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Lecture 1

Differential Geometry and
Poisson Structures

We will start with a general question: What does it mean that a system of
ODEs (ordinary differential equations) or PDEs (vartial differential equa-
tions) is a hamiltonian one?

In 19'th century people thought that such a system should possess some
Lagrangian formulation. But recent developments in dynamical systems (in-
cluding soliton theory and the theory of integrable systems) leads us to the
conclusion that there exist hamiltonian systems without natural underlying
Lagrangian formalism.

For example the following problem is open:

Are the Navier-Stokes equations for compressiwe liguid hamiltonian or
not?

Normally people think that these equations are non-hamiltonian. How-
ever this point of view is based on some confusion:

Tt is known that the noncompressive limit of this system is non-hamiltonian
but the Navier-Stokes system for the compressive fluid is very similar to a
hamiltonian system.

As a simple example consider the heat equation

Ut = Uggz.

This system has only one conservation law
/ u(z)dz.

2



If it is hamiltonian it should have at least two conservation laws correspond-
ing to time and space shifts so it is non-hamiltonian.

But the compressible Navier-Stokes system has a right number of conser-
vation laws, so the question is open.

This problem has been posed after the discussion with F.Goltz and C.Bardos
in Paris (June 1993). :

The hamiltonian formalism even for the Euler equations was constructed
rather late. In 1940 L.Landau tried to quantize the Euler equations. He
wrote formulas for the quantum commutators in 1940 which in fact coincide
with the Poisson Brackets of basic fields. But the notion of nontrivial (non-
canonical) Poisson structures did not exist till 70-ies and his results were
forgotten for a long period.

About 1965 Arnold constructed the hamiltonian formalism for the Euler
equations in terms of symplectic structures on the so-called ’Coadjoint orbits’
on the dual space to the algebra of all vector fields with zero divergence
(this algebra is the Lie algebra of the Lie group of all volume-preserving
diffeomorphisms.)

Before doing anything for PDEs we would like to recall the definition
of Poisson structure on a finite-dimensional manifold. In all mathematical
textbooks written after Arnolds work not the Poisson structure but the sym-
plectic structure was treated as the basic object. But in fact the Poisson
structure is a more fundamental object than the symplectic one. This fact
has been realised by A.Lichnerowitz in early 70-ies who suggested the exact
notion of Poisson Structure.

For example for many important systems the Poisson bracket is well-
defined but degenerate and it is rather nontrivial to construct the inverse
object (we have to restrict Poisson structure to some invariant submanifolds
and so on.) In the field theory normally the Poisson structure is local (given
by differential operators), but the symplectic structure is nonlocal and com-
plicated. It is normally degenerate. So we work with Poisson structures, not
with symplectic ones.

Let M be a finite-dimensional or an infinite-dimensional manifold (to
avoid technical problems we may assume now that M is finite-dimensional).

Let <, > be a bilinear form on covectors

< Vf,Vg>=hV;fV,qg. (1.1)

Note the h¥ is a tensor field with upper indices in contrast with the standard



metric tensor which is a tensor field with lower indices. Hamiltonian systems
can be written in the following form:

ool
6:1:,-
k¥ is like a metric but it is skew-symmetric.

Definition: A tensor field with upper indices k% is a Poisson structure
if the bilinear form on the gradients defined by the formula (1.1) possesses
the following properties:

Let {f,9} =< Vf,Vg>. Then

1) {f,9} = —{9,f} , 1.e. <,> is skew-symmetric.

2{{f,g},h} + {{h, f}, 9} + {{g,h}, f} =0

3) g, h} = F{g,h} + g1f, b}

Property 2) is called Jacobi identity. Property 3) may be treated as
something like Leibniz rule.

The definition of a Hamiltonian system is the following. Let us have a
function H on our manifold. Then for any function f we have:

f={f HY=<Vf,VH>.

If the matrix h* is nondegenerate, i.e. deth*’ # 0 then there exists a local
coordinate system in which the Poisson structure reads as:

-
h -[_10].

(Darboux’s theorem). Consider a 2-form
Q= h.',-dz" Adz?,
where h;; is the inverse matrix to the matrix k¥, ie.
R by = 6.

(We always sum over repeating indexes if the opposite is not stated explic-
itly). If the matrix h* is non-degenerate then the Jacobi identity is equivalent
to

dQ = 0.



In some important cases det A’ = 0. If the rank of the matrix A% is
constant in a neighbourhood of some point then there exists a local coordinate
system z = z(y) such that

o]0 10
Ri=]-10 0
0 00

Now we would like to give some examples of Poisson structures. (Let us
recall that if we have a Poisson structure and a Hamiltonian function then a
Hamiltonian system is well-defined).

Example 1.

h‘le 01 lok] dim M = 2k,
— 1k

Example 2. Assume that we have a charged particle in magnetic field.
Then we have a 2k - dimensional phase space with the coordinates (py, ..., px,
q'...,q").

The magnetic field reads as

B = Bagdq®* Ad¢®, dB =0.

Let us consider the following Poisson structure

B = [ ‘flf:ﬁ 10’° } . (1.2)

Formula (1.2) gives us a new Poisson structure because dB = 0. The new
Poisson structure generates a new Hamiltonian system.

For example

Standard tops in the gravity field may be written in such a
form with magnetic field of Dirac monopole type on the 2-sphere
S? after the proper factorization of Hamiltonian formalism using
the so-called ’Area integral’ — see the paper of Novikov published in
Russian Math Surveys, 1982, vol. 36, iss 4.

Definition. A function f belongs to the annihilator of the Poisson
bracket {,} if {f,g9} = 0 for any function g. Functions belonging to the
annihilator of the Poisson bracket are also called Casimirs.



In symplectic geometry we have only trivial annihilators — constant func-
tions. In field theory we usually have nontrivial annihilators.

Example 3. Lie-Poisson (Kirillov-Kostant-Beresin) brackets.

In some important cases h* are nonconstant. The simplest case is when
the functions h* are linear functions of the coordinates

R = c;'cja:k. (1.3)

Using skew-symmetry and Jacobi identity it is easy to check that (1.3) gen-
erates Poisson structure if and only if ¢} are structure constants of some Lie
algebra.

From the point of view of symplectic geometry these brackets are rather
complicated because they usually have nontrivial Casimirs.

Another important object are quadratic Poisson brackets connected with
the Yang-Baxter equation.

Now we would like to consider infinite-dimensional phase spaces. We shall
consider not general abstract infinite-dimensional manifolds but only specific
ones - manifolds of functions.

A general Poisson brackets on the space of functions read as

{¢'(2),¢'(y)} = h(z,y) = REI,

where h¥(z,y) are some distributions. (Of course skew-symmetry and Jacobi
identity pose some restrictions on h¥(z,y)). In this theory z is like an index,
summation over continuous index z will be replaced by integration.

Definition. An infinite-dimensional Poisson bracket on the space of func-
tions is called local if it reads as:

{¢'(2), ¥’ (W)} = kE_: Bi(2,8(z),@(a), ..., 8 (2))08(z —y).  (14)

In this case the corresponding hamiltonian system reads as

su
dpi

(] iJ

P =

where A% is some differential operator known as hamiltonian operator.
The function ¢(z) is a point of M so each point of our manifold is a
function of z.



In most of the important examples Poisson brackets are local (in 99 %
cases). Locality means that the functions h*(z,y) are different from 0 only
in an infinitely small (infinitesimal) neighbourhood of the diagonal z—y = 0.

In the infinite-dimensional case it is important which of the structures
is local - Poisson structure or the symplectic one. (Inversion of a local op-
erator is usually nonlocal). As a rule Poisson structures are local and the
corresponding symplectic structures are nonlocal (V.Sokolov and I. Dorfman
found some important examples when the symplectic structure is local and
the Poisson structure is nonlocal but such situations are very rare).

The Poisson bracket (1.4) can be written as

I . 8
@ @)

General Poisson brackets (without locality assumption) read as

Ul el = [dag (1.5)

61 .. 8J
Ilp), T} = [ dedy— —h¥(z,y)——.
{11e], Jlwl} Y 5i(a) ( y)&p,(y)
In the case of local brackets we integrate over only one variable z because
h*(z,y) contains §(z — y).
Let us consider some examples.
1). Ultralocal Poisson brackets

W lpl(z,y) = ¢¥(p)8(z — y).

Here the functions ¢(z) are maps from z-space to some finite-dimensional
manifold M and c¢*(¢p) are functions on this manifold. Such brackets are
well-known in the field theory.

2). Gardner-Zakharov-Faddeev bracket for Korteveg- de Vries (KdV)

system. In this case z is one-dimensional, we have only one field ¢(z) and

{e(2),p(y)} = 8'(z —y). (1.6)

From the classical point of view this bracket is nontrivial because it is not
ultralocal (it contains the derivative of the é-function).

3). Lenard-Magri Poisson bracket for KdV
{o(z), 0(y)} = c6"(z — y) + 20(2)6'(z — y) + ¢'(2)é(z — ¥).
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The Korteveg-De Vries equation has two hamiltonian representations:
in the Gardner-Faddeev-Zakharov bracket with the Hamiltonian

Hy = f(—(ez; + ¢%)dz
and in the Lenard-Magri bracket with the Hamiltonian
H, = / o?dz.
Gardner-Faddeev-Zakharov bracket has nontrivial annihilator
I,= /(p(z:)d:c.

Existence of two Poisson brackets describing the same system is a non-
trivial property, which is observed until now in integrable systems only.

Let us note that any combination of the Lenard-Magri bracket and the
Gardner-Faddeev-Zakharov bracket is a Poisson structure. It is a rather non-
trivial property, because the Jacobi identity is nonlinear in terms of Hamil-
tonian operators. (Jacobi identity is linear in terms of inverse objects -
symplectic structures). It is a good exercise to check this property.

The level of understanding of these subjects was very low in the scien-
tific community in mid-seventies. For example before that even the simplest
Gardner-Faddeev-Zakharov bracket was invented firstly as a nonlocal sym-
plectic structure. Some very good scientists proved in 1975 in a rather com-
plicated way the Jacoby Identity for the Poisson Structures such that the
operator A;; has coefficients which depend on z only. In fact it is evident
because in this case we have a Poisson structure with ’constant coefficients’
on the functional space.

Some important generalizations of Lenard-Magri brackets were obtained
by Adler, Gelfand and Dikii.

Tt is important that the algebra of vector fields on the circle and its central
extension — Virasoro algebra — underlines the Lenard-Magri brackets.

In fact Virasoro missed the term §” in his calculations. This third- order
cocycle was discovered by Gelfand and Fuks as a central extension of the
algebra of vector fields on the circle when the cohomology groups for this
algebra were studied. They proved that there are no more nontrivial local
cocycles on this algebra.



In our examples the Poisson structures depend on the fields themselves
and their first derivatives but not on the higher ones.

Now we would like to study from the hamiltonian point of view the
Riemann-type equations (we shall call them also hydrodynamic-type equa-
tions).

ou!
ot
The problem is: when are these equations hamiltonian?
These equations are of Euler type — not of the Navier-Stokes type.
We will try to write equations (1.7) in the following form:

1,0 6 i
= o (u);?%. (1.7)

. g g h

uf = (g9(u) o + B () o (18)
Dubrovin and Novikov proved that representation (1.8) is hamiltonian (i.e.
the operator (g"(u)Z + b)(u)uk is a hamiltonian operator) iff g¥(u) is a
flat Riemann metric on the target space and b (u) = —g**(u)T,(u), where
[, (u) are Christoffel symbols for this flat metric. Their first paper was
published in 1983 ( the matrix g*/ should be nondegenerate in this theorem;
otherwise the classification of Poisson Brackets is complicated and even not
yet finished).

A hydrodynamic-type system is hamiltonian if it can be written in the
form (1.8).

These equations are connected with the shock wave problem but we do
not wand to discuss it now. We shall continue this discussion tomorrow.

Examples of Poisson structures connected with constant curvature met-
rics can also be constructed. Such structures are related with 2-dimensional
topological quantum field theories.

Hydrodynamic-type equations are also connected with nonlinear WKB -
approximation for integrable systems.

Literature:

1) Dubrovin B.A., Novikov S.P. Hydrodynamics of weakly deformed soli-
ton lattices, differential geometry and Hamiltonian theor.Russian Math. Sur-
veys 44 (1989), No 6, pp. 35-124.

2) Dubrovin B.A., Novikov S.P. In Soviet Math. Reviews, (1993).

3) Dubrovin B.A. Hamiltonian formalism of Whitham-type hierarchies
and topological Landau-Ginsburg models. Comm. Math. Phys. 145 (1992),



No 1, pp. 195-207., Integrable systems in topological field theory. Nucl.
Phys. B. 379, (1992), No 3, 627-698.

4) Novikov S.P. Fermi lectures in Pisa, 1992 (to appear soon).

Definition. Hydrodynamic-type equations.

Consider the space of maps from R" X R to some manifold X,dimX = N
(we shall call X target space). Let ul,... ,u be local coordinates on X. We
call a first-order partial differential equation a hydrodynamic-type equation
if it reads as

ouP ouP

oY Py —
5 = s (u)a:z:"" (1.9)

Definition. A collection of special coordinates in the target space X
is called Riemann invariants if all the matrices v®* are diagonal in these
coordinates.

Riemann studied the case n = 1, N = 2. He proved that in this case
the general system (1.9) at least locally possesses Riemann (diagonal) co-
ordinates. For N > 2 such coordinates for general systems do not exist.
If some 3- component system admits Riemann invariants it means serious
degeneration (serious restrictions on the matrix vB(u)).

Definition. Hydrodynamic-type functionals. A functional I[u] is called
hydrodynamic-type functional if it has the following form:

I= /j(u)da:i,

where the density j(u) depends on the values of u(z) but does not depend
on the derivatives of u.

Many important quantities like energy, momentum and so on are of hydro-
dynamic-type.

Definition. Hydrodynamic-type Poisson brackets are Poisson brackets

defined by
(P (2), u(y)} = g7 (u(x))Bub(z — y) + B (u(@)ua(2)é(z —y). (1.10)

In many important cases det g?** # 0. In this case it can be proved that all
g??*(u) are flat metrics (with upper indices) and B2 (u) = —gP (u)To (u),
where I'%(u) are Christoffel symbols for these flat metrics.

The Gardner-Faddeev-Zakharov bracket (1.6) is a simplest example of
hydrodynamic-type bracket

gt=1, h'=0, a=1
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(If we have only one a we may omit this index). This bracket can be trivially

generalized:
{up(m)’ uq(y)} = gma’(m - y))

where ¢gP? is a constant matrix.

Assume that we have a Poisson bracket in some coordinates. We may
look how this bracket changes if we change the coordinate system.

In many important cases det g/ = 0 and we have nontrivial foliations.

Simple calculations show that g* is a tensor in the target space. So in the
class of local hydrodynamic-type hamiltonian systems differential geometry
appears.

If we consider linear Poisson brackets we have Lie algebras.

Let us consider the one-dimensional case (n = 1). If ¢/ is nondegenerate
it is a flat metric and there exists (at least locally) a coordinate system in
the target space such that ¢*/(u) are constant and by (u) = 0. In this case
g% has only one invariant - the number of positive and negative squates or
signature.

In the physical systems we usually have a metric of type (n,n+ 1), so the
geometry is a pseudo-Riemann one. We never met Riemann geometry.

Comnsider the multidimensional Poisson brackets. There exists a canonical
form for them.

If gP#! =constant then for a # 1 gP¥® = f»“uk + g§** (it can be proved
from Jacobi identity).

In physical systems we usually get flat metrics in nontrivial coordinates
(we have orthogonal but curvilinear coordinate systems).

11



Lecture 2

Differential Geometry and
Poisson Structures

In the previous lecture we have defined the hydrodynamic-type (local) Pois-
son brackets

{w*(z),u%(y)} = ¢"(u(z))8'(z — y) - g7 (w)Th(u(2))uz(2)(= — ), (2.1)

§1 . 6J
(Il S} = [ dopors A etrs,

where
APL = gP29, — gP' Ty uk. (2.2)
Ferapontov and Mokhov found a beautiful generalization of the Poisson

bracket (2.1-2.2) (see 'Functional analysis and Applications’, 1992, v.26, No
4 and references therein):

s al’

APL = gP19, — gP' Tk + 5 whuko ul wl (2.3)
a=1

The first two terms in (2.3) coincide with (2.1) but the curvature of the
metric gP? is non-zero.

This Poisson bracket has a nontrivial geometrical interpretation. Let the
target space X be imbedded to the Euclidean space RN+m  Assume that
we have a basis of unit normals to X iy,...,7m- Let gpo(u) be the first
fundamental form (the Riemann metric) of X and hapg, @ = 1,...,m be

12



the pencil of the second fundamental forms. Then we have a pencil of the
Weingarten operators wq:

(wa)lq, = u)Zq = gpahaaq, a = 1, ‘e ,m.

The normal connection to the surface X is flat iff the Weingarten operators
form a commutative family:

[Wa,wg] =0 for all a,f. (2.4)

For such surfaces Gauss-Peterson-Codazzi equations take the form:

s s
gl”waq - gqawap

s —
vaaq - vqwap

RP = Y wlhul,. (2.5)
a=1

Here RP? is the Riemann curvature tensor corresponding to the metric gpq.

Ferapontov proved the following theorem:

The Jacobi identity for the operator (2.3) is equivalent to the equations
(2.4), (2.5) on the coefficients w? . So the Poisson brackets (2.3) are in one to
one correspondence with submanifolds in Euclidean space with flat normal
connections.

The simplest case m = 1 was studied by Mokhov and Ferapontov in
1990. In this case the metric gp, has constant curvature and the hamiltonian
operator reads as

m
AP = gP19, — g7 T uk + Z uPd; tul.

a=1

One good mathematician from the Faddeev’s group (Leningrad) tried to
calculate Dirac reduction of the constant bracket in the Euclidean space E

6746 (z — y)
to some submanifold X C E but he failed to get this answer. In fact these

reduction exactly coincide with the Ferapontovs brackets above.
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Corollary. Let all the eigenvalues of the operator wh,;, @ = 1 be pairwise
distinct. Then there exist 'Riemann invariants’ (u', . . . ,ul) such that gP? =
gPP6%? and wh, = Sjuwh.

Now let us return to the local Poisson brackets. We would like to intro-
duce some important classes of coordinate systems.

1) Flat coordinates:

I'=0, g" = const.

2) Riemann invariants: The Riemann invariants are such coordinates that
the Riemann metric is diagonal and the velocity tensor is diagonal too:

gpq = gppqu, uf = Ug(u)ug:, Uf;(u) = ”p(”)‘sg-

In fact if a hamiltonian system is diagonal then the Riemann metric is auto-
matically diagonal too.

3) Physical or Liouville coordinates. We call a coordinate system u’ a
Liouville one if there exists a tensor 4*/(u) such that

P _ P19 P9 — P _ o™

g =79 T O =79 Lae T Huke
This structure is not general covariant. Of course the flat coordinates are
always the Liouville coordinates.

Tsarev in his PhD thesis in 1985 proved the following important Novikov’s
conjecture :

Any hydrodynamic-type 1+ 1 dimensional hamiltonian system admitting
the Riemann invariants is completely integrable.

For systems constructed from integrable systems by the nonlinear WKB
method the Riemann invariants were known from the beginning of 70’s.

Let us recall the Tsarev’s procedure (the generalized hodograph transfor-
mation). Consider a diagonal hamiltonian system:

wE(2,1) = P(uE(z, 1) (26)
We shall use the following Tsarev’s identities:

i
d;v

vi — vt

1) Tj; = 50;1n(ga) =

(2.7)

N
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2) The flow u? = wP(u)u? commutes with the flow (2.6) if and only if:

O _ O’ (2.8)

vi—vt wi —

Let w'(u) be a solution of the system (2.8). Consider the following system
of equations: ' .
wul,. ., u) = v, u )+ 2 (2.9)

1 ..., u¥. Solving this

We have N equations on N unknown quantities u
system we gain u* as some functions of z and t.

Tsarev proved that these functions satisfy (2.6). So any solution of (2.7)
gives us a solution of (2.6). The system (2.7) is linear, but it is rather non-
trivial to construct their solutions. Explicit version of the Tsarev’s procedure
based on the algebraic-geometrical methods was suggested by Krichever.

In fact the restriction that a system possesses a hamiltonian representa-
tion is sometimes too strong. Most of the important systems arising from
physics have a hamiltonian representation but important non-hamiltonian
systems are known too (for example such systems arose in the chemical ki-
netics).

Consider the case N =2 (n = 1). Let X be a two-dimensional manifold,
the phase space of the system be the space of all maps from the unit circle
S to X. Such system reads as

up = vi(u)ud, 4,5=1,2
For a general 2-component system the Riemann invariants exist and the
hodograph transformation z(u!,u?), t(u?,u?) linearizes this system. (These
results are attributed to Riemann.) Let us prove that most of these systems
are non-hamiltonian.

To see it let us calculate how many hamiltonian systems do we have.
For general system we have N? functions of N variables. The flat metrics
can be parametrized by N functions of N variables (any such metric can
be transformed to constant form by a diffeomorphism) and the Hamiltonian
itself is a function of N variables. So we have N + 1 functions of N variables.

For N = 2 the hamiltonian systems can be parametrized by 3 functions,
but all 2-component systems are integrable so it is necessary to consider more
general systems then the hamiltonian ones.
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Let us have a system written in the Riemann invariants. For any hamil-
tonian system we have the following property:

Bk( i >=6,-( O’ ) i3] 4k (2.10)

vi — vt vk — vt

(It follows immediately from (2.7)).

Definition. A diagonal hydrodynamic-type system (2.6) is called semi-
hamiltonian if its velocities v*(u) satisfy (2.10).

For the semi-hamiltonian systems the integration procedure (the general-
ized hodograph transformation) is the same as for the hamiltonian ones. But
in fact many important semi-hamiltonian systems possess nonlocal hamilto-
nian formulation of Ferapontov-Mokhov type.

Felix Klein wrote in his book that the hamiltonian formalism is something
beautiful but rarely used. However Poincare used it often enough. In the
quantum theory the hamiltonian approach is especially important.

Let us consider some concrete examples.

1) Classical gas dynamics (n = 1, N = 3). Here

(u!,u?,4?) = (p, p, 8),

where p(z) is the density of momentum, p(z) is the density of mass and s(z)
is the density of entropy. The Poisson bracket is given by

{p(z),p(¥)} = 2p(z)8'(z — y) + P'()8(z — ¥)

{p(z), p(y)} = p(2)&'(z — y),
{p(z), s(y)} = s(2)8'(z — ),

(all the other brackets are equal to 0). The metric reads as

2p p s
=|p 00
s 00

The Hamiltonian reads as:

H=/I(%2+eo(p,s)).

16



2) Relativistic fluid (n = 1, N = 2). Let T be the energy-momentum
tensor

i _[€ P _oomij i [ 10
T _<p €—2q)’ where 2¢q =9;;TV, 7 —(0 _1),

¢ is the density of energy and p is the density of momentum. The equations

of motion read as
€+ Pz = 0
2,11
{p¢+(6-2q)z=0 (211)

plus one additional state equation

®(£,P) =0, where £, —P are the eigenvalues of T;, E-P=2q.

P _ p ¢ -
y “(e—zq p), H= [edo.

Symmetrization of the tensor 4*7 gives us a flat metric. It is a good exercise
to check this fact. This metric is of the type (1,1) but it has no direct
connections with the metric of the Minkowski space.

Using a nonlinear analog of the WKB-method we can construct some
hydrodynamic- type systems from the integrable hamiltonian partial differ-
ential equations. But up to now we could not prove that the hamiltonian
formulation for this hydrodynamic-type system can be obtained from the
original hamiltonian structure. (See the discussion in the paper by Novikov
and Maltsev in Russian Math. Surveys, 1993, No 1.)

Now we shall discuss linear Poisson brackets.

Let

Let
g7 = Gk 4 gh?, bR = const,
X = RY¥ be a linear space, ey,. .., ex be a basis in RY. Consider an algebra
with the basis e),...,exy and with the following multiplication law:

e oel =biek. (2.12)
It is important for us that the metric with the upper indexes is linear and the

normal Riemann metric with the lower indexes has a much more complicated
form. The quantities by are constant and the standard Christoffel symbols

17



are non-constant. In the classical differential geometry metrics with constant
Christoffel symbols were studied but our situation is absolutely different.
Let L2 be the algebra of maps from R' to B

p(z) = pi(z)e’ € L°

with the following commutator:

[p(z),q(z)] =P 0g—4q op, (2.13)

where o is the product (2.12). So we have defined a commutator of two
functions.

Theorem. L? is a Lie algebra, i.e. the Jacobi identity holds if and only
if:

a) [Lq, Ls) = 0, and

b) [Rb, Rc] = Rbc—ob)
where L, is the left multiplication and R, is the right one:

La(b) = ab = Ry(a).

If 1 € B then B is a commutative associative algebra. But B may be neither
commutative nor associative if it has no unit. -
Definition. The algebra B is called nondegenerate if det(bu¥) £ 0, i.e.
det(bu*) # 0 at least in one point. - ) -
Definition. The algebra B is called symmetric if 26y = 26} = C)/. In
the symmetric case the algebra B is commutative and associative.
Definition. A commutative associative algebra is called Frobenius alge-
bra if there exists a nondegenerate inner product < .,. > such that

< e'el,ef >=< €', elef > . (2.14)

If B is symmetric and nondegenerate then it is a Frobenius algebra and all
the products < .,. > may be obtained in the following way:

< a,b>=1(ab),

where | € B*, ie. [is a linear function on B. (For more details see
A.A Balinskii, S.P.Novikov, 'Poisson brackets of hydrodynamic type and Lie
algebras’, Sovjet. Math. Dokl, 32 (1985), No 1, 228-231).)
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In nontrivial examples coming from the 3-component gas dynamics we
have non-commutative associative algebras.

We see that Frobenius algebras are deeply connected with the zero-cur-
vature metrics. For linear Poisson brackets which do not correspond to the
Frobenius algebras the problem of finding the flat coordinates is not solved
up to now.

The Lie algebras L? have nontrivial central extensions of the Gelfand-
Fuks type. Let us recall that an algebra L? is called a central extension of
LB if we have the following exact sequence

0->R— L% 5 LP 50,

or equivalently, we have a cocycle x(p, ¢) on L3.
In our situation we have many cocycles of the Gelfand-Fuks type

x(p,q) = /Sl (", 9),

where -
(p,a) = Xpig;, A7 = blus.
(Any nondegenerate point of the u-space gives us such cocycle).

Let us discuss how such objects arose in the topological quantum field
theory (in the dimension d = 2). (See the following papers: Dubrovin
B.A. ’Hamiltonian formalism of Whitham-type hieararchies and topological
Landau-Ginsburg models’, Comm, Math. Phys., 145 (1992), No 1, 195-207;
Dubrovin B.A. 'Integrable systems in topological quantum field theory’, Nucl.
Phys. B, 379 (1992), No 3, 627-689.,and ref. therein).

Topological quantum field theories we suggested by A.S.Schwarz and gen-
eralized by Witten to the non-abelian case.

In the topological theories the corellation function of the primary fields
does not depend on the positions of the points by definition so all the corel-

lators < ¢a, ¢g,... > are constants.
Let

Nap =< ¢a)¢ﬁ >0, Capy =< ¢m¢ﬁ)¢‘y >0,

be the so-called genus zero corellators (i.e. the tree-level corellators). Then
all the multipoint corellators can be expressed via the two-point corellators
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and the three-point ones. We also assume that we have a unit ¢; in the
algebra of primary fields. Let:

cag = 1" Caps-

Lemma. The numbers ¢}z are structure constants of a commutative
associative algebra with a scalar product defined by the tensor 7qg. This
algebra is a Frobenius algebra, i.e. < ab,c>=<a, be > for all a, b, c.

Let eq,es be a basis of primary fields, H? = n9°Peqeg, where 17g are
the genus g two-point corellation functions. Then the genus g corellation
function reads as

< atp ... >g=<eaeg...H' >.

It is more interesting to consider not individual topological theories but fam-
ilies of such theories depending on some extra parameters (%1, ..., ty). Let
the following assumptions hold:

1) All 7 are constants, i.e. they do not depend on .

2) The unit element in the algebra of the primary fields is constant.

3) There exists a function F(t4,...,¢n) such that

_ R
Caﬂ‘Y(t_) - ataatﬂat.y’ (2‘]‘50’)
(D) (2.15b)

Taf = 5t,6t,0t5"

where #; corresponds to the unit element ¢;. Equations (2.15) are known
as Witten - Dijkgraaf - Verlinde -Verlinde equations. In fact F(i) coincides
with the logarithm of the partition function.

The dependence of the Frobenius algebras of the parameters tx is de-
scribed by some hydrodynamic-type equations which can be obtained as the
dispersionless limit of the soliton equations.

Let &, = K(®,®;, Pz, ...) be a partial differential equation such that
&=const is a solution. Dispersionless limit means that we consider 'smooth’
functions @, i.e.®, < ®.

It is possible to do this consideration more strict introducing grading

r(scalar) = 0, r(®) =0, r(8™)=n, r(fg)=r(f)+1(s),
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so that e.g. »(($')?) = 2.
Consider a flat diagonal metric
ds® = Znii(u)(dui)za > (216)
such that

d (é n,-,-(u)du‘) =0, (2.17a)

ﬁ:@km;(u) =0. (2.17b)

Such metrics were studied by Darboux and Egoroff. Darboux suggested
to call them Egoroff metrics. For such metrics vanishing of the curvature
can be written in the form of the following system on the so-called rotation

coeflicients:
Oiy/mi(u) ., .
71'.7'(u) =T, 1 # s
/i (w)
OkYis = YikYesy L F 3 F k,

N
Zak')'ij = 0: 1 7& ja
k=1

Vi = Vii- (2.18)
The system (2.18) is integrable (in fact it coincides with the well-known N-
wave systems, see for example Novikov S.P., Manakov S.V., Pitaevskii L.P.,

Zakharov V.E. 'Theory of solitons’,Plenum, 1984. ). The zero curvature
representation for this system reads as

{ Oshi = vijhi, (i #7)
2ok Okt = Ay

In the massive topological field theories the algebra B is trivial B =
R®R @ ... 5 R but the original metric is nontrivial — it has Egoroff form:

ds?® = Zn,-;(du‘)z, d (Z n;;dui) = 0.
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Lecture 3

Hopf Algebras and Quantum
Groups

A very good physicist from the Landau Institute , Paul Wiegman (who is an
expert in the integrable quantum systems and Yang-Baxter equations), once
said to me in the late 80-ies: ’I do not know what a quantum group is but it
sounds beautiful’.

In fact quantum groups can not be treated as groups of symmetries 1n
this area so this terminology does not seem to be natural.

Functions on topological spaces form commutative algebras. If we con-
sider functions on the Lie groups we have Hopf algebras which are commu-
tative but not cocommutative. So Hopf algebras can be introduced as gener-
alizations of the algebras of the functions on the Lie groups but historically
they were discovered in a different way.

Hopf algebras were introduced as an axiomatization of the cohomology
algebras of the loop spaces.

1. Hopf algebras in topology.

In 1953 A.Borel introduced the notion of the Hopf algebra as a result
of an algebraic analysis of the papers by Heinz Hopf where the cohomology
groups of the loop spaces were studied.

In 1957 J.Milnor discovered that the Steenrod algebra of the cohomo-
logical operations is a Hopf algebra. This result was connected with the
computation of the stable homotopy groups and the cobordisms.

Even richer structures arose in the complex cobordism theory. A number
of important results in this direction was obtained in 1966 and later in the
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Novikovs seminar by Novikov, Mischenko, Buchstaber, Kasparov, Gusein-
Zade, Krichever, Oshanyne and in US by Landweber, Quillen, Morava and
other authors.

2. Hopf algebras in the quantum theory.

In 1969 Hopf algebras were introduced as ’supergroups’ by F.A.Berezin
and G.I.LKac. (G.I.LKac was a mathematician from Kiev and he should not
be mixed with Viktor Kac who also was incorporated in the Hopf algebras
studies later). In 1970 and later Hopf algebras arose in the boson-fermion
symmetry, Lie superalgebras and so on.

In the solvable 2-dimensional models of the quantum field theory arose the
Yang-Baxter equation, which is connected with braid groups representations
and knots.

In 1986 the objects which are known now as the quantum groups were
introduced in the papers by Sklyanin, Drinfeld and Jimbo analysing the al-
gebraic achievements of Physicists who developed a theory of the solvable
models of the 2-dimensional quantum field theory. Drinfeld introduced the
notion of a quantum group as a special Hopf algebra and suggested an im-
portant construction of a 'quantum double’ of a Hopf algebra.

In fact the important results in the 2-dimensional quantum field theory
and topology are based on the Yang-Baxter equation solutions only (i.e.
special representations of the Braid Groups); They do not use the Hopf
algebras. There is no need to use a language of the Hopf algebras in these
applications: the representations of the braid groups is what people actually
used. But the categories of representations of the special Hopf algebras give
a beautiful systematisation of this stuff.

Why did people in the 30-ies and 40-ies never introduce Hopf algebras?
The reason (as I believe) is that the definition of a Hopf algebra looks too
long; in this period people preferred short definitions as the starting points
of their best (most fashionable) theories.

Let us recall the definition of a Hopf algebra. X is a Hopf algebra if:

1). X is an associative algebra with a unit 1 equipped by a homomorphism
€ : X — k called ’counit’, (1) = 1, e(zy) = ¢(z)e(y). Usually k is a field or
the ring of integers Z. The multiplication in this algebra can be treated as a
mapy: X ®@X — X, zy =9¥(z ®y).

2). X is a coalgebra, i.e. a homomorphism A : X — X ® X is given

Aw)= Yol @, (3.1)
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such that
Amy) = A@AW), Leehal = Yol =2. (32

This homomorphism is called a comultiplication. In the old literature the
words ’specification’ and ’diagonal’ were used instead of ’counit’ and ’comul-
tiplication’ respectively.

3). There exists a map s : X — X called an antipode such that

Z s(zi)z! = Z:c:s(a::') =¢(z)-1, s(zy) = s(y)s(z). (3.3)

Some examples of finite-dimensional Hopf algebras are known but the
Hopf algebras we need for the 2-dimensional quantum field theory and topol-
ogy are infinite-dimensional.

We will assume for simplicity that X has a basis {e;} such that all the
sums above are finite for all operations so we have no problems of convergence
and we need no functional analysis.

Let X* be the space of k-linear forms on X, i.e. the dual space to X.
Then X* is also a Hopf algebra with a basis €] dua.l to e;, (el, &) = 5’ with
multiplication A*, comultiplication 4* and antipode s*. So the conjugation
maps the multiplication to the comultiplication and vice versa. The unit
in X* is ¢ where € : X — k and the counit in X* is dual to the unit in
X,1:k — X. A requirement should be posed that both X and X* are
assoc1at1ve.

Let us consider some examples.

1). The group rings. Let G be a finite group with elements e;. Then
X = k[G), i.e. all the elements of X read as

T = Zk,'e,', k; € k.

The elements ¢; form a basis in X, the multiplication law e;e; is the same as
in G, the comultiplication A reads as Ae; = e; ® €;, the antipode is defined
by s(e;) = e;}, the counit is e(e;) = 1. Dual Hopf algebra X* is formed by
functions on G.

2). The enveloping algebra of a Lie algebra X = U(L). Let L be a Lie
algebra with an ordered basis {z;}. Then the basis in U(L) is formed by all
ordered polynomials:

{1220, Tig; -+ 5 Tiy -+ - Tis -}, 21 S22 S S



Commutation relations in U(L) are generated by the commutation relations
in L

TiTj — T;L = ija:k = [, 5],
where [,] is the commutator in L. The diagonal in U(L) is generated by
Alz) = z:® 1 + 1 ® z; and A(ab) = A(a)A(b), (@i, ... zy,) =0for k2> 1.

The dual algebra to U(L) is formed by ordered polynomials in the vari-
ables z7.

3). The enveloping algebra of a Lie superalgebra U(L). A Lie superalge-
bra is a Z, graded algebra, i.e. as a linear space L = Lo ® L. Let o(z) =0
if ¢ € Lo and o(z) = 1 if « € Ly (otherwise o(z) is undefined). Let {z;} be
a graded (ordered) basis in X (it means that o(z,) = 0,1 for all ¢).

The basis in U{L) is formed by ordered polynomials in z;:

{1 26520, @ig; -« iy o Ty}, 1 S22 Sl St

In the case of superalgebras the commutator should be replaced to a graded
commutator. The commutation relations in U(L) are generated by:

- (_l)a(z‘)a(zj)mjxi = C:;xk = [:I};, ﬂ;j](super);

o(ziz;) = o(zjz;) = o(z;) + o(z;) (MOD 2).

4). Quantum deformations of U(L). Let L = si(2) with the standard basis
X,Y, H. The algebra U(L) has no nontrivial deformations as an algebra, but
it has nontrivial deformations as a Hopf algebra:

[H,X]=2X, [HY]=-2Y, [X,Y]|= %?’ (3.4a)
where h — 0 is 'Planck parameter’, ¢ = e*/2, the diagonal reads as
A(H)=H®1+1Q H,
A(X) = X ® explhH/[4] + exp[-hH/4] ® X,
A(Y) =Y ®exp[—hH /4] + explhH/4] ® Y, (3.4b)

the antipode is
s(H)=—H, s(X)=—¢X, s(Y)=q"'Y.
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(This deformation was found by Sklyanin in 1985). In this example s? # 1.

Drinfeld said that quantum groups are mainly non-commutative non-
cocommutative Hopf algebras.

There was proved moreover that for a finite-dimensional Hopf algebra
some power of s is equal to 1. The deformations of U(si(2)) are infinite-
dimensional and for general g it is not so. But if g is a root of unity then
some power of s is equal to 1.

It is interesting that after deformation the enveloping algebra is more
symmetric than before deformation.

References.
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Most of the Hopf algebras important for applications possess an additional
structure - the Yang-Baxter structure. Let R be an element in the tensor
square of X:

ReX®X.

(Later we will have a non-standard multiplication in the tensor product).
Let the diagonal operator be

Az) = Zm: Q :c:'.

(In real examples we may have some problems connected with infinite sums
by let us assume that we have no such problems).
A transformed diagonal can be defined as

AYz) =) z! @ ;.

(The new diagonal should satisfy (3.3) so if we transpose the comultiplication
then we have to replace the antipode s(z) to a new one: s(z) = s™(=).
Drinfeld suggested to pose the following requirements on R

RA(z) = A'(z)R,
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AI(R) = R13R23,
Ag(R) = R13R12. (35)

Here we use the standard notation. Let
R=) r®r].

Then Rz, Rya, Ri3 are elements of X ® X ® X defined by:
R12 = ZT:@T’:’@l, R13 = ZT": ®1®7‘:’, Rzg = Z]. ®T‘£®T‘:’.

Ay(R) = 2 A(r) @i, Ag(R) =D ri ® A(r).
From (3.5) is it easy to deduce that R satisfies the Yang-Baxter equation
Ri2R13Ry3 = RazRisRaa. (3.6)

Drinfeld calls Hopf algebras with an R-matrix almost cocommutative
Hopf algebras. For sl(2) the element R (the universal R-matrix) was con-
structed by Drinfeld.

Let X be a Hopf algebra, M be an associative algebra with 1. Assume
that M is an X-module, compatible with the comultiplication in X, i.e. we
have a representation p; of X in M such that

paluv) = 3 p(u)pes(v), (3.7)

where

Az) = Z T, @z} (3.8)

This property is similar to the Leibniz rule.

We will call such modules the "Milnor modules’ after J.Milnor who discov-
ered the Hopf property of the Steenrod algebra of cohomological operations.

In fact the property (3.7) is the basic algebraic property of the differential
operators.

Consider the following algebra A of operators on M. Let A= M ® X as
a linear space with the commutation relations:

zu=Y_ pot(u)z, z€X, ueM. (3.9)
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The action of A on M is defined by
uz(w] = upz(w), uz € A, we M. (3.10)
The algebra A contains a subalgebra of the left multiplication operators
u — Ly, Ly(v) = uv.
Right multiplication operators can be defined by
R.(v) = vu.

Important examples of such algebras arose in topology in the second part of
the 60-ies. One of them was the algebra AU of the so-called cohomological
operations in the complex cobordisms computed by the author in 1966. In
this case X = S is the so-called Landweber-Novikov algebra and M = S* as
an X-module over Q coincides with representations R, below (it is not so
over the ring Z and this difference is very important) It was finally established
by Novikov and Buhstaber recently, on the basis of the paper by Buhstaber
and Shokurov, written in 1978).

Let X be a Hopf algebra. Then we can define a transposed algebra X*
which coincides with X as an algebra but has the opposite comultiplication

Alz) =) z/ @z,

(see (3.8)) and the inverse antipode

and an algebra X’ with the opposite multiplication
ully = vu,
and the inverse antipode
but with the same comultiplication as in X. The algebra which coincides
with M as a linear space but has the opposite multiplication will be denoted

M’ respectively. It is easy to see that (X*)* = (X*)'.
Consider some basic examples:

28



1)
M =X p.= Ry, Pe= L,

The following lemma holds:
Lemma.

p_.,(uv) = E pzé(u)pzé'(v)’ ﬁz(uv) = EP:Q'(u)pmé(v)‘

This Lemma means that p is a representation of X and p is a representation
of the algebra X*.
A general differential operator can be written as a sum of products of the
left multiplications on some functions and the left-invariant différentiations.
2) Let k =1 =0,ie. M = X* p, = R;, A= X*X. Then the
commutation relations in A read as

Tu=>3 Rii(u)z! = Zu;L;;,(:z:),

where
Az=Yzi®z!, Au=d u@ul.

We have two representations of A:
Representation 1. A — EndX*, u — Ly, =z — R,

Representation 2. A —» EndX, u — L, z — R;.

These representations are the Fourier dual ones.

3) Let M = X*, the Hopf algebra ¥ = X ® X*, p. and p, are sorme
representations of X and X* respectively, p.gy = pzfy, A = MY. The
algebra A contains an important subalgebra C = MAX where AX is the
image of the map A : X » X ® X. (X ® X coincides with X ® X' as
an algebra.) If p = R: and p = L!, then C coincides with the Drinfeld’s
'quantum double’. For general M A is not a Hopf algebra, but for the
Drinfeld’s quantum double C is a Hopf algebra with the comultiplication
A(uz) = At(u)A(z).

The quantized U(L) is more symmetric then the nondeformed one. For
the semisimple Lie algebras the quantized U(L) for generic g is the Drinfeld’s
quantum double of its Borel part modulo the trivial part.

As a linear space C = X* ® X. '

Now we are ready to formulate some theorems:
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Theorem 3.1. Let M = X*, A=X*X,p=R,andp : AR A — A
be the multiplication on A. Consider the conjugate space A* and the map
3* : A* —» A* @ A*. Then the following formula is true:

¥*(zu) = A(e)RA(w),

where '
R = E e ® e,

{e;} is some basis in X, {e} is the dual basis in X*, < e, el >= 6!, and
< u,z >= (eRy(u)).

Theorem 3.2. Let the antipode s be invertible. Then

1) The map

uz — 8" (z)u = (uz)*

is a well-defined antiisomorphism of the algebra A = X*X, p = R; into
the algebra A' = X*'X*, p' = R:. This is the definition of formal adjoint
operators.

2) The map

uz — s~ (z)s(u)

is a well-defined antiisomorphism of the algebra A = X*X, p = R; into the
algebra AT = X*X* o' = L; This is the definition of Hermitian adjoint
operators.

Theorem 3.3. If the antipode s is invertible then the algebras A* =
X*Xt pt =L, and A = XX*, p = R? are canonically isomorphic.

Some constructions based on ideas similar to the Novikov’s ones were
obtained independently by L.Faddeev, A.Alexeev and in the form where the
Hopf algebras actually were mentioned by M.Semenov-Tyan-Shanskii. His
paper was published in *Theoretical and mathematical physics’, v 93 (1992),
No 2, 1293-1307.

—1g-
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Lecture 4

String equation

In the papers by Gross-Migdal, Brezin-Kazakov, Douglas-Shenker written in
1989/90 the double scale limit of the matrix model was studied. The matrix
model can be treated as a model of zero dimensional quantum field theory.
The partition function of the matrix model reads as:

zZ =/.../;{NdMexp{t1TrM2 +Xi:t.-TrM2'}, (4.1)

where HY is the space of all Hermitian N x N matrices, dM the natural
measure on HY. This integral depends on a set of parameters {t.}.

This integral is connected with the soliton theory even for the finite N case
because some quantities which arose during the calculation of the partition
function satisfy the discrete KdV system. The partition function is connected
with some special solutions of this system.

The times t;, ta, ... play the role of the coupling constants in this theory.
The continuous limit corresponds to the case when the dimension of the
matrices N — 0o. The double scale limit means that simultaneously N — oo
and the coupling constants are rescaled. The limit depends of the choice of
the rescaling. In the simplest case we have the KdV equation. Let us fix the
times with sufficiently large numbers to be zero:

t;, =0, 2> q. (42)
The KdV equation reads as
oL
— =[A;, L], 1=1,...,q—1, 4.3
o= AuD) i= g (43)
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L=-08+u(z), Ap=0%+4 .

For the matrix models we need a special solution satisfying an extra condi-
tion:

[L, Ag] =1 (String equation). (4.4)
This equation naturally arose in the fixed point of the renormalization group.
In this point the matrix model may be treated as a model of the string
theory ( Migdal with Bulatov, Kostov and Kazakov), because if we write
the Feynman diagrams for the matrix model we get a sum over triangulated
Riemann surfaces of arbitrary genus. This sum can be treated as a discrete
approximation of the integration over all the Riemann surfaces. (see Zuber,
Nucl.Phys.B. Proc. Suppl. 18B(1990), pp. 313-326).

So we have the following:

The partition function Z satisfies some discrete integrable equations, na-
mely discrete KdV (it is an exact statement). The calculation of Z is based
on the technique of the orthogonal polynomials.

The discrete KdV system was known as a ’Volterra system’ before and
probably it was Mark Kac who investigated it first. Its integrability was first
discovered by S.Manakov in 1974 under the name ’Lengmur Chain’ (pub-
lished in the Journal of Theor and Math Physics in 1974—see the reference
in the survey: B.A. Dubrovin, V.B. Matveev, S.P. Novikov, Russian Math.
Surveys 31:1(1976), pp. 59-146, where the periodic problem for it has been
discussed). For a second time its integrability has been independently found
by J.Moser in the paper: J.Moser. Adv. in Math. 16(1975), 354.

The specific heat of the matrix model in the double scale limit is a special
solution of the following ordinary differential equation:

[L,A] = 1. (4.5)

In soliton theory the equation [L, A] = 0 was studied in details. It is well-
known that solutions of the equation [L, A] = 0 can be constructed by alge-
braic geometrical methods. But equation (4.5) is much more complicated.

The problem of constructing solutions of (4.5) is equivalent to finding
representations of the Heisenberg algebra in the ring of ordinary differential
operators.

The equation (4.5) is known as the string equation. It is convenient to
introduce a small parameter € to the equation (4.5)

[L,A] =¢-1. (4.6)
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(A trivial scaling maps (4.5) to (4.6) and vice versa). This small parameter
allows us to use asymptotical methods.

Assume, that L is a second-order operator (only the second-order opera-
tors arose in the matrix models like the formula above)

L = -8+ u(z), (4.7)

and A has an odd order, 2n + 1.
The case n = 0 is trivial:

u(z) = —ex.
For n = 1 we have the Painlevé-1 equation:
Ugez = Buty + €, A= —40> + 3(ud, + O,u). (4.8)
Integrating the equation (4.8) we get
Upe = Ju? + €. (4.9)

Before the scaling limit we have the discrete Korteveg-de Vries (KdV)
equation. In soliton theory the following discrete Schrodinger operator arose
as the auxiliary linear operator for discrete KdV:

LU, = 20, 1 + Py + 0120, = AT, (4.10)

In spectral theory another discretization corresponding to the choice ¢, =1
is used, but it is nonintegrable in contrast to the discretization (4.10). (Of
course ¢, = 1 means some restriction on the scattering data but it is very
difficult to characterize these restrictions.)

A-operators with n bigger than 1 can also be considered but now we
would like to study the case n = 1 of the Painlevé-1 equation (4.9).

Only such Painlevé-1 solutions which are real-valued as z — —oo are
important. (In the physical literature the so-called triply truncated solutions -
are discussed but I was not able to recover what they had in mind.) There
are exactly 3 families of real-valued as ¢ — —oo solutions:

a) us(z) ~ /—ez/3.
b) u_(z) ~ —/—€z/3.
c) u(z) has infinitely many poles as z — —o0.
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The one-parametric family a) is called Physical and the two-parametric
families b) and c) are non-physical. The families b) and c) are generic (i.e.
2-parametric), but the existence of the family a) is rather nontrivial (it was
proved only in 1984 by Holmes and Spence by the methods of qualitative
analysis of ordinary differential equations).

For the two families a) and b) the following formal solutions can be con-
structed:

ul(z,e) =+ —%m (1 + Ze“ajr"‘) , —ex =78, (4.11a)
i>1
ul(z,¢) = —1/—%5 (1 + Zszia;T’zi) . (4.11b)
i>1

Both expansions (4.11a) and (4.11b) diverge but the formal expansion (4.11a)
is a true asymptotical expansion for the exact solution, whereas the expansion
(4.11b) does not describe the asymptotical behaviour of the exact solutions
because the true asymptotics for the solutions from family b) contains oscil-
lating terms and reads as

u_(z,€) = _,/_%” (1 + 2|+ sin(az + b) + o(|z|7%)) ,

so the formula (4.11b) is wrong in the first nontrivial term.
We would like to recommend the following literature:
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G. Moore obtained some results for the higher analogs of Painlevé-1.
In Novikov’s paper (1990) a conjecture was formulated how exact Painlevé-
1 solutions can be constructed. This conjecture was proved to be wrong.
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Another conjecture was formulated in the Krichever paper and it is wrong
too.

In an appendix to the Novikov paper written by Dubrovin and Novikov an
analog of the nonlinear WKB method for the Painlevé-1 was developed and
some asymptotic formulas for the type c) solutions were found. Krichever
developed this approach and constructed asymptotical formulas for the family
b). (He wrote that he had found asymptotics for the family a) but it was an
error).

Kapaev and Kitaev obtained some results about the non-physical solu-
tions using the method of isomonodromy deformations.

We have said that the formal power series approximate only the physical
solutions. We hope that the physical solutions have deeper symmetry than
the general ones but up to now nobody succeeded to uncover it.

The coefficients of the formal expansion (4.11a) arose from perturbation
theory for some quantum field theory. The exact solutions can be treated
as something which lies behind the perturbation theory. But the analytic
structure of the physical solutions is not clear now.

In the Painlevé-1 theory both the nonlinear quasiclassics and the linear
one are useful. We have mentioned the nonlinear quasiclassics or the nonlin-
ear WKB method. Let us discuss the linear one.

In 1974 the following Lax-type representation for KdV was found by
Novikov for the needs of studying the periodic problem:

¥, =AY, ¥, =QY, (4.12)
where

_ 0 1 _ —Ug 2u + 4A
Q—(u—)\ 0)’ A—(—u,,+2u2+2)\u—4)\2 Ug ) (4.13)

Compatibility conditions for the system (4.12) read as
A =(Q,Al + Q..

Some Lax pairs for the Painlevé equations were found by Jimbo, Miva and
their collaborators in early 80-ies. But for Painlevé-1 it is more convenient
to use the following natural construction: start from a matrix pair above for
KdV, after that replace &, to €8, in (4.12)

el = AT, T, = QU. (4.14)
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We are coming to a Lax-type (or Zero-Curvature ) representation of P-1
equation. Flaschka and Newell were the first(in 1979) to use some special
Lax representations for Painleve type ordinary differential equations and the
so-called ’isomonodromic methods’), Japanese scientists continued their ac-
tivity.

Let us try to construct a semiclassical solution of (4.14), i.e. a semiclas-
sical common eigenfunction for the Lax pair. The first step is the diagonal-
ization in the leading order. Consider the transformation

¥ =U1y,
where U is chosen so that the matrix
UAU-! = ( Ay 0 )
is strictly diagonal. Here
Ai =+ R(}), R(}) = —detA=a®+bc=—-161>—4CX - D.
After this transformation we have

eV = (UAU —eU(U2)))¥

11 ] —a £ /R())
y X+ = ——>

v=U1Y, U= [
X- X+ b

The second step is the following: we construct a formal quasiclassical
solution in the form:

- . 1 .
‘I’SC = (1 + ZEJAj)CXp{EBl + BO + Z EJB]‘}, (415)
321 i>1

where all the matrices A; are antidiagonal and B; are diagonal:

w=( 9) 2=(9 &)

Let us consider now the first nontrivial term of the quasiclassical approxima-
tion:

1
¥4d = exp{-B; + Bo}, (4.16)
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where

1 0
B—IA—\/_R[O _1],

a b 1 0 1 1
Bon=(3) - (3 ~ (b))
oA (b xz\/ﬁ[ﬂ —1}+ (0B = 5(Inb)
The analytic properties of this function are very much like the properties of
Baker- Akhieser function. We have the following matrix-valued meromorphic

differential on the Riemann surface w? = {/R(}):

1
dA(EBl + By).

The matrices B_; and By are diagonal. If we change the sign before the

+/R()) then we simultaneously transpose the matrix elements b;; and bz so
they are the values of a meromorfic scalar differential dybo on different sheets
of our Riemann surface. So we have a scalar meromophic differential which
we will denote dybg. Let:

daBo =  + [In(RY*/b*/?)]5d). (4.17)

(In fact (4.17) is the definition of © ). The differential 2 has the following
properties:

1) Q has poles only in the points co and Ay = (—u/2, ).

2) In the point co Q has the following asymptotic expansion

(8 C D .\ .
0= (54—t 06EY), 2 =2 (4.18)

3) In the points Ay = (—u/2,+) § has first order poles with the residues
+1/2 respectively.

The last property is equivalent to the Painlevé-1 equation. We can write
this equation in the following form:

ul = R(A)|rx=-u/z, 92 = —E€T, g3 = €u/2. (4.19)

The elements of the diagonal matrix - valued function \Ilfglg- can also be treated
as values of a scalar function & on different sheets of our Riemann surface.
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Theorem 4.1. The function ® can be written as

_owta) {__4_'_?_—‘!3 (E_)}
(w) = o(a)o(w) " P15 (w) 5¢ () + | o2 (a))wy,
(4.20)
where
u=2p(a), g2 = —¢€x, gz = —€uf.
The Painlevé-1 equation can be written as
u./2 = p'(a), ' (4.21)
and it is equivalent to
(8};;@> dw = 0 + dy, In(u + 22"/ (4.22)

So we have something like a nonlinear Lax representation.

The following problem is very important: how to characterize physical
solutions in terms of this scheme?

Consider a ring (a differential ring) generated by the symbols u, 8,, g2, €
with the following grading:

d(u) =2, d(8;) =1, d(g2) =4, d(1) =0, d(e) =5, (4.23)
and with the following relations
Ot = Uy, Oplig = Ugg, Uz = U2 — g3, Ugzy = BUU; + €, Dzg2 = —£. (4.24)
Consider the following parameterization of our algebra:
u/2 = p(a).
Then we have
u = 2p(a), uz = 2¢'(a), uzz = 2p"(a), Uzea = 20" (a) + €

ul?) = 2pM(a), ul® = 2p0°)(a) + 6ue,
ul® = 2p®)(a) + 24u.e, ul’) = 2p("(a) + (60use + 36u’)e, . ..

38



The function p depends on a and on the parameters gz, gs. We see that
z -derivatives of p almost coincide with the a derivtives, but we have some
additional terms with €. In the case ¢ = 0 the functions g, and g3 are
constants so the z derivative and the a-derivative exactly coincide.

Now we would like to discuss the physical solutions.

uy(2) ~ /—2/3,

(we assume now that € = 1). It is convenient to introduce a new variable 7
such that

z=—T%, (4.25)
and to make the following rescaling
2 2
TS6 TS&
A = ——=H = —1U
2\/_;L u \/é_u(T)
=91, o= -—T‘% (4.26)
1.
;\Il =AY, ¥, =QU, (4.14")

where

127 24
A= |a@onitn-a®) wn  sen

53§ 127

; [ —%(r) _ 54/(r) 5(- #+u(7’)) ]

- 0 1 .
= . = 4.2
T N 20
In this Lax pair the variable 1/7 plays the role of a small parameter in the
p-equation.
We will construct a quasiclassical approximation for the common eigen-
functions for the system (4.14’). Again we diagonalize this system in the
leading order using the following substitution

b=UY, U= ' ! -8 4.28
= ) “{—\/a(;urz) \/a(u+2)}’°“ﬁ7§ (4.28)

After the gauge transformation (4.28) we have

A= [”8“) . l) } +0(r1),0 = [ w0 ) } +0(rY), (4.29)
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where

(1) = EL2 (- 4 277 ra() = 2 — s ol - 1),

(4.30)
Theorem 4.2. The Lax pair (4.14’) has a unique formal quasiclassical
solution such, that

U=yt (1 + Z ) exp {'rB_l + By + ZB 'r"'} (4.31)

where all A; are off-diagonal, all B; are diagonal, A; and B; are algebraic on
the following Riemann surface I'® of genus zero:

y' =p+2 (4.31)

By = ( q+(()“) q_(zﬂ) ) . (4.32)

Theorem 4.3. Consider the Stokes sectors on I'®) bounded by the lines
Regy(u) = 0 (bold lines on the picture).

A

Then for each Stokes sector there exists a unique up to a constant factor
solution of (4.14’) decaying as 7 — oo.
In fact we have a foliation on I'(®) defined by

Re(gs(p)du) = 0. (4.33)
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(thin lines on the picture). If we have not a Lax pair but only one equation
with a small parameter then we can construct quasiclassical solutions only
along paths which are transversal to the foliation. In spite of the fact that
specialists in the quasiclassical methods and quantum physicists understood
it (see, for example the book by Landau and Lifshitz) it is likely that this
statement was never formulated in such explicit form in the literature.

We see that if we have only one equation we are unable to connect the
points —2 and 3 by a path transversal to the foliation. But from the Lax pair
it follows that there exists a solution of the u equation of (4.14’) (after (4.26))
which has the norm 1 in the point 1 and decays exponentially as p — —2,
gt — 3. So the energy E = 0 is a discrete eigenvalue for the p-operator on
the interval [—2,3] in (4.14’) with the quasiclassical precision. So we have
something like quasiclassical eigenvalue 0.

Let us compare this foliation picture with the standard Stokes lines de-
scription. In the neighbourhood of the point oo we have the following picture:
(the foliation is shown by dashed lines, the Stokes sectors are drawn by solid
lines)

The quasiclassical formula

m
Usc ~ exp (/m ‘1+("7)d77) )

defines a good approximation only if the integration path is transversal to
our foliation. So we can continue a solution which decays in sector ¢ only to
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sectors 1 + 1 and ¢ — 1. Let ¥,_; and ¥,,; decay in the sectors z — 1 and
i + 1 respectively, ¥; decay in the sector . Then we can continue ¥;_, and
W, .1 to the sector ¢. In the general case the sectors t —1 and s+ 1 could not
be connected by a path transversal to the foliation so the difference of the
values of these solutions in the sector 1 is nonzero, but

‘I’,’.{.l - ‘Il,'_l = C,‘I’. (434)

The numbers ¢; are called Stokes multipliers. In the case of the Lax pair
these numbers are integrals of motion.

In our case we have an exact definition of the Stokes lines in all finite
part of the complex plane (Riemann surface) as zeroes of the real part of the
common solution for the both equations in the Lax pair which has exponential
decay for 7 — oo and well defined inside of each ’Stokes sector. One of these
'Stokes lines’ is passing through the point 3. It is closed on the Riemann
surface. So the two neighbouring Stokes sectors are in fact connected with
each other and one of the Stokes multipliers is equal to 0. The last fact was
observed by Kitaev and Kopaev in 1987 but their proof was different and
more complicated because they did not use the special semiclassics for the
two linear equations in the zero-curvature representation ('Lax pair’).
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