FTUV/94-20
1K1C/94-18

A REVIEW ON MESONIC
DECAY OF A HYPERNUCLEI

E. Oset'), P. Fernindez de Cérdoba?), J. Nieves®), A. Ramos*)
and L.L. Salcedo®)

1) Departamento de Fisica Tedrica and IFIC
Centro Mizto Universidad de Valencia - CSIC, §6100 Burjassot (Valencia) Spain.

2) Departamento de Matemdtica Aplicada; Universidad Politécnica de Valencia,
Valencia, Spain.

3) Physics Department. The University Southampton, 509 5NH, United King-
dom.

4) Departament d’Estructura i Constituents de la Materia.
Universitat de Barcelona, 08028 Barcelona, Spain.

5) Departamento. de Fisica Moderna. Universidad de Granada, 18071 Granada,
Spain.

Abstract

A review of the present situation of the mesonic decay of A hyper-
nuclei is done. The link between the propagator method and the one
with wave functions and nuclear matrix elements is established. The
lack of links between the mesonic decay and the nucleon occupation
number in nuclear matter is also discussed, as well as the effect of the
AN short range repulsion in the mesonic decay of light hypernuclei.
The relevance of the 2p2h induced A decay channel is also discussed.
Finally an overview of the potential use of the process, when systematic
measurements over the periodic table are done, is presented at the end.
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1 A brief historical introduction.

A paper devoted to the memory of our friend Hiroharu Bandé is the right
place to recall some interesting events associated with him and the subject of
this paper. In 1984 L.L. Salcedo was working in Valladolid for his Ph. D. on
the decay of A hypernuclei and he surprised me (E.QO.) with the results which
indicated that the rate for pionic decay of heavy A hypernuclei was increased
by about two orders of magnitude when a proper medium renormalization of
the pion was done. At that time I was still not used to shake every one of the
few times that Salcedo would open his mouth, so I told him to check again his
program. He did so'and came out with the same answer. This time I checked it
myself and had to surrender to a reality that was difficult to swallow and worst,
I had the feeling it would be difficult to sell. A paper was written and after
a few useful corrections suggested by the referee the paper was published [1].
I should thank the generosity of the referee who, probably without believing
the results, let it be published. I say that a posteriori because when my selling
mission began I could not convince a single colleague of the soundness of the
results. To make it short I recall the lapidary sentence of A. Gal: “I do not
believe in any renormalization factor of 100”.

With this predisposition from my colleagues I presented these results in
the hypernuclear Conference at Brookhaven in 1985 (2]. I went there with
clarifying and convincing arguments, with Feynman diagrams, with poles and
cuts in the complex plane and Cutkosky rules to separate imaginary parts,
and all this heavy artillery that should have crumbled the strongest walls.
The result: a lost battle. The whole audience turned against me. Even my
friends Gerry Brown and Torlif Ericson showed disbelief in their questions and
comments at the end of the talk. But it was Torlif the one who opened my
mind to what was happening: I was using an inappropriate language for that
audience which was more used to the language of wave functions and matrix
elements than to the one of propagators, selfenergies and cuts which I was
using. And here came Bando. I went to him and discussed with him. He was
using this alternative language and he should be able to prove the same results
using pionic wave functions in the nucleus and evaluating the proper matrix
elements. He was the first person to take us seriously and he started to work
with his colleagues Motoba and Itonaga on the issue. In ref. [2], after the
experience with the audience and the discussions with Torlif, I wrote a section
on “an alternative approach” sketching the way to follow using the language
of wave functions and matrix elements, which was the one followed by Bando
and collaborators.

Their work has been very useful (3, 4, 5]. It not only confirmed the huge
enhancement of the mesonic width found in [1}, but produced detailed and
quantitative results in many nuclei, taking into account shell effects, Q values
and other details which go far beyond the nuclear matter and local density
approach of ref. [1]. Since then the spectacular enhancement of the mesonic
width has been universally accepted. Their predictions have been confirmed

by the new wave of experiments {6, 10].

I came to appreciate Bando more with this incident. His quiet, flexible and
gentle approach to the problems contrasted with my stern and temperamental
one, and certainly proved to be much more efficient.

One of the interesting outputs of (3, 4, 5] is that the mesonic width is quite
sensitive to the pion nucleus optical potential, for potentials which fit equally
well the pion nucleus scattering data. This information is very useful and
should serve as a check for different microscopic models of the pion nucleus
interaction. The work done on the mesonic decay and its interconnection with
the other A decay channels has also been essential to get a unified picture of
the A decay in nuclei and has generated other interesting developments as we
shall see below.

2 Formal derivation of the A width in nuclei.
The propagator method.

The starting point is the A — «N Lagrangian, accounting for this weak
process, which is given by

Laan = Guin(A — Bys)T - duths + hoc. (1)
with

(Gu?)? /87 =1.945107"*, A =106, B=71.10 (2)

In eq. (1) the A is assumed to behave as the state {1/2, —1/2) of an isospin
doublet with T = 1/2 and this imposes the AT = 1/2 rule, which has as
a consequence a strength double for the A — =77 p channel than for the
A — 7%n one. In eq. (1) the term A violates parity and the term B conserves
it.

A practical way to evaluate the A width in nuclear matter and introduce
the medium corrections is to start from the A selfenergy, I, associated to the
diagram of fig. 1 and then use the relationship

r=-2Im% (3)
The selfenergy is readily evaluated as

GGk - D@+ (P T

where G and D are the nucleon and pion propagators respectively and P/u =
B/2M with pu, M the pion and nucleon mass. By using the free nucleon

and pion propagators, and making the typical nonrelativistic approximation
M/E = 1, one obtains immediately the free A width [1, 11]
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In a Fermi sea of nucleons, both the nucleon and pion propagators are
changed

_ 1 — n(p) n(p)
O = T EG - Ve v B - Ve —w (6)
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where Vy is the nucleon potential, TI(¢° q) is the pion selfenergy in the nuclear
medium and n(p) is the occupation number in the Fermi sea, n(p) = 1 for
|7] < kp,n(p) = 0 for |] > kr, with kp the Fermi momentum. The practical
way to perform the ¢° integral in eq.(4) is to perform a Wick rotation as shown
in fig. 2, where the analytical structure of the integrand is shown. The shaded
region accounts for the discontinuity of the pion propagator due to Im . The
pole at &(4) would correspond to a renormalized pion pole where

- —2 -
O(qY~ ¢ —p* —T(@(q),q) =0 (8)
Missing in the figure is the pole of G(k—g¢) corresponding to the second term
in (6). This pole lies in the lower halfplane of the figure and would contribute
in the Wick rotation only when it happens to be in the third quadrant, i.e.,
k° — E(k — §) — Vv < 0. But this corresponds to (k — ) very large where

n(k — 4) = 0 and hence this term does not contribute. Thus we obtain for the
width (1, 11]
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In the discussion here we neglect the role of correlations and form factors,
which are obviously important and are treated in all detail in 1, 11]. The
simplified formalism will allow us to concentrate on the qualitative aspects of
the reaction.

In the first place we observe the Pauli blocking factor, 1 — n, in eq. (9).

Since a A with k = 0 decays into a nucleon and pion with g~ 100 MeV /c, this
momentum is smaller than the Fermi momentum for nuclear matter density,

P, -2
x 87+ (;)2 q]Im ‘q":ko—E(qu')—VN )

kp =270 MeV /c, and the decay is forbidden by Pauli blocking, i.e., 1 — n(I; -
¢) = 0. The overlap of the A wave function with the nuclear surface in finite
nuclei still allows the A decay since at some radius the local Fermi momentum
will be smaller than 100 MeV /¢, and also because the momentum distribution
of the A wave function helps a bit in allowing some nucleon momenta in the
decay. Nevertheless the A mesonic width decreases drastically as a function of
the mass number.

The language of propagators which we have used here is the most appro-
priate in order to provide a unified picture of the A nuclear decay. Indeed, eq.
(9) contains not only the modified mesonic channel but also the nonmesonic
one. This can be seen diagrammatically by expanding the pion propagator
and taking a ph and Ah excitation to account for the pion selfenergy, I1. This
is depicted in fig. 3. The imaginary part of a selfenergy diagram is obtained
when the set of intermediates states cut by a horizontal line are placed simul-
taneously on shell in the intermediate integration. In fig. 3 we observe a source
corresponding to placing on shell a nucleon and the ph of the pion selfenergy.
This corresponds to a channel where there are no pions and only nucleons in
the final state. The physical process which has occurred is AN — NN and this
is the nonmesonic channel. Technically it would be obtained by substituting
in eq. (9)

1 Im Il
=2 - 3
- 7 —pr_ 1 lg°2— ¢ —p2 — 2
where II,; is the pion selfenergy due to the 1plh excitation. There is no overlap
between ImIT,4(¢% q) and the pion pole in the propagator of eq. (9) and thus
the separation is clear.

The mesonic channel would correspond to a different cut, the one where
the N and the « arc placed on shell. This is shown diagrammatically in
fig. 4. The terms in fig. 4b, and further iterations contained in (9), lead to a
renormalization of the mesonic width, and an appreciable one, as it was shown
in ref [1].

Technically the mesonic width can be calculated from the total width, eq.
(9), subtracting the nonmesonic width, or equivalently by obtaining the pion
pole contribution in eq. (4) from the renormalized pion pole given in eq. (8).

The qualitative reason on why the mesonic width is so drastically changed
is given in [1, 11]: The attractive character of the pion selfenergy leads to a
larger pion momentum for the same pion energy and thus, to a larger nucleon
momentum by momentum conservation. Thus, the nucleon has more chances
to have a momentum bigger than the Fermi momentum, therefore increasing
the mesonic width.

The width in finite nuclei is obtained in [1] via the local density approxi-
mation

Im

(10)
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where ¢, is the A wave function. A further average over the momentum
distribution of the A wave function is also done in [1].

3 Finite nuclei approach to the mesonic width.
The wave function method.

This approach was sketched in [2] and carried out in detail in {3]. The mesonic
width is given, in analogy to eq. (5) by

F(u)h Le(guy 3 /(2")32 (,)21r6( —w(q) - En)

N¢F

x{§?

[ Pron@eO @y i

+ (f)’ [ £200@V(G, 2 3 (@) 2

where ¢y is the wave funclion of the nucleon states and ¢{-)* corresponds to
an outgoing solution of the Klein Gordon equation normalized to a plane wave
asymptotically (¢7*¥). The index a stands now for 7 p or #n°n decay, with
C® = 4,C™ = 2, which one separates here since due to shell effects these
channels can depart drastically from the elementary AT = 1/2 rule.

The sum in eq. (12) runs only over non occupied nucleon states in the
shell model. On the other hand the effects of using for ¢{)* a solution of
the Klein Gordon equation with a proper optical potential (or pion selfenergy,
II = 2wV,,, V. Coulomb potential), i.c.,

[~V 4+ 1* + 2V DG E) = [w - VEPRO@E) (13)
[Binstead of a plane wave are rather drastic and increase the mesonic width in
about two orders of magnitude in heavy nuclei {3, 5], in qualitative agreement
with the nuclear matter results of ref. [1].

The arguments for the renormalization are expressed now in the alternative
language as follows: the attraction caused by the pion selfenergy increases the
pion momenta in the pion wave function. As a consequence the matrix element
of the A wave function (in a 1s,/, ground state of the A nucleus potential} and
the nucleon wave function is considerably enhanced. Note that if the A and
N potentials were the same, the A and N ¢ F states are orthogonal and the
matrix elements of (12) would be zero for ¢ = 0. The matrix elements thus
necessarily increase with §, for the moderately small values of § involved in
the present process. In the two languages the physical consequences are the
same: an increased probability of reaching the unoccupied states and thus an
enhancement of the mesonic width.

(12)

4 Equivalence of the propagator and wave func-
tion methods.

The discussion above has shown that the physical and numerical results of the
pion renormalization are the same. Yet, technically the two approaches look
different. In this section we establish the equivalence of the two methods and
the approximations implicit in them.

Let us start from the pion propagator in finite nuclei written in coordinate
space

- Pa(@)pnly)
(Z,§,w ? i S (14)
where ,(Z) are the pion wave functions in the nucleus and ¢, their corre-
sponding energies. Ignoring pionic bound states, which do not play a role
in our problem, we can identify the pionic wave functions by the asymptotic
momentum §. Hence their energy is given by w(§) = (¢% + 42)'/?. The sum
over the index n is then replaced by an integral over § as given below

D.(3, 5 )= d*q 4"(4’1 71 )4:(4, ;)
(@050 B) = | Gay B2 —wl@y +
For simplicity in the derivation we shall take the s-wave part of the width

(the one providing the largest contribution) and will not distinguish between
#% or x~ decay. Hence, from eq. (12) we obtain
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which can be rewritten as

(15)
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or by virtue of eq. (15) as
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Now, in order to connect with eqs. (9) and (11) one makes a local density
approximation. In the first step one evaluates T for a slab of infinite nuclear
matter and in the second step one replaces the width in the infinite slab by an
integral over the nuclear volume assuming slabs of matter in each d®r of the
nucleus with local density p(+) and with a probability of finding the A particle
given by [$4(7)|*. This last step is implemented by means of eq. (11). Hence
we should see how we reproduce now eq. (9) when we assume in eq. (18) a
slab of infinite nuclear matter. For this purpose we have to substitute for the
nucleon sector

N-op

S v [
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and for the A wave function
Ba(E) — e (20)
L
A N

Now in the infinite slab of nuclear matter the pion propagator of eq. (15)
is substituted by

L. &q efE )

Oelin ) = [ G Bt E =)
where II(E,, q) is the pion selfenergy, which is a function of p. Note that for
values of #),, far away from the nucleus egs. (15) and (21) are equivalent
since there p = 0 and II (in the local density approximation) will be zero.
At other densities, I will be different of zero and the integral of eq. (21)
gives rise to other momentum components, modulating the plane wave of the
numerator and providing a kind of WKB approximation to the wave functions
of the numerator of eq. (15). The local density approximation gives rise to a
variable local momentum and hence a distorted pion wave.

By substituting eqs. (19), (20), (21) in eq. (18) we obtain:

232 ¢2 d3 d3 (1]
s = ~6(Gw'5* [ 55 [ Gt =m0 Im D@ g, o1
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with D.(q) given by eq. (7). Finally, by means of the relationship (27)26%(0) =
[dc =V we can cast eq. (22) as

I's = _6(0#2)252/(_;1:%(1 7"(12_@)1’" DW(q)e(qo)lq“:EA;E(L.,')fv,, (23)

which coincides with the s-wave contribution to I' from eq. (9). This es-
tablishes the equivalence between the two methods within the local density
approximation which we have done in the case of the propagator method.

5 The mesonic width and the occupation num-
ber.

We have seen that Pauli blocking is the major factor in the small mesonic
width of heavy A hypernuclei. It was suggested that because real interacting
nuclei have the “occupied” states partly unoccupicd, the mesonic width should
be enhanced with respect to a calculation with fully occupied Fermi levels
{14]. In the nuclear matter approach of section 2 this is easily visualized by
recalling a realistic picture of the occupation number of the Fermi sea (15],
which is depicted in fig. 5. For the states below the Fermi energy the level
of occupancy is of the order of 85% and by assuming that in the A decay
the nucleons can occupy the 15% vacancy of these states we would guess that
the mesonic width would stabilize at the level of about 10% of the free width
for heavy nuclei (taking into account pion absorption in the way out of the
pions). If this were the case the mesonic width could serve as a measure of
the occupation number in the Fermi sea. The argument is very appealing and
intuitive, however, it is incorrect and leads to an overestimate of the width in
about three orders of magnitude in heavy nuclei.

The detailed discussion of this problem was done in ref. [16]. The fallacy
in the argumentation lies in the fact that

1 — n, (k) N ny(k)
kKO — E(k)+ic kO — E(k) — ie

(24)

where nl(E) is the realistic occupation number in nuclear matter, is not an
improvement over the propagator in eq. (6). The realistic N propagator for
an interacting Fermi sea is given in terms of the spectral functions by

R,k = [ du MR v du LK) (25)

0w — 1€ kS —w + ¢
with g the chemical potential.

When performing the calculations of the mesonic width with this N prop-
agator one obtains the factor
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replacing the factor

(1 — n(k — §)}2x8(K° — E(k — §) — w(Q)) (27)

in eq. (5), when the Pauli blocking factor of eq. (9) is implemented. Egs.
(26), (27) bare some intuitive resemblance because

oo - " ~ -
/“ wSpw k- =1- [" dwSiwk-D=1-mE-9 (28
However, in the presence of the § function of eq. (26), the integral of eq.
(28) cannot be factored out because the § function in eq. (26) has w in the
argument. Furthermore because of restrictions of the phase space (energy
and momentum conservation) the range of values of w allowed are very small
compared to the range (4, 00) needed in eq. (28) to obtain 1 - nl(ic. — q) of the
interacting Fermi sea. In physical terms we can interpret it in the following
way: the occupation number n,(l? — §) is an integral for all the energies of the
nucleon, w, of the probability of finding a nucleon with momentum E- ¢ and
an energy w, which is given by the spectral function Si(w,k — §). However,
in a physical decay process we have conservation of energy and momentum
and hence there are severe restrictions to the values of the energies that the
nucleon can have. This is why the occupation number n,(k — §) cannot be
factored out.

The actual calculations carried out in ref. [16] showed that for light and
medium nuclei the use of the spectral representation for the nucleon propaga-
tor, eq. (25), instead of the one of the noninteracting Fermi sea, eq. (6), has
negligible consequences in the mesonic width (of the order of 6% corrections
in 180). The corrections can be of the order of 50% in heavy nuclei, but in all
cases, when the pionic renormalization is taken into account, one can disregard
these effects.

These findings have been of relevance in showing similar problems in the
study of other physical processes, like in the contribution of the pion cloud
to K* nucleus scattering where one can show [17] that one cannot relate the
effect of the pion cloud to the pion excess number in the nucleus as assumed
in refs. (18, 19].

6 Results for the mesonic width.

In refs. (3, 4, 5] one can find abundant results in different nuclei which are
rather realistic. These results have been recently improved [13] by a more
accurate description of the energy balance in the particular reactions, taking
into account transitions to the bound and continuum N states and using a
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pion nucleus optical potential which has been derived theoretically and leads
to a good description of the data of pionic atoms and to elastic, reaction
and absorption cross sections in the scattering processes [20]. The potential
allows the separation of its imaginary part into two terms related to pion
absorption and quasielastic scattering. In [13] the pion quasiclastic events are
not removed from the pion flux, as it corresponds to the actual experimental
observation, while the use of a full distortion of the pion with the total optical
potential, as done in (3, 4, 5], inevitably removes the pion quasielastic events,
together with the pion absorption events. Though conceptually important, this
refinement turns out to be of little practical relevance in the present problem
given the small energy that the pions carry and the very small phase space
for quasielastic collisions [13]. However, other considerations, particularly the
energy balance in the reactions makes the widths in heavy nuclei for x~-decay
about one order of magnitude smaller than those of ref. [5].

In fig. 6 we show the prediction of ref. [13] for different nuclei and for #°
and x~ decay, with plane waves and the renormalized pion wave function. The
drastic effects of the pion renormalization are seen there and are a bit smaller
than in former works because the energy balance makes the pions come out
with smaller energies than in the previous approaches and the attractive effects
of the p-wave part of the optical potential are then diminished.

Of particular relevance are the results in }?C. One obtains the following

T, /Ta T,-/Ta Tyo /Ty
[13] 0.159 0.086 1.86
[5] 013 0.098 1.32

exp 0.217 + 0.084[10] 0.052 +£29%

Although with large errors the experimental results confirm these striking
theoretical predictions which show a large violation of the AT = 1/2 in nuclei
(Tys /Ty should be 0.5 under this rule) due mostly to nuclear shell effects.

Another interesting finding is seen in very light nuclei. The mesonic width
of j He has attracted particular attention. There, in addition to the pion
renormalization, the repulsive character of the AN interaction and the rela-
tively weaker medium range attraction, compared to the NN interaction, has
as an effect the pushing of the A to the surface of the nucleus, weakening the
Pauli blocking effect and thus enhancing the mesonic decay 21, 22]. The ex-
perimental numbers clearly favour potentials with a repulsive AN core. One
should note that such a repulsion automatically appears in quark based models
of the AN interaction. A recent study of the § He decay using a quark model
based hypernuclear wave function [23] leads to the following results

I.-/Ta Fao/Ta Teot/Ta

(23] 0.431 0.239 0.670
exp 044 £011[9] 0.8 +0.20 9] 0.59 +23
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These theoretical results are also in good agreement with those of ref. [24]
when a A wave function from the modified YNG AN interaction of ref. [25],
which has a strong repulsion at short distances, is used.

7 The 2p2h induced decay around the pion branch.

One of the interesting findings concerning the pionic decay was done in ref.
[26]. The idea of this work, expressed in a different way, is the following: A real
pion in a nuclear medium has a large width because of the coupling to 2p2h
components which lead to pion absorption. This means that the strength of
the pion is spread in a wide region, unlike a free pion which has all its strength
accumulated in one point (one energy for a certain value of q). The decay
leading to the emission of one pion is drastically reduced in nuclei because of
Pauli blocking. However, one extreme of the pion distribution in the nucleus
could be saved from Pauli blocking, because we can have a smaller energy for
the pion and correspondingly more energy for the nucleon, and thus this part
of the nuclear pion spectrum could participate in the A decay. Technically
we could say that the strength of a free pion, which is accumulated in a §
function, becomes now a Breit Wigner distribution and part of the tail will
correspond to a Pauli unblocked situation. Since the width of the Breit Wigner
distribution at low pion energies is mostly due to pion absorption through
2p2h emission, the new mode would be observed as three particle emission
from ANN — NNN. This is depicted in fig. 7.

In order to see this analytically we go back to eq. (9). (k) is related to
Im D(g). Assume we have

(q° q) = Mo + Man (29)
as done in [1]. Then

ImIL, + Imla,
=2
g & -1
Around the pion pole, when the denominator in (30) vanishes, Im Il is ex-
tremely small because there is little phase space for pion quasielastic collisions
and the A is far off shell. In addition, there Im I, = 0 because a real pion
cannot be absorbed by just one nucleon in nuclear matter. As a consequence
we have a § like distribution which corresponds to a pion in the medium,
renormalized by a real pion selfenergy Re Il ~ I, + IIa4. Now, if in addition

we consider the 2p2h part of the pion selfencrgy leading to pion absorption we
would have

Im D(g) = (30)

1(q°% q) = Myn + Man + Mypon (31)

and now Im I3,z # 0 for (¢°,q) close to on shell pions. As a consequence we
will have around the pion pole the following strength of the pion propagator
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Im H2p‘2h

Im D(q) = (qoz — qz —_ [l.z - th —_ HA’. - Re Hzﬂzh)z + (I7n HZth)z

(32)

This is like a Breit-Wigner distribution in ¢°, except for the fact that I,
depends explicitly on the variable ¢° (and §).

Since now there is overlap between Im Il and the pion pole one has to
be cautious in the separation of the pionic width and the one associated to 2p2h
emission. In ref {26] the calculations were done in infinite nuclear matter at
normal nuclear matter density where the mesonic decay channel is forbidden.
Hence, all the strength from eq. (9) with Im D(q) from eq. (32) was attributed
to the 2p2h channel. In finite nuclei, where there is some mesonic decay
allowed, eq. (9) with the distribution of eq. (32) accounts simultaneously for
the mesonic and 2p2h excitation channel. The separation of the two channels
can be done by calculating the contribution of the pion pole and associating
it to pion emission, and then associating to the 2p2h excitation channel, the
difference between the width calculated with eqs. (9), (32) and the width from
the pion pole contribution. The pion pole contribution is calculated by means
of eq. (9) substituting I'm D(q) by —=é(¢**— 7 —p* — Rell(¢% q)).This is
the way followed in ref. [27]. In addition a more realistic input for Tl,, is
used in {27] taking care properly of the phase space available for the 2p2h
excitation.

The results of {27] indicate that I'3pss/I's ~ 0.30 for different nuclei from
12C up to ™ Pb. In ref. [26] this ratio had a value around 0.60 for values of
the g} parameter compatible with those used in (27].

Even with smaller values for I'yp2,/T's than those of ref. [26], the existence
of this channel has important repcrcussions in the number of neutrons and
protons emitted in the A decay process, a piece of information which is used
to determine the ratio of proton to neutron induced A decay in the nonmesonic
channel. It is clear that in view of the new results one cannot associate all
n or p emerging from the experiment to the primary An — nn or Ap — np
reactions and hence a reanalysis of the experimental data is needed. This
analysis requires the consideration of the A nonmesonic decay channel, which
we have not addressed here, hence the reader is addressed to this paper [27]
for further details.

Up to now the experiments for A decay have focused on two channels, the
mesonic and the non mesonic. In view of the former results and the fact that
the 2p2h channel has a bigger strength than the mesonic one from nuclei like
180 up, it would be very interesting to conduct experimental searches for this
channel too.
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8 Conclusions.
We have made a review of the present situation concerning the mesonic decay
of A hypernuclei. We have established the formal link between the propaga-
tor method, where the huge enhancement of the pionic decay width was first
reported, and the finite nuclei approach with wave functions and matrix el.
ements. Shell effects and precise values of the nuclear binding energies are
also important in the mesonic width and they are best taken into account jn
the finite nuclei approach. The intuitive and appealing, but fallacious, link
between the nucleon occupation number and the mesonic width has also been
discussed, which has served to unveil rough approximations used in other pro-
cesses to link the pion excess number with contributions of the nuclear meson
cloud to some physical observables, like K+ nucleus scattering. We have also
discussed the relevance of the short range AN repulsion in the mesonic width
of light hypernuclei and showed how the repulsion provided by quark mod-
els of the AN interaction can naturally account for the present experimental
widths. Finally we have discussed the A decay induced by pairs of nucleons
through the tail of the pion distribution in the nucleus, which “cheats” the
Pauli blocking and leads to a three nucleon decay channel, ANN — NNN.

With the limited amount of experimental data available on the mesonic
channel, the amount of physical information obtained is remarkable. There is
support for strong AN repulsion at short distances providing indirect support
for quark models of the AN interaction; the process provides us with the most
striking renormalization effect due to the pion nucleus interaction. Further-
more, the “cheating” of Pauli blocking by the 2p2h induced decay can provide
good information on the coupling of the pion to these nuclear components, a
very valuable complement to real pion absorption, etc. The sensitivity of the
A decay to the pion nucleus optical potential can also serve as a tool to « hoose
between different theoretical descriptions of the complex mechanisms of pion
nucleus interaction. The decay channel into #° can be an excellent instrument
to learn about x° nucleus interaction, and so on.

It is clear that a systematic experimental search in many nuclei of the
mesonic decay channel and its related 2p2h induced decay mode will provide
us with very valuable information to unravel the intricacies of the pion nucleus
interaction or the elementary properties of the AN interaction, as well as
proper nuclear structure details of the A hypernuclei themselves.

This work has been partially supported by CICYT contract no. AEN 93-
1205, PB92-0927, PB 92-0761. One of us, J. N. wishes to acknowledge financial

support from the European Union.
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Figure captions.

Fig. 1 Feynman graph for the free A self-energy of eqs. (4), (5). The
A — N “cut” is shown (dotted line).

Fig. 2. Analytical structure of the integrand of eq. (4) in the complex ¢°
plane with the nucleon and pion propagators of eqs. (6), (7). The renormalized
pion propagator pole w(q) is shown. The dashed lines close to the real axis
indicate the analytical cut from ImII(q°, q) related to the nonmesonic A decay
channel.

Fig. 3 A self-energy diagrams included in eq. (4) with the nucleon and
pion propagators of eqs. (6), (7). (a) Free self-energy graph. (b}, (c) Insertion
of p-wave pion self-energy at lowest order. (d) Generic RPA graph from the
expansion of the pion propagator in powers of the pion selfenergy. (e) s-wave
pion self-energy at lowest order. The cuts represent the nonmesonic decay
channel. .

Fig. 4. Free and lowest order A self-energy graph. The dotted cuts repre-
sent the mesonic decay channel.

Fig. 5. Schematic representation of the nucleon occupation number for an
interacting Fermi sea.

Fig. 6. Pionic decay rate for #° and n~ as a function of the mass number
(of the host nucleus, 0, *Ca, ®Zr, *¥ Bq, and *®Pb). The two lower lines
show the calculation with plane waves for the pion and the two upper lines
the results with pion distorted waves.

Fig. 7. Schematic representation of the A decay coupling to 2p2h compo-
nents through virtual (close to real) pion absorption.
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