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Abstract

QCD sum rules are used to compute the first few moments of the mesonic quark momen-
tum. Transverse, longitudinal and mixed transverse-longitudinal components are examined.
The transverse size of the pion is shown to be dictated by the gluon condensate, even though
the mass and the longitudinal distribution are dominated by the quark condensate. The

implications of our results for color transparency physics and finite temperature QCD are
discussed.
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Mesonic wave functions have been the focus of much recent theoretical activity regarding
exclusive processes [1, 2, 3] and color transparency [4]. In the former case, the asymptotic
formula of exclusive process can be expressed, via factorization, in terms of a hard scattering
amplitude Ty and the quark distribution function ¢(¢, Q?) [5] (£ is the light-cone momentum
fraction of quarks and @2 is the typical external momentum). However, there have been
many suggestions that such formulae are not valid at presently accessible energy ranges
[6, 7). Furthermore, computations of form factors often employ a wave function with a
spread of b (the transverse separation between quarks) [1, 8]. Sterman and collaborators
have computed the Sudakov effects [9] for the pion and proton form factors[l, 10]. This
involves “wave function” of the form eS160%  The Sudakov effect should dominate at high
Q2, but it would be surprising if the b-dependence resides only in the function S.

The transverse size dependence plays also a key role in color transparency physics. A
Gaussian dependence on the transverse momentum k% (EL is canonically conjugate to b)
implies that the effects of color transparency would never be observed, but a power fall off
does allow such observations [4]. Furthermore, QCD lattice calculations [11] now provide
hadronic wave functions, and understanding these with analytic techniques would be useful.

The use of QCD sum rules (QSR) has been a particularly useful example of such an
analytic technique. QSR have long been known to provide reasonable estimates of hadronic
properties [12] and distribution functions needed as inputs to perturbative QCD (PQCD)
calculations. In particular, Chernyak and Zhitnitsky [13, 14] have determined £2" moments
of the distribution function ¢(¢).

The present paper, concerns a new application of QCD sum rules(QSR): the determina-
tion of the ¢#k%" moments of mesonic wave functions. We derive new Borel sum rules for
these moments, which makes us possible to extract physical picture of the quark momentum
distributions. (For an application of a finite energy sum rule, see ref. [15].) The starting
point is the Bethe-Salpeter amplitude for the pion
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where ¢, and x, represent two different Bethe-Salpeter amplitudes, ¢ B: iD + (iﬁ)", D=
g — igB“’iz&, @ is the renormalization scale and fr is the pion decay constant. First let us
introduce a light-like four vector y and a transverse vector ¢ = (0, l—;, 0) which is perpendicular
to the hadron momentum p = (p°, 0,p.). Then we make a decomposition z = y +1 so that
22 = -2 and z-p = y - p. Since we have chosen z to have both longitudinal and transverse
components, the matrix element in eq.(1) can be further expanded in terms of y and —b2.
The result is that

n
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after contracting with y*, and where the normalization is My, = 1. Since y- z = 0, the con-
traction of y* with eq. (1) enables us to extract ¢, on which we focus our attention in this pa-
per. M, _;; arerelated to the matrix elements with n—[ covariant derivatives in the longitudi-
nal direction and [ in the transverse direction. Both n and [ are even numbers. The moments
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M, _1; can be related to spin n+1 and twist [ +2 matrix elements by identifying independent
symmetric traceless matrices. For example, —ifx Mo 2p, = 2i(0|dv,750039G* u|m(p)).

The function ¢, (z - p, z?), depends on coordinates; the relation to the momentum space
wave function is given by

1 2 _ L.
buly - p =8 = [ de [7 dhietre s (6 02),, (3)
-1
while the light-cone quark distribution function is given by
Gx(€)n = [ EhiO(K = K)6,(6, 2 ), (4)
Expanding the integrand of eq.(3) as a power series in y - p and (bz) leads to
n n ! .
a2 = 5 O Sy O, )
n 1=0
where
<€n lkl / /de gn Ik ¢7r(€ k2) (6)
I =T(1/2+1/2)/(I'(1/2)I'(1 + 1/2)) and ,,C; = ——ﬁ The desired moments are now

identified by using eqgs. (5) and eq.(2) in the contraction of eq. (1) with y* and equating the
coefficients of the terms in the expansion. The result is

1
n—17,1 — M 1/2
k mn— _1 . 7

We proceed by using QCD sum rules to extract M, ;; from eq.(2) and thereby obtain
the moments from eq.(7). Consider the correlation function Ty, g,

Taoly - 0, =8, ) = i [ dlee ™ (OT[d(2)y"vars(e- D" u(z), (0l varsdO)I0). (8

The complete sum over intermediate states is approximated by the lowest mass pion pole
term and a continuum contribution. Then the spectral density can be expressed as

%Ian,o(y - g, —b% ¢%) zn:f " I+2(—bz)% (M'n ub(g* = m2) + c(n, 1)0(¢* — SO)) , (9)
1=0

where c(n, ) are coefficients chosen to match the perturbative part in the Operator Product

Expansion (OPE) at Q* — oo. We have carried out the OPE for T, for operators of
dimension less than or equal to six:

n
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where
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with B(n,l) = T(n)['()/T(n + 1) and 8(n) = 1 for n > 0. The OPE for the p meson is as
above except for the four quark condensate term Cj; for which (4n + 11) — (4n = 7).

We may immediately examine the physical consequences of these expressions. The gluon
condensates arising from the covariant derivative in eq.(8) give the terms proportional to §’s
in Cy; and C,zl’,. These terms together with the other gluon condensate become increasingly
important as [ increases. Conversely, one of the four quark condensates with hard gluon
line (Fig. 3 of [13]), which gives the dominant power correction for the [ = 0 sum rules,
does not contribute at all for [ # 0. This is because the internal gluon line in the relevant
tree graph carries no transverse momentum. Thus the power correction is dominated by
the gluon condensate and the quark condensate plays only a minor role. This is opposite to
the usual sum rules for longitudinal moments (I = 0) and for the meson masses where the
quark condensate term is essential. In the constituent quark picture of hadrons, the mass of
the constituent quark is obtained through the dynamical breaking of chiral symmetry and
the transverse wave function is determined by the confining force between the constituent
quarks. This picture is consistent with our observations about the OPE results.

To go beyond these qualitative aspects we follow the QSR standard procedure and,
equate the phenomenological side eq.(9) to the OPE side eq.(10) using the the standard
Borel transformed dispersion relation on ¢?, % [ dse™*/’ImT, o(s) = Borel trans[ReT, ],
and identify the coefficients of the double expansion. The result is

Ak = Cﬁfzt,z(_ )1/2M2(1_e-3/M2)
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The above sum rule reduces to the sum rule for fr [12] for n = | = 0 and to the
longitudinal sum rule [13, 14] for I = 0. We will use the physical value f, = 133 MeV

and derive each moment for different value of Sy. For the vacuum condensates, we use the
standard values [12]:

(Vaau)? ~ 1.83-107* GeV®, (%GZ) ~1.2-107% GeV*. (13)

The outline of the method used to analyze the sum rule is the following:

1. Find the Borel window, i.e., find M2, such that the total power correction is less than
30 % of the perturbative part. This will insure that the neglected higher dimensional

operators cannot be large for M > M,,;,. We then choose M2, arbitrarily say M2, =
M2, +0.3 or 0.4GeV>.

2. Find the value of S; which minimizes the dependence on M2 Then the extracted
moments will not depend too much on the exact choice of M2, . Since we do not take
into account the a;-meson explicitly in eq.(9), our Sy should be regarded as an effective
threshold in the pseudo-vector channel. This is the reason why we obtain a relatively

small value Sy in Table 1.

3. The physical quantity is then obtained from the average over the Borel window M?2.

Chernyak and Zhitnitsky used a similar procedure for the case of [ = 0.

The form of the Wilson coefficients dictates the characteristic behavior of the sum rule as
a function of the variables n,!. Increasing n for fixed [ generally enhances the coefficient
of both the gluon and 4-quark condensate in the OPE. Then the Borel window (range of
M?) appears at higher values of M? and the value of Sy increases. Note also that the power
correction becomes large as n increases, so that the sum rule is not reliable for n > 6.
Increasing [ for fixed n generally enhances the coefficient of the gluon condensate but
will reduce that of the 4-quark condensate. In particular, there is no 4-quark condensate for
[ > 2. This competing effect tends to keep the Borel window fixed or moves it to slightly
higher values of M?. For [ > 6, the sum rule is again sensitive to Sy and one cannot make
reliable estimates. The value of Sy must be reduced compared to other moments to reduce
the M? dependence.

Table 1 shows the result of our analysis. The moments for [ = 0 correspond to the values
obtained in ref.[13, 14]. The main sources of errors in Table 1 are the contribution from
higher dimensional operators and the uncertainty in the exact value of Sy;. The first issue
is related to Mikhailov and Radyushkin’s (MR) [16] criticism of ref.[13, 14]. MR stress the
importance of including non-local condensates [17]. Although, there are some ambiguities
associated with modeling different types of non-local condensates, we take the MR results
as a guide to estimate the uncertainties of our calculation. The Gaussian model of MR leads
to longitudinal moments about 50 % smaller than that of ref.[13, 14]. We expect similar
behavior to be true for sum rules with [ # 0 and estimate the uncertainty associated with



unknown higher dimensional operators to be —50 % for all moments. A second source of
errors is the lack of knowledge of Sy which strongly influences the knowledge of moments
with [ # 0. For example, increasing the value of Sy to its value for [ = 0, causes a 50%
increase in the moments. This gives an upper limit for the ! # 0 moments. So overall, the
estimated errors for all the moments are £50 %.

In the conventional notation, where the separation between quarks is b instead of 20, our
n = 0,/ = 2 moment implies an average transverse momentum of (300MeV)?. This is a
characteristic hadronic scale and is consistent with a rough estimate (323MeV)?* in ref.[14].

We can use our results to study three features of the wave function; approximate factor-
ization of the longitudinal and transverse directions; power law behavior of the transverse
wave function; and the low temperature behavior of the transverse wave function. Let us
discuss each one separately.

Here the term “factorization” refers to the property that (£"k') = (€")(k'). The results
shown in Table 1 are consistent with the factorization property at least for low moments
(n,I < 4). Although the numerical origin of factorization is natural and can be traced
from the expressions provided here, further works should be done to study the validity of
the approximate factorization for the wave function @(£,k;) = ¢(§)¥(ky). [18] A recent
calculation [19] of color transparency effects in high energy pion-nucleus scattering assumed
this factorization.

The second point is the k;, dependence of the transverse wave function. Table 1 shows a
large fluctuation of the transverse momentum

A = (k) = (R1)7]/(k1)" > 8 . (14)
We can then determine which of two popular forms in the factorized wave function, a Gaus-
sian Yg(ky) = Aexp(—k3 /m?) and a power law ¢pr(k.) = A(—W, has a value of A
consistent with eq.(14). One may use the 9’s to calculate A; it is first necessary to introduce
a value of u? (see egs. (3) and (4)) which is expected to be of the order of 1 GeV?. For
the Gaussian wave function ¥g(ky), Ag ~ 1 — O(ezp(—u?/m?)). The exponential term
can be estimated by reproducing the value of (k%) shown in Table 1. For p* larger than 1
GeV?, the O(exp(—p?/m?)) turns out to be always less than 0.1. For the power law, we can
again determine u? by reproducing the value of (k2). Then Apy, = 28 for u* =1 GeV? and
Apr = 6 for u? = 2 GeV? and always larger than 5 for larger values of y?. So the sum rule
values for A are more consistent with a power law type of transverse wave function even if
we take into account the estimated errors. More generally, the concept of a large value of A
is consistent with the notion of significant fluctuations of the momentum, a property that
favors the possibility that color transparency would occur [4].

Another interesting question is the low temperature generalization of our moment sum
rules. This generalization is achieved by applying the low temperature pion gas approxi-
mation to the thermal expectation value of the hadronic correlation functions.[20, 21] The
use of soft pion theorems lead to the result that to lowest order in ¢ = 72/6f2, the axial
vector and vector correlation functions at finite temperature can be expressed in terms of a
linear combination of vector and axial vector vacuum correlation functions with temperature
dependent residues [20], such that the only effect at finite temperature is a renormalization
of fI' = f.(1 — ¢/2). We find that the same is true for the transverse moments, i.e.,

M(fl(T) =(1- E)M(fI(T =0)+ eMSf,(T =0)
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Mg (T) = (1 - €)M(KI(T =0) + EM(fI(T = 0), (15)

where the superscripts V' and A represent moments for the vector and axial vector currents.
So the change at finite temperature can all be accommodated by a change in f; with no
change in the transverse moments. This suggests that to lowest order in 7', the wave functions
do not change when the temperature is increased from zero to a small value.

In summary, we have derived sum rules for the transverse and longitudinal moments of
the pion (and the p meson) wave function. These results can be used to understand the role
of the quark wave functions in exclusive processes and at finite temperature.

We thank M. Chu, T. DeGrand, R. Gupta, and J. Negele for useful discussions at the
Institute for Nuclear Theory, Univ. of Washington. This work was supported in part by the
US Department of Energy under grant DE-FG06-88ER40427.



=0 =2 [=4
(¢"k') || moments | MZ,, So moments | MZ,, So moments | Mz.. So
(GeV?2) | (GeV?) || (GeV?) | (GeV?) | (GeV?) || (GeV*) | (GeV?) | (GeV?)
n=20 1 0.6 0.9 0.36 0.8 0.5 1.17 1.2 0.4
n=2 0.4 1.3 1.9 0.14 1.3 0.9 0.30 1.5 0.5
n=4 0.24 1.9 2.8 0.09 1.9 1.4 0.20 2.0 0.5

Table 1: Mixed moments of the quark transverse/longitudinal momentum distribution.
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