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Abstract

The Relativistic Mean-Field Model for the pion-nucleus interaction is modi-
fied in such a way as to implement the properties of the free pion-nucleon scat-
tering amplitude. The experimental data of pionic atoms of isoscalar nuclei are
very well described with this model. The phenomenon of the s-wave repulsion is
shown to be due to the nucleon and A-isobar effective masses inside the nuclear
environment. The value of the effective-mass parameter for the A-isobar has

been determined to be close to the one corresponding to the nucleon.



Rather recently [1], pionic-atom data of isoscalar nuclei were analyzed within
a modified version of the Relativistic Mean-Field (RMF) Theory [2] which is an
alternative to the Multiple Scattering Approach ([3]-[4]) for the treatment of the low-
energy pion—nucléus interaction; therein, it was shown that the local real part of the
interaction could be described with the two parameters of the RMF Theory, namely
the strength of the nuclear scalar-meson field for pions (Sr) and the pseudoscalar
mixing parameter in the pion-nucleon (7 — N) vertex (z). Our RMF Model provided
an explanation to the long-standing problem of the s-wave repulsion [1].

In order to investigate the compatibility of our RMF Model with the pion-nucleon
sector, a # — N interaction model (consisting, at the tree level, of the lowest-order
elementary contributions of the RMF Theory) was introduced [1]. Very recently, the
general validity of this model was thoroughly investigated ([5]-[8]); our predictions
were compared with 7 — N scattering data (from threshold up to the Ass-resonance)
and excellent description of the s- and p-wave parts of the interaction was achieved,
including the m# — N T-term (which was calculated in the tree-level approximation).
However, one important modification of the original form of the 7 — N model was
essential in order to achieve these results: the A-isobar had to be treated in
the most general manner; i.e. the Rarita-Schwinger condition (projection of the
A-isobar amplitudes onto pure spin-% states), which is also imposed in the original
form of the RMF Theory [2], had to be retracted. It was found that a considerable
admixture of spin-: in the A-isobar intermediate state was necessary in order to
account for the energy dependence of the s-wave part of the # — N scattering am-

plitude. A plausible question to be asked now is whether our RMF Model can still



reproduce the pionic-atom data after the implementation of the properties of the free
pion-nucleon interaction. This subject is investigated in the present work.

The RMF Theory is an extension of the Relativistic Mean-Field Approach in
Nuclear Physics (the 0 — w model [9]) in such a way as to include the interaction
with the m-meson. The pion interacts in two ways with the nucleus (we restrict
ourselves to isoscalar nuclei): it couples to the mean static scalar-meson field S,(r)
(which is due to the nucleons in the nuclear ground state) and it polarizes the nucleus
through absorption and reémission on a bound nucleon (with a nucleon or a A-isobar
in the intermediate state).

The m—nucleus interaction is described with an optical potential which contains
local (s-wave) and non-local (p-wave) parts and is complex in order to account for
the pion absorption [3]. The non-local part and the pion absorption will be treated
phenomenologically. Within the context of our model, there are then three contri-
butions to the local real part of the optical potential (all these contributions refer to
threshold, since we will be dealing with pionic atoms):

e The contribution of the scalar-meson field has the form
2u U () = 2m, S.(r) (1)

where m, is the charged-pion mass and u is the reduced mass of the pion-nucleus

system !.

INote that the quadratic term in Sy(r) of the original form of the RMF Theory [2] (also adopted
in ref. [1]) has been excluded in this work; instead, we follow the prescription of ref. [10], page 531.
The reason is that the elementary scalar interaction in our (very successful) 7 — N model corresponds

to the (simpler) linear form (in S, (r)) in the #—nucleus optical potential.



The scalar-meson field is assumed to follow the nuclear density p(r):

Sx(r) = Sk ﬂg—) : po = 017 fm™® . (2)

S, is the strength parameter related to this field.

e The nucleon contribution reads as

mp (= 1\, < |
M) (Mm*m) +M<r>] o) > B

where g;nn stands for the coupling constant corresponding to the m— N vertex, z for

2
9x
2U0) = Gy

the pseudoscalar admixture in the = — N vertex and m for the nucleon mass (average
of the proton and the neutron masses) [1].

M(7) denotes the nucleon effective mass and is defined according to the formula

A-1

M(r):m(l-—cN I p(r)); cN=ZN—_iV-

2mpq

(4)
where Vy and Sy are respectively the strength parameters of the vector(w)- and
scalar-meson fields for the nucleon. The parameter cy has been calculated in three
independent ways: from nuclear matter properties [9], from shell-model parame-
ters [11] and from the parameters of the N — N One-Boson-Exchange model [12]:
ey = 2.06fm® with an estimated relative uncertainty of 15%. A denotes the mass
number of the corresponding nucleus. The term (4 —1)/A is due to the fact that the
struck nucleon interacts with the fields created by the remaining A — 1 nucleons.

o The contribution of the A-isobar graphs to the local real part of the m—nucleus
optical potential has been calculated to be ?

2972rNAm3rY
Im2 M4 (r)

2The calculation was performed in the framework of the RMF Theory {2] with the A-isobar prop-

2uUBN(r) = — BMa(r) + CMA(r) = M) Y]p(r) (5)

agator and the 7N A interaction vertex of ref. [13], page 562.
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where grna denotes the #NA coupling constant, ¥ = Z — % (the parameter Z
describes the spin-; admixture in the A-isobar field ) and Ma(r) denotes the A-
isobar effective mass, which can be parametrized (similarly to the nucleon case) as

Ma(r)y = M (1 - ca A;1 P(T)> ’ (6)

where M stands for the ‘free’ A-isobar mass. Since no information is available for
ca, it will be treated as a free parameter.
The local real part 2uUU)(r) of the optical potential equals to the sum of the

three individual contributions;
2uU(r)y = 2uUO(r) + 2uUM (7} + 2uUB(r) . )

The complete strong-interaction equivalent potential 2uU(r) should include the non-

local (gradient) term and imaginary terms (both in the local and non-local parts).

Thus,
.1 g - C 1 — -
uU(r) = 2uU"(r) —4x 1-2—ImB0p2(r) -v (ﬁp(r) + §Cop2(r)> . v} , (8)

where p; = 1 + m,/m. The parameter Cp is complex. The optical potential of
equation (8) contains five parameters: ca in the local real part, two parameters in the
non-local real part (&, and ReC}) and two parameters for the pion absorption (ImBy
for the s-wave absorption and ImC;, for the p-wave absorption). The remaining
parameters (in the local real part) have been taken from the 7 — N interaction
model. For details, the reader is referred to refs. [6] and [7], where the parameters

of the # — N model are defined and their values determined. Equally good fits to

3Note that the imposition of the Rarita-Schwinger condition, which at threshold is equivalent to

having Z = 1, would lead to vanishing U(4)(r).



the m — N phase-shift data were obtained within a whole range of values of the
(independent) parameter va). In the present work, the strength of the scalar-meson
field S, has been chosen as an independent parameter; S, is related with the scalar

coupling constant G, of the # — N model through the formula (1]

where p(0)/p,(0) = 1.08, see ref. [14].

In our analysis, we restrict ourselves to isoscalar nuclei. This is because we
intend (as a first step) to study the dominant feature of the interaction (i.e. the
isoscalar part) with a clear separation from the (smaller) isovector part; furthermore,
the problem of the poorly known neutron distributions is eliminated in the case
of isoscalar nuclei (the nuclear density p(r) is double the measured nuclear charge
density).

The analysis is based on the same experimental input as ref. [1]; the data set
consists of the energy shifts and widths of 5Li, 1°B, 12C, N, 60O and *°Ne for the 1s
states, and of 12C, 160, 2*Mg, 2Si, 32S and “°Ca for the 2p states (24 entries in total).
In order to emphasize the role of the 1s level shifts in determining the local real part
of the potential, the errors of all other experimental input data (i.e. of the widths
and of the 2p energy shifts) were doubled. With our optical potential of equation (8),
we will fit to these data. The numerical work, i.e. solving the Klein-Gordon equation
with the strong interaction potential and calculating the radiative corrections, was
done with the computer code BIPA [15].

For different values of S, (our fits to the — N phase shifts ([6]-[7]) indicate a range

of S,-values between —50 and —30 MeV), one may then fit for the parameters of our
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optical potential of equation (8). In all cases, very good fits were realized. This can
be clearly seen in figs. 1(a) (1s energy shifts), 1(b) (2p energy shifts) and 1(c) (1s and
2p widths). From fig. 1(a), it is evident that the local real part of our optical potential
(equation (7)) can account for the 1s energy shifts of pionic-atoms of isoscalar nuclei
at a few-percent level.

It is interesting to notice that these results have been obtained with only one pa-
rameter in the local real part of the 7—nucleus optical potential (c,); its dependence
on S, is shown in fig. 2. It is remarkable that the values of this parameter, obtained
by the fits, are very reasonable, i.e. close to the values for the nucleon effective-mass
parameter cy.

Let us finally note that higher-order effects have been dealt with as in ref. [1};
they originate from rescattering processes [16] and from pion absorption (dispersive
effect) {17). Both effects make contributions to the quadratic term in the nuclear
density (thus, they affect ReBo in the notation of ref. [3]). In ref. [1], we showed
that these two contributions almost cancel one another; ReB!° ~ 0+ 0.06 m;*. The
dashed lines of fig. 2 correspond to the uncertainty in ReB%°.

Taking into account the variation of S, and the uncertainty in cy, we have ob-
tained: ca = 24 % 0.5 fm3 The (small) statistical error is also included in
the uncertainty. The higher-order effects (previously mentioned) induce additional
(average) uncertainties of 133 fm3 in ca.

The values of the parameters &, ReCo, ImBy and ImCy of our optical potential
(8), obtained with our fits, are 0.192 £ 0.005 m;3, 0.05 & 0.03 m;®, 0.112 m;* and

0.09 m;®, respectively. These values correspond to averages over the whole domain



of variation of S,. The errors exclusively correspond to the variation of Sr and to
the uncertainty in cy; for the parameters ImBy and I mC,, these uncertainties are
negligibly small. The parameters & and ReCj are strongly anti-correlated.

The individual contributions to the local real part of the 7—nucleus potential are
shown in figs. 3 as a function of S, for two cases:
ecy # 0,ca # 0and
ecy = ca = 0.

Evidently, the phenomenon of the s-wave repulsion can not be accounted for in the
latter case.

To summarize, our Relativistic Mean-Field (RMF) Model for the m—nucleus in-
teraction is put on a firm basis by implementing the properties of the free 7 — N
interaction. This is achieved with the help of our 7—nucleon interaction model ([5]-
[8]): the structure and the parameter values of this model are introduced into the
RMF Approach. The main results are:
¢ The phenomenon of the s-wave repulsion is shown to be due to the nucleon and
A-isobar effective masses inside the nuclear environment.
¢ The effective-mass parameter of the A-isobar is determined to be ca ~ 2.4 fm?3
(i.e. close to the corresponding value for the nucleon).

Interesting further developments of the RMF Model might now be attempted in
the following directions: with the inclusion of the isovector part (by introducing the
p-meson vector field), with the description of the non-local part of the interaction
and, finally, with the extension of the model above threshold in order to describe the

m—nucleus elastic scattering and single-charge exchange reactions.



Clearly, the present work establishes a promising new link between the Pion and
Nuclear Physics, and could stimulate additional work in the domain of the Relativistic
Hadron Physics.

We would like to thank B.L. Birbrair for his contribution in the implementation

of the treatment of the A-isobar in our model. We acknowledge helpful discussions

with A.B. Gridnev.
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Figure caption

Figures 1:

The relative differences (€o(th) — €o(exp))/eo(th) for the 1s (fig. 1(a)) and 2p states
(fig. 1(b)) of pionic atoms of isoscalar nuclei and the ratio ((th) — I'(ezp))/T'(th)
for the widths of these states (fig. 1(c)), as functions of the mass number A. eo(th)
denotes the difference Ey, — E.; Ey is the relevant transition energy, predicted with
the strong potential of equation (8), and E is pure electromagnetic energy difference
of the corresponding levels. eo(ezp) stands for the difference Eezp — Eei; Eerp is the
measured energy of the transition in question. I'(exp) denotes the measured width of
a level and I'(th) is the fitted value obtained with the optical potential of equation (8).
Average values of the energy shifts and widths (over the whole domain of variation of
S,) have been considered. The errors represent the experimental uncertainties and
the (much smaller) uncertainties in our prediction (which are due to the variation of

S, and to the uncertainty in cy).

Figure 2:

The S,-dependence of the parameter ca. The solid line corresponds to cy fixed at
2.06 fm3. The errors due to the 15% uncertainty in ¢y are designated by the dotted
lines. The dashed lines correspond to the limits of the ca-values when the corrections
due to higher-order effects (see text) are taken into account. The hatched region in-
dicates the (15%) uncertainty intervals in the nucleon effective-mass parameter cy

(around the value of 2.06 fm?).
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Figures 3:

The individual contributions to the local real part of the m—nucleus potential as a
function of S, for two cases:

o cy = 2.06 fm3, ca taken from fig. 2 (solid line) and

ecy = ca = 0.

The figure corresponds to '?C; in the calculation, the central density of this nucleus

(p(0) = 0.16 fm~2) has been used.
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Fig. 2
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Figs. 3

R | 1 ' I :
] . ] © o
: ! / o
[ | / ]
g _ / CN%“
; ! / E
. _ ]
: | “
C bZ<AN _ E
p B4 :
: ]
wm_._ \ .
o ]
. o 1 | P _0 ]

2 & a2
L | | v | 1
- ’ © o ]
: / GO
5 / AN < I
: SEES
- / -
: | m
- bZ<an E
o .
o -
o _ m

| | M

3 & a

-45 -40 -35 -30 -2

-50

-3 -30 -25

—40

-50

-565

(MeV)

St






