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Abstract
A deformed version of the vibron model for diatomic molecules is constructed. Both of
the O(4) and U(3) dynamical symmetries of the model are rewritten, using the concept of
complementary subalgebras, in a more convenient form, which is subsequently deformed.
The present model unifies the so far independent successful quantum algebraic approaches
to rotational and to vibrational spectra of diatomic molecules. In addition, the method

can be used for the construction of deformed versions of the U(5) and O(6) limits of the
Interacting Boson Model of nuclear structure.

PACS numbers: 33.10.Cs, 31.15.+4, 02.20.Sv

1. Introduction

The mathematical structure of quantum algebras (quantum groups) [1-4] is attracting
recently much attention. They are deformed versions of the usual Lie algebras, to which
they reduce when the deformation parameter ¢ is set equal to 1. In paraliel, applications
of quantum algebras in physics have begun to develope, in particular in cases in which Lie
algebras are known to describe approximately the symmetries of a physical system. The
quantum algebra SU,(2) has been successfully used for describing rotational spectra of di-
atomic molecules [5-7], deformed nuclei [8-10}, and superdeformed nuclei [11]. Vibrational
spectra of diatomic molecules have been described in terms of deformed oscillators [12-16],
as well as in terms of an SU,(1,1) sy;rlmetry (17,18]. Potentials giving spectra equivalent to
those of the deformed oscillators just mentioned have been constructed [19,20] and found
to be deformed versions of the modified Péschl-Teller potential, or, equivalently, the Morse
potential.

On the other hand, the vibron model [21-23], having an overall U(4) symmetry, is
known to provide a unified description of molecular rotations and vibrations through the
use of algebraic techniques, in a way similar to the description of collective nuclei in terms
of the Interacting Boson Model (IBM) [24]. The O(4) limiting symmetry of the vibron
model has been found to be appropriate for diatomic molecules, while the U(3) limiting
symmetry has been used for the description of clustering effects in nuclei, as well as for
the quasi-molecular description of heavy-ion resonances (see [25] for lists of references).

The question is therefore created if a deformed version of the vibron model can ac-
commodate in a unified framework the improved descriptions of rotational and vibrational
molecular spectra obtained so far in terms of separate quantum algebras. The problem of
constructing the deformed version of the vibron model (or of the IBM) is not a simple one,
since the construction of the reduction chains of Ug(4) and U,(6) has not been achieved
yet. It suffices to be mentioned that the reduction from SUy(3) to SO4(3) has been carried

out only for fully symmetric irreducible representations (irreps) of SU,4(3; |26 However,
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a few efforts towards constructing deformed versions of the vibron model {27,28] and the
IBM {29,30] already exist.

In this paper a deformed version of both the O(4) and U(3) dynamical symmetries of
the U(4) vibron model will be constructed, taking advantage of the techniques of comple-
mentary algebras, introduced by Moshinsky and Quesne [31-33], which by-pass the diffi-
culties in the construction of reduction chains of quantum algebras. In addition to unifying
the existing independent quantum algebraic descriptions of rotational and of vibrational
molecular spectra, the present approach allows in a simple way for the introduction of
cross-terms describing the coupling between these two excitation mechanisms.

A brief account of the vibron model for diatomic molecules will be given in section
2, while in section 3 the model will be formulated in a new way, using the techniques
of complementary algebras. In section 4 the q-deformed version of the complementary
analogues of both the O(4) and U(3) dynamical symmetries of the vibron model will be
given, while section 5 will contain discussion of the present results and plans for further
work.

2. The vibron model for diatomic molecules

In this section the briefest possible account of the vibron model [21-23] is given in its
usual form. In the vibron model the rotations and vibrations of a diatomic molecule are
described in terms of 4 bosons: a scalar boson of positive parity and angular momentum
=0, denoted by s*, and the three components of a vector boson of negative parity and
1 =1, denoted by p}, s = 0, £1. The corresponding annihilation operators transforming
as spherical tensors are § = s and 5, = (—1)"#p_,. Denoting these bosons by b,*,'“,
1 =01, -1<pu<l and b, = (~1)""b -, and defining the tensor product of two
operators T:“ and T:,’ as

(T8 @ TH)* = Y (kiurkuslksus)TEI T2, (2.1)

UMz
one observes that the 16 possible bilinear quantities (b} ® br]% generate the algebra U(4),

which is, therefore, the overall symmetry of the vibron model.

3
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There are two chains of subalgebras of U(4) containing the angular momentum algebra

SO(3) as a subalgebra. These are
I U(4) D 0(4) O SO(3) D 50(2), (2.2)

I U@4) > U(3) D SO(3) D SO2). (2.3)

In the case of chain I the basis has the form |NwLM >, where the various quantum
numbers are:

i) N is the total number of bosons. It characterizes the irreducible representations
(irreps) of U(4), which are fully symmetric, since we are dealing with a system of bosons.

i) w is the seniority quantum number, characterizing the irreps of O(4) and obtaining
the valuesw =N, N—-2,...,lor 0.

iii) L is the angular momentum quantum number, labelling the irreps of SO(3) and
taking the values L=w,w ~1,...,1,0.

iv) M denotes the z-component of the angular momentum, labelling the irreps of
SO(2) and having the values —L <M < L.

When the Hamiltonian is characterized by the dynamical symmetry of chain [, it can

be written in terms of the Casimir operators of the algebras appearing in this chain:
H; = eo + 6C1(U(4)) + €2C2(U(4)) + AC2(0(4)) + BC3(SO(3)), (2.4)

where N and N2 are related to the first and second order Casimirs of U(4). The eigenvalues

of the Hamiltonian in the basis given above are then

E(N,w,L) = & + e N + aN(N + 3) + Aw(w +2) + BL(L +1). (2.5)

Usually the vibrational quantum number

(2.6)



is introduced, and the energy eigenvalues are rewritten as
1
E(N,v,L) = ¢y + | N + e, N? —4A(N + 2)(v + 5) +4A4(v + %)2 + BL(L+1), (2.7)

where €}, €}, ¢, are related to €, €;, €2, A. It should be noticed that the 4th and 5th term
in the rhs correspond to the spectrum of the Morse potential 34].

In the case of chain II the basis is |[Nn,LM >, where N is again the total number of
bosons, while the other quantum numbers are:

i) np is the number of p-bosons, labelling the irreps of U(3) and obtaining the values
n,=0,1,..., N.

ii) L is labelling the irreps of SO(3), obtaining the values L = np,np—2,...,10r0.

iii) M is labelling the irreps of SO(2), with values —L < M < L.

When the Hamiltonian is characterized by the dynamical symmetry of chain II, it can

be written in terms of the Casimir operators of the algebras appearing in it:
Hip = &0 + e1C1(U(4)) + 2C2(U(4)) + €C1(U(3)) + aC2(U(3)) + BC2(SO(3)).  (2.8)

The eigenvalues of the Hamiltonian in the basis given above are

E(N,np,L) = e + 1N + aN(N +3) + en, + any(n, +2) + SL(L + 1). (2.9)

3. Alternative formulation of the vibron model

An alternative formulation of the vibron model can be achieved in terms of comple-
mentary algebras. The notion of complementary algebras was introduced by Moshinsky
and Quesne [31-33]. It is especially fruitful in the case of multidimensional harmonic os-
cillators or many particle systems of few kinds of bosons. In the present case of 4 kinds of

bosons (s*, p}, 4 =0, £1) the host algebra is Sp(8,R). Two chains of subalgebras are

Sp(8,R) D U(4) D> O(4) > SO(3) D SO(2), (3.1)
Sp(8,R) D Sp(2,R) D U(1). (3.2)
5

The quantum numbers N, w, L, M, labelling the irreps of the subalgebras df the first chain,
have been described in section 2. Sp(2,R) is isomorphic to SU(1,1). Theireps of SU(1,1)
and U(1) are labelled by the quantum numbers j and m, respectively. Twosubalgebras 4,
and A; of a larger algebra A are complementary within a definite irrep of 4, if there is an
one-to-one correspondence between all the irreps of A; and of 4; contained in this irrep of
A [31]. In the example given above, the only irreps of the host algebra Sp(8,R) which can
be realized in a Fock boson space are the even irrep [0], including the vectors [NwLM >
with N=even, and the odd irrep [i], including the vectors with N=odd It can then be
proved that O(4) and Sp(2,R) (and thus also O(4) and SU(1,1)) are compiementary. The
same holds for U(4) and U(1).

For convenience let us denote the 4 kinds of bosons introduced i section 2 by b},
v =1, 2, 3, 4, corresponding to pi], Y., pt, st respectively. To each kind v of bosons
corresponds an algebra Sp*(2,R), generated by

1, ., 1 1 1
[ [ Q" v - 3.3
K 2b‘,b,,, K 2bubn Ky 2(Nv+2)7 (3.3)

where N, = b}b,. These generators satisfy the commutation relations
Ky, KL} = +K%, [K{,K"] = —2K¢. (3.4)

The Sp(2,R) =~ SU(1,1) algebra, mentioned above, is realized in the space of 4 kinds of
bosons. Therefore we are going to use for it the symbol Sp!?34)(2R) ~ SU234)(1 1),

This algebra is generated by

1 it .1 1
K+=§Zb,,b,,, I\.._Ezv:b,,b,,, Ko = 5(N +2), (3.5)

14

where N =Y, b}b,. These generators satisfy the commutation relations
{Ko,Ki] = :tK:t, [K+,K_] = —2Ko. (36)
The Casimir operator is

Ca(SpU" (2, R)) = ~K 4+ K_ + Ko(Ko — 1), (3.7)

6



with eigenvalue j(j +1). It is known that when O(n) and SU(1,1) are complementary, the

quantum numbers w and j characterizing their irreps are connected by {35]

n—4
2

j= o+ 50 (3.8)

In the present case SU(1234)(1.1) is complementary to 0(4), so that

. w N-v

It is also known that the Casimir operators of two algebras complementary to each other

are connected by a simple, usually linear, relation of the type
Cz(Al) = chg(Ag) + ca. (3.10)

In the case of O(n) and SU(1,1) this relation is

1 -4
Ca{SU(L 1)) = 7Ca(0(m) + “(“16 ) (3.11)
which in the present case of O(4) reduces to
Co(SUMBI(1,1)) = 3C:(0). (3.12)

The U(1) subalgebra of SU(1234)(1,1) is generated by the operator K, alone, the
eigenvalues of which we label by m. In the general case of the complementary algebras
U(n) and U(1), the quantum npumbers N and m characterizing their irreps are connected
by [35]

m = %(N +3) (3.13)

which in the present special case of U(4) and U(1) reduces to
1
m = (N +2). (3.14)

The chain of eq. (3.1) already studied is of interest in the case of the chain I of the

vibron model. It implies that in studying chain 1, one can replace in the basis |INwLM >

7

the quantum numbers Nw by the quantum numbers jm of the complementary subalgebras.
Furthermore, in the Hamiltonian of eq. (2.4) one is entitled to replace the second order
Casimir of O(4) by the second order Casimir of SUU234)(1,1), and the first and second
order Casimirs of U(4) (N and N(N +3)), by the first and second order Casimirs of U(1)
(Ko and K3).

In the case of chain II, the U(3) subalgebra of U(4) involves only the p-bosons. The

host algebra is then Sp(6,R), having the two chains of subalgebras
Sp(6,R) D U(3) D2 SO(3) D SO(2), (3.15)

Sp(6,R) D SUM®)(1,1) D U(1), (3.16)

where the superscript (123) means that only the bosons b, b, b3 are involved in the
formation of SUUX1,1) = Spt173)(2,R). Further details on these chains are given below
(see eqs (3.26) - (3.28)).

The building up of the bases related to the two limiting symmetries of the vibron model
can then be achieved as follows. To each kind of boson b}, an Sp*(2,R) algebra corresponds,
as already mentioned, generated by the operators given in eq. (3.3). The states with
N,=even correspond to the irrep D—3/4_ while the states with N,=0dd correspond to the
irrep D™1/4. Thus to each boson state

|Ny N N3Ny >= (b,*)”‘(b;“)”’(b}’)"’(b})”‘ o>, (3.17)

1
Nl. PYPALTYARY

one can correspond a set of 4 noncompact “angular momenta” j, = —3/4or—1/4,v=1,2,
3, 4, the value of each angular momentum jv depending on the parity of the corresponding
boson number N,.

We can now proceed to the vector coupling of the first two “angular momenta” j and
ja, using the SU(1,1) Clebsch-Gordan coefficients [36,37)

|71dz : izraz >= Z < jimyjamaliizmiz >sua, ljima > |jame > . (3.18)

mymy



This means that the intermediate SU('?)(1,1) algebra has been introduced, generated by
12 _ gl 2
K=K, +K,, (3.19)
with g = 0, £1. The host algebra of this space of two kinds of bosons is Sp(4,R). The
following two chains of subalgebras exist
Sp(4,R) D U(2) D SO(2), (3.20)

Sp(4,R) o sUM(1,1) > U(1), (3.21)
where the irreps of U(2) are labelled by the total number of bosons Ny; = N; + N», while

the irreps of SO(2) are labelled by M = N; — N;. SO(2) is complementary with SUaA(1,1)
~ Sp1?)(2,R), the irreps of which are labelled by

= 5(M = 1), (3:22)

according to eq. (3.8), while U(2) is complementary to U(1), the irreps of which are labelled
by
1
myp = §(N12 +1), (3.23)
according to eq. (3.13).

The next step along this line is to couple ji» with j3. In this case 3 kinds of bosons
are involved, so that the host algebra is Sp(6,R). The relevant chains for this case have
been given in egs (3.15) — (3.16), SO(3) being complementary to SU(23)(1,1), which is
generated by )

K® =K}*+ K}, (3.24)

with g = 0, 1. The resulting eigenvectors are
|7192(J12)d3 ¢ jrzamazs >

= Y <jumijamaliizsmizs >sua iz jume > lams > (3.25)

miyms

The Casimir operators of SO(3) and SU(133)(1,1) are connected by
C2(SO(3)) = 4C3(SUM(1,1)) + % (3.26)

according to eq. (3.11), while the quantum numbers labelling their irreps, L and 323

respectively, are connected by
1 1
fiza = (L — =), 3.27
J123 2( 2) ( )

according to eq. (3.8). The eigenvalues of C2(SUU23)(1,1)) in the above mentioned basis
are given by jiza(jizs + 1). Furthermore, in the chains of egs (3.15) - (3.16), U(3) and
U(1) are complementary, the quantum numbers n, and mi23 labelling respectively their
irreps being connected by

1 3
my23 = '2‘(np + 5)’ (3.28)

according to eq. (3.13).
The coupling of the two “angular momenta” j, and j,, performed above, can be

avoided, by noticing that the SU’?(1,1) can be generated by
K2 =bttf, KZ=bb, K= %(N1 + N +1). (3.29)

The vectors

. 1
[f12m12 >= W(”T)“‘(”?)N’IO >, (3.30)

with

. 1 1
Jiz2 = E(Nl -— N2 - 1), myz = E(Nl + N'Z + 1)7 (331)

(which are in agreement with eqs (3.22) - (3.23)) are eigenvectors of the Casimir operator
C2(SUU3(1,1)), with eigenvalues j12(jiz + 1). In this way one can avoid the coupling of
j1 and jz to jiz. The coupling of j12 and j3 cannot be avoided, however. The resulting
vectors in this case we denote by |71273 : 7123123 >

In the last step the coupling of jia3 to j4 is performed. The host algebra in this case

is Sp(8,R), the relevant chains having been given in eqs (3.31) - (3.32). The basis vectors,
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denoted by |j172(j12)is(s123)fs : jm >, or by |ji127a(j1z3)ie : jm > in the case in which
the shortened version of eq. (3.30) is used for the vectors with “angular momentum” J12,

correspond to the irreps of the Sp!234(2,R) ~ SU'?%(1,1) algebra, generated by
1234 _ 7123 4
K»® =K," + K, (3.32)

with p = 0, 1. Here K} are the generators of the SU*(1,1) algebra, associated with
the s-bosons. The total noncompact “angular momentum” j, characterizing the irreps of
SU1234)(1,1), is connected to the seniority quantum number w, characterizing the irreps
of O(4), by eq. (3.8), while the Casimir operators of these two complementary algebras
are connected by eq. (3.12).

Given the above, it is clear that for the chain I of the vibron model, instead of the
basis |[NwLM >, the basis |j1253(j123)ja : Jm > can be used. Furthermore, in the case
of chain II, instead of the basis |[Nn,LM >, the basis |j1273 @ j1z3mi23 > |jam4 > can
be used. It is clear that the connection between the two new bases for the dynamical
symmetries of the vibron model is

|j1273(J123)de 1 g >= Z < jrzamyzsjemalim >sua bizds : J1zsmazs > [Jama > .
™myzamy
(3.33)
The Hamiltonian of chain I, given in eq. (2.4), can be rewritten using the complemen-

tarity relations described in egs (3.1), (3.2), (3.15), (3.16), as
Hy = € + &C1(U(1)) + ,C2(U(1)) + 4AC,(SUCBY(1,1)) +4BCx(SUUR)(1,1)). (3.34)
"The eigenvalues of this Hamiltonian are
E(m,j,jizs) = € + em + &m? +445(+1)+ 4Bjiza(fazs + 1) (3.35)

Using eqs. (3.14), (3.9), (3.27), which connect the quantum numbers m, j, J123 to the
previous ones (N, w, L), it is easily verified that eq. (3.35) is an alternative way of writing

eq. (2.5).
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Similarly the Hamiltonian of chain II, given in eq. (2.8), can be rewritten, taking into

account the complementarity relations given in egs (3.1), (3.2), (3.15), (3.16), as
Hyp =€y + éym+ &m? + €miza + a'm?yy +48'C2(SUC(1, 1)), (3.36)

where in the rhs the 2nd and 3rd term correspond to the first and second order Casimir of
the U(1) algebra of the chain of eq. (3.2), while the 4th and 5th terms correspond to the
first and second order Casimir operators of the U(1) algebra appearing in the chain of eq.

(3.16). The eigenvalues of this Hamiltonian are
E(m,myz3,5123) = € +eam+ eym? + é'miz + a'm?y, +48' f12a(hzs + 1). (3.37)

Using eqs (3.14), (3.28), (3.27), which connect m, miz3, jizsto N, np, L,itis easily verified
that eq. (3.37) is an alternative way of writing eq. (2.9).

In this section we have therefore rewritten the bases and the Hamiltonians corre-
sponding to the two dynamical symmetries of the vibron model in terms of complementary
subalgebras. This formulation is useful because it can be q-deformed in a very simple way.

4. g-deformation of the vibron model

In the previous section the subalgebra chains of the vibron model were reduced to

equivalent chains of complementary subalgebras
syt24)(1,1) 5 SUC®)(1,1) D sut¥(1,1) D UQQ). (4.1)

The corresponding Hamiltonians were then written in terms of the Casimir operators of
the new reduction chains. An evident possibility for g-deforming these Hamiltonians is to
substitute the SU(1,1) algebras of eq. (4.1) by their g-deformed counterparts, SU.(1,1)
[38-40)

sui®9(1,1) > su{3(1,1) > sud®(1,1) > U,(1)- (4.2)

In this section we shall explain how this can be achieved, after giving & brief account of

the necessary mathematical details.

12



gq-numbers are defined as

_¢-qF
=]y = a—q1 (4.3)
For ¢ real (¢ = ¢™ with 7 real), they can be written as
sinhrz
[zl = sinht ’ (44)
while in the case of ¢ being a phase (g = ¢” with 7 real), they obtain the form
sinTz
[2le = — (4.5)
In the limit ¢ — 1 (7 — 0), g-numbers reduce to usual numbers.
g-deformed oscillators [41,42] are introduced through the relations
aat — qila+a = q:FN7 [Nv a+] = a+1 [Nv a] = ~a, (4.6)

where at, a are the g-deformed boson creation and annihilation operators and N the

relevant number operator. Using eq. (4.6) one can easily show that
ata=[N],, aa*=[N+1],. (4.7)

q-deformed algebras can be expressed in térms of q-deformed bosons. Introducing at
as the q-deformed analogues of b} (i = 1, 2, 3, 4), with the properties

(o}, at] = a2yl = larsa}] =0 v # 4, (48)
one can prove that SU(,“)(l,l) is generated by [38—40]
K =atat, K =ma, K§P =N+ N+1), (4.9)
the relevant commutation relations being

M K = 2k, (KEP KO = -2k, (4.10)

13

The vectors
1

|jlzm12 >4= ———_——]—[Nllq![N2 q!

with ji2, miz still given by eq. (3.31), are eigenvectors of the deformed Casimir operator

(@ )M (aF )M 10 >, (4.11)

C(SULP(L,1) = ~KPPV KD 1 (K IR - 1), (4.12)

with eigenva.lues (jﬂ]q'jl? + I]q
For the SU”(1,1) algebras one has the boson realization [38]

v _ _1_ + .+ v ___1__, Voo l ,].'
K} = [2]’a a’, K! = [2]qaa, Ky = 2(N,, + 2), (4.13)

where N, is the number of v-bosons. These generators satisfy the commutation relations
[Ky,Ki]=xK], Ky, KY] = —[2K]),. (4.14)

The SU}(1,1) and SU7(1,1) algebras we are not going to use explicitly in couplings, since
for the SU(,H)(l,l) algebra we already have the form given in eq. (4.9), which avoids the
direct coupling. In order to be able to couple SU3(1,1) and SU}(1,1) to SUgn)(l,l), it is
useful to have the same deformation parameter in all of these algebras, i.e. it is useful to
have the same deformation parameter in the commutation relations of eq.(4.10) and eq.
(4.14). In order to achieve that, we replace in egs. (4.13), (4.14) ¢? by q. As a result, for
v =3, 4, eq. (4.6) is meant from now on with g replaced by /g. Then one also has

ata, =[N,] /5 ayal =[N, +1] 4. (4.15)

Eq. (4.12), giving the Casimir operator, is therefore valid in this case with the usual
q-numbers.

The SU‘,’u)(l,l) algebra is generated by the operators

K9 = k(D 84k K KPP = KM + K3, (4.16)

14



i.e. it is a standard coproduct of the irreps Divat and D+ of the SU,(1,1) algebra.
Therefore the basis vectors, in analogy to eq. (3.25), are of the form
|71273 : J1zamazs >¢= Z < jrzmiziamaljizamias >su, (1) 12miz >q [jams >4,

my3ms

(4.17)
where < jymyjamz|im >sy,1,1) are Clebsch-Gordan coefficients for the tensor product of
two SUg(1,1) irreps. Explicit analytical formulae for these coefficients, as well as for the
relevant SU(2) coefficients, can be found in [43-47.

The SU(,”'“)(I,I) algebra is generated by the operators
KUP9 S KU Ky Ky R (4.18)
while the vectors analogous to eq. (3.33) are
|71243(J123)da 1 I >4
= Z < jrzamizsjamalim >su ) l12ds : J12amazs g lJama >g - (4.19)

my33Ms

These vectors are the q-analogues of the eigenvectors of the dynamical symmetry I of the

vibron model. Similarly the vectors
[712J3 : J1zamia2s >q |Jama >4 (4.20)

are the q-analogues of the eigenvectors of the dynamical symmetry II of the vibron model.
Therefore eq. (4.19) connects the eigenvectors of the two dynamical symmetries, as eq.
(3.33) does in the classical case.

In the case of dynamical symmetry I the Hamiltonian reads

Hi = e + a1[m}q + e2lm]; + 4ACK(SUYPY(1,1)) + 4BC,(SUY(1,1)), (4.21)

which is the q-analogue of eq. (3.34) (with the primes of the coefficients dropped). The

eigenvalues of this Hamiltonian are

E(m, j,ji23) = €0 + @1[m]q + e2[m]3 + 44l + 1] + 4Blj12)eli12s + g (4.22)
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In the limit ¢ — 1, eq. (3.35) is obtained. Assuming that m, j, jiz3 are still connected
to quantum numbers N, w, L, through egs (3.14), (3.9), (3.27), the last equation can be

rewritten in a way resembling its classical counterpart, eq. (2.5), as
E(N,w,L) = e, +€6,[N+2] 5+ &[N+ 2]3/,7+ A'lw] 4lw+2] 5+ B'[L]4lL + 1] 4 (4.23)

In producing the last equation, identities like

(2] =late? +a77 (4.24)
q

[L - %L [L + E], = [Ll[L + 1) - [%L EL (4.25)

Using eq. (2.6), eq. (4.23) can be rewritten as

have been used.

N N .
E(N,v,L)= e:,+€'1[N+2]\/;+e'2[N+2]f/;+A [v - —2-] [v —-1- —2—] +B'[L] 4IL+1) 5
! ! (4.26)
whice reduces to eq. (2.7) in the limit ¢ — 1, up to a redefinition of €, €}, €.

In the case of the dynamical symmetry II the Hamiltonian can be written as
Hir =€ +eafm]g+ 62["1]: +e [mnlgt+ea [ma2sl + ﬂcz(SU(,ua)(l. 1)), (427

which is the g-analogue of eq. (3.36) (with the primes of the coefficients dropped). The

eigenvalues of this Hamiltonian are
E(m,mi, L) = o +ea[mlg+ emj+e [mizlgta (m2a]3 + Blirzslelinzs + e (4.28)

In the limit ¢ — 1, eq. (3.37) is obtained. Assuming that m, mizs, jizs are connected to
N, n,, L, through egs (3.14), (3.28), (3.27), the last equation can be rewritten in a way

resembling its classical counterpart, eq. (2.9), as

3
E(N,np, L) =€+ [N +2} 4+ [N +2]3ﬁ+e' [n, + -2-]‘/_
: 7
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2
+a' [n, + %] A L) AL+ 1] 5 (4.29)
q

The results obtained in this section call for the following comments:
1) Rotational-vibrational spectra of diatomic molecules are described empirically by

the Dunham expansion [48]

E(v,L) = ZY-* (v+ ) (L(L + 1), (4.30)

where v is the vibrational quantum number, L the angular momentum, and Yj; the Dun-
ham coefficients, fitted to experiment. It is clear that the Dunham expansion contains
powers of (v + 1/2), powers of L(L + 1), as well as cross terms. Eqs (4.23), (4.29) contain
10 cross terms. This is due to the fact that in the Hamiltonians of eqs (4.21), (4.27), only
terms up to quadratic in the generators are included, as in the case of the classical vibron

model. Cross terms can be taken into account in the dynamical symmetry I, for example,

by modifying eq. (4.21) as follows
HY = Hy + DC(SUL(, 1))C2(SU (1, 1)) (4.30)
Then eq. (4.26) is modified as
E'(N,v,L) = E(N,v,L) + D' [v - %} [v _1- —] Ll +1e (431
7

ii) Rotational spectra in both dynamical symmetries (eqs (4.26), (4.29)) are described
by the term [L] 4(L + 1],5. This is known to be the Casimir operator of SU 4(2). The
SU4(2) model has been extensively used for the description of rotational spectra of diatomic
molecules [5-7], deformed [8-10] and superdeformed [11] nuclei. It has been found [9] that

this term is equivalent to an expansion in terms of powers of L(L +1)

[L}[L + 1)y = g Golm) (L + 1) = Ti(T)(I(L + 1) + T 2ja(T)L(L + 1))

G
-3 SN D)+ e+ D) = ) (432)
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where jn(7) are the spherical Bessel functions of the first kind and ¢ = ¢'". This expansion
is similar to the one contained in the Dunham expansion. In the case of SUy(2), however,
all the expansion coefficiens are related to powers of 7, thus resulting in economy of param-
eters. Notice that the decreasing of the coefficients of increasing powers of L(L+1), as well
as the alternating signs of the terms, facts that are known empirically to hold, occur in eq.
(4.32) automatically, since 7 is known [5-11] to obtain small positive values. Furthermore,
it has been proved [9] that the SU4(2) model is equivalent to the Variable Moment of Iner-
tia (VMI) model, which describes rotational stretching effects. The ¢ parameter has been
found [9] to correspond to the softness parameter of the VMI model. The implications of
the SU4(2) model on the electromagnetic transition probabilities connecting the rotational
levels of nuclei have been considered (10].

iii) The 4th term in eq. (4.26) corresponds to the Casimir operator of SUg(1,1),
already used [17] for the description of vibrational spectra of diatomic molecules. It has

been proved [17] that this term, for ¢ = ei, can be expanded as
N N 1
[v - —Z—]q [v -1- ?] . = m( (cos('r) — cos{T(N +2))) — rsin(r(N + 2))(v + )

+r2cos(r(N+2))(v+ 5 )2 + 37 Ssin(r(N+2)) v+ )3 - —T fcos(T(N+2))(v+5 )4 N
(4.33)
We remark that a series of powers of (v + 1/2) is obtained, similar to the one contained
in the Dunham expansion. In the present case, however, the expansion coefficients are all
related to T (and N, which in the vibron model is a constant for a given molecule), thus
resulting in economy in parameters.
iv) The anharmonicity constant (i.e. the ratio Yz0/Y10) in the classical case (eq.
(2.7)) is fixed to =1/(N + 2). In the deformed case of eq. (4.26), however, is equal to
—7/tan(r(N +2)), asitis easily seen from the expansion of eq. (4.33). The extra freedom

gained this way has been found [17] to improve the fits of vibrational molecular spectra.
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v) Since N is fixed for a given molecule (related to the maximum number of bound
states below the dissociation limit), the first three terms in eqgs (4.26), (4.29) have no
influence on the spectrum.

vi) In eq. (4.26) it is clear that the deformation parameter for the vibrational part
of the spectrum is 7, while for the rotational part it is z- Therefore a relation is implied
between the rotational stretching and the anharmonicity corrections. Careful empirical fits
are needed in order to decide if this is a restriction or an advantage of the present model.
There is no & priori reason, however, that these two physically different mechanisms be
described by the same parameter. A more general version of the model, allowing for these
two deformation parameters to be independent from each other, might give better results.

5. Discussion

In this paper a deformed version of the O(4) and U(3) dynamical symmetries of the
vibron model for diatomic molecules has been constructed. This has been achieved by
first rewriting, through use of the concept of complementary subalgebras, the model in a
more convenient form, which is subsequently deformed. The present approach unifies into
a common framework the so far separate quantum algebraic approaches to rotational and
to vibrational spectra of diatomic molecules.

For the O(4) limit of the present model, fittings to experimental data for diatomic
molecules are required. Its U(3) limit can be used for the description of clustering phenom-
ena in nuclei [49], as well as for the qu&i—holemﬂm description of heavy-ion resonances
[50]. The present work can be extended to the study of triatomic molecules [23]. The
method of complementary subalgebras can also be used in constructing [30] the deformed
versions of the U(5) and O(6) dynamical symmetries of the Interacting Boson Model (IBM)

(24] of nuclear structure.
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