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Abstract

The finite-size scaling behaviour of the compact U(1) lattice gauge model in
two space and one time dimensions is studied using a Green’s Function Monte
Carlo method. The results agree with the predictions of effective Lagrangian
theory and weak-coupling perturbation theory.
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I. INTRODUCTION

The effective Lagrangian approach of Leutwyler, Hasenfratz and collaborators [1-3] has
shed new light on the finite-size scaling properties of lattice systems in more than two di-
mensions. In particular, a system possessing a global continuous symmetry which undergoes
spontaneous breakdown will develop Goldstone bosons, and the massless Goldstone bosons
then control the response of the system to changes at low energies or temperatures, and large
distances. One may write down an effective Lagrangian for the Goldstone bosons, and hence
obtain a systematic large-volume expansion which gives universal formulae for the leading
finite-size corrections in the theory. Conversely, measurement of the finite-size corrections
can give estimates for the parameters of the effective Lagrangian.

In a recent paper [4], herafter referred to as I, a similar approach was applied to the
Hamiltonian version of compact U(1) lattice gauge theory. Here the U(1) gauge symmetry
is local rather than global, and there are no Goldstone bosons in the usual sense. The
theory may, however, possess massless particles, namely the photons; and these might again
be expected to control the large distance behaviour. In reference I, the leading term of
the effective Lagrangian was taken to be simply that of free electromagnetic theory, and
the finite-size scaling behaviour was predicted on that basis. Simple dimensional arguments
show that any interactions between the photons must be “soft” at low energy, which again
allows a systematic large-volume expansion. This was previously remarked by Kovner,
Rosenstein and Eliezer [5], in fact, who argued that the photon could itself be regarded as a
Goldstone boson, arising from spontaneous breakdown of a global symmetry generated by
the magnetic flux'. A complementary weak-coupling perturbation analysis was also carried
out in I, which predicted similar finite-size scaling behaviour, and also gave an expression
for the photon velocity (i.e. the speed of light), which appears as an unknown parameter in
the effective theory. The results were tested against Monte Carlo measurements [6] in the
massless, Coulomb phase of the (3 + 1) D model, and were found to be correct.

A more interesting question is whether the results can also be applied to the (2+1) D
model, because that model has no massless phase. Gopfert and Mack [7] have proved that
the model remains confining at all couplings, and that in the continuum limit it reduces to
a theory of free, massive bosons, on a mass scale M that decreases exponentially as the
lattice spacing a goes to zero. On the other hand, Gross [8] has proven that in the “naive”
continuum limit where the coupling and energy scale is held fixed as a goes to zero, that the
Villain version of the model, at least, does indeed converge to free electromagnetic theory at
the level of F,, or the Wilson loops, as of course it was designed to do. On this basis it was
predicted in I that the finite-size scaling behaviour following from the effective Lagrangian
theory should be valid not for arbitrarily large lattice size, but for intermediate lattice sizes
L obeying

l< L<1/Ma (1.1)

where M is the mass scale referred to above. One of the objectives of the present work is to
test these predictions against numerical data.

1Although their argument was actually for the noncompact theory in (2+1) D.
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The U(1) model in (2+1) dimensions has been well explored, by approaches includ-
ing variational approximations [9-17], strong-coupling series expansions [18-23], the re-
lated t-expansion [24,25], a finite-lattice approach [26], block renormalization group [27],
momentum-space lattice [28] and quantum Monte Carlo simulations [29-36]. It is perhaps
the one lattice gauge model where the bulk behaviour is more precisely known in the Hamil-
tonian that in the Euclidean formulation. None of the previous finite-lattice or Monte Carlo
calculations, however, have been of sufficient accuracy to give a reliable picture of the finite-
size scaling behaviour.

It is probably fair to say that the development of Hamiltonian Monte Carlo methods in
lattice gauge theory lags behind Euclidean methods by about a decade. The approaches used
hitherto [29-36] have usually used a strong-coupling (electric field) representation, giving rise
to a discrete set of basis states. Unfortunately, an attempt to apply a similar technique to
the non-Abelian SU(2) gauge theory failed, because it appeared to run into the infamous
“minus sign” problem. There is a need, therefore, to develop methods based on a weak-
coupling representation, which should be able to avoid this problem, for a pure gauge theory
at least. That is the second objective of the present work.

A weak-coupling algorithm was in fact developed by Heys and Stump [29], and Chin,
Negele and Koonin [37], based on the Green’s Function Monte Carlo techniques of Kalos
and collaborators [38]. In later work, however, Chin etal. preferred to use the Monte Carlo
technique as a tool in variational approximations. This introduces an unknown systematic
bias due to the form of the variational wave function, which can be quite serious, especially
for local observables such as mass gaps. Here we prefer an “unbiased” form of the original
algorithm [38], in which a trial wave-function is indeed used to guide the random walkers
in the ensemble towards the most likely region of configuration space [39], but the results
should be independent of this guidance.

In Section II of the paper, we summarize the predictions from effective Lagrangian theory
and weak-coupling perturbation theory obtained in reference I. In Section III we discuss the
Monte Carlo method, and in Section IV the results are presented. Our conclusions are set
out in Section V.

II. THEORETICAL PREDICTIONS
A. Effective Lagrangian Theory

An effective Lagrangian approach to the compact U(1) lattice gauge theory was discussed
in reference I. The leading term in the Euclidean effective action was taken to be that of a
free photon field:

5=£ / dPH e, F, (2.1)
where
F;u/ = auAu - 8uAu (22)

The coupling parameter p we shall refer to as the “helicity modulus”, by analogy with spin-
wave theory, for lack of a better name. The interactions between the photons are “soft” at
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low energies [5,I], and equation (2.1) is sufficient to predict the leading terms in a systematic
large-volume expansion of the theory.

Starting from this point, it was shown in I that the finite-size corrections to the ground-
state energy per site for the (D + 1) dimensional model should have a universal form:

~ (D=1)

2
(L) = €(00) 170 =g (al), (1) + 2= ) (2:3)

D+1

corresponding to the Casimir energy of (D — 1) massless boson degrees of freedom, where
a(g)/z(l) is a known “shape coefficient”[2], v is the speed of light in the theory, and L is
the number of sites on an edge of the lattice (assuming periodic boundary conditions). For

D = 2, this reduces to

~ 0.7188v

(L) — €,(00) L~o0 — i (2.4)

The finite-size behaviour of the axial string tension on the lattice was also predicted:

~ v2
0 L—oo %LD——I— (25)
or for D =2,
2
~ v
——o —— 2.6
oL 2oL (2.6)

Now it is known [40,7] that the compact U(1) lattice model in (2+1) dimensions is not
in fact a massless theory, but a confining one, with boson excitations of mass M estimated
by Gopfert and Mack [7] to behave as

~ C2
Ma a=o pe exp(—rq—g) (2.7)

where ¢; and ¢, are constants, and g% = e’a, with e being the bare lattice electric charge
and a the lattice spacing. It was therefore argued in I that the predictions (2.4) and (2.6)
should be valid not for arbitrarily large lattice sizes L, but only for intermediate distance
scales

l« L<1/Ma , (2.8)

remaining less than the Compton wavelength of the massive bosons.

B. Weak-coupling Perturbation Theory

Weak-coupling perturbation expansions for the lattice model have also been discussed in
reference 1. The quantum Hamiltonian for the model can be written as [9,41]

H=Y E}-2z) cosOp (2.9)
l P
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where I denotes links and P denotes plaquettes of the 2-dimensional spatial lattice. Here £
is the “electric field” on link I, and the plaquette angle ©p can be written in the usual way
as

@P = A1 + Az — Ag - A4 (210)

in terms of gauge fields A, on links k = 1,2,3,4 surrounding the plaquette. The electric
field E; and gauge field Ay are conjugate variables:

[E, A = —ibi (2.11)

The strong-coupling parameter z = 1/e%a® = 1/¢*.

By Taylor expanding the cosine in equation (2.9), Fourier transforming, and performing
a Bogoliubov transformation, one obtains an equivalent boson (i.e. photon) Hamiltonian
with one independent degree of freedom per site. Terms up to second order in the fields
are diagonalized by the Bogoliubov transformation, and higher order terms can be treated
as perturbations, leading to an expansion in powers of z~1/2, Using Rayleigh-Schrodinger
perturbation theory, the following results were obtained. The ground-state energy per site
was found to be:

E,
EO(L) = ZE
— 92+ 1.916183z/2 — 0.2294848 — 0.0268602z /% — 0.009315z " + O(z~>/?)
1 . . _ _
— 3[1.4376;1:‘/2 —0.34434 — 00753327/ — 0.0421z7 + O(2™*?)] (2.12)

The energy E(Z) of a single photon state with momentum k was calculated, and from the
dispersion relation

E(k) i vk (2.13)
the speed of light was computed as
v = 22% — 0.479046 — 0.1047832™ /2 — 0.0584727" + O(x™>?) (2.14)

Finally, the axial string tension in the model can be computed. It is dominated by the “zero
modes” at weak coupling, and is given by

o=1/L (2.15)

exact to all orders in the weak-coupling expansion (but not accounting, of course, for non-
perturbative effects.).

The results (2.12) and (2.14) agree precisely, to the order calculated, with the effective
Lagrangian prediction (2.4). The result (2.15) also agrees with (2.6), provided that

’02

R 2.16

which then is an identity relating the parameters of the effective Lagrangian for this partic-
ular lattice system.



III. MONTE CARLO METHODS

We have carried out one set of finite-lattice calculations using a strong-coupling set of
basis states, namely eigenstates of the electric field operator E; on each link. Since the gauge
field variable Ay is taken to lie in the compact domain [0, 27}, the conjugate electric field is
quantized, E; = 0,+1,%2,..., so that the strong-coupling basis is discrete. We employed
the method of “stochastic truncation” used previously in a study of the (3+1) D model by
Hamer and Aydin [42], which needs no further discussion here.

We also wished to develop and test a technique suitable for use with a weak-coupling
representation. The weak-coupling states are taken to be eigenstates of the plaquette angles
Op, which can take continuous values, and previous methods [29-36] are inappropriate to
such a case. Instead, we have chosen to use the Green’s Function Monte Carlo [GFMC]
method [38,39], a version of which was discussed by Heys and Stump [29], and Chin et al
[37]. A brief summary of the method can be given as follows.

A. Ground-state Energy

In a weak-coupling representation, the Hamiltonian (2.9) can be written symbolically as:

52
H=-— _— 3.1
oz V) (31)
where

V(O)=—2z) cosOp (3.2)
P

and the plaquette angles @p and link angles A, are related by (2.10). The imaginary time
Schrodinger equation for the system 1is

i) 9’
—5;2(0,) = |- ; a4t V() - Er| (0,1 (3:3)

where E7 is a trial energy, representing a constant shift in the zero of energy, which will prove
useful. At large times ¢ the component corresponding to the ground-state will dominate

®(0,t) Zo c,exp[—(E, — E7)t]®,(0) (3.4)

where ®,(0) is the ground-state eigenfunction, provided the initial state is not orthogonal
to d,.

Equation (3.3) is a diffusion equation in configuration space, and is easily simulated
by the Green’s Function Monte Carlo method. It is assumed that the ground-state wave
function can be chosen positive everywhere, and it is simulated by the density distribution of
an ensemble of random walkers in configuration space. The first term on the right of equation
(3.3) produces diffusion, and is simulated by a Gaussian random walk of the members of the
ensemble as time proceeds, while the term [V(©) — E7] produces a growth or decay in the
density which is simulated by a branching process.
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The efficiency of the simulation is greatly increased by the use of variational guidance or
importance sampling [39]. Let Wr(0) be a variational approximation to the true ground-
state wave function, and define a new probability distribution

1(6,) = 8(0,6)¥2(6) (3.5)
Then the modified imaginary time Schrodinger equation for f reads:

af I*f P
%1 =~ 2 gt (BulO) = En)f + 3 5 (fFal®)) (3.6)

Here

EL(0) = —

=g HYr (3.7)

is the local energy obtained from the trial function, and

2 0Vr

Foi(B) = o 9A

(3.8)
is a “quantum force” term, which turns out to produce a directed drift n the ensemble.
By a good choice of Ut and Er the “excess local energy” term (Er(©) — E7) can be made
very small, which reduces the amount of branching necessary, and reduces fluctuations in
the results.

For small time steps At, an approximate Green’s function solution to equation (3.6) is

G(O — ', At) ~ exp[—(EL(O) — ET)At]
1

8 1:[{ Var At

In the Monte Carlo simulation, each iteration corresponds to a time step At. At each

exp[—(A] — A; — AtFgi(0))?/4At}} (3.9)

iteration, we sweep through each link in turn, and simulate the corresponding exponential
factor in the curly bracket in (3.9) by a random displacement of the link variable for each
walker

AA = AtFQ[(@) + X (3.10)

where y is randomly chosen from a Gaussian distribution with standard deviation v2At.
The first term in (3.10) is the “drift” term, and the second is the “diffusion” term. The first
exponential on the right of (3.9) is simulated by multiplying the “weight” of each walker by
an equivalent amount.

At the end of each iteration, the trial energy Er is adjusted to compensate for any change
in the total weight of all walkers in the ensemble; and a “branching” process is carried out, so
that walkers with weight greater than (say) 2 are split into two new walkers, while any two
walkers with weight less than (say) 1/2 are combined into one, chosen randomly according to
weight from the originals. This procedure of “Runge smoothing” [42] maximizes statistical
accuracy by keeping the weights of all the walkers within fixed bounds, while minimizing
any fluctuations in the total weight due to the branching process.
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When equilibrium is reached after many sweeps through the lattice, the average value
of the trial energy Er will give an estimate of the ground-state energy E,; and the weight
density of the ensemble in configuration space will be proportional to ®,¥r. Various cor-
rections due to the finite time interval At have been ignored in this discussion, and the limit
At — 0 must be taken in some fashion to eliminate such corrections.

In the simulations presented here, the trial function for the ground state was chosen as

37]

U7 (0) = explcy_ cos Op] (3.11)
P

where the constant ¢ is a variational parameter to be optimized. Then the local trial energy
is

o
EL(@) = \I’r;l [— E W — 2z E COos @P]‘I’T (312)
l { P

=223 cosOp — > [c*(sin Oppy — sin Op11)” — c(cos Opy  + cos O.20)]  (3.13)
P 1

and the quantum force term is
Foi(0) = 2¢(sin Oy — sin Oy ) (3.14)

The configuration variables are taken to be the plaquette angles, and in equations (3.13)
and (3.14) the symbols pl, p2 denote the two plaquettes adjacent to the link I, such that a
change AA; in the link angle produces changes

AO =AA , ABu=—AA (3.15)

in the plaquette angles.

B. The Mean Plaquette

An observable we would like to measure is the ground-state expectation value of the
plaquette operator

P = {cos Op)o (3.16)

By the Feynman-Hellmann theorem, this is related to the slope of the ground-state energy
per site

1 dE,
P=—-—re— 3.17
2L dx ( )
In the strong-coupling, stochastic truncation algorithm, this derivative can be estimated
using the technique discussed by Price et al [43]. A similar technique involving “secondary
amplitudes” also works for the GFMC algorithm, as follows. Consider a small increment A
in the coupling z: then we can write the Hamiltonian as
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H=H,(z)+AH, (3.18)
where H,(z) is the Hamiltonian (3.1}, and

H, = —QZCOS Op (3.19)
P

Perform a Taylor expansion for the eigenvector and eigenvalue:

f(z + A1) = |fo(2,1)) + Alfilz, 1)) + O(A?) (3.20)
E.(z + A) = E,(z) + AE!(z) + O(A?) (3.21)

and substitute in the evolution equation (ignoring any variational guidance for the time

being):
[f(z + At + At)) = e~ B+ f(z 4 A1) (3.22)

where the exact ground state energy is here being used for the trial energy. Now expand
equation (3.22), and equate powers of A, to obtain

|fo(,t + AL)) = e HENE f(,1)) (3.23)
and
Lfi(z, t + ALYy = e W =Bl £ (5 1)) + At(E)(z) — Hi)lfo(2, 1)) (3.24)

The Monte Carlo algorithm is now straightforward, based on equations (3.23) and (3.24).
Each walker in the ensemble now carries a “primary” weight f, and a “secondary” weight
f1, and trial values Er and E are chosen to approximate E, and E,. At each iteration the
primary weight f, evolves exactly as before, while the weight f; is treated similarly, except
for the addition of a second term on the right of (3.24), proportional to f,. At the end
of each iteration, Et is adjusted to compensate for any change in the sum of the weights
f., while Ef is adjusted to compensate for any change in the sum of the weights fi. At
equilibrium, the average value of Et estimates E,, and the average of Ef estimates E;. The
addition of variational guidance only modifies the simulation of the first, exponential terms
in (3.23) and (3.24), in the way discussed above.

A similar technique could be used for the expectation value of any operator which 1is
diagonal in the weak-coupling representation.

C. Mass Gaps

The calculation of mass gaps in an unbiased fashion is a difficult task. One option 1n
the weak-coupling representation would be to adopt the standard Euclidean Monte Carlo
techniques, and analyze correlation functions on the spatial lattice as functions of distance.
A drawback with this approach in the Hamiltonian formulation is that one needs to know
the “speed of light” in order to translate a spatial correlation length into an energy gap.
Dimensionless mass ratios could be directly predicted, however, and although we have not
attempted it here, the method deserves exploration in future work.
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We have chosen to try two different techniques, one for the “antisymmetric” glueball
state, and the other for the “symmetric” glueball state.

The antisymmetric glueball state lies in a different symmetry sector from the vacuum
state, and in the strong-coupling limit it can be formed by acting on the vacuum with
the operator S = Y psin@p. The weak-coupling wavefunction should therefore be anti-
symmetric in the variable S, and we can employ the “fixed node” method of Reynolds et
al. [44]. The wave-function is assumed anti-symmetric in S, and chosen positive for 5 > 0;
the simulation is then carried out only for values S > 0. The ensemble evolves exactly as
before, except that when a walker crosses the boundary S = 0 it 1s assumed to “annihilate”
with a “mirror-image” walker carrying negative weight coming from the other side, and
is removed from the ensemble. Subtracting the vacuum energy from the energy found for
this antisymmetric state, we should obtain a measure of the antisymmetric glueball mass.
Unfortunately, our attempts to apply this technique have been unsuccessful so far.

The “symmetric” glueball state lies in the same sector as the vacuum state, and in
the strong-coupling limit it can be formed by acting on the vacuum with the operator
C = Y pcosOp. To measure its mass, we adopted the simple strategy of “exciting” the
vacuum periodically during the simulation, and then measuring the rate at which the trial
energy or “score” decays back to its equilibrium value as a function of Euclidean time. The
excitation process involved multiplying the absolute value of the weight of each walker by a
factor proportional to [Y_p cos @p — N P], where P is the mean plaquette value, which should
produce a state approximately orthogonal to the ground state. Both positive and negative
weights now occur, and are evolved separately according to the same rules as before.

IV. RESULTS

The stochastic truncation method, and strong-coupling basis, were used to calculate the
ground-state energy per site, the mean plaquette value, and the string tension in the model
for lattices up to 10 x 10 sites. The algorithm was much the same as used previously (6]
for the (3+1) D model, except that “Runge smoothing” [42] was added in the branching
process to reduce fluctuations. Production runs for each lattice size and coupling value
consisted of 20K iterations or sweeps, with an ensemble size of 10K configurations. The first
9K iterations were discarded to allow for equilibration, and the results were averaged over
blocks of 640 iterations before estimating the error to minimize correlation effects.

The GFMC method, and weak-coupling basis, were also used to calculate the ground-
state energy and mean plaquette, as well as the mass gaps, using the algorithms described in
the previous section. At each coupling, the variational parameter ¢ was adjusted to minimize
the error by a series of trial runs. The ensemble size for a production run was typically 5K,
and the number of iterations varied from 20K up to 120K. The results are outlined in what
follows.

A. Ground-State Energy

For the GFMC method, our first task is to analyze the dependence on the time interval
At. Figure 1 shows estimates of the ground-state energy for lattice size L = 4 at a coupling
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¢ = 1, obtained using various values of At, and two different values of the variational
parameter c¢. The data can be well fitted by a linear dependence on At. It can be seen that
the results depend strongly on c at At = 0.1, but when the straight lines are extrapolated to
At = 0 the results for both values of ¢ agree with each other, and with the strong-coupling
result, within errors. In subsequent work, estimates were made at At = 0.05 and At = 0.005
and extrapolated to At = 0 assuming a linear dependence on At. It may be worth noting
that the optimum value of ¢ at z = 1 is ¢ &= 0.42, and at that value the dependence on At
has almost disappeared.

The final weak-coupling estimates can now be compared with those obtained from the
strong-coupling algorithm. They are found to be reasonably consistent: their error bars
overlap in 60 % of cases, and their accuracy is also quite comparable. This provides evidence
that both algorithms are working correctly. A table of estimates of the ground-state energy
per site is given in Table L.

The finite-size dependence of these results is illustrated in Figure 2. At strong couplings
(small z), the finite lattice results converge exponentially fast to their bulk limit, as can
be seen from a glance at Table I. At weak couplings or large z values, as in Figure 2b, the
finite-size results are well fitted by a straight line in 1/L3, as predicted by equations (2.4)
and (2.12), unless L becomes too large, when the curve levels off. A hint of this is seen for
L = 10 in Figure 2b, and it happens for L > 5 in Figure 2a. The straight line in Figure 2b
corresponds to

2.60
whereas the series result (2.12) at @ = 4 gives
v 24801

The agreement is remarkable.

Extrapolating these curves to L — 0o, one obtains estimates of the bulk limit which are
listed in Table I, and graphed in Figure 3. Also shown for comparison are strong-coupling
series estimates [23], and some results from the t-expansion of Morningstar [25]. The overall
agreement between the results is excellent. At strong coupling the series estimates are of
course the most accurate, but by = = 4 the Monte Carlo results are better.

B. Mean Plaquette Value

The weak-coupling algorithm for estimating P was discussed in Section III. When ex-
trapolated to At = 0, the results are found once again to agree quite well with those from
the strong-coupling algorithm. A table of results is given in Table II. The finite-size scaling
behaviour follows from that of the ground-state energy, by equation (3.17), and will not
be discussed further. Extrapolating to L — oo, estimates of the bulk limit are obtained,
which are listed in Table 11, and graphed in Figure 4. The agreement with series {23} and t-
expansion [25] results is once again excellent. The variation of P with coupling z is extremely
smooth, with no sign of any phase transition, as we should expect (7).
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C. String Tension

In the strong-coupling representation, the axial string tension can be calculated as usual
[6] via the formula

7= 1B~ E.) (4.3)

where E, is the energy of the lowest state in the string sector, with a string of unit electric flux
wrapping around the periodic lattice. In the weak-coupling representation the calculation
is more difficult, because the basis states are no longer eigenstates of the electric flux. Since
the strong-coupling results are quite satisfactory, we have restricted our attention to them.

Results for the string tension are listed in Table III, and graphed in Figure 5. The first
obvious feature is that at large z the finite-lattice results very rapidly level off at the value
o(L) = 1/L predicted by equation (2.15). At a given coupling, this behaviour will hold until
L becomes so large that o(L) becomes comparable with the exponentially small bulk string
tension. The prediction of reference I is thus verified. At z = 4, equation (2.15) describes
the data right up to L = 10.

Estimates of the bulk limit are also presented in Table III, along with? some values
obtained by Irving and Hamer [21] using an “exact linked cluster expansion” (ELCE). The
convergence of the finite-lattice values to the bulk limit is not as rapid as for the ground-
state energy, and so the accuracy of the extrapolation to L — oo is not nearly so good.
Nevertheless, the agreement with the ELCE estimates seems reasonably satisfactory, apart
from a small discrepancy at z = 1.

D. Mass Gaps

As outlined in section 111 ¢, the mass of the “symmetric” glueball state can be estimated
by “exciting” the ground-state ensemble periodically, and measuring the rate of relaxation
back to the ground-state. An example of the results is shown in Figure 6. Here the system has
been excited every 400 iterations, and the results have been averaged over many repetitions
of the process. It can be seen that the data for the “score” (or trial energy) are well fitted
by an exponential decay curve

S(t) = S, + ae™™ (4.4)

and it can be checked that the asymptotic value S, agrees with the ground-state equilibrium
score or energy. The parameters of the fit carry a statistical error, of course, and depend
quite strongly on the range over which the fit is made, so that the resulting estimate of the
mass m was found to be accurate to only about 10 %. At this level, the estimates were n
approximate agreement with earlier finite-lattice [26] and series [23] works, but it is hardly
worthwhile to present any more quantitative results.

2Gtrong coupling series expansions cannot be used here because of the problem of “roughening”.
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V. CONCLUSIONS

The first aim of this project was to study the finite-size scaling behaviour of the model.
The data have confirmed very nicely that the predictions of effective Lagrangian theory
and weak-coupling perturbation theory [4] are indeed correct, provided that one remains at
intermediate distance scales

1< L« 1/Ma (5.1)

where the mass scale M is given by equation (2.7).

The interpretation of this fact may be open to more debate. It appears that at scales
given by equation (5.1) the theory behaves like a theory of free, massless photons. This fits
with the conclusion of Gross [8], who showed formally that the model does converge to free
electromagnetic theory in the naive continuum limit @ — 0 with e? fixed. If, on the other
hand, one renormalizes the coupling in the usual way so that M remains fixed as a — 0,
then on this smaller energy scale, or larger distance scale, one obtains the confining theory
of free massive bosons discussed by Gopfert and Mack [7]. There is no inherent conflict
between these statements, because the ratio between the two energy scales becomes infinite
in the limit @ — 0. Thus it would appear that the same lattice model can give rise to two
different continuum theories, depending on the way in which the continuum limit is taken.

Our second aim was to implement and test an unbiased quantum Monte Carlo method
based on a weak-coupling representation for this gauge model. We have chosen to use the
Green’s Function Monte Carlo method [37-39]. It was found to work extremely well for the
ground-state energy and its first derivative (the mean plaquette), being accurate to about
0.01 % for the energy and 0.5 % for the mean plaquette at a coupling z = 2 in the scaling
region, and agreeing within errors with strong-coupling series estimates. Thus the viability
of the method is established.

The string tension was measured using a strong-coupling basis rather than the weak-
coupling one; but there seems no reason why Wilson loops and Creutz ratios should not be
measured by similar techniques to those used for the mean plaquette. This would give the
tension as an inverse area: translation to an energy per unit length would require knowledge
of the speed of light.

Attempts were also made to measure mass gaps using two different methods. For the
antisymmetric glueball state, a “fixed node” technique was tried, but it failed for reasons
which are still not understood. For the symmetric glueball state, we simply measured the
exponential decay in Euclidean simulation time of an excited state system. This technique
gave reasonably convincing results, but only at a level of 10 % or so in accuracy. This is not
really satisfactory for quantitative work, and more sophisticated procedures will need to be
considered in the future.
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FIGURE CAPTIONS

Fig.1 Dependence on time interval At of estimates of the ground-state energy obtained via
the weak-coupling algorithm for a lattice size L = 4 at coupling z = 1. Results are
shown for two different values of the variational parameter ¢. The point at At =0
was obtained via the strong-coupling algorithm.

Fig.2 Finite-size dependence of estimates of the ground-state energy per site: a) at coupling
z = 2; b) at = 4. The curve in a) is merely to guide the eye; the curve in b) is a
straight line.

Fig.3 The ground-state energy per site ¢, as a function of coupling z in the bulk limit. The
points are Monte Carlo estimates, and the line graphs estimates from a strong-coupling
series analysis [23].

Fig.4 The mean plaquette P as a function of coupling z in the bulk limit. The points are
Monte Carlo estimates, and the solid line shows results from a strong-coupling series
analysis.

Fig.5 The string tension o as a function of coupling x and lattice size L. The points are
Monte Carlo results for various lattice sizes; the solid line shows estimates of the bulk
limit from an ELCE technique [2].

Fig.6 The “score”, or trial energy (in arbitrary units), at coupling = = 2, lattice size L = 3,
and time interval At = 0.005, as a function of the number of iterations following an
excitation. The solid line is a least-squares fit of the form (4.4).
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TABLE I

Values for the ground-state energy per site €,(L) as a function of lattice size L
and coupling z. Also listed are extrapolated estimates of the bulk limit L — oo,
together with strong-coupling series estimates [23] and some t-expansion results

[25].

L x =0.5 1.0 1.5 2.0 4.0
2 0.1318(1) {0.5386(2)[1.1200(5)|1.7880(2)(4.7786(2)

3 0.12273(4)[0.4691(1)(0.9897(2){1.6172(1){4.5138(1)

4 0.12266(2)[0.4651(2)(0.9701(2)|1.5824(2)|4.4543(2)

5 0.12266(2)0.4651(2)10.9677(2)|1.5729(2)|4.4342(2)

6 0.4652(1)]0.9673(2)[1.5708(3)[4.4254(2)

8 0.4652(2)|0.9670(4)[1.5700(2)|4.4186(4)

10 0.12265(1)0.4649(2)|0.9675(3)| 1.5699(3){4.4172(3)

L — oo |0.12265(1)]0.4651(2)]0.9673(4)|1.5699(3)| 4.414(2)
Series  ||0.1226698 | 0.46509 | 0.96729 [1.5700(1)| 4.43(2)
t-expansions 0.465(1) 4.408(2)




TABLE II

Mean plaquette values P as a function of coupling z and lattice size L. Also listed
are the resulting estimates of the bulk limit L — oo, and estimates obtained from

a strong-coupling series expansion [23] and t-expansion [25].

L x=05]| 1.0 1.5 2.0 4.0
2 0.279(2) [0.5177(6)| 0.6325(9) {0.6909(4){0.7854(3)
3 0.2431(7)[0.4425(4)| 0.5856(7) [0.6585(3)|0.7661(2)
4 0.2446(8)|0.4342(5)| 0.5656(8) |0.6487(6){0.7620(3)
5 0.2453(8)[0.4335(3)| 0.5605(7) | 0.641(2) |0.7594(2)
10 0.2408(2)| 0.432(2) | 0.558(2) | 0.638(2) |0.7558(8)
L — oo [0.241(1)]0.433(1) | 0.558(2) |0.639(3) | 0.756(1)
Series  [10.240775 | 0.43336 {0.56083(4)0.6382(5)| 0.80(3)
t-expansion 0.4333(3)I 0.757(4)
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TABLE I11

Values for the string tension o as a function of coupling = and lattice size L.
Also listed are estimates of the bulk limit L — oo, and some estimates derived

from an ELCE technique [21].

L [ x=05| 10 1.5 2.0 4.0
2 [10.7809(2)(0.5844(5)|0.520(1)|0.5077(5)[0.4998(7)
3 0.8438(5)|0.5520(6)|0.397(1)[0.3519(6)| 0.335(1)
4 |0.8716(4)| 0.573(1) [0.367(1)] 0.284(1) | 0.250(2)
5 110.8838(4) 0.590(1) |0.369(1)] 0.255(1) | 0.200(2)
6 0.601(1) {0.377(2)| 0.246(2) | 0.166(2)
8 0.610(2) |0.383(3)| 0.246(2) | 0.121(4)
10 [0.8981(1)] 0.612(4) 0.396(5)| 0.251(5) | 0.103(5)

L — ool 0.900(2) | 0.614(5) | 0.39(1) | 0.28(1)

ELCE | 0.902(1) | 0.601(1) 0.282(2)
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