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ABSTRACT: In this Letter of Intent (LOI) we propose the construction of MATHUSLA (MAssive
Timing Hodoscope for Ultra-Stable neutraL pArticles) [1], a dedicated large-volume displaced ver-
tex detector for the HL-LHC on the surface above ATLAS or CMS. Such a detector, which can be
built using existing technologies with a reasonable budget in time for the HL-LHC upgrade, could
search for neutral long-lived particles (LLPs) with up to several orders of magnitude better sensitivity
than ATLAS or CMS, while also acting as a cutting-edge cosmic ray telescope at CERN to explore
many open questions in cosmic ray and astro-particle physics. We review the physics motivations
for MATHUSLA and summarize its LLP reach for several different possible detector geometries, as
well as outline the cosmic ray physics program. We present several updated background studies for
MATHUSLA, which help inform a first detector-design concept utilizing modular construction with
Resistive Plate Chambers (RPCs) as the primary tracking technology. We present first efficiency and
reconstruction studies to verify the viability of this design concept, and we explore some aspects of
its total cost. We end with a summary of recent progress made on the MATHUSLA test stand, a
small-scale demonstrator experiment currently taking data at CERN Point 1, and finish with a short
comment on future work.
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1 Introduction

In this Letter of Intent we propose the construction of MATHUSLA (MAssive Timing Hodoscope for
Ultra-Stable neutraL pArticles) [1], a dedicated large-volume displaced vertex detector (DV) for the
HL-LHC on the surface above ATLAS or CMS. Such a detector, which can be built using existing
technologies with a reasonable budget in time for the HL-LHC upgrade, could search for neutral long-
lived particles (LLPs) without trigger limitations and with very low or zero backgrounds, allowing it to
probe LLP cross sections and lifetimes up to several orders of magnitude beyond the reach of ATLAS
or CMS. MATHUSLA would also act as a cutting-edge cosmic ray telescope at CERN, exploring
many open questions in cosmic ray and astro-particle physics.

The Large Hadron Collider (LHC) and its main detectors ATLAS and CMS were built primarily
to elucidate the mechanism of electroweak symmetry breaking and search for signals of beyond-
Standard-Model (BSM) physics. The discovery of the 125 GeV Higgs boson in 2012 marked a tri-
umphant first step in realizing the first of these goals [2, 3]. While measurements of the new state’s
couplings and decays are roughly consistent with the Standard Model (SM) expectation, the Higgs is
uniquely sensitive in these respects to modifications from new physics (see e.g. [4–7]), and its con-
tinued study forms the basis of a rich and ongoing physics program at the LHC. Remarkable progress
also has been made towards the second goal of LHC searches for BSM scenarios covering a great
variety of possible signals with impressive reach that directly access mass scales well beyond a TeV.
Unfortunately, to date all BSM searches have produced null results.

This lack of BSM signals is especially vexing in light of strong motivations for new physics
at the LHC. These motivations are even more compelling post-Higgs-discovery than when the LHC
was built. Solving the hierarchy problem (HP) to stabilize the light Higgs mass via mechanisms like
supersymmetry (SUSY) [8] or compositeness [9] requires the existence of new states at the TeV scale.
On purely empirical grounds, the existence of dark matter (DM), the dynamical creation of a baryon
asymmetry in the early universe (BAU), and non-zero neutrino masses have been established beyond
any reasonable doubt, and all of them require BSM physics. Many theoretical frameworks that explain
one or all of these fundamental mysteries are expected to include new particles that are discoverable
at the LHC. Where are these new states?

One simple possibility to explain this LHC conundrum is that our searches for BSM physics have
been operating under incorrect assumptions about what those signals look like. Most searches focus
on the production of heavy new states at or above the weak scale, which promptly decay and give rise
to high-energy visible final states including jets, leptons, photons, or stable invisible particles that are
detectable as missing energy. This reasonable expectation, informed and validated by the historical
discovery program that established the SM in the last few decades, is implicit in the design choices
made for the LHC main detectors. It is, however, far from the only possibility for BSM signals.
A generic but much less explored alternative is that BSM signals first show up as new Long-Lived
Particles (LLPs) that decay into SM final states some macroscopic distance away from the production
point. Historically, such signals find their analogue in earlier explorations of the SM, such as the
discovery and characterization of the muon as well as the zoo of hadron states. This makes clear
that LLPs are realized many times in the SM, and more broadly are a generic bottom-up possibility
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in BSM theories as well. In recent years it has become increasingly apparent that far from being
a curiosity, LLPs are as broadly and fundamentally top-down motivated as prompt BSM signals.
Theories with LLPs, such as many versions of hidden sectors or hidden valleys [10, 11], Neutral
Naturalness [12–14] and SUSY [15–22], WIMP Baryogenesis [23], many models of DM [24–32] and
neutrino extensions [33–45], can address some or all of the fundamental shortcomings of the SM,
including the HP, DM, BAU and the origin of neutrino masses (see [46] for a more comprehensive
discussion). Due to their connections to the weak or TeV scale, many of these LLP signals can only
be produced at energy frontier machines like the LHC, HL-LHC or a possible HE-LHC. However,
even if LLPs are already being produced in LHC collisions as the first harbinger of new physics, their
signals could easily have been overlooked until today.

LLPs could be colored, electrically charged, or neutral. In the former two cases, the passage
of these particles shows up in the main detectors (if the lifetime is long enough). Neutral LLPs, on
the other hand, can only be directly observed once they decay. In most cases, they are searched for
by reconstructing a DV from decay products away from the LHC Interaction Point (IP). The LLP
search program at the LHC is growing [47–61], and while coordinated efforts are underway to sys-
tematically explore the large LLP signature space [62], the existing coverage is still nowhere near
as comprehensive as the prompt search program for evidence of theories like minimal supersymme-
try. The geometrical nature of the DV signature makes LLP decays spectacular signals that, while
sometimes challenging to reconstruct in the detectors, often have much lower backgrounds than most
prompt searches. In some cases, the LHC searches are essentially background-free, but other searches
for neutral LLPs have to contend with complicated backgrounds, and limitations of a trigger system
that is optimized for high-energy prompt particle production. These limitations are exacerbated if
the decay length λ is much larger than the size L of the detector, due to a resulting very low decay
acceptance ∼ L/λ. In most theories, LLP lifetime is essentially a free parameter, and probing the
long-lifetime regime is vital for exploiting the full discovery potential of the LHC.

The importance of LLP searches and the inherent background, trigger and acceptance limitations
of the main detectors in probing neutral LLPs with long lifetimes motivated the original MATHUSLA
proposal [1] for a dedicated, large-volume, simply instrumented LLP detector for the HL-LHC. In the
most basic terms, MATHUSLA is a large, robust tracking system monitoring an empty decay volume
on the surface to reconstruct LLP decays as upwards-traveling particles originating from displaced
vertices. By operating without trigger limitations in a very low background environment, shielded
from the IP by more than 100 m of rock, MATHUSLA can enhance sensitivity to LLP production
rates by up to three orders of magnitude compared with the main detectors, at a relatively incremental
cost. MATHUSLA’s purely parasitic nature also means that the detector, once constructed, could
continue functioning without modification even as the HL-LHC is replaced by the HE-LHC.

The physics motivation for MATHUSLA was comprehensively examined in a dedicated theory
white paper [46], as well as several studies of individual models [63–73], and we briefly review
it in Section 2. The basic detector principles, including possible geometries and locations, and its
inherently scalable and modular characteristics, are outlined in Section 3. The search for LLPs is
MATHUSLA’s primary physics goal, and we present its reach for some particularly well-motivated
signal benchmark models, as well as approximate model-independent reach estimates, in Section 4.
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Cosmic ray (CR) physics is MATHUSLA’s secondary physics goal, and represents a guaranteed return
on the investment of building the detector. We describe some of the possible CR measurements that
would enhance the experimental astro-particle physics program at CERN in Section 5.

The original MATHUSLA proposal [1] examined the most important backgrounds to LLP searches,
which are cosmic rays, muons from the LHC, and neutrino scattering, in order to establish the plausi-
bility of searching for LLPs on the surface with near-zero backgrounds. In Section 6 we report on the
progress of several detailed follow-up studies to firm up those first estimates.

The discussions of the above sections are, at the present stage of development, largely technology-
independent, and in fact inform the technical requirements of the final MATHUSLA design. We
present a first pass of a modular design using Resistive Plate Chamber (RPC) technology in Section 7,
including a very rough cost estimate as well as various trigger and efficiency studies to establish the
viability of the design. However, we emphasize that this represents just one possibility for implement-
ing the MATHUSLA idea, and other detector technologies are also being explored. The information
gleaned from operating the MATHUSLA test stand detector at CERN Point 1 will help guide our
background studies. We summarize details of its construction, operation, and first physics results in
Section 8. We close with a projected time line of studies and other goals towards a proposal that
defines the construction of a full-scale MATHUSLA detector at CERN over the next few years in
Section 9.

2 Motivation for a Dedicated Surface LLP Detector at CERN

The motivation for a MATHUSLA-like external LLP detector at pp colliders was first outlined in the
original proposal [1] and expanded upon in several follow-up studies [63–73]. Recently, a compre-
hensive theory white paper [46] explored the bottom-up and top-down theoretical and experimental
motivations in great detail. Here we briefly summarize the main arguments.

A variety of mechanisms can suppress the decay rate of a fundamental or composite particle, lead-
ing to macroscopic decay lengths. This includes accidental or approximate symmetries, phase space
suppressions, small dimensionless couplings, and small effective couplings due to a large suppression
scale compared to the particle mass. In the SM, these mechanisms lead to macroscopic lifetimes for
the muon, tau, proton, neutron, several pion and kaon states, B-hadrons and other particles in great
excess of the naive dimensional analysis (NDA) estimate. LLPs are therefore a very familiar and
common phenomenon. The same mechanisms which lead to long lifetimes in the SM can also apply
in almost any BSM theory. This bottom-up motivation for LLP signals is readily demonstrated by
examining minimal simplified models like dark photons [74–76], scalar extensions [77–80], generic
hidden valleys [10, 11], axion-like particles (ALPs) [81–88], and heavy neutral leptons coupling via
the neutrino portal [33–45]. All of these give rise to LLP signals in parts of their parameter space.
In most cases the lifetime is an almost free parameter, and exploring the long-lifetime regime at a
MATHUSLA-like detector is therefore inherently motivated on generic BSM grounds.

The above arguments establish the plausibility of LLP signals at the LHC main detectors and
MATHUSLA. However, it is crucial to realize that these signals are also fundamentally motivated on
top-down theoretical grounds. The MATHUSLA physics case white paper [46] examined a large vari-
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Figure 1. Summary of some top-down theoretical motivations for LLP signals at MATHUSLA. Figure taken
from [46].

ety of models that address the Hierarchy Problem, the nature of Dark Matter, the Baryon Asymmetry
of the Universe, and the origin of neutrino masses. All of these fundamental mysteries of the SM can
be addressed by theoretical frameworks that give rise to LLP production at the LHC. Furthermore,
there are many scenarios where observation of LLP decays at MATHUSLA represents the first or
only discovery opportunity. This is summarized schematically in Fig. 1.

For example, the hierarchy problem could be addressed by Neutral Naturalness [12–14], where
the Higgs mass is stabilized at low scales by a hidden valley that is related to the SM by a discrete
symmetry. Crucially, the top partners that cancel the top quark contributions to the Higgs mass are not
charged under SM QCD, making these scenarios unconstrained by standard SUSY searches. How-
ever, the hidden valley gives rise to LLP signatures, such as mirror glueballs, which can be produced
in exotic Higgs decays [89, 90]. In the long lifetime regime, MATHUSLA is the only way to discover
these new states. Even standard SUSY scenarios like R-parity violation and gauge mediation give
rise to LLP signatures (a scenario made perhaps more likely by the discovery of a relatively light 125
GeV Higgs boson [91–93]). The same is true of many Dark Matter models, especially if the DM
candidate is part of a dark sector with a variety of hidden states, some of which can be long-lived. In
some theories, like Freeze-In DM [27, 94] or Dynamical DM [31, 32] the LLP plays a crucial role in
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generating the DM abundance. Baryogenesis could proceed via the B-violating out-of-equillibrium
decay of a WIMP-like LLP particle in the early universe, in a scenario called WIMP Baryogenesis
[23]. Producing this parent particle and observing its decay would not only solve the mystery of the
BAU, but would allow us to witness this cosmic act of creation first-hand in the laboratory. Finally,
extensions of the SM to generate neutrino masses [33–45] are natural candidates for LLP searches,
since the small couplings involved inherently give rise to a variety of possible LLP states and signa-
tures [95]. In many of these scenarios, MATHUSLA is the first or only discovery opportunity, making
its construction crucial to exploit the physics potential of the HL-LHC.

Finally, we comment on the purely experimental reasons for building MATHUSLA. As summa-
rized in [46], the most spectacular LLP searches are highly efficient and practically background-free
at the LHC and HL-LHC. The combination of the geometrical DV signal requirement with another
conspicuous feature of the final state, like well-separated leptons or high-energy jets that are produced
either in association with the LLP or in its decay, effectively removes all backgrounds and allows con-
ventional triggers to record the event. However, any LLP signal that is less conspicuous is limited
by both triggers and backgrounds. In particular, full displaced vertex reconstruction in the tracker is
not available to the Level 1 trigger systems of ATLAS and CMS, and this capability would be very
challenging to include in full for the HL-LHC. As a result, features of the signal event not related to
the displaced nature of the LLP decay have to pass Level 1 triggers, severely limiting acceptance for
many low-mass or even weak-scale scenarios below a TeV. Furthermore, exploring the long-lifetime
regime necessitates LLP searches that require just one LLP decay in the event, since requiring addi-
tional decays lead to further acceptance suppressions at long lifetime. This means that backgrounds
can be significant, especially if the LLP decays dominantly hadronically and has a mass below a few
hundred GeV, or if it decays to leptons but has a mass below ∼ 10 GeV. These “less conspicuous”
LLP signals actually cover a large variety of theoretical scenarios, including the well-motivated class
of LLP signatures arising from exotic Higgs decays [7], and exhaustive exploration of their signature
space is very difficult using the main detectors alone.

MATHUSLA has a similar acceptance for LLP decays in the long-lifetime limit as ATLAS or
CMS, making up for its smaller solid angle coverage with its greater size. For the purpose of LLP
searches, MATHUSLA can therefore be thought of as a heavily shielded (and much simpler) cousin
of the main detectors that sacrifices sensitivity to shorter LLP lifetimes . 10m in order to operate in
the zero-background-regime without trigger limitations. As a result, MATHUSLA is able to perfectly
complement the main detectors, probing the well-motivated LLP scenarios that are most difficult
to probe using the existing LHC experiments alone. This incremental upgrade to the LHC complex
therefore allows the discovery potential of the 14 TeV pp collisions, which could already be producing
as-yet undiscovered new particles, to be fully exploited.

3 Basic Detector Principles

The basic principle of the MATHUSLA detector concept is illustrated in Fig. 2. Neutral LLPs pro-
duced at the LHC IP travel upwards and decay inside the air-filled1 decay volume, giving rise to

1This is required to allow for the detection of LLPs that decay hadronically.
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Figure 2. Schematic illustration of LLP decay signal (top) and main backgrounds (bottom) in a MATHUSLA-
like detector consisting of a robust multi-layer tracker (a) above an air-filled decay volume. A veto of scintillator
or tracker (b) may surround the decay volume to provide additional background rejection, but depending on the
outcome of detailed background studies, this may not be required.

displaced vertices of upwards-traveling charged tracks that are reconstructed by a highly-robust multi-
layer tracking system near the roof. The original simplified design proposed in [1] assumed 5 layers of
Resistive Plate Chambers (RPCs), which are suitable for economical coverage of very large areas with
good position and timing resolution. This is also the basis for the more realistic preliminary detector
design proposed in Section 7 of this letter, though other technologies are also being considered.

Fig. 3 shows the position of three simplified geometries for the MATHUSLA decay volume
we will consider in this letter. To a reasonable approximation, sensitivity to LLP production rate
(long lifetime) scales inversely (linearly) with detector area, assuming fixed height. As long as the
detector starts . 100m horizontally displaced from the IP on the surface, the sensitivity is not greatly
dependent on the precise position of the detector.

MATHUSLA200 has a 200m×200m×20m decay volume. This is the geometry proposed in [1]
and studied in most previous works, including the physics case white paper [46]. Significantly, this
large size would allow MATHUSLA to probe LLP lifetimes close to the Big Bang Nucleosynthesis
(BBN) limit cτ . 107m for LLPs produced in exotic Higgs decays (see Section 4). It could be
implemented if sufficient land was made available, but the default benchmark we consider in this
letter is MATHUSLA100, which is smaller by a factor of 4 with a 100m × 100m × 20m decay
volume. The reason for making this choice is that an available experimental site near CMS may be
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Figure 3. Possible simplified MATHUSLA geometries with different decay volumes. MATHUSLA100 is the
default benchmark for this Letter of Intent, since it is approximately the right size for an available experimental
site near CMS. MATHUSLA200 is the geometry proposed in [1] and studied in [46]. It can probe the Big
Bang Nucleosynthesis (BBN) lifetime limit for LLPs produced in exotic Higgs decays, and could be imple-
mented if sufficient area was made available. The smaller MATHUSLA50 is considered alongside the other
two geometries to demonstrate the scalability of the design.

able to accommodate a detector layout similar to MATHUSLA100, see Fig. 4. We will study explicitly
site-specific detector geometries in the future.

Clearly, MATHUSLA is a very flexible detector concept that is inherently scalable and can be
adjusted to the desired sensitivity as well as available land area and budget. We further demonstrate
this point by providing sensitivity estimates for a smaller MATHUSLA50 geometry with a 50m ×
50m× 20m decay volume in the sensitivity estimates of Section 4. However, we strongly emphasize
that given the relative simplicity of the detector, a size at least as large as MATHUSLA100 should
be the realistic goal. It takes full advantage of readily available land while greatly enhancing the
discovery potential of the LHC.

If the layers of the tracking system span a vertical distance of a few meters, resolutions in the
cm and ns range allow for full 4-dimensional displaced vertex reconstruction, requiring all associated
tracks to intersect in both space and time. This is an extremely stringent signal requirement, especially
for hadronic LLP decays with O(10) charged final states, which is crucial for rejecting backgrounds
to effectively near-zero levels, most importantly the ∼ 1015 downwards-traveling charged particles
from cosmic rays incident on the detector during the HL-LHC run. These and other backgrounds
are discussed in more detail in Section 6. It is important to note that despite this large integrated
total particle count, the occupancy of the detector is very low by high energy physics experimental
standards. This makes triggering and DAQ challenges manageable, as we discuss in Section 7.

As shown in Fig. 2 (b), the original proposal included a layer of scintillator (or tracker) that
hermetically encloses the decay volume to provide additional vetoing and tracking information. Since
all charged tracks associated with a true LLP DV would have to satisfy such a fiducial veto, this
significantly increases background rejection. However, detector construction and operation would
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Figure 4. Possible site for the MATHUSLA detector near CMS. The relevant area is to the west of the IP and
enclosed by the blue dashed lines. The LHC beam runs roughly east-west. This site could accommodate a
detector layout similar to our MATHUSLA100 benchmark.

be greatly simplified if the decay volume did not have to be physically enclosed by any sensors or
support structure. The latest results presented in Section 6 suggest that such a hermetic veto may
not be required to reject muon backgrounds, but significant additional study is required to understand
whether the same holds true for the cosmic ray-related backgrounds as well. At the present time, the
minimal realistic detector design in Section 7 does not include the hermetic veto, though it can be
extended to include this feature.

The scalable nature of the MATHUSLA concept also means the detector lends itself to a modu-
lar implementation. Assembling the necessary decay volume out of closely spaced submodules with
an area in the O(10m × 10m) range has many practical advantages, allowing their production to be
standardized and benefit from economies of scale, while easily adjusting their deployment to the par-
ticular characteristics of the available experimental site. A modular design also allows for incremental
ramp-up of detector operations, since even a small fraction of the final experiment allows for tunning
trigger strategies and providing early results. Finally, individual modules can be upgraded much more
easily and cheaply than the whole detector, which realistically allows for additional capabilities to be
added, including higher spatial tracking resolution for low-mass LLP searches, or possibly additional
material layers for limited particle ID and photon detection [67], see Section 4. The more realistic
design presented in Section 7 is based on such a modular construction.
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Finally, we point out that both the simplified geometries presented in this section and the more
realistic design presented in Section 7 have to be regarded as preliminary. There are many aspects of
the detector that are subject to detailed optimization and engineering studies, including the final shape
of the decay volume footprint (e.g. a pie shape may be more optimal, depending on the experimental
site shape and position), as well as its height. It is also likely that the precise coverage of the tracker
can be optimized. For example, the results of Section 7.5 demonstrate that instrumenting the vertical
decay volume boundary facing away from the IP with a “wall” of tracking layers could significantly
enhance DV reconstruction efficiency for higher-mass leptonic LLP decays with a very modest in-
crease in sensor cost. Even so, further work is needed to determine whether this is justified, given that
these LLP scenarios will be well-covered by ATLAS/CMS LLP searches.

4 Primary Physics Goal: LLP Searches

The sensitivity of MATHUSLA to LLP signals was first discussed in the original proposal [1] for
the well-motivated benchmark model of LLP production in exotic Higgs decays. The comprehensive
physics case white paper [46] as well as several individual follow-up studies [63–73] discuss this
in great detail, but the most important lessons can be stated very succinctly. In this section we re-
peat some of the model-independent arguments of [46] regarding MATHUSLA’s LLP physics reach,
slightly adapting the discussion to the different benchmark geometries of Fig. 3 that we study in this
letter.

For simplicity, and also to make these results as independent of the particular detector technology
as possible, we assume perfect LLP detection efficiency and rejection of all backgrounds within the
MATHUSLA decay volume. The sensitivity projections in this section should therefore be regarded
as an ideal that can be approached with a detector of sufficient design. That being said, even the
relatively modest design of Section 7 closely approaches these sensitivities for hadronic LLP decays
to many charged particles, since the design driver of the tracking system is cosmic ray rejection by
directionality, which in turn leads to excellent reconstruction efficiency for high-multiplicity final
states, see Section 7.5.

4.1 LLP Sensitivity Benchmarks

We now examine MATHUSLA’s LLP sensitivity for a few representative benchmark models that serve
to illustrate the broad range of both TeV- or weak-scale and low-scale new physics scenarios such a
detector could probe. See [46] for a much more detailed discussion.

Exotic Higgs decays [7] are a highly motivated possibility for BSM particle production with great
discovery potential, owing to the suppressed Higgs width in the SM, large production cross section
at the LHC and lack of symmetry protection for the |H|2 operator, making Higgs portal couplings
to any new physics very generic. Exotic Higgs decays to LLPs could easily have branching ratios
up to ∼ O(0.1) and not be in conflict with current Higgs coupling measurements [96]. The LLP
lifetime and decay modes can be regarded as free parameters, but even from this model-independent
perspective, the Higgs portal coupling makes it very plausible that the LLP decays to Yukawa-ordered
and hence dominantly hadronic SM final states (see e.g. mirror glueballs in Neutral Naturalness
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Figure 5. Comparison of reach for 30 GeV LLPs produced in exotic Higgs decays and decaying hadronically,
for various MATHUSLA geometries (curves correspond to 4 LLPs decaying in the detector volume) and the
LHC main detector exclusion projection using a single-DV search in the ATLAS Muon System [97].

[89, 90]). Ref. [97] studied the reach of the HL-LHC main detectors to such an LLP scenario in the
long lifetime regime and obtained sensitivity projections for a single-DV search in the ATLAS Muon
System. Since LLPs that decay to jets in the tracker and are produced in exotic Higgs decays are too
light to efficiently pass Level 1 triggers without e.g. being limited to associated Higgs production,
the ATLAS Muon System is uniquely well suited for an inclusive main detector search. It is shielded
from QCD activity by the calorimeters, and can trigger at Level 1 on a single LLP decay. However,
the search is still limited by O(100fb) of backgrounds at the HL-LHC.

By comparison, MATHUSLA is able to search for these LLPs without background (or trigger)
limitations. We compute the number of LLPs decaying in MATHUSLA by convolving the geometries
from Fig. 3 with the kinematic distribution of LLPs produced in exotic Higgs decays following [1].
Sensitivity projections assuming 4 events decaying in MATHUSLA are shown in Fig. 5. MATH-
USLA200 has three orders of magnitude better sensitivity to LLP production cross section or long
lifetime than ATLAS. MATHUSLA100 and MATHUSLA50, despite being 1/4 and 1/16 the size of
MATHUSLA200, have about 0.4 and 0.1 times the sensitivity of MATHUSLA200, due to the slightly
greater importance of the common decay volume closest to the IP. This is perhaps the simplest demon-
stration of the enormous physics potential MATHUSLA contributes to the LHC.

MATHUSLA100 and in particular MATHUSLA200 are able to probe LLP lifetimes approaching
the cτ . 107m upper limit from BBN [98]. Apart from being the ceiling of the majority of LLP
parameter space, this reach is significant in another way. If the HL-LHC detects a nonzero invisible
Higgs boson decay at the 10% level, then regardless of detection at MATHUSLA, its LLP searches
will help resolve the nature of the newly discovered signal. If MATHUSLA sees no LLP decays, then
due to the near-universal nature of the BBN bound, it can be regarded as highly likely that the Higgs
decays to a stable invisible particle, hence confirming the production of a dark matter candidate at the
HL-LHC. On the other hand, if the invisible Higgs boson decay produces an unstable constituent of a
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Figure 6. MATHUSLA200 reach for Higgsino LLPs. (The MATHUSLA100 and MATHUSLA50 reach can
be obtained by rescaling the shown event yield by about 1/3 and 1/10 respectively.) Left: contours show
the number of Higgsino decays in MATHUSLA as a function of Higgsino mass µ and decay length cτ at the
HL-LHC. Middle: The same event yield as a function of the gauge-mediated SUSY breaking scale F0, if the
Higgsino is long-lived due to a suppressed decay to a light gravitino and Z/h. Right: Event yield as a function
of the Peccei-Quinn symmetry breaking scale vPQ in supersymmetric axion models where the Higgsino is
long-lived due to a suppressed decay to an axino and Z/h. Plots reproduced from [46].

hidden sector, MATHUSLA is very likely to observe its decay, allowing data from both detectors to
diagnose the newly discovered physics.

Another important benchmark are Higgsinos in supersymmetry, which can be long-lived in a
variety of scenarios, including gauge-mediation [20], R-parity violation [15–17] or a supersymmet-
ric axion models [21, 22]. MATHUSLA’s reach is shown in Fig. 6, extending to TeV-scale masses
depending on the lifetime (or, equivalently, SUSY-breaking scale in gauge mediation or the scale of
Peccei-Quinn (PQ) symmetry [82–84] breaking).

Finally, many low-mass LLPs, including sterile neutrinos [33–45] and dark scalars [77–80] can
be produced in exotic B-meson decays. To illustrate reach for this LLP production mode, we show
in Fig. 7 the sensitivity of MATHUSLA200 to scalar LLPs produced either in exotic B-meson de-
cays or exotic Higgs decays within the minimal SM+S simplified model, which features a single
real scalar mixing with the Higgs, owing both its production and decay to this Higgs portal cou-
pling [77]. MATHUSLA200 probes longer lifetimes and hence smaller mixing angles than the SHiP
experiment [99–101], allowing both experiments to complement each other significantly for this par-
ticular benchmark model. While MATHUSLA100 will have slightly less reach than MATHUSLA200,
broadly the same conclusions apply for this geometry as well.

4.2 Model-independent Reach and Comparison to Other Experiments

The background-free nature of LLP searches in MATHUSLA, and the purely geometrical nature of the
signal, make it very straightforward to understand the sensitivity of different MATHUSLA geometries
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to LLP production rate in a relatively model-independent fashion [46]. ToO(1) precision, the reach of
MATHUSLA in the long-lifetime regime depends only on the production rate and average boost of the
LLPs. We can therefore obtain an approximately model-independent sensitivity estimate by showing
the exotic Higgs decay bounds from Fig. 5 as a function of production rate and bcτ in Fig. 8.2 For
lifetimes in the few hundred meter range, MATHUSLA can probe 0.1 - 1 fb production cross sections
at the LHC. For 10 pb cross sections, it is sensitive to BBN lifetimes.

This LLP cross section reach can be translated to mass reach for either the LLP or the parent
particle producing the LLP in its decay [46]. The benchmark cross sections shown in Fig. 9 for a
variety of possible LLP production modes demonstrate that MATHUSLA probes BSM physics well
into the TeV scale.

For low-scale models, it is of particular interest to understand the minimum LLP mass that can be
probed at MATHUSLA. The opening angle θ of LLP decay products scales with the LLP boost θ ∼

2For example, in these units, the bounds for different LLP masses coincide very closely.
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1/b. Crucial to background rejection is the reconstruction of each LLP decay as a well-resolved multi-
pronged DV. The limiting factor is the spatial resolution ∆x of the tracking system. The requirement
of resolving LLP decay products translates to an approximate maximum LLP boost:

bmax
LLP ∼ 1000

(
1cm

∆x

)
. (4.1)

LLPs produced in the decay of a significantly heavier parent particle with mass mparent and boost
bparent have boost

bLLP ∼
bparentmparent

2mLLP
. (4.2)

Eqn. (4.1) can therefore be translated into a minimum LLP mass that MATHUSLA can probe in the
low-background regime:

mmin
LLP ∼

bparentmparent

2bmaxLLP

∼
(
bparentmparent

2000

)(
∆x

1cm

)
(4.3)

Assuming a 1 cm spatial resolution, this corresponds to a minimum LLP mass of ∼ 0.1− 1 GeV for
LLPs produced in the decay of a 0.1 - 1 TeV parent. For light LLPs produced in B-hadron decays,
the minimum mass is about 10 MeV. MATHUSLA could therefore probe relatively low LLP masses
very effectively.

How does the reach of MATHUSLA compare to the reach of main detector LLP searches in
general? This is a very difficult question to answer in detail, due to the relatively nascent state of the
LHC LLP search program and uncertainties about main detector backgrounds and HL-LHC running
conditions. However, some general arguments guided by existing LLP searches were put forth in [46].
These can provide some qualitative insight.

Broadly speaking, if a given search for a single LLP decay in the main detector is background
free, and has no limitations from the trigger or requirements on the final state that significantly reduce
sensitivity (e.g. relying on a sub-dominant production or decay mode to have a lepton in the event, or a
high-pT jet in a lower-scale LLP production process), then the ATLAS/CMS search will have similar
sensitivity to the corresponding search at MATHUSLA200. For all other scenarios, MATHUSLA200
has better LLP cross section sensitivity. In particular, for LLPs giving rise to hadronic final states
with less than a few 100 GeV of energy, MATHUSLA200 can be up to three orders of magnitude
more sensitive (see Fig. 5). For LLPs with masses below 10 GeV decaying to displaced lepton jets,
MATHUSLA200 can be 1-2 orders of magnitude more sensitive. For MATHUSLA100, the same
arguments apply, with the sensitivity gain reduced by a factor of ∼ 3. Clearly, MATHUSLA greatly
extends the physics reach of the HL-LHC main detectors in a very general way for many different
kinds of LLP signals.

LLPs with very long decay lengths can also be searched for with missing energy searches at
ATLAS or CMS. However, unless the amount of missing energy in the event is very large (order
TeV) and/or the production rate is very sizable, the presence of backgrounds in MET searches limit
their sensitivity to LLPs. The reach of missing energy searches was examined in [46] by considering
DM simplified models where the invisible final-state particles are substituted with LLPs. In all cases,
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MATHUSLA greatly extended mass reach compared to the missing energy search alone, depending
on the LLP lifetime.

Finally, we can ask how MATHUSLA’s capabilities compare to other dedicated LLP experiments.
The SHiP experiment [99–101] has been proposed to look for hidden sectors and LLP signals at the
few-GeV scale or below. Fig. 7 demonstrates that MATHUSLA can be very competitive to SHiP’s
reach. This can be understood due to the large B-hadron production rate at the HL-LHC and MATH-
USLA’s relatively good geometrical acceptance. Ref. [77] showed that for LLPs with decay lengths
bcτ � 100m produced in B-hadron decays, MATHUSLA200 sees about two orders of magnitude
more events than SHiP. Together, the two experiments cover shorter and longer lifetimes in a highly
complementary fashion.

In the last year, two promising new ideas for external LLP detectors at the LHC have appeared
in the literature. CODEX-b [102] was proposed to take advantage of a ∼ (10m)3 sized free space
that will become available near the LHCb experiment. Similar to MATHUSLA in its basic princi-
ples, its smaller size and lower luminosity means it has a few orders of magnitude less reach to LLP
production rates than MATHUSLA. However, its smaller size may also allow it to be equipped with
more sophisticated instrumentation than MATHUSLA’s simple tracker, while its close proximity to
LHCb would allow it to act as a fully integrated sub-detector. This adds significant new capability to
LHCb, and its reach for low-mass or shorter-lifetime LLPs is likely to be complementary to MATH-
USLA. FASER [103, 104] is a very small proposed detector, cylindrical in shape with a radius of ten
centimeters to one meter, and a length of several to ten meters. It would be placed a few hundred
meters down the beamline in the LHC tunnel in an available access tunnel with minimal required
excavation. Its downstream position on the beam axis of the collision point allows it to take advantage
of large forward enhancements for light LLPs, such as dark photons or dark scalars. It would sig-
nificantly complement MATHUSLA’s sensitivity to these low-scale LLP scenarios, probing shorter
lifetimes beyond the reach of a surface detector. Obviously, the best scenario for taking advantage of
the existing LHC collisions would be the construction of FASER, CODEX-b as well as MATHUSLA.

4.3 Characterizing the LLP signal

The benchmark version of MATHUSLA consists of only a tracker above the LLP decay volume.
Despite this minimal instrumentation, MATHUSLA has surprising capabilities to determine the prop-
erties of any detected LLP signal. This was first systematically explored in [67], and we summarize
the main conclusions here.

The most obvious observable to diagnose the properties of an observed LLP decay is final state
multiplicity. A decay to two well-separated charged tracks strongly suggests a decay to two leptons.
A few tightly collimated tracks in each leg of the DV may indicate tau leptons, while decay to jets
leads to large O(10) multiplicities. Detailed analysis may even reveal the flavor of the final state jet.
Fig. 10 (left) shows the distribution of final state multiplicities for a 55 GeV LLP that decays either
into gluons, into jets with Yukawa-ordered branching ratios (i.e. b-dominated), and into jets with
gauge-ordered branching ratios (i.e. light-flavor dominated). With ∼ 10− 100 observed LLP decays,
these possibilities can be effectively distinguished.
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Figure 10. Left: multiplicity of charged final states traveling upwards for a 55 GeV LLP decaying to different
flavors of jets. Right: for LLPs with 15, 35 and 55 GeV mass produced in exotic Higgs decays, the true boost
distribution in MATHUSLA200 (solid) is compared to the reconstructed boost distribution using vertex-track
opening angles (dotted - as described in text). Figures from [67].

Additional information can be discerned from the geometry of the displaced vertex. For decays
to two charged final states, there is a direct relationship between the boost of the LLP and the open-
ing angle, which can be used to determine the LLP boost with high fidelity, event-by-event, as long
as the LLP mass is much greater than the final state masses. For hadronic decay, a slightly more
sophisticated technique produces almost equivalently good results. Since MATHUSLA lacks energy
measurement, its signal will be dominated by large multiplicities of soft pions produced with near-
thermal energy spectra. Assuming the final states to be massless, one can Lorentz-boost the displaced
vertex backwards towards the IP until the final state distribution is approximately spherically symmet-
ric, and obtain an estimate of the LLP boost for this specific event. As Fig. 10 (right) demonstrates,
this simple method agrees surprisingly well with the true boost.

Fig. 10 (right) also makes clear that for a given LLP production mode, the boost distribution can
reveal the LLP mass. In fact, for the studied exotic Higgs decay scenario, only about 20 observed
LLP decays, either leptonic or hadronic, are required to measure the mass with 10% precision. This
suggests that once LLP decays are observed, the mass measurement could be obtained for a variety
of different hypothetical production modes. The event-by-event boost measurement allows for the
identification of the individual HL-LHC bunch crossing where the LLP was created. Off-line correla-
tion of MATHUSLA and main detector data could then narrow down the choices of LLP production
modes, or even determine it completely with enough data.

Further study is needed to fully understand the diagnostic capabilities of MATHUSLA. For ex-
ample, it would be important to understand whether an invisible component in the LLP decay can
be reliably detected. At any rate, the tracks from LLP decays clearly contain a significant amount of
information, allowing MATHUSLA to not only detect but diagnose many new physics scenarios.

4.4 Possible Extensions

One of the most important features of the MATHUSLA proposal is its entirely parasitic nature. The
detector operates independently of the LHC and the main detectors, and neither its construction nor
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operation interferes with running the accelerator or other CERN experiments. This also ensures that
MATHUSLA remains operational and useful if the HL-LHC is succeeded by an HE-LHC.

It is, however, possible to imagine linking MATHUSLA more closely with its neighboring main
detector. Triggering on a possible LLP decay could be done very rapidly at MATHUSLA, relying
on only an upwards going charged track. This may allow MATHUSLA to contribute a trigger signal
to the main detector. It is even imaginable to use MATHUSLA as a Level 1 trigger, given that the
light-speed travel time between the main detector and MATHUSLA is∼ 0.5−1.2µs, but the viability
of this idea has to be studied further, it may add significant cost to the electronics of the MATHUSLA
detector itself, and will require the approval of the LHC main detector collaboration. It might therefore
be considered as an upgrade once an LLP signal is detected, since triggering with MATHUSLA would
greatly enhance the main detector’s ability to help diagnose the LLP production mode as discussed in
Section 4.3.

Finally, we point out that various extensions of the basic MATHUSLA design outlined in this
section could be considered. For example, adding a few cm of material like iron between the tracking
layers [67] could allow for photons to be detected, as well as aid in electron/muon discrimination,
which could enhance both LLP diagnostic capabilities and enhance the cosmic ray physics program
discussed in Section 5. However, it is not yet clear whether the added cost, weight and complication
makes this idea viable. One could also equip one or several of MATHUSLA’s sub-modules with
significantly higher spatial tracking resolution to look for LLPs with masses below 10− 100 MeV, or
with the above-mentioned layer of material.

5 Secondary Physics Goal: MATHUSLA as a Cosmic Ray Telescope

The design of MATHUSLA is driven by the requirements of reconstructing upward-traveling dis-
placed vertices and distinguishing them from downward-traveling cosmic rays. It therefore comes
as no surprise that MATHUSLA has all the qualities needed to act as an excellent cosmic ray tele-
scope. In fact, MATHUSLA’s particular combination of robust tracking and large area allow it to
make many unique measurements that could address important and long-standing questions in as-
troparticle physics. The study of cosmic rays is therefore an important secondary physics goal of
MATHUSLA. These measurements, which do not interfere with the primary goal of LLP discovery,
represent a “guaranteed physics return” on the investment of the detector, as well as an opportunity to
establish a cosmic ray physics program.

The cosmic ray physics program at MATHUSLA warrants in-depth examination, and some initial
studies will be presented elsewhere [105]. Here we only briefly comment on the qualities that make
MATHUSLA a uniquely interesting cosmic ray experiment, and outline some possible measurements
that are of particular interest to the astroparticle physics community. To this end, we first review some
basic facts about cosmic rays and how they are detected.

5.1 Basic Principles of Cosmic Ray Detection

Cosmic rays, dominantly protons and heavier atomic nuclei, arrive at earth with an energy that spans
some 12 orders of magnitude, from a few hundred MeV (108 eV) to 100 EeV (1020 eV) [106–108],
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from air shower measurements [91–106].

Measurements of flux with air shower experiments in the knee region differ by as
much as a factor of two, indicative of systematic uncertainties in interpretation of the
data. (For a review see Ref. 90.) In establishing the spectrum shown in Fig. 30.8, efforts
have been made to minimize the dependence of the analysis on the primary composition.
Ref. 99 uses an unfolding procedure to obtain the spectra of the individual components,
giving a result for the all-particle spectrum between 1015 and 1017 eV that lies toward
the upper range of the data shown in Fig. 30.8. In the energy range above 1017 eV, the
fluorescence technique [107] is particularly useful because it can establish the primary
energy in a model-independent way by observing most of the longitudinal development
of each shower, from which E0 is obtained by integrating the energy deposition in
the atmosphere. The result, however, depends strongly on the light absorption in the
atmosphere and the calculation of the detector’s aperture.

Assuming the cosmic-ray spectrum below 1018 eV is of galactic origin, the knee could
reflect the fact that most cosmic accelerators in the Galaxy have reached their maximum

December 1, 2017 09:36

Figure 11. Global view of the all-particle cosmic ray energy spectrum (figure taken from [119]). The total
spectrum decreases quickly according to a power-law formula E−γ , where γ (the spectral index) varies from
roughly 2.6 to 3.3 [108]. Between 1015 eV and 1019 eV, the spectrum exhibit three distinctive features created
by a change in the value of γ: the knee, which is located at ∼ 4 PeV [119, 120], the second knee, close to
100 PeV [121–123] and the ankle, around 4 EeV [124, 125]. There exists also a weaker structure called the
low energy ankle [108] at∼ 10 PeV [121, 122]. MATHUSLA is expected to be sensitive to hadronic EAS with
primary energies around the knee, i.e. in the interval E ∼ 1014 − 1017 eV according to its size 200× 200 m2

and the atmospheric depth at which it will be located (∼ 1000 g/cm2).

see for example, Fig. 11. They are produced in violent astrophysical scenarios within our own galaxy
(for energies E . 1018 eV) and beyond (for E > 1018 eV). At the highest energies, however, the
origin of CRs is still mysterious, since propagation in galactic magnetic fields means CRs do not point
back to far away sources [108, 109]. In general, details of CR acceleration mechanisms, composition,
propagation through space, and features in their spectrum are not completely understood [108, 110–
112]. The study of CRs offers a unique window on the most energetic natural phenomena of the
cosmos [113–115], and their collisions with the atmosphere probe energies far in excess of the TeV
scale [116–118].

Primary CRs with relatively low energy can be directly characterized by balloon- or space-borne
particle physics experiments equipped with trackers and calorimeters, like AMS-02 [126, 127] and
CREAM [128, 129] among others (see, for example, [130–132]). The small size of these detectors
restricts this approach to energies below ∼ 100 TeV − 1 PeV, both because the CR flux drops
dramatically above this threshold and because the detector’s magnetic field and radiation depth limits
the maximum energy which can be reconstructed.

To study higher energy CRs above∼ 1014 eV, the atmosphere is used as a calorimeter [106, 108,
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133, 134]. The detection technique consists in observing the Extensive Air Showers (EAS) of SM
particles that CRs induce in collisions with the atmosphere. The EAS typically originates from 15 km

to 35 km above sea level [134, 135] and spreads out as the particle front travels towards the ground. At
sea level, an average EAS consists primarily of electrons/positrons and photons with ∼ 10% muons
and a smaller fraction of hadrons (for vertical incidence) [136]. Depending almost linearly on the
energy in logarithmic scale, the total number of particles in the EAS is in the range ∼ 104 − 1010, for
primary energies E = 1014 eV− 1020 eV, and it is mostly contained within a cone ofO(0.1− 1 km)

in diameter at ground level [109, 133]. Measurements of the EAS allow the primary CR’s direction,
composition and energy to be reconstructed [136]. Earth-bound CR experiments employ two classes
of techniques to probe the EAS: (1) particle detectors on the surface, like particle counters, trackers,
and calorimeters to sample the air shower front and (2) various telescopes to observe electromagnetic
emissions from the shower or from the interaction of the EAS with the atmosphere (Cherenkov radia-
tion, radio, fluorescence light). Many experiments use a combination of both techniques like the Pierre
Auger Observatory [137], TUNKA [123] and TALE [138]. EAS observatories monitor in general
large areas to compensate the low CR flux at high energies. For example, at E ∼ 1015 eV, CRs are
received at a rate of∼ 1 particle/m2 ·year [106] and shower arrays with areas of order & O(104 m2)

are required, like the KASCADE air shower detector (200 × 200 m2) [139]. On the other hand, at
extremely high energies E ∼ 1020 eV, the CR flux is so low (∼ 1 particle/km2 · century [106]) that
sufficient exposure requires installations with very large areas of the order of O(103 km2), like the
3000 km2 Pierre Auger Observatory [137, 140].

EAS telescopes/antennas are able to observe the longitudinal development of the air shower,
while surface detectors measure the lateral structure of the EAS at the atmospheric depth of the site
[136]. In the latter, particle detectors are arranged in arrays and are spaced at regular intervals to
optimize the measurements for the energy range of interest. Hence, in most cases, they sample only
a small fraction of the shower at the observation level. For instance, in case of KASCADE, the main
array of 252 e/γ detectors covered only 1.22% of the total surface, the muon array of 192 detectors,
only 1.55%, while the muon tracking detector and the hadron calorimeter covered just 0.64% and
0.76%, respectively [139]. Just in a few cases, full coverage was achieved as in the case of the
ARGO-YBJ detector, which consisted of a 74× 78 m2 carpet of RPC’s with an active area of almost
93% [141]. In general, most surface detectors are insensitive to the energy of a single charged particle
(although a counter can be equipped with shielding or buried underground to implement a desired
minimum energy threshold). Rather, the focus is on collective shower properties, like the spatial and
temporal distribution of particles, as well as some basic particle ID to separate the e/γ, muon and/or
hadron components in the EAS. This data is used to characterize the primary CR, assuming a certain
hadron interaction model which governs the evolution of the EAS in the atmosphere [134, 142].

Hadron interaction models are a crucial part of air shower Monte Carlo simulations. They are
tuned to available high energy physics data but rely on extrapolation in certain regions of phase space,
in particular, the forward region at very high energies. This introduces unavoidable uncertainties
in the determination of the properties of the primary cosmic rays [143–145]. Verifying and tuning
these hadron interaction models is therefore of fundamental importance to CR physics [134]. Tests
of hadron interaction models can be performed with the same data from EAS observatories. That
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requires, however, the simultaneous measurement of different observables of the air showers. KAS-
CADE made important contributions to this topic [146–152], because of both the quality of its mea-
surements and its different detection systems, like the full-coverage central tracker and calorimeter
[139]. This central detector only had less than 1% the area of the full experiment but was crucial in
allowing for more detailed analysis of the shower [146, 147, 149, 151, 152].

5.2 Cosmic Ray Physics with MATHUSLA

We can now understand why MATHUSLA would make important contributions to cosmic ray physics.
MATHUSLA200 is the size of KASCADE and will be also located at a comparable atmospheric depth
(∼ 1000 g/cm2). Therefore, it is expected to be sensitive to a similar CR energy range of 1014− 1017

eV. After a few years of exposure (∼ 3 yr), roughly 106 air showers with E > 1015 eV would
be recorded with their cores traveling through the MATHUSLA detector. Unique for a CR experi-
ment of this size, MATHUSLA has full-coverage robust tracking with excellent position and timing
resolution. The scintillator planes which enclose the LLP decay volume would supply additional in-
formation, especially for highly inclined showers. Even without track-by-track e/µ discrimination or
calorimetry, this would allow for very detailed EAS measurements, including highly granular analysis
of the shower’s temporal and spatial structure, which has never been undertaken at this size scale at
PeV energies. Furthermore, for roughly half of those CR events, the so-called “golden events”, part
of the shower’s high-energy muon component (Ethµ & 50 GeV − 70 GeV for vertical incidence)
also passes through the underground ATLAS or CMS detector and could be simultaneously registered
with special CR triggers during the LHC runtime. Therefore, whether working in standalone mode,
or in tandem with the main underground detector, MATHUSLA constitutes a powerful cosmic ray
experiment with unique capabilities that will open an era of precision EAS measurements in the PeV
energy region.

The particular CR measurements which MATHUSLA can perform will be studied in more detail
in a future document [105]. Some of the most compelling targets for CR measurements include:

• Primary CR spectra and composition: The spatial and temporal distribution of charged par-
ticles in the shower would probe the energy and composition of the primary CR, potentially
addressing open issues like the exact position of the “light knee” (a change in spectral index in
the spectrum of protons and helium, which ARGO-YBJ found at ∼ 700 TeV [153] and KAS-
CADE, around 3 PeV− 4 PeV [145, 154]) and the shape of the spectra of the heavy elemental
components of primary CRs at PeV energies [145, 154].

• Cosmic Ray Anisotropies: MATHUSLA’s enhanced resolution, compared to previous CR ex-
periments, could allow for improvements to the measurements on the dipole component of
the anisotropy in the diffuse CR flux at PeV energies, which has been poorly investigated (see
[108, 112] and references therein). Another important aspect is the search for local point sources
in the northern celestial hemisphere, which would provide vital clues about the presence of
nearby galactic accelerators of very high energy CRs [155–157].
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• Highly inclined showers: The vertical scintillator planes, if installed, enclosing MATHUSLA’s
decay volume, together with its precise full-coverage tracking, would allow for the study of
highly inclined air showers at large zenith angles θ > 60◦. These showers are interesting
for a variety of reasons. If they originate from charged primary CRs, they are dominated by
muons since their electromagnetic component is attenuated after traversing large distances in
the atmosphere. Observations of such events could help to study the high-energy muon content
of EAS and to test hadron interaction models by looking for anomalies in this sector at PeV
energies, such as those which have been observed at higher energies by observatories like the
KASCADE-Grande detector [158, 159], the Pierre Auger observatory [116, 160] or the Yakutsk
experiment [161]. The former has observed, for example, that the actual attenuation length of
shower muons at 1017 eV is bigger than the predictions of hadron interaction models [159],
while the latter ones have measured an excess of muons in ultra-high-energy EAS in comparison
with the models, a problem which is known as the muon puzzle [162].

Following [163], atmospheric and/or astrophysical neutrinos with energies above 1015 eV could
also be detected in this way if they scatter deep in the atmosphere or interact with the rock of
the nearby Jura mountains. Such neutrinos could induce very inclined young EAS, which could
be distinguished from regular old showers produced by CRs due to MATHUSLA’s superior
tracking resolution. Young EAS are characterized by a richer electromagnetic component, a
broader time signal and a larger EAS front curvature. Thus measurements of the particle content
and the spatial/temporal structure of inclined EAS in MATHUSLA could allow the search for
neutrino signals. MATHUSLA might also offer a tool to look for upward-going EAS from Earth
skimming ντ ’s [163, 164] and upward-going muons from νµ’s interacting with the rock below
the detector or inside the MATHUSLA’s instrumented volume [165, 166]. If MATHUSLA is
able to detect also upward-going muons resulting from muon-flavored neutrinos interacting in
rock, MATHUSLA could also provide complementary measurements for ν−oscillations (see,
for example, [167–169]).

• Study of EAS and tests of hadronic interaction models: Detailed measurements of the spatial
and temporal structure of EAS, as well as data on the charged particle attenuation length and
the muon components of highly inclined showers, may provide a number of clues to under-
stand several outstanding ambiguities in hadron interaction models [158–161, 163]. If there
is a linkage to the LHC main detector, additional constraints would be supplied by correlating
MATHUSLA’s measurements with detection of the high-energy muon component in the LHC
main detector.

• High-multiplicity Muon Bundles: Muons with an energy greater than ∼ 50 GeV will penetrate
down into the rock and reach the main detectors at CERN. ALEPH/DELPHI at LEP [170,
171] and ALICE at the LHC [172] have studied this high-energy muon component of EAS’s,
observing events with more than 100 muons in the underground detector. During the LEP era,
these high-multiplicity muon bundles could not originally be explained by hadron interaction
models, and several BSM explanations were proposed [173, 174]. Today, the data by ALICE
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points towards iron-rich CR primary composition at energies above 1016 eV, but the data has
very low statistics and further measurements are needed to understand the origin of these muon
bundles and their impact on primary CR studies.

Muon bundles could be detected by the LHC main detector using the main detector’s trigger-
ing system and correlated in time with data from MATHUSLA. This would give a much more
complete picture of these special CR events and could allow for their origin to be unambigu-
ously determined. These events are also valuable for constraining hadron interaction models.
If the triggers of MATHUSLA and the LHC main detector were linked that would improve this
measurement further.

It is worth noting that these measurements could be significantly improved if e/µ discrimination
capability were added to MATHUSLA. Apart from making measurements of CR primary composition
and spectra less dependent on hadron interaction models, the separate muon data would allow for
many additional detailed probes of hadron interaction models, with great benefit to all future CR
measurements at other experiments, e.g. [138, 175–177]. This non-exhaustive lists of physics targets
demonstrates that MATHUSLA could supply data which will be of unique value to the astroparticle
and CR physics communities.

6 Background Studies

The most important backgrounds to LLP searches at MATHUSLA come from Cosmic Rays, muons
from the HL-LHC collisions point, and neutrino scatterings, see Fig. 2. It is vital to the LLP reach
of MATHUSLA that these and other backgrounds can be rejected to near-zero levels. The various
background rates and their rejection strategies were first estimated in [1], establishing the plausibility
of reaching this very low background regime. Here we present the results of several much more
detailed background studies, all of which confirm the original conclusion that background rejection
at MATHUSLA is possible. For new background studies which are still in progress, we review the
original results or arguments presented in [1] and comment on the status of the ongoing efforts.

At this stage of development, these background studies are very technology-independent, either
not requiring detector simulation or, as may be the case for cosmic rays, being studied in a generic
simulated MATHUSLA detector that resembles the idealized design of Figs. 2 and 3. This is suffi-
cient to establish their rates in much more detail than in [1], and helps inform more realistic detector
designs.

6.1 Cosmic Rays

By far the largest background is charged particles from cosmic ray air showers, see Fig. 2 (e). They
have a rate of O(10 MHz) over the area of MATHUSLA200 [119], resulting in ∼ 1015 charged
particle trajectories integrated over the whole the HL-LHC run. A very high rejection efficiency of
this background is possible using a combination of timing and trajectory reconstruction, due to the
highly distinct signatures produced by cosmic ray charged particles compared to the decay of an LLP.
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In the next subsection, we review why the basic design of MATHUSLA allows this background
to be rejected [1]. We then outline several detailed ongoing studies using full cosmic ray simula-
tions using CORSIKA [178], fast parameterized simulations to study combinatoric aspects of this
background, as well as aspects of the associated detector simulation.

It should be noted that these studies go hand-in-hand with exploring the physics potential of
studying cosmic rays with MATHUSLA, see Section 5.

6.1.1 Basic Principles of Cosmic Ray Backgrounds at MATHUSLA

The most important aspect of CR rejection is their direction of travel. The vast majority of CR charged
particles travel down, not up like final states from the decay of an LLP originating at the pp IP. The
chance that a single downward-traveling cosmic ray will be mis-identified as originating within the
detector volume and traveling upward is less than 10−15. This rate was estimated by assuming the
tracking system consists of five RPC layers, separated by 1 m, with a Gaussian timing resolution of
1 ns. If the hermetic scintillator veto is present and has an order percent chance of not detecting
the passing charged particle, this rejection is achieved with only three out of the four layers firing.
Without the scintillator veto, this rejection is surpassed by assuming four out of the five layers fire. At
least two such fakes must occur to fake an upwards-traveling LLP decay. Furthermore, the LLP signal
requirement would actually include that these two (or more) upwards-traveling final states fire all five
tracking layers, not just three or four.

The above clearly demonstrates that timing is an extremely powerful rejection strategy for cos-
mic rays, making the zero-background regime plausible. Furthermore, spatial information was not
used at all in this estimate: we only required that each RPC hit occurs within two timing resolutions
of a consistent time for an upwards traveling particle with constant relativistic speed. This timing
requirement, which could possibly be loosened by taking spatial information into account, does not
significantly reduce signal efficiency at our level of precision. Spatial information will be necessary to
help reject cosmic rays that enter from large polar angles (close to parallel to the surface of the earth
at MATHUSLA).

This small rate suggests that the only realistic way for cosmics to possibly fake the signal are cor-
related showers of many charged particles coincident on MATHUSLA. These showers lead to a large
number of charged particles occupying MATHUSLA near-simultaneously. This is easily rejected with
very little “blind time” for the LLP search.

The required very high efficiency rejection of cosmic ray backgrounds for LLP searches during
the HL-LHC run will be a major driver of the detailed MATHUSLA design. The precise required
timing and spatial resolutions of the tracker and scintillators, as well as the exact number of tracking
layers, is the key question to be resolved by our current ongoing studies, described below. However,
the unique geometrical nature of the LLP DV signal, and the multitude of coincidences that would be
required for cosmic rays to fake the signal, makes us confident that this background can be controlled.
Furthermore, this background can be measured in detail in the absence of HL-LHC collisions, and
as part of the CR physics program outlined in Section 5. Such non-collision data will aid in defining
and/or validating rejection strategies.
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6.1.2 CORSIKA Cosmic Ray Simulations

In order to study the response of the MATHUSLA detector to cosmic rays, and to evaluate the cor-
responding background of penetrating particles (muons and neutrinos) on the searches for LLPs, MC
simulations of EAS are being performed.

The development of the EAS will be simulated with the program CORSIKA 7.64 [178], while the
high-energy (E ≥ 200 GeV) hadronic interactions of the primary nuclei and the secondary shower
particles, with the recent post-LHC hadronic interaction models, i.e., QGSJET-II-04 [179], EPOS-
LHC [180] and SIBYLL 2.3c [181]. At lower energies, on the other hand, the hadronic interaction
models Fluka [182] and GEISHA [183] will be used. We plan to include several models in the studies
to account for the uncertainties due to the hadronic interaction models, as it is well known that they
are one of the main source of systematic uncertainties in cosmic ray studies [184].

CORSIKA (COsmic Ray SImulations for KAscade) is a program to simulate extensive air show-
ers (EAS) produced by cosmic ray primary particles. Interactions of the primary with the air nuclei or
the decays are reproduced following several models depending on the energy of the reaction. It may
be used up to and beyond the highest energies of 100 EeV [178].

To simulate high and low energy hadronic interactions in the EAS, CORSIKA makes use of
phenomenological models, which are generally calibrated with collider data at low energies are ex-
trapolated to higher energies and into the forward region [184]. Among the high-energy models used
by CORSIKA we found EPOS-LHC, QGSJET-II-04 and SIBYLL 2.3c work best. For low energies,
CORSIKA can be used with FLUKA and GEISHA. QGSJET-II-04 is based on the Gribov-Regge
theory [185]. EPOS-LHC is based on the QGSJET [186] and the VENUS[187] models and consid-
ers hard interactions and nuclear and high-density effects. It is also improved to reproduce in detail
LHC data from various experiments [188]. SIBYLL 2.3c is a minijet model for efficient simulation of
hadronic multiparticle production[189]. On the other hand, at lower energies GHEISHA describes the
interaction of particles with matter considering results from atomic and nuclear scattering experiments
[183] while Fluka describes particle transport and interactions with matter [182].

To generate the simulations with CORSIKA, we will set at the moment the MAHUSLA loca-
tion at ground level (436 m a.s.l.) above the site of the ATLAS experiment (latitude 46◦14′4.8′′ N,
longitude 6◦03′11.4′′ E). The geographical coordinates were taken from the Elevation Map Net3 and
the details of the local geomagnetic field (Bx = 22.2µT , Bz = 41.9µT ) were obtained from the
NOAA web page4. We will select a curved atmosphere, instead of a flat one, to have more realistic
simulations for inclined EAS (θ > 60◦). We will also use the U.S. standard atmosphere model as
parameterized by Linsley, which is the default choice in CORSIKA [178]. We have also set the fol-
lowing threshold energies for the secondary particles at the observation level: 3 MeV for e± and γ’s,
and 100 MeV for µ± and hadrons. We will also use a thinning of 10−6, which will allow us to save
computing time and save disk space without losing too much information from the structures of the
EAS [190]. The thinning is defined as the fraction of the primary energy below which the secondary
particles are no longer tracked in the code. They are replaced by one particle that is followed with an

3https://elevationmap.net/cern-european-organization-for-nuclear-research-ch
4https://www.ngdc.noaa.gov/geomag-web/#igrfwmm
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Figure 12. CORSIKA simulations for air showers induced by cosmic rays assuming protons (blue circles) and
iron nuclei (red triangles) as primary nuclei in the interval E = 104.8 − 108 GeV and for arrival zenith angles
(θ) smaller than 20◦. As high/low-energy hadronic interaction models QGSJET-II-04 [179] and GEISHA [183]
were used, respectively. EAS are followed until ground level above the site of the ATLAS experiment. Left:
Mean logarithm of shower size (total number of shower electrons plus muons) versus logarithm of the primary
energy. Here we have considered electrons with threshold Eth > 3 MeV and muons with Eth > 100 MeV.
Right: Fraction of muons (in percentage) in the air shower as a function of the logarithm of the primary energy.

appropriate weight to keep the average properties of the EAS.
Events in CORSIKA are also defined by the primary nuclei, its energy, and arrival direction. The

last two parameters are randomly thrown from a given range and distribution previously specified.
The corresponding values that we will take for the above parameters are explained in the following
lines.

• Five cosmic ray primary nuclei are taking into account: Proton, Helium, Carbon, Silicon and
Iron. The energy range for all particles is 1013 − 1018eV and will follow an E−2 spectrum. On
the other hand, their angular dependence (non-flat configuration) will cover zenith angles in the
range [0◦, 90◦] and azimuth ones in the interval [0◦, 360◦]. In a further step, a weight will be
added to simulate an appropriate physical distribution.

• To properly generate high angle particles and allow CORSIKA to evolve the showers to the
edges of the detector, a non-flat geometry is used in CORSIKA to take into account the detector
walls and volume.

The output of the CORSIKA program consists of several local and global variables associated
with the properties of the EAS event at the observation level, such as arrival times, type, location
and momenta of the secondary particles, the total number of muons (µ±), electrons (e±), hadrons,
neutrinos and γ’s above the specified energy threshold, among other useful shower information. It
also keeps the input data of each event, e.g., the primary energy, the arrival direction (zenith and
azimuthal angles), and the primary nuclei. CORSIKA simulation runs are at the moment underway.
Some results of the first runs are presented in Figs. 12 and 13 for primary cosmic ray energies relevant
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Figure 13. Left: Radial density distributions of shower electrons (red circles, Eth > 3 MeV) and muons
(green triangles, Eth > 100 MeV) at ground level (MATHUSLA site) measured vs the distance to the core of
the EAS event for protons of energies E = 106 GeV −108 GeV. Right: Mean ratio of total shower muons,
Nµ, and total number of shower electrons, Ne, vs the arrival zenith angle for EAS induced by protons and
iron nuclei with energy in the range E = 106 eV −108 eV. Simulations were obtained with CORSIKA using
QGSJET-II-04/GEISHA.

for the MATHUSLA detector using QGSJET-II-04 with GEISHA. In Fig. 12, left we can see, for
example, that the expected mean of log10(Ne + Nµ), where Ne(Nµ) is the total number of electrons
(muons) in the shower, increases linearly with log10(E/GeV ). From this graph we observe that a
cosmic ray with primary energy of 106 GeV produces an EAS with an average of 105 shower electrons
and muons at the observation level of MATHUSLA.

On the other hand, the right plot of Fig. 12 shows that the fraction of muons in vertical EAS
is not bigger than 10% above primary energies of 1 PeV. In general, the total number of muons is
smaller than Ne in vertical showers of high energy (> 1016 eV) at the altitude of MATHUSLA. That
can be appreciated in Fig. 13 left, where the radial density distributions (measured from the core of
the EAS) for e’s and µ’s in EAS induced by PeV iron nuclei are shown. We see, however, that the
muon/electron ratio depends on the distance to the core. In particular, this fraction increases for large
radial distances. The same happens at high zenith angles due to increment of the atmospheric depth
and the larger attenuation length of muons in the atmosphere (see Fig. 13, right).

For the present analyses, the idea is to model the cosmic ray intensity in the full energy range
from E = 1 TeV up to 1 EeV using the above five nuclei primaries (H,He,C, Si, Fe), which are
representative of the distinct mass groups, by using an appropriate cosmic ray composition model
derived from fits to the measured data (see, e.g., the H4a model [191] and the Global Spline Fit model
[192]) to also take into account spectral features in the corresponding mass group spectra of cosmic
rays.

This MC data sets will be used to extract the expected EAS, muon and neutrino backgrounds at
MATHUSLA.
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6.1.3 Parameterized Simulation

The parameterized simulation will generate a library of background events for use in combination
with other background studies and the detector simulation. These background events will play much
the same role that pile-up events or overlay play in LHC experiments. The parameterized distributions
will be extracted from CORSIKA as described by known models (see for example [193–195]). These
background events are expected to be important in calculating an accurate fake rate for at upward
going muons, for example.

6.1.4 Detector Simulation

A program for fast simulation and detailed simulation (including albedo and rudimentary material
models) in Geant4 is under construction. Geant4 [196] simulates detectors, including tracking parti-
cles through material and material interactions. Since this simulation will include full particle tracking
it will be able to accurately track large high energy showers for the study of cosmic rays. By adding
an appropriate concrete or dirt model for the floor of MATHUSLA it will also be able to predict
MATHUSLA’s ability to reject cosmic ray albedo (upward going particles from the downward-going
cosmic rays). Further, the addition of support structures will help us estimate and backgrounds due to
material scattering.

6.2 Muons from the HL-LHC

In this section we present calculations of HL-LHC muon backgrounds in MATHUSLA using full
Geant4 simulations of muon propagation in the rock between the IP and the surface. This represents
a significant update on the initial estimates of [1], which overestimated muon backgrounds using
pessimistic analytical approximations of the muon penetration probability.

The results are summarized in Table. 1. Since they pertain only to rates of processes within the
decay volume, they are independent of the details of the detector technology. We find that fake DV
rates from rare muon decays or inelastic scattering within the MATHUSLA air-filled decay volume are
very small, contributing at most one expected event over the HL-LHC run for both MATHUSLA100
and MATHUSLA200. Depending on the detector design, inelastic scattering off the MATHUSLA
support structure could yield O(102) fake DVs, but these can be rejected by applying a material
veto from the position of the reconstructed DV within the support structure, with the main detector
muon trigger providing additional handles. Finally, passing muons can liberate relatively high-energy
electrons from atoms (delta rays) in the air-filled decay volume, which can give rise to a DV. However,
for electrons that are sufficiently energetic to leave a track, the opening angle is very small, and this
background can be vetoed by requiring two-pronged DVs to have an opening angle greater than 2◦.

None of the backgrounds we studied require a hermetic veto for rejection. However, the cuts re-
quired to reject delta ray background may reduce MATHUSLA’s sensitivity to very high-boost LLPs
that decay to few final states. This is not MATHUSLA’s primary physics target, but further investiga-
tion is needed to determine whether it justifies the inclusion of the hermetic veto. Furthermore, while
we expect their contributions to be small, it is possible that muon inelastic scatterings in the rock close
to MATHUSLA, or combinatoric superposition with mis-measured cosmic ray tracks, may contribute
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to rare fake DVs, which could be countered with the hermetic veto or at least a layer of detector in the
floor. We briefly discuss this in Section 6.4, but leave these processes for future study.

6.2.1 Strategy

For the MATHUSLA100 (MATHUSLA200) geometry, the distance a muon has to travel through the
rock to reach the decay volume is between 142 and 229 (332) meters, depending on the direction.
The minimum muon energy required to reach the decay volume with any significant probability is
& 70 GeV. The largest contributor to the production of such high-energy muons at the HL-LHC
are DY processes pp → W → µνµ and pp → Z → µµ, which have total production cross section
∼ 10nb, dominated by muons below this energy threshold. Once a muon penetrates the surface and
passes through MATHUSLA, its probability of either scattering or decaying is entirely determined by
its kinetic energy (or boost) on the surface, and the length it traverses inside the decay volume. This
suggests separating the muon background calculation into two parts: one to compute the muon prob-
ability of traversing various lengths of rock, and one to convolve this information with the kinematic
distribution of produced muons at the IP, and the geometry of the decay volume. We outline each of
these parts in more detail below.

6.2.2 Simulating Muon Propagation to the Surface

We assume 100 meters of rock in the vertical direction from the IP to the surface, ignoring the material
of the main detector. We assume the rock is a composition of sandstone, marl (calcium and clay), and
marl and quartz in fractions approximately consistent with survey data from ATLAS.

Passage of muons in various directions towards the surface, and with various initial kinetic ener-
gies Einit , is simulated using Geant4 10.4 [196]. For a given direction of travel, the distance of rock
Lrock traversed by the muon on the way to the surface, as well as the fractions of that path taken up by
the various layers of different material is uniquely determined. The only relevant variables for muon
propagation in the rock are therefore Einit and Lrock.

We define the total probability for a muon to reach the MATHUSLA decay volume as P (Einit,

Lrock), which satisfies

P (Einit, Lrock) =

∫
dEfinal

dP (Einit, Lrock, Efinal)

dEfinal
< 1 . (6.1)

The quantity inside the integral is simply the spectrum of possible muon kinetic energies (Efinal) on
the surface, normalized to the total penetration probability, for a given initial kinetic energy Einit

and traversed rock distance Lrock. We compute dP (Einit, Lrock, Efinal)/dEfinal for a series of initial
kinetic energies Einit ∈ (Emin

init , E
max
init ) = (70, 190) GeV and rock distances Lrock ∈ (140, 330) m.

The resulting penetration probability P (Einit, Lrock) is shown in Fig. 14 (left). Surface muon spectra,
in units of muon boost bµ = |~pµ|/mµ for initial energy Einit = 100 GeV are shown in Fig. 15.

6.2.3 Computing Muon Background Rates in MATHUSLA

Computing the rates of muon decays and muon scatterings in the MATHUSLA decay volume is
now straightforward. Convolving the kinematic distribution of of muon production DY events, sim-
ulated in Madgraph5 [197] at parton-level, with the geometry of the detector yields a differential
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Figure 14. Probability P (Einit, Lrock) of a muon reaching MATHUSLA as a function of initial kinetic energy
and distance traveled through rock. Left: original Geant4 simulation. Right: overestimate using extrapolation
to higher Lrock than what is covered using Monte Carlo statistics of the Geant4 simulations.
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Figure 15. Spectrum of kinetic energies for muons that reach MATHUSLA, in units of log muon boost
log10 bµ, with bµ = |~pµ|/mµ, for initial energy Einit = 100 GeV and 145, 160 and 180 m of rock. Total
penetration probability is indicated by P at top of each plot, gray shading indicates statistical uncertainty of the
Geant4 simulation.

dσ/dEinitdLrockdLdetector distribution, where Ldetector is the length of the muon trajectory in the
decay volume. Convolving this distribution with dP (Einit, Lrock, Efinal)/dEfinal yields a differen-
tial distribution of just dσ/dEfinaldLdetector which can be used to directly compute all scattering and
decay rates in the detector volume.

Before we present our results, we must discuss two important limitations of our Geant4 dataset
that forms the basis of our estimate of dP (Einit, Lrock, Efinal)/dEfinal, and how we can address them
to obtain reasonable estimates of muon backgrounds.

First, the dataset only extends to a maximum initial kinetic energyEmax
init = 190 GeV. To estimate
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Figure 16. Total penetration probability of muons for fixed Lrock = 142m (left) and 229 m (right) as a function
of initial kinetic energy.

the effect of high energy muon tails on a given muon backgroundX , we first treat allEinit > Emax
init as

through they are equal to Emax
init to capture some of their contributions and obtain an estimate of NX

observed events. We then compute the same background by omitting all muons with Einit − 5 GeV

to obtain a new estimate NX,trunc < NX with a truncated high energy muon tail. The difference
between these two figures indicates the importance of the high energy muon tail, and we obtain

NX,high−Emax ≡ NX + (NX −NX,trunc) (6.2)

as an estimated upper bound on the muon background from the estimated importance of high energy
muons.

The first limitation will be addressed in future studies to extend the Geant4 dataset to higher
energies, but the second limitation is more difficult to circumvent. Beyond some threshold of low
Einit or high Lrock, the muon penetration probability is extremely small, but it is not zero. This
is very difficult to capture with Monte Carlo simulations. However, low energy muons dominate
the total muon production at the HL-LHC, and since those muons which do make it to the surface
are likely to have very low boost, they could contribute significantly to muon decay signatures. To
estimate the contribution of these lower-energy muons, we extrapolate P (Einit, Lrock) obtained from
the Geant4 dataset to lower energies / larger distances. As shown in Fig. 16, for fixed Lrock and
P (Einit, Lrock) . 0.3, the penetration probability drops very steeply. The shape of this low-energy
tail can be captured accurately with a quadratic fit as a function of log10Einit, where the fit region
is varied for each value of Lrock to maximize the goodness-of-fit at low energies. We then vary all
fit parameters within 1-sigma to obtain an overestimate of the muon penetration function in the fit
region. The resulting total penetration probability is shown in Fig. 15 (right).5

To probe the possible effect of low-energy muons, we also need some prediction for their kinetic
energy distribution at the surface. For an initial estimate, we simply set the muon spectrum at the sur-
face to dP (Einit, Lrock, Efinal) = δ(Efinal−Etrial

final) when using the extrapolated fit of P (Einit, Lrock).
The surface kinetic trial energy Etrial

final is varied between a boost of 10−3 (certain decay within MATH-
USLA) and 102 (maximizes scattering) to maximize the background X that is being calculated. This

5This fit generally behaves sensibly but produces a few slightly spurious features, since in Fig. 15 (right) the penetration
probability does not monotonically decrease with inreasing distance everywhere. However, the effect of these low-energy
muons is so small that this will not affect our results.
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Process MATHUSLA100 MATHUSLA200 Comments

Upwards-traversing
µ in decay volume

(2.0− 2.5)× 106 (3.1− 4.0)× 106

Does not satisfy DV signal require-
ments. Corresponds to rate ofO(1) per
minute.

µ→ eνν (3.0− 3.2)× 103 (5.5− 6.8)× 103

Does not satisfy DV signal require-
ments. Boost of decaying µ is 1-100 in
decay volume, so e may be detectably
deflected off muon trajector.

µ→ eeeνν 0.10 - 0.11 0.19 - 0.23
Genuine background to LLP DV
search, but low expected rate can be ve-
toed, see caption.

Inelastic Scattering
(air in decay volume)

0.3− 0.6 0.8 - 1.1 Ditto.

Inelastic Scattering
(support structure)

(200−350)×
[
ξiron
10%

]
(490−680)×

[
ξiron
10%

] Can be partially vetoed, see caption.
Can also be effectively rejected by ap-
plying material veto from position of
reconstructed DV within support struc-
ture.

Delta Rays
(µ liberating atomic e
with Ee > 1 GeV in
decay volume)

120 - 160 210 - 310

Can be partially vetoed, see cap-
tion. Can be vetoed by requiring two-
pronged DVs to have opening angle
θ > 2◦.

Table 1. Summary of various signatures in MATHUSLA due to high-energy muons produced at the HL-LHC
IP. Columns 2 and 3 show the number of expected events corresponding to 3000 fb−1 for the two different
detector geometries. Processes in rows 1 and 2 do not satisfy the LLP DV signal requirements, while rows 3-6
could naively fake a genuine LLP decay. Additional rejection power would be possible with a hermetic veto
around the decay volume, but all of these backgrounds can be rejected via other means.

results in an upper bound on the low energy muon contribution to a given background X , resulting in
estimates NX,low−E and NX,low−E,high−Emax, where the latter is computed as above to estimate the
effect of the high energy muon tail.

These procedures allow us to set a range for the rate of a given background X , defined by the
minimum/maximum of the values NX , NX,high−Emax, NX,low−E, NX,low−E,high−Emax.

Our results are summarized in Table. 1. Muon flux through MATHUSLA is much lower than
first estimated in [1], since the original estimate made several analytical approximations to set a con-
servative upper bound. The rate through the detector is only a few events per minute. Almost the
entire uncertainty in this figure comes from the high energy muon tail and will be reduced in future
estimates.

Most muons decay to a single electron and two neutrinos. The total number of those decays in
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the decay volume is a few thousand. The decaying muons have boost ranging from 1-100, meaning
some decays will yield a single charged track significantly deflected from the initial muon trajectory,
but since this does not reconstruct a DV, it does not as such constitute a background. Most of the
uncertainty in the decay estimate comes from the low-energy muon tail that we estimate using the
above extrapolation procedure, since slow muons have a larger chance of decaying in the detector.
Even so, this uncertainty is modest, less than 10%.

The rare muon decay µ → (3e) + (νµνe) has branching ratio ≈ 3.4 × 10−5 [119] and could in
principle constitute a DV background if it was not vetoed. However, the rate of this background is
very small, much less than one event over the HL-LHC run, and if it does occur it can be vetoed by
correlating with the main detector muon trigger.

Muons can scatter inelastically off air or support structure in the decay volume, giving rise to sev-
eral charged tracks that might reconstruct a DV. Using the inelastic scattering cross sections in [198],
we obtain less than one event in the air of the decay volume over the HL-LHC run. Furthermore,
just as for rare muon decays, these scatterings can be vetoed with offline information from the main
detector.

Inelastic scattering off support structure can occur at significant rates. This depends on the final
design and construction of the detector, but we can get a feeling for the size of this background by
assuming that, on average, all muon trajectories spend fraction ξiron traveling through iron. Even if we
make the assumption that ξiron = 10%, this only yields a few hundred events which can be rejected
with a material veto due to the good position resolution of the reconstructed DV, with additional
rejection possible by correlating with the main detector muon trigger. Most of the uncertainty in
this estimate comes from the high energy muon tail, since scattering rate increases modestly with
muon energy. As a result, refinements in the Geant4 dataset should make future estimates much more
precise.

Finally, there is an appreciable rate of delta rays [119]. Electrons that are liberated from atoms
in the air-filled decay volume by passing muons could give rise to a displaced vertex if the electron
has enough kinetic energy Ee to reconstruct a track. Assuming a threshold of Ee > 1 GeV, this
gives rise to O(100) DVs in the air-filled decay volume. Again, most of the uncertainty comes from
the high-energy muon tail. Fortunately, these scattering events are easily vetoed by requiring two-
pronged DVs to have an opening angle larger than 2◦. Reducing the electron energy threshold to
0.5 GeV roughly doubles the estimated delta ray background rate, but has very little effect on the
opening angle cut required to veto this background. Just as for the other scattering backgrounds,
additional veto power comes correlating with the the main detector muon system off-line. Delta rays
can therefore be efficiently rejected.

In conclusion, all of the backgrounds from muons we studied can be efficiently rejected and do
not form an obstacle to a zero-background LLP search in MATHUSLA. Furthermore, none of these
backgrounds require a hermetic scintillator veto, though further study of other, possibly more exotic
backgrounds is required to determine whether such a veto is ultimately needed.
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6.3 Neutrinos

Below we reproduce the analytical estimates of neutrino scattering backgrounds in the MATHUSLA
decay volume that were first presented in [1]. These estimates, as well as the investigation of rejec-
tion strategies, are conservative to overestimate the background rate at MATHUSLA200 (and can be
rescaled for MATHUSLA100). A more detailed study using neutrino scattering events simulated with
GENIE [199] is currently in progress to obtain more precise results on neutrino background rates and
rejection efficiencies.

6.3.1 Neutrinos from Cosmic Ray Showers

The MATHUSLA detector is immersed in a diffuse neutrino flux generated by cosmic ray interactions
in the atmosphere [200–202]. This flux is isotropic below PeV energies. Atmospheric neutrinos
scattering off nuclei in the air-filled decay volume are a potentially dangerous background, since they
can result in a topology similar to an LLP decay, see Fig. 2 (h). A careful examination of these
scattering events indicates that they can be distinguished from LLP decays, by the tracking and time-
of-flight information.

We restrict ourselves to neutrino energies greater than ∼ 400 MeV, for reasons that will become
clear below. In this region, the atmospheric muon neutrino flux as measured by Frejus [200, 202] is
reasonably well approximated by

dΦ

dEν
∼ 0.06

(
GeV

Eν

)3

GeV−1cm−2s−1sr−1 (6.3)

(though we use the actual measured neutrino flux spectrum in our calculations). The electron neutrino
flux is significantly lower and can be treated similarly, so we neglect it in this simple estimate. For a
given neutrino scattering process i with cross section σi, the number of produced events per year can
be estimated as

Ni =

∫
dEν

dσi
dEν

ntarget

[
4π

dΦ

dEν
Vtarget T

]
(6.4)

where Vtarget is the volume of the MATHUSLA detector as per Fig 3, the exposure time T corresponds
to the fraction of the year the HL-LHC beams are running (assumed to be 50%), and ntarget is the
number density of protons and neutrons in air. The various differential neutrino scattering cross
sections dσi/dEν are theoretically and experimentally known at the better than ∼ 30% level and are
summarized in [203]. In practice we distinguish between protons and neutrinos, but we do not account
for the fact that these are bound in nuclei. (As we note below, this underestimates our ability to reject
these backgrounds.) We are interested in processes i with at least two charged particles in the final
state, including deep-inelastic scattering (DIS), so they can reconstruct a DV. We then divide those
processes into two classes: those which are exclusively defined to contain a proton in the final state
(PFS), like many quasi-elastic scattering (QES) processes, and those which are not (like DIS).

The number of scatters per year with protons in the final state is

∑
PFS

Ni ≈

{
60 at MATHUSLA200

15 at MATHUSLA100
. (6.5)
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which is non-negligible. In most of these scatterings the final-state proton is measurably non-relativistic,
and the final states are contained within a very narrow cone that generally does not point back to the
LHC IP. A veto of DVs with a narrow final state cone that does not point back to the IP has minimal
effect on signal acceptances: light and highly boosted LLPs give a cone which points back at the
IP, while somewhat heavier LLPs give final states which are not confined to a single narrow cone.
To make this more quantitative, assume these processes obey the differential cross section of QES.
We also assume, very conservatively, that a proton moving slower than vmin = 0.6c can be reliably
distinguished from an ultra-relativistic muon by the MATHUSLA tracking system. (This corresponds
to a 10 ns difference in travel time over 5 meters, which is a reasonable estimate for the depth of
the tracker at the top.) Only neutrinos with energy above about 500 MeV can produce such protons
(hence we only considered that part of the neutrino spectrum). For protons faster than vmin, 2 → 2

kinematics dictates a maximum cone size for the final states, with a corresponding small probability
that this cone’s random orientation points back at the LHC IP. The number of scatters per year that
passes these cuts and could actually fake a DV signal is

∑
PFS

Nafter cuts
i ≈

{
1 at MATHUSLA200

0.25 at MATHUSLA100
. (6.6)

It is also important to point out that this low rate is a significant overestimate, since (1) our assumption
that MATHUSLA could only distinguish 0.6c from c is very conservative; (2) for non-QES processes
the additional produced particle will result in slower final-state protons and/or narrower final-state
cones; (3) we assumed that all scatters with protons faster than vmin had the largest possible final-
state cone assuming vproton = vmin; and (4) we neglected that the initial-state protons and neutrons are
bound in nuclei, and the slow-moving debris from the breakup of the nucleus could provide additional
rejection handles.

We now turn to atmospheric neutrino scatters without a definite proton in the final state, for which
the rate per year is ∑

not PFS

Ni ≈

{
10 at MATHUSLA200

2.5 at MATHUSLA100
. (6.7)

It is difficult to make detailed statements about these events without simulations, but they are dom-
inated by DIS with neutrino energies in the several GeV range. We therefore expect that the final
states will be confined in a relatively narrow cone, which only rarely points back to the LHC IP. Ob-
viously, more detailed studies are required to make these predictions robust, but from these estimates
we expect that of all the different kinds of atmospheric neutrino scattering events in MATHUSLA
can be rejected, with none or very few events surviving as irreducible backgrounds over the entire
HL-LHC run. Furthermore, it is important to recall that this background, like charged cosmic rays,
can be measured in detail when there are no colliding beams in the HL-LHC.

6.3.2 Neutrinos from HL-LHC Collisions

Cosmic rays are not the only source of neutrinos that are incident on MATHUSLA. They are also
produced at the HL-LHC, see Fig 2 (i). Direct production of neutrinos in W , Z, top and bottom quark
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decays can be estimated in MadGraph 5. The total number of these relatively high-energy neutrinos
which scatter off air in MATHUSLA200, computed in a similar manner as for muons and atmospheric
neutrinos above, is less than 0.1 events over the entire HL-LHC lifetime. In addition, there is a
low-energy neutrino flux (Eν . 1 GeV) from decay of pions and kaons produced in primary and
secondary hadron production in the LHC. We estimate this rate by simulating minimum-bias collisions
with Pythia 8 [204] and propagating the particles through the approximately azimuthally symmetric
material budget [205] of the CMS experiment with Geant4. The vast majority of LHC neutrinos
are produced by low-energy hadrons decaying in the LHC detectors. This leads to a steeply falling
neutrino spectrum for energies above a few hundred MeV. These neutrinos have mainly quasi-elastic
neutrino-nucleon scatterings in MATHUSLA. Imposing the same proton-time-of-flight cut used to
derive Eq. (6.6) (but not imposing any geometrical cuts since the final state cone always points back
to the IP), we arrive at an (over-) estimate of≈ 1 scattering event with protons in the final state passing
cuts over the entire HL-LHC run at MATHUSLA200. There are also ≈ 3 scattering events (no cuts)
from processes like DIS, which mostly do not have protons in the final state. (At MATHUSLA100,
these rates are reduced by a factor of a few.) As discussed above, their rejection is harder to estimate,
but given these very low rates, we are confident that rejection can be significantly improved with
detailed study.

6.4 Other possible backgrounds

Apart from pure cosmic ray backgrounds, and the relatively straightforward fake DVs from muons or
neutrinos, more exotic backgrounds could also contribute to an LLP search in MATHUSLA.

For example, the combination of a single upwards going muon from the LHC with a single mis-
measured cosmic ray track may combine to form a fake DV that satisfies LLP signal requirements.
This may seem unlikely, since only about ∼ 106 muons from the HL-LHC travel through MATH-
USLA compared to ∼ 1015 CR charged particles, but it has to be investigated in more detail using
background events (see Section 6.1.3).

It is also possible that the large number of cosmic ray charged particles hitting the rock below
MATHUSLA could eject the occasional energetic hadron upwards, which then either scatters or de-
cays in the air of the decay volume. This is called albedo and will be studied using Geant4’s material
model of the earth and possible detector floor.

For example, this could occur due to lepton interactions giving rise to long-livedK0
L hadrons that

can migrate into the detector and decay. The rate of these processes can be estimated using the cross
sections in [203], and is expected to be very low. Furthermore, a significant number of the K0

L will
interact in the rock and not make it to the surface. However, if the rate of these events is significant,
a layer of detector in the floor may be required to veto the charged particles that are produced in
association with the neutral long-lived hadrons that are traveling upwards.

Further study is underway to estimate the rates of these processes at MATHUSLA. If their rates
are problematic, it is likely that the basic detector design of Fig. 2 could be extended to improve their
rejection, e.g. by adding additional veto layers on the floor of the detector.
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Figure 17. Layout of a modular implementation of the MATHUSLA100 geometry considered in this letter,
with 10× 10 = 100 modules, each with area 9× 9 m, situated 1 m apart. The decay volume has a height of 20
m, topped by five layers of RPCs that are 1 m apart.

7 MATHUSLA Detector Design Concept

Our current concept to implement the MATHUSLA100 geometry is to deploy an array of identical
modules to cover the 100 ×100 m2. This facilitates construction and testing, allows easy adaptation
of the layout to the eventual chosen experimental site, and is compatible with staging the full detector.
Each module has a 20 m air-filled decay volume follow by 5 five planes of tracking detectors with
1-m separation between tracking layers as illustrated in Fig. 17. The total height of the module is 24
m. The 20 m decay volume provides good sensitivity for LLP decays.

The technical requirements of the tracker are modest: ≈ 1 cm position resolution and ≈ 1 ns
time resolution, which is easily satisfied by many detector technologies. In this document, we focus
on one particular option, the Resistive Plate Chamber (RPC), because it has been shown to be robust,
economical and scalable. However, other options are not excluded.

In the following subsections we discuss further details of the detector requirements, such as layout
and Triggering/DAQ. We close by presenting some basic triggering and reconstruction efficiency
studies for LLP decays, demonstrating the viability of this modular design.

7.1 Detector requirements and technology

The charged particle tracking unit located above the decay volume is envisaged to have five mea-
surement planes that provide both coordinate and time information. The tracking planes have 1-m
separation between adjacent planes. Five planes of tracking provides robust, efficient tracking for
background rejection and decay vertex reconstruction of LLP decays.

The highest rate expected background is from cosmic rays at O(2) MHz over the entire detector
surface. They are downward going and can be separated from the upward going signal particles by
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timing within the main tracker. For example, for a given hit at the bottom of the tracker, the time
difference at the top between an upward going signal particle and a downward going cosmic ray
background particle is approximately 24 ns over the 4 meters between the top and bottom tracking
planes. A tracker time resolution of ≈ 1 ns will provide efficient rejection of downward traveling
cosmic rays.

The present benchmark design can be extended to include detectors at the bottom and possibly
also module walls that face the outside of the whole decay volume in order to veto cosmic rays
entering from the sides. This veto could be implemented with scintillators or with additional RPC
layers, and would provide additional rejection power for cosmic rays, as well as large-angle charged
tracks entering the decay volume from the sides and muons from the LHC. The decision whether to
include these extra detector layers will be informed by the outcome of ongoing detailed background
studies.

A signal event is indicated by two or more upward going tracks that reconstruct to a 4-dimensional
(space and time) decay vertex in the decay fiducial volume.

The MATHUSLA100 detector baseline detector requirements include:

1. 100 m × 100 m × 20 m decay volume.

2. A 4-m tall charged particle tracker with five detector planes located above the 20 m decay
volume.

3. Tracker hit spatial resolution of ≈ 1 cm in each transverse direction and time resolution of ≈ 1

ns.

4. Overall rate capability greater than approximately 2 MHz.

5. For cosmic-ray shower detection , the tracker needs to be able to cope with hit densities that
can exceed 104 m−2 in the shower core.

These technical requirements for the tracker are easily satisfied by many detector technologies. The
Resistive Plate Chamber (RPC) has been chosen as our baseline because of its good timing and posi-
tion resolution, maturity and relatively low cost per unit area. RPCs are used as muon trigger chambers
for both the ATLAS and CMS detectors and they have performed reliably and with good efficiency,
about 98%.

The construction procedure is well defined and has been industrialized by the Rome, Tor Ver-
gata group resulting in a unit cost significantly less than alternatives such as drift chambers. Groups
in China have also made RPC chambers using both glass and phenolic plates. Both the Rome, Tor
Vergata group and two Chinese groups with RPC expertise have signed this LoI. The area of RPC
required for MATHUSLA is an order of magnitude larger than that of ATLAS and CMS RPC detec-
tors combined. We recognize the challenge of scaling-up production, and the importance of having
sufficient production sites involved. We also view this as an opportunity to invest in design changes
that will reduce the unit cost. The veto detectors on the sides and bottom of the decay volume, if
needed, have looser performance requirements. While they have less area than the tracking planes

– 38 –



combined, they still have to cover large areas and cost will be an important consideration. The current
plan is to utilize the same RPC technology and design as the main tracker.

7.2 RPC Costs

We do not have a final, complete design for the RPC units. The goal is to optimize the individual RPC
performance-to-cost ratio. The Rome group is considering a design where each chamber has a single
read-out panel with strips 3.2 m long and 25 mm pitch that gives the transverse coordinate. They
propose reading out the strips at both ends to obtain the longitudinal coordinate. The gas volume is
3.20× 0.80 m2 with a 1-mm gap between two resistive electrode plates. The groups in China are also
investigating the design of large chambers.

Because the design is evolving we do not have a complete cost estimate, but considering experi-
ence with construction of RPCs in Rome and China we estimate a range of 150 to 260 Euro per square
meter excluding electronics, gas, HV and LV supplies.

7.3 Layout

As shown in Fig. 17, the 100 m× 100 m area of the MATHUSLA100 detector is divided into a number
of identical modules. Each modular is made weather-tight to avoid the need to build the enormous
experimental hall. This approach means that each module can be fully tested and commissioned as
it is assembled and that module installation and commissioning can be staged over several months or
a couple of years if necessary. The modular approach allows for beginning data taking with a partial
detector.

Each module will have the same geometry as MATHUSLA in the vertical direction, namely a
4 m thick tracker on top of a 20 m tall decay volume and a bottom veto, if needed. The transverse
dimensions of a module are taken to be 9 m x 9 m here, with 1-m inter-module gaps. However, we
emphasize that the module size, gap between modules, and possibly even gap between RPCs is subject
to optimization as well as engineering constraints.

Individual modules will be completely self-contained and weather tight except for power, RPC
gases and other services. For example, each module will have its own HV power supply for the RPC,
as well as temperature and pressure monitoring to dynamically adjust the HV setting to compensate for
environmental changes. Each module will have its own DAQ subsystem servicing the local detectors.
Information will be exchanged with nearby modules via optical links.

7.4 Triggering and DAQ

Trigger information will be provided by the RPC chambers in the main tracker. A local trigger pro-
cessor in each detector module aggregates the information from its own chambers as well as those in
its nearest neighboring modules to look for hits within a time window that are spatially aligned. Each
of these trigger primitives is classified as either upward going or downward going based on the RPC
hit times.

Trigger primitives are then transmitted to a global trigger processor to form an overall MATH-
USLA event trigger. All upward going triggers will be accepted while only certain downward going
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triggers will be kept, e.g. a high multiplicity indicating an air shower. Additional triggers are an-
ticipated for calibration and alignment purposes. These steps are similar to what has been done in
experiments such as ATLAS and CMS, and will benefit from their experience. Minor modifications
will be needed since the LLP decay vertex, which plays the role of the LHC interaction point for AT-
LAS and CMS, is not known a priori. Given the size of the MATHUSLA detector, the distribution of
a stable timing signal will require additional care. We will leverage the developments in accelerator
facilities where tighter timing requirements and greater distances than MATHUSLA are already in
use.

The overall MATHUSLA event trigger will be distributed back to all the modules to initiate data
acquisition.

7.5 Efficiency Studies

In order to demonstrate the viability of the modular detector design and the nearest-neighbor trigger
strategy described in this section, we conducted a series of simple efficiency studies. Our results show
that for hadronic LLP decays, the modular MATHUSLA100 implementation of Fig. 17 should very
closely approach the idealized, purely geometrical sensitivity estimates of Section 4.

We study triggering and reconstruction efficiency for a benchmark signal model where LLPs X
are produced in exotic Higgs decaysH → XX and either decay hadronicallyX → bb̄ or leptonically
X → µ+µ−. In the former, there are O(10) charged final states, which greatly aids in triggering and
reconstruction compared to the two tracks of the former case. Higgs production via gluon fusion and
vector boson fusion is simulated in MadGraph and showered in Pythia.

We assume each of the 5 RPC layers has 100% efficiency for detecting a single hit, and assume
that any charged particle that crosses 5 layers can be perfectly reconstructed as a single track. The
track reconstruction efficiency is dependent on the precise RPC detector parameters, but will have
to be very high to efficiently reject cosmic ray background. It should therefore not be the dominant
factor in determining the overall LLP decay reconstruction efficiency. We also do not take the effects
of finite spatial resolution of the RPC layers into account, but for resolutions in the cm range this is
not a limiting factor for the LLP masses we study here. We leave these issues for future detailed study.

In order for an LLP decay to pass the nearest-neighbor trigger defined above, at least one of its
charged particle final states must cross 5 RPC layers within a 3 × 3 sub-grid of modules centered on
the module where the particle crossed the lowest RPC layer. It is therefore possible for a charged track
to travel between modules and only hit 4 or fewer layers, due to the finite gap between modules and
between RPC layers. In that case, that charged particle does not pass the trigger requirement. Once
an LLP decay passes the trigger, we assume the whole detector is read out. In that case, we assume
the LLP decay is fully reconstructed if it decays inside the modules’ detector volume, and at least two
of its charged particle final states pass through 5 RPC layers anywhere in the detector.

To study trigger and reconstruction efficiencies, we force LLPs that reach the surface to decay at
a fixed height ydecay above the ground. The trigger efficiency εtrigger (reconstruction efficiency εDV)
is defined as the number of LLP decays which pass the nearest-neighbor trigger requirement (and
also pass the reconstruction requirement), normalized to the total number of LLPs that were forced
to decay at height ydecay inside the detector volume. The distribution of LLP decays within a given
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Description Module Size (m) Module Gap (m) RPC Gap (m)

Default 9 1 1

Smaller module gap 9.5 0.5 1
Smaller RPC gap 9 1 0.5
Larger modules 19 1 1

Monolithic detector 100 0 1

Table 2. Square module geometries of the MATHUSLA100 detector design for which we study triggering and
reconstruction efficiencies of leptonic and hadronic LLP decays. The first geometry is the default benchmark of
Fig. 17. The four variations are considered to examine the impact of module size, module gap and gap between
the five RPC layers. The lowest RPC layer is situated at a height of 20 m for all geometries.
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Figure 18. Reconstruction efficiencies for LLPs decaying hadronically a height ydecay above the ground
in MATHUSLA100. The blue curve corresponds to the modular design of Fig. 17. The magenta, green and
orange curves show the effect of changing the gap size between modules or RPC layers, or the module size,
see Table. 2. The black curve represents a non-modular monolithic detector that can trigger with full readout,
representing the theoretical maximum efficiency for this detector geometry with 5 RPC layers separated by 1
m.

decay plane is determined by the rapidity distribution and hence the production mode of the LLP. The
efficiencies we derive here are therefore applicable to LLPs produced in exotic Higgs decays, but they
should be close to the efficiency for other processes as well. We will investigate additional benchmark
models in future studies.

The efficiencies will depend on the gaps between modules and RPC layers. To investigate the
importance of these physical parameters of the detector for signal reconstruction, we examine not only
the geometry of Fig. 17, but also modified geometries with smaller gap sizes or larger module sizes.
These are summarized in Table. 2. (Note that in particular the RPC spacing will be restricted by the
requirements of four-dimensional tracking, but depending on the time resolution, a gap size smaller
than 1 m may be possible, so we investigate this degree of freedom here.)

We present our results for the reconstruction efficiency as a function of decay height ydecay in
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Figure 19. Same as Fig. 18 but for leptonic LLP decays.

Figs. 18 for hadronic LLP decays. The blue curve represents the modular design of Fig. 17, while the
black curve represents the monolithic detector that triggers with full readout, representing the theoret-
ical maximum for this detector geometry. The magneta, green and orange curves show the effect of
reducing the module or RPC gap size, or increasing the module size. The benchmark modular design
of Fig. 17 has very good efficiency for reconstructing hadronic LLP decays, close to the theoretical
maximum. The gaps between modules and RPC layers cause only very small reductions in the ef-
ficiency. This demonstrates that the idealized, purely geometrical signal estimates of Section 4 are
nonetheless a good indicator of MATHUSLA’s sensitivity to hadronic LLP decays.

The standard “tight” LLP search requires the DV to be reconstructed inside the MATHUSLA100
module volumes. However, depending on the outcome of the more detailed background studies, this
may be too conservative if MATHUSLA does not require a hermetic veto to reject cosmic ray and
other backgrounds. We therefore also show efficiencies for a “loose” LLP search that allows for
LLPs to decay in the gaps between modules and outside the detector, as long as its final states satisfy
the same trigger and reconstruction criteria. These loose efficiencies are indicated as dashed lines
in Fig. 17. Both loose and tight efficiencies are normalized to the number of LLP decays inside the
detector volume to clearly illustrate the achievable sensitivity gain, which is O(10%) for hadronic
decays.

The reconstruction efficiencies for leptonic LLP decays are shown in Fig. 19. The monolithic
detector efficiency (black curve) isO(50%) for the 15 GeV LLP but much lower for heavier and hence
slower LLPs. As expected, this efficiency is much worse than for hadronic decays with many charged
final states. A large fraction of LLP decays have at least one muon exiting the decay volume through
the sides or the floor. The benchmark modular design (blue curve) has only about 1/3 the efficiency of
the monolithic detector. This can be understood due to the O(1) probability that a single angled track
misses one RPC layer by passing between modules in the gaps if the gap size is O(10%) the module
size. We studied whether changing the trigger strategy to include next-to-nearest neighbors or even the
full detector significantly increased sensitivity, but this was not the case: the nearest-neighbor strategy
already saturated the possible sensitivity. The only way to increase reconstruction efficiency was to
reduce the gaps in the detector (magenta, green, orange). However, it is clear that approaching the
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X → bb̄ X → µ+µ−

mX = 15 GeV mX = 50 GeV mX = 15 GeV mX = 50 GeV

Default geometry 0.82, 0.93 0.92, 1.0 0.17, 0.20 0.076, 0.080
Smaller module gap 0.85, 0.96 0.93, 1.1 0.33, 0.37 0.13, 0.14
Smaller RPC gap 0.84, 0.97 0.93, 1.1 0.27, 0.31 0.11, 0.11
Larger modules 0.84, 0.95 0.93, 1.1 0.36, 0.40 0.14, 0.15
Monolithic Detector 0.85, 0.97 0.94, 1.1 0.57, 0.63 0.21, 0.22

Table 3. Average LLP reconstruction efficiencies εDV for module configurations in Table. 2. The first (second)
number in each entry corresponds to the tight (loose) search allowing only LLP decays in the decay volume
(allowing decays outside), both normalized to the number of decays in the decay volume. Neighboring-module
trigger except for Monolithic Detector. Note these efficiencies are normalized to the probability of decaying in
decay volume under the RPCs.

efficiency of the monolithic detector would require significantly smaller gaps than we are considering
here.

We summarize our results in Table. 3, where we show the reconstruction efficiencies for all
studied decays, masses and module configurations by averaging εDV over ydecay, which corresponds to
the average signal efficiency in the long-lifetime limit. Performance for hadronic decays is excellent,
while relatively heavy leptonically decaying LLPs are more difficult. Fortunately, as discussed in
Section 4, hadronically decaying and light leptonically decaying LLPs are the most important physics
target, while heavy leptonically decaying LLPs will be well-covered by main detector LLP searches.

These studies will be refined further alongside the realistic detector design. For example, depend-
ing on backgrounds to two-pronged DV reconstruction, one might conduct a search at MATHUSLA
for LLPs decaying to at least 3 or even more charged particles. This is likely to have very good ac-
ceptance for hadronically decaying LLPs with very strong additional background suppressions. To
more effectively probe leptonically decaying LLPs, in particular for lower masses . 10 GeV, one
might consider extending the design of Fig. 2 and 17 to include a single vertical “wall” of RPC lay-
ers on the outer boundary of the decay volume facing away from the HL-LHC IP. This would only
modestly increase the RPC sensor cost, but may significantly increase reconstruction efficiency for
lower-multiplicity LLP final states. Quantitative studies of these scenarios are underway.

8 The MATHUSLA Test Stand

A test stand, with a detector layout similar to the one envisioned for the MATHUSLA detector, has
been assembled at CERN. It was installed in the surface area above the ATLAS interaction point at
LHC Point 1 in November 2017 and it has been taking data with different beam conditions. The
main purpose of the test stand is to provide empirical information on potential backgrounds coming
from the LHC as well as from cosmic rays. The MATHUSLA detector has been conceived to be a
background-free detector. This hypothesis can be studied making use of this test stand by taking data
with different LHC beams conditions. On one hand, data taken with no beams running in the LHC will
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provide a good measurement of the background from cosmic rays as well as good information about
their trigger and identification. On the other hand, data collected with beams running in the LHC can
give an estimate of the background expected from LHC collisions. A precise measure of the charged
particle flux in the test stand will provide the veto efficiency requirement for the main detector. The
goal is to achieve a timing resolution sufficient to guarantee that no cosmic particles can fake charged
particle coming from LHC. All the tests that will be performed until the end of LHC Run 2 will be
fundamental to understand the cosmic ray rate and to extrapolate the LHC-related background rate
from the test stand to MATHUSLA. All this information can be used to optimize the final design of
the main detector.

As described in Section 6, several efforts are underway to develop simulations of the backgrounds
expected in MATHUSLA. For muons and neutrinos traveling upwards, the idea is to create a “gun”
that shoots particles into MATHUSLA, while for cosmic muons the standard cosmic ray simulations,
CORSIKA, will be used. The test detector is crucial in the validation of these simulations. A com-
parison of real data with the simulations in the test stand will allow for any needed tuning in the
simulations. It will also be a very useful cross-check to make sure that all sources of background have
been properly taken into account.

Following the concept of the main detector, the test stand is composed of two external layers of
scintillators (one on the upper part of the detector, one on the lower part) with six layers of RPCs
between them. Figures 20(a) and 20(b) show respectively the basic design of the test module and a
picture of the final assembled structure in ATLAS SX1 building at CERN. The overall structure is
∼ 6.5 m tall, with an base of ∼ 2.5× 2.5 m2.

The test stand should not be considered a prototype of the main detector. It has been built reusing
pieces of other experiments, as detailed below, and hence the geometry of the test stand is not exactly
the same as the one expected for MATHUSLA, where every subdetector will be custom-built. In
addition, different detector technologies could be considered for the main experiment. Even with
these differences, the test stand will certainly provide very useful information for the design of the
future MATHUSLA detector.

The following subsections contain further information on the test stand design, trigger and data
acquisition systems.

8.1 Scintillators

Scintillator detectors (provided by Fermilab) are used in the test stand to trigger upwards and down-
wards going charged tracks. They are some of the 4214 trapezoidal-shaped scintillator counters used
at the Tevatron DØ experiment for the forward muon trigger [206]. Figure 21 shows the details of
one of the scintillators used for the test stand.

The size of the smallest counters is 9× 12 cm2 while the size of the largest counters is 60× 110

cm2. The counters use 12.8-mm-thick BICRON 404A scintillator plates of trapezoidal shape and
wave length shifting (WLS) fibers for light collection. WLS bars material is SOFZ-105 and based on
PMMA (polymethylmethacrylate) plastic containing wavelength shifting fluorescent dopant Kumarin
30.
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(a) (b)

Figure 20. (a): schematic view of the MATHUSLA test stand. (b): picture of the final assembled structure in
his test area in the ATLAS SX1 building at CERN. The green dots identify the two scintillator layers used for
triggering, while the red dots the three RPC layers used for tracking.

Figure 21. Details of the Tevatron DØ scintillators used for the MATHUSLA test stand.

The scintillators are mounted on two supporting structures as shown in Figure 22, arranged in
order to maximize the coverage.
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(a) (b)

Figure 22. Layout of the top (a) and bottom (b) scintillator planes used for the test stand.

8.2 RPC chambers

The RPCs used for tracking (provided by University of Tor Vergata, Rome) are the same type of cham-
bers used in the Argo-YBJ experiment [207] at the YangBaJing Laboratory in Tibet (4300 m a.s.l.).
Argo-YBJ chambers [208] operated in streamer mode with a gas mixture of 15% Argon, 10% Isobu-
tane and 75% TetraFluoroEthane. The ATLAS RPC chambers operate in avalanche mode (to fulfill
the harsh requirements of ATLAS trigger) using a gas mixture made of 95.2% TetraFluoroEthane,
4.5% of Isobutane, and 0.3% of Sulfur Hexafluoride. Studies performed at University of Tor Vergata
showed that Argo-YBJ chambers can be efficiently operated in streamer mode for test stand tracking
purposes using the ATLAS RPC gas mixture with an addition of 15% of Argon. This avoids the
installation of an additional complex and expensive gas system in ATLAS Point 1.

Figure 23 shows a cross-view of the Argo-YBJ chamber and the sketch of the strip panel used
for read-out of the RPC. Each counter is assembled in a box of 2850× 1225× 47 mm3. Two external
shaped rigid panels consisting of an Aluminum (200 µm thick) foil, glued on a 1.5 cm foam layer, are
used as a protection for the gas volume and to fix the chamber elements. Eight contiguous strips form
a pad with a size 55.6× 61.8 cm2.

The gas volume consists of two Bakelite foils 2850×1125×2 mm3 with a resistivity∼ 5×1011

Ωcm assembled to form a gas gap 2 mm wide. The strip panel consists of a sandwich of 17 µm copper
foild glued on a 190 µm PET foil facing the gas volume and cut into 80 strips with a width of 6.75
cm and a length of 61.8 cm as shown in Figure 23 (left), a 3 mm foam layer and a 17 µm copper foil
glued on a 50 µm PET foil used as reference ground.

8.3 Trigger and data acquisition

Two primary triggers use the information from the scintillators to identify upwards going particles
and downwards going particles. Figure 24 (left) shows the scheme of the trigger logics. The top
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Figure 23. Cross-view of the Argo-YBJ chamber (left) and sketch of the strip panel used for read-out of the
RPC (right).
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Figure 24. Schematic of the test stand trigger (a) and data acquisition system (b).

(bottom) layer signal is defined as the logical OR of all the scintillators in the top (bottom) layer.
The downward (upward) trigger is defined by the coincidence of the top (bottom) signal, with timing
delayed by the time of flight of the crossing particle, and the bottom (top) signal.

Figure 24 (right) shows a schematic view of the MATHUSLA test stand data acquisition system.
Scintillator data ADC/TDC are acquire using standard VME commercial electronics. Data from each
RPC are acquired from a Receiver Card which reads out and digitizes the space and time information
from 10 pick-up pads and gives out the pad multiplicity. The Receiver Cards are hosted in the Local
Station used for Argo-YBJ experiment which can read up to 12 RPCs. When the Local Station
receives a trigger, data are transferred to the AMB (Argo Memory Board).
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9 Next Steps

We intend to write a full proposal that has mature background studies and cost estimates. This still
requires substantial work and some of the cost could be site dependent. We are planning a work shop
for the last week of August 2018 to be hosted by the Simons Center for Geometry and Physics at
SUNY, Stony Brook, to which we have invited three experienced physicists to review our goals and
current status. We intend to submit by August several low-energy LLP model sensitivity estimates and
a write up to the PBC working group to help them compare the MATHUSLA reach for low energy
models to other proposals. We will continue to take test-stand data until the end of Run-2.
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