CERN Accelerating science

002631857 001__ 2631857
002631857 005__ 20231130045728.0
002631857 0248_ $$aoai:cds.cern.ch:2631857$$pcerncds:CERN$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT
002631857 0247_ $$2DOI$$9bibmatch$$a10.22323/1.303.0005
002631857 037__ $$9arXiv$$aarXiv:1807.06238$$chep-ph
002631857 037__ $$9arXiv:reportnumber$$aCERN-TH-2018-163
002631857 037__ $$9arXiv:reportnumber$$aCP3-18-45
002631857 037__ $$9arXiv:reportnumber$$aHU-EP-18-22
002631857 037__ $$9arXiv:reportnumber$$aHU-Mathematik-2018-08
002631857 037__ $$9arXiv:reportnumber$$aSLAC-PUB-17302
002631857 035__ $$9arXiv$$aoai:arXiv.org:1807.06238
002631857 035__ $$9Inspire$$aoai:inspirehep.net:1682807$$d2023-11-29T09:57:37Z$$h2023-11-30T03:00:31Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002631857 035__ $$9Inspire$$a1682807
002631857 041__ $$aeng
002631857 100__ $$aBroedel, [email protected]$$uHumboldt U., Berlin$$vHumboldt University Berlin
002631857 245__ $$9arXiv$$aElliptic polylogarithms and two-loop Feynman integrals
002631857 269__ $$c2018-07-17
002631857 260__ $$bSISSA$$c2018-07-13
002631857 300__ $$a10 p
002631857 500__ $$9arXiv$$a10 pages. Talk given at Loops and Legs 2018
002631857 520__ $$9SISSA$$aWe review certain classes of iterated integrals that appear in the computation of Feynman integrals that involve elliptic functions. These functions generalise the well-known class of multiple polylogarithms to elliptic curves and are closely related to the elliptic multiple polylogarithms (eMPLs) studied in the mathematics literature. When evaluated at certain special values of the arguments, eMPLs reduce to another class of special functions, defined as iterated integrals of Eisenstein series. As a novel application of our formalism, we illustrate how a class of special functions introduced by Remiddi and one of the authors can always naturally be expressed in terms of either eMPLs or iterated integrals of Eisenstein series for the congruence subgroup $\Gamma(6)$.
002631857 520__ $$9arXiv$$aWe review certain classes of iterated integrals that appear in the computation of Feynman integrals that involve elliptic functions. These functions generalise the well-known class of multiple polylogarithms to elliptic curves and are closely related to the elliptic multiple polylogarithms (eMPLs) studied in the mathematics literature. When evaluated at certain special values of the arguments, eMPLs reduce to another class of special functions, defined as iterated integrals of Eisenstein series. As a novel application of our formalism, we illustrate how a class of special functions introduced by Remiddi and one of the authors can always naturally be expressed in terms of either eMPLs or iterated integrals of Eisenstein series for the congruence subgroup Gamma(6).
002631857 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002631857 540__ $$3publication$$aCC-BY-NC-ND-4.0$$bSISSA
002631857 595__ $$aCERN-TH
002631857 65017 $$2arXiv$$ahep-th
002631857 65017 $$2SzGeCERN$$aParticle Physics - Theory
002631857 65017 $$2arXiv$$ahep-ph
002631857 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002631857 690C_ $$aCERN
002631857 690C_ $$aARTICLE
002631857 700__ $$aDuhr, [email protected]$$uCERN$$uLouvain U., CP3$$vCERN
002631857 700__ $$aDulat, [email protected]$$uSLAC
002631857 700__ $$aPenante, [email protected]$$uCERN
002631857 700__ $$aTancredi, [email protected]$$uCERN$$vCERN
002631857 773__ $$c005$$pPoS$$vLL2018$$wC18-04-29.1$$y2018
002631857 8564_ $$uhttps://pos.sissa.it/303/005/pdf$$yPoS server
002631857 8564_ $$81423278$$s150302$$uhttps://cds.cern.ch/record/2631857/files/arXiv:1807.06238.pdf
002631857 8564_ $$81421288$$s150302$$uhttps://cds.cern.ch/record/2631857/files/1807.06238.pdf$$yFulltext
002631857 8564_ $$81441243$$s210170$$uhttps://cds.cern.ch/record/2631857/files/PoS(LL2018)005.pdf$$yFulltext
002631857 960__ $$a13
002631857 962__ $$b2633821$$k005$$nstgoar20180429
002631857 980__ $$aConferencePaper
002631857 980__ $$aARTICLE