a?) cross-section are also compared with
the ones obtained using the partial cross-section from the contraction with the metric
tensor and earlier results on 3-jet production in e*e~ [22]. For large z the scales more
or less agree and behave in a similar way as a function of yeu, but for small z the FAC
and PMS scales from the complete DIS 2+1 jet cross-section behaves in a different way.
The difference is mainly due to the dominance of boson-gluon fusion and, in particular,
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its contribution to the ‘non-metric’ longitudinal part of the cross-section which is only
present in the complete O(a?) DIS cross-section.

To estimate the theoretical uncertainty due to the renormalisation scale dependence
we use the logarithmic derivative of the cross-section with respect to the renormalisation
scale evaluated for the BLM scale. By choosing an appropriate value of y.,: it is possible
to make the uncertainty defined in this way small. The range of useful y.. values is
Yeut ~ 0.01 — 0.04 with the smaller value for small z and the larger one for large x. Thus,
a reliable theoretical result sets not only a lower limit on y.,:, but also an upper one.

Our results on useful y.,; values can be translated into other jet-definitions which also
use invariant mass cut-offs, e.g. s;; > y.,,M?. The suitable values of y_,, are then simply
given by rescaling of our results, y. , = %ycut.

Choosing ¥y values as indicated above the differences between the cross-sections for
the different scales is very small, ~ 1%. This can be compared with the difference between
the LO and NLO cross-sections using Q2 as scale which is in the order of ~ 10%. It is
also interesting to note that for these y..-values the preferred scales are in the order of
p% ~ Q? for small z and p% ~ 0.1 Q? for large =.

A fit of the BLM scale (p%;,,) as a function of z has been made for y... = 0.02 using
all Q? points. This fit is then used to calculate the cross-section for a low and a high Q?
region in the (z,@?)-plane. The difference in the cross-section obtained using the BLM
scale and the simple Q? as scale is small, ~ 1%. Nevertheless it is important to use the
correct scale if the running of a, is to be analysed or a proper value of Agcp extracted.

A complete analysis of the scale ambiguities in DIS would also have to include the
factorisation scale dependence. The effects of using u% # Q? have been estimated crudely
by calculating the renormalisation scales for two different choices, u% = 0.1 Q? and p% =
10 Q2. The conclusions on suitable y.,:-values and cross-section differences are the same,
but the numerical values of the scales are changed.

In conclusion, we have demonstrated that with an appropriate jet definition it is
possible to control the renormalisation scale uncertainty of the DIS 2+1-jet cross-section
such that precision tests of QCD are facilitated.
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helpful discussions and to Yu. Dokshitzer and G. Kramer for comments on the manuscript.
We would also like to thank E. Mirkes for helpful communications regarding the DISJET

Monte Carlo program.
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A  Summary of renormalisation scales obtained

Q? [GeV?] z You | Py | Prac | PPus
.0001 | .005 | 1.07 | 0.42 | 0.30
.0001 | .010 | 1.37 | 0.85 | 0.61
.0001 | .020 { 1.93 | 5.00 | 3.56
.0001 | .040 | 3.26 | 113. | 79.9
.0001 | .080 | 7.46 | 9949. | 6991.
.0003 | .005 | 0.908 | 0.71 | 0.51
.0003 | .010 | 1.09 | 0.69 | 0.50
.0003 | .020 { 1.44 | 2.19 | 1.57
.0003 | .040 | 2.24 | 25.5 | 18.1
.0003 | .080 | 4.48 | 1083. | 764.
.0010 | .005 | 0.728 | 1.89 | 1.35
.0010 | .010 | 0.825 | 0.81 | 0.58
.0010 { .020 | 1.05 | 1.03 | 0.74
.0010 | .040 | 1.48 |5.22 | 3.72
.0010 | .080 | 2.57 | 102. | 72.8
.0030 | .005 | 0.517 | 7.09 | 5.04
.0030 | .010 | 0.588 | 1.28 | 0.92
.0030 | .020 | 0.752 | 0.71 | 0.51
.0030 | .040 | 1.00 | 1.58 | 1.13
.0030 | .080 | 1.55 | 12.9 | 9.18
.0100 | .005 | 0.247 | 25.3 | 18.0
.0100 | .010 | 0.297 | 2.92 | 2.08
.0100 | .020 | 0.440 | 0.83 | 0.59
.0100 | .040 | 0.607 | 0.67 | 0.48
.0100 | .080 | 0.866 | 1.68 | 1.20
.0300 | .005 | 0.078 | 48.4 | 34.3
.0300 | .010 | 0.089 | 4.79 | 3.41
.0300 | .020 | 0.173 | 0.96 | 0.69
.0300 | .040 | 0.292 | 0.40 | 0.29
.0300 | .080 | 0.449 | 0.42 | 0.30

Table 3: Obtained renormalisation scales in Q* = 9GeV?2.
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Q* [GeV?] z Yeut | PBLM | PFac | PPus
90. | .0010 | .005 | 0.670 | 2.29 | 1.68
90. | .0010 | .010 | 0.822 | 0.959 | 0.705
90. | .0010 | .020 | 1.03 142 | 1.04
90. | .0010 | .040 | 1.45 7.03 |5.15
90. | .0010 | .080 | 2.56 154. | 112.
90. | .0030 | .005 | 0.451 |6.74 |4.94
90. | .0030 | .010 | 0.598 | 1.39 | 1.02
90. | .0030 | .020 | 0.754 | 0.683 | 0.502
90. | .0030 | .040 | 0.993 | 1.47 | 1.08
90. | .0030 | .080 | 1.54 15.2 | 11.1
90. | .0100 ; .005 | 0.180 |20.6 | 15.0
90. | .0100 | .010 | 0.305 |2.47 |1.81
90. | .0100 | .020 | 0.446 | 0.630 | 0.463
90. | .0100 | .040 | 0.605 | 0.476 | 0.350
90. | .0100 | .080 | 0.855 | 1.54 | 1.13
90. | .0300 | .005 | 0.0409 | 40.6 | 29.7
90. | .0300 | .010 | 0.0893 | 3.76 | 2.75
90. | .0300 | .020 | 0.172 | 0.741 | 0.545
90. | .0300 | .040 | 0.288 | 0.246 | 0.182
90. | .0300 | .080 | 0.437 | 0.352 | 0.259
90. | .1000 | .005 | 0.0044 | 42.2 | 30.8
90. | .1000 | .010 | 0.0110 | 3.42 | 2.51
90. | .1000 | .020 | 0.0264 | 0.520 | 0.382
90. | .1000 | .040 | 0.0606 | 0.149 | 0.110
90. | .1000 | .080 | 0.127 | 0.089 | 0.066

Table 4: Obtained renormalisation scales in Q* = 90GeV?.
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Q* [GeV?] z You | Phim | Prac | PPms
900. | .0100 | .005 | 0.131 9.33 6.81
900. | .0100 | .010 | 0.240 1.52 1.11
900. | .0100 | .020 | 0.385 0.558 | 0.409
900. | .0100 | .040 | 0.560 0.581 | 0.426
900. { .0100 | .080 | 0.834 2.11 1.54
900. | .0300 | .005 | 0.0351 | 23.5 17.1
900. | .0300 | .010 | 0.0786 | 2.82 2.06
900. | .0300 | .020 | 0.155 0.527 | 0.386
900. | .0300 | .040 | 0.266 0.244 | 0.179
900. | .0300 | .080 | 0.413 0.316 | 0.232
900. | .1000 | .005 | 0.0039 | 28.7 21.0
900. | .1000 | .010 | 0.0097 | 2.50 1.83
900. | .1000 | .020 | 0.0235 | 0.413 | 0.303
900. | .1000 | .040 | 0.0543 | 0.125 | 0.092
900. | .1000 | .080 | 0.116 0.085 | 0.062
900. | .3000 | .005 | 0.00057 | 18.8 13.7
900. { .3000 | .010 | 0.00135 | 1.32 0.964
900. | .3000 | .020 | 0.00324 | 0.163 | 0.120
900. | .3000 | .040 | 0.00790 | 0.0384 | 0.0283
900. | .3000 | .080 | 0.0192 | 0.0140 | 0.0104

Table 5: Obtained renormalisation scales in Q% = 900GeV 2.

Q* [GeV?] z Yeut PBLM PEac Prus
9000. | .1000 | .005 | 0.00312 | 20.6 15.0
9000. | .1000 | .010 | 0.00757 | 1.97 1.44
9000. | .1000 | .020 | 0.0180 0.352 0.258
9000. | .1000 | .040 | 0.0411 0.125 0.0915
9000. | .1000 | .080 | 0.0909 0.112 0.0818
9000. | .3000 | .005 | 0.00054 | 15.2 11.0
9000. | .3000 | .010 | 0.00130 | 1.13 0.825
9000. | .3000 | .020 | 0.00310 | 0.141 0.103
9000. | .3000 | .040 | 0.00757 | 0.0349 0.0256
9000. | .3000 | .080 | 0.0185 0.0129 0.0095
9000. | .9000 | .005 | 0.000025 | 0.0204 0.0150
9000. | .9000 | .010 | 0.000058 | 0.000561 0.000416
9000. | .9000 | .020 | 0.000131 | 0.0000322 | 0.0000257
9000. | .9000 | .040 | 0.000307 | 0.00000268 | 0.00000252
9000. | .9000 | .080 | 0.000748 | 0.00000037 | 0.00000035

Table 6: Obtained renormalisation scales in Q% = 9000GeV 2.
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