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the sine condition, are to be successfully used. OCR Output
symmetry axis. The names must be strictly defined if rules for aberration correction, such as
discussion of the naming conventions of the aberrations for systems with and without a
of some of the terms of the optical-path function expansion in the Appendix, together with a
can have practical importance. In order to study the aberrations quantitatively, we give a table
mirror systems, the same principles apply to grating systems for which aberration canceling
benefits of such aberration-canceling schemes are not normally necessary for beamline
see the benefits of double-reflection schemes such as the Wolter telescope. Although the
understand some of the special limits that apply to single grazing·incidence reflectors and to
radiation beams reflected from the surface. We study the "sine condition" as a way to
identify the terms involved in approximating a surface with particular aberrations of the
by using series expansions. The latter both simplify calculations and make it possible to
quantitative geometrical descriptions of the important mirror shapes, both in an exact way and
standard way to initiate the process of design based on a paraxial analysis. We consider

In this paper, we consider the functions of mirrors, the shapes one can conceive, and the
technology is one of the major limits to the performance of a beamline.
known that there are important limits to what it is possible to manufacture, so that mirror
become an important and challenging branch of optical technology. It is becoming well
sophistication of optical designs and increased power in the radiation beams, they have
facilities. They are almost always used at grazing incidence, and with the increased
Mirrors are the standard way to manipulate radiation beams at synchrotron-radiation

1. Introduction

required if attempts at correction are to be based on the sine condition.
shape and discuss the question of correct naming of aberrations. In particular, a strict definition of coma is
those of the Wolter type. In an appendix, we give the theory of point aberrations of reflectors of a general
inevitable in single—reflection, grazing-incidence systems but coxrectable in two-reflection systems such as
and describe its role in correcting the coma of axisymmetric systems. We show in detail how coma is
in detail with particular attention to their aberration properties. We give a treatment of the sine condition
considerations involved in their design. We discuss toroidal, spherical, elliptical, and paraboloidal mirrors
ABSTRACT. We consider the role of mirrors in synchrotron-radiation bearnlines and discuss the optical
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paraboloidal

toroidal, or no for crystal monochromators OCR Output
Focusing Low power, spherical, Yes for grating, Plane grating and crystal

pair, or ellipsoid

Formation Kirkpatrick·Baez resolution microanalysis
Microprobe Low power, Sets spatial MicroscoPY» fluorescence

width of a given crystal
spread to the rocking curve

paraboloidal match the beam angular
spherical, toroidal, or monochromators, e.g., to

Collimation _ High power, Yes Plane grating and crystal

power)
ellipsoidal power), exit slit to sample (low

NoCondensation Spherical, toroidal, or Source to entrance slit (high

flat unwanted photon energies

NoPower Absorption High power, often Rejection of power at

suppression

Energy Filtration Any No Low—pass energy filter, order

portflat

Deflection NoHigh power, often Separation of branches from a

Function (typical) determining? Applications
Type of mirror Resolution

TABLE 1. Functions of beamline mirrors.

index of the mirror coating. The cutoff energy varies by about a factor of 2-2.5 between the

critical angle ~/5%, where 5 is the difference from unity of the real part of the refractiveRoughly speakin the mirror reflects efficiently only for grazing angles smaller than the
synchrotron radiation-research and has been analyzed, for example, by Rehn (1985).

The use of mirrors as energy filters has been practiced since the earliest days of

bellows to act as a "knuckle.’

only recourse is to place the experiments on a rotating platform centered at a beamline
grazing reflections is too small for large experiments like surface-science stations, and the
monochromators. After the exit slit of a monochromator, the separation achievable with
under computer control. This is easier to do nearer the source, such as in switching between
switching of the beam between the users then involves a mirror or mirrors that can be moved
beams are difficult to split between simultaneous users and are often time·shared. The
separation in the distance of the experiments from the source. On the other hand, undulator
grazing angles), such separation can be difficult to achieve, and one must resort to a
lines derived from the same bending-magnet port. At higher photon energies (smaller
beamline. Horizontal deflection of the beam is necessary to achieve separation of branch
question of whether the optical quality of the mirror limits the spectral resolution of the
We show in Table 1 the main functions of mirrors in bcamlincs and address thc important

2. Mirrors in Synchr0tr0n·Radiati0n Beamlincs
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the toroid. Thus we see that the tangential and sagittal focal lengths, L and fs are given by
where r is the object distance, r' the image distance, R the major axis, and p the minor axis of

r r' Rcosa r r' p
,: +=_ (1)1;2 lLZ£2*£

importance in beamline design. They are
focusing behavior of a toroid, known as Coddington’s equations, thus assume a special
calculate during the paraxial analysis will remain valid. The equations that govem the
the surfaces later, the paraxial properties, focal lengths, image positions, and so on that we
approximated as toroids. Even though we shall consider aberrations and the exact shapes of
surfaces that have a curvature that varies with position, such as ellipsoids, are effectively
surface are approximated by the two principal curvatures at the mirror center (pole). That is,
manifestation of this level of approximation is that the curvatures at every point of an optical
plane. Third- and higher-order effects (aberrations) are neglected at this stage. One
optical path function, that is, focusing effects in the tangential and (separately) in the sagittal
This is a preliminary design process that only considers behavior that is second order in the
The first step in designing a beamline is the same as for any optical system: paraxial design.

3. Paraxial Design: Coddingt0n’s Equations

(often-multilayer-coated) mirrors are used at normal incidence.
the latter occur when the grazing-incidence "forgiveness factor" is not in effect and the
microscopy or microanalysis, they determine the spatial resolution. The most critical cases of
exit slit, they affect the spectral resolution. When _they are used as concentrators for

Finally mirrors may be used for focusing. ` When they focus the light from a grating to an
independent focal position at infinity. Such mirrors are resolution determining.
diffraction gratings can also profit from a collimation mirror that leads to a wavelength
of commonly used crystals. Thus there is a motivation to collimate the radiation. Plane
of a typical high-energy storage ring is about 5-10 times larger than the rocking curve width

The natural vertical opening angle of the synchrotron radiation from the bending magnets

resolution.

tolerances leads to a loss of `flux and/or spatial resolution but not to a loss of spectral
tolerances are set by the sizes of the object and image in each case, while failure to meet the
first type of mirror is normally high power and the second, low power. The surface
the entrance slit of a monochromator or relay the beam from the exit slit to the sample. The

Many beamlines have condensing mirrors that either deliver the beam from the source into

load.

resolution—determining (with correspondingly tighter tolerances), to operate at lower power
approach allows subsequent components, which may have a higher grazing angle and may be
of operation, it is usual to absorb such x rays in the first mirror at grazing incidence. This

In cases where significant power is carried by x rays with energy above the intended range

monochromators.

often important for suppressing unwanted high-order diffracted beams from grating
most and the least ref`lective coatings. The ability of mirrors to carry out this crude filtering is
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or r —->¤¤ for a focusing one, the rays always traveling to the right. OCR Output
*Parab0l0id of revolution arjs are obtained from those of the ellipse by setting r'—>¤<>for a collimating parabola
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TABLE 2. Ellipsoid of revolution* agjs.

a point at distance R. From these, one can get the aijs of the paraboloid of revolution and
of revolution and the bicycle—tire toroid which is an arcof the minor radius (p) rotated about
in wave fronts reflected from a mirror. We give in Tables 2 and 3, the a,y’s for the ellipsoid
Maclaurin’s series can provide some insight into the nature of the distortions to be expected
These coefficients are associated with particular point aberrations, and a study of the
the aberration series given in the Appendix, which is therefore universal for all mirror shapes.
The coefficients in this series, the aifs, are used as descriptors of the minor surface shape in

X = LaUy‘ Z

the mirror pole and whose x axis is the normal at the pole. That is
Maclaurin’s series with respect to a coordinate system whose y-z plane is the tangent plane at
Another useful way to approximate a mirror surface is to express it as a two·dimensional

4. Geometrical Descriptions of Mirror Surfaces

equal to zero (see Eq. Al and Table A1).
can be proved by a geometrical argument (Longhurst, 1962) or by setting F 200 and F 020
and if one desires that j$ =f$ (stigmatic image), then evidently r/R = cosza. These equations



the image of a point or a line is to produce an asymmetry of the delivered image. OCR Output
outgoing ray in the same direction for all points in the mirror aperture, so that the effect on
aperture. This type of twisting of the wave front (which we call aperture defect) moves the
similar error in the reflected wave front) that varies linearly with the position, y, in the
from Eq. (4) that the change in ago represents an error in the mirror curvature (and hence a
sphere when y is positive and lag behind it when y is negative. Altematively one can also see
(ellipse) value and according to Eq. (3) would cause the wave front to lead the reference
of elliptical, ago would be zero (according to Table 3), which is larger than the correct
needs an ago term of the proper value as given in Table 2. If the mirror were circular instead
image of the axial object point, that is, a circular wave front in the image space, the ellipse
that diminishes with increasing y as it should (Fig. 1). ln order to produce an unaberrated
have r'< r, so that ago will be negative and the linear term in Eq. (4) will represent a curvature
Suppose the segment of the ellipse is chosen to demagnify the object (Fig. 1). We will then

dyz
2 2a2o +6L23Oy+12lZ4Oy +..

dzx

Hence the curvature is given by

x=a2oy+a30y+a4Oy+.. (3)2 34

does not depend on z, so we may write it
cylinder mirror such as one might get by bending techniques. The height x of the surface

As an example of how useful this representation is, consider the case of an elliptical
setting j = 0 and those of the sphere by setting R = p.
explained in the table footnotes. Those of the corresponding cylinders are obtained by
the apple—core toroid (an arc of radius R rotated about its chord at maximum distance p ) as
a point at distance R. From these, one can get the aifs of the paraboloid of revolution and

replacement Rp —,» Rp in ag;.z2
*Apple core toroid a,js are the same as those given in this table except for the

8R3
l I O

O I O

4R‘p2R

1 I 0

O I O

0 I 0 I L

JI 0 I 1

TABLE 3. Bicycle-tire tor0id* agfs
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Welfofd (1965): Flgg, FH], and F]20. Thus, OCR Output
respect to w and substitute for l from Eq. (5). There are three such terms as discussed by
so we need those terms that give a Ay' proportional to Az’2, after we take the derivative with

(5)Az’=lr’(S+S') ,

applying Eq. (A5) to the astigmatism term (which dominates in determining Az') that
of the ray intersection point relative to the Gaussian image point as origin]. We know from
"Ay' = kAz'2 " type of relationship in the image plane [where (Ay', Az') are the coordinates
monochromator entrance slit. We will start by evaluating this effect. We are looking for a
the tangential line image, which is the one we would normally like to use to deliver light into a

The steep sagittal curvature of the grazing-incidence toroid typically leads to a curvature of
we will simply call a toroid.
image quality that can be achieved by using a bicycle-tire toroid mirror, which from now on
conics), one can use a large lap, which is a great advantage. This leads us to investigate the
maintaining contact with the mirror surface at all points. Thus for toroids (but not for
and finish because it is possible to move the lap in a pseudo-random motion while still
The surface of the bicycle-tire toroid is the easiest aspheric one to fabricate with good figure

5. Toroidal Mirrors

surface we are discussing, while those that do depend on z cannot.
aberrations can, in principle, always be corrected by altering the shape of the single reflecting
lead to point aberrations (that is, those that do not depend on the z coordinate). Such
mirror from the ideal ellipsoid of revolution. It is important to recognize that incorrect a,y’s

Similar arguments can elucidate other types of image defect due to other departures of the

Figure l. Ellipse geometry and notation.

36

Object Image

X¤Y¤
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formed by displacing either curve along the other as shown in (c). The two effects can have either the same
at the entrance slit, called "astigmatic curvature" by Beutler. In practice the two are combined into a shape
called "enveloping curvature" by Beutler, and (b) shows that of the astigmatic focal line due a point source
Figure 2. The two types of line curvature. (a) shows the one due to the finite length of the entrance slit,

(cl

(bl

(al

Using the above equation for fs, this becomes

(7)

AMC = —-·:——#+v-(+$)2(S + S r r r r11 1 , t 0: S S 2 S + S LJ$’22 {2[)
F 102 and F1]; from (Noda, 1974), we now have
shown in Fig. 2 (Welford, 1965). Retuming to Eqs. (5) and (6) and the Appendix, and taking
enveloping curvature by Beutler. In practice, both may be present and would be combined as
direction (for example, a slit). The latter type comes from Fwz, with z ¢ 0 and was named
Beutler (1945). There is another type that arises when the source has a finite extent in the 2
some astigmatism. This leads to a type of line curvature named astigmatic curvature by
We consider the case in which the source is a point in the symmetry plane (z = O) and there is
Note that none of these terms depends on z (only on z'), so that this is still a point aberration.

6) (. wlZF + IF + F 120 W 111 W 102r' 8 l ’ =—;——>’1c cOSa8w(2
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defect. The ray aberration Ay 'ggg is given by
We turn now to the next-largest toroid aberration after the line curvature, namely, aperture

when a toroid will work best is when it is acting as a weak lens.
feeling for the amount of line curvature to be expected and shows that, in general, the time
which is the sag of the toroid in the minor radius direction. This gives a useful "worst-case"

(1 1)Ayic = it

to

being the furthest from unity magnification. At grazing incidence (sina =l), Eq. (9) reduces
stigmatic, and the source point is at infinity (M = O). This is the worst case for using a toroid,
for using toroids in practical situations. Suppose that the radii are chosen for the image to be

We can derive a useful rule of thumb from Eq. (9) that helps in thinking about possibilities
magnification value where it passes through zero.
also. It is also significant that the line curvature has opposite signs on opposite sides of the
so that there is always an M S that gives zero line curvature. This equation is potentially useful

1+ M ,
(10)M , = 4

2M

us that the curvature of the tangential focal line will be zero provided that
in the tangential and sagittal planes. Thus M ,= r',/r and M S = r',/r. Equation (8) now tells

To see the usefulness of Eq. (8) let us define separate magnifications and image distances
magnification has several practical applications in beamline design.
aberration), as we discuss below. The good·quality image provided by a toroid at unity
further than eliminating line curvature. It also eliminates the aperture defect (F 300
a better approximation there than elsewhere. The advantage of unity magnification goes
(minimum) values in the Y-Z plane. Therefore, a toroid, which has two constant curvatures, is
curvatures of an ellipsoidal mirror vary with position on the surface but take stationary
an ellipsoid with the mirror pole in the symmetric position in the Y-Z plane (Fig. 1). Now the
since the mirror surface needed for aberrationless imaging of a point at unity magnification is
line—curvature aberration is evidently zero for unity magnification. This is sensible intuitively
choices of the conjugates in both Eq. (8) and Eq. (9). When there is a stigmatic image, the

It is noteworthy that the undesirable broadening Ayjc, passes through zero for particular

— M -1 ylc 2 D ( )l lz sin tz A ' =-—

important special case is the stigmatic image (jf, =j). Using j} = (1/r+1/r') 'I, Eq. (8) becomes
of the curved line image in the general case where some astigmatism is present (I} ¢j$). An
where M (= r/r') is the magnification. This a useful equation for calculating the depth (sag)

(8)Ay;C=...3M+]..._
I2 * a}iLq[&] 4fS fs



image of an erect object is formed in a plane steeply inclined to the outgoing principal ray. OCR Output
The lowest-order aberration is a familiar one from grating theory where it is known that the

optical quality of the beam.
required to deliver x rays at modem synchrotron radiation facilities without degrading the
the best figure and finish accuracy. It is often the only way to get optics with the tolerances
particular value of the radius. The use of spherical optics is now established as the way to get
even easier than a flat. From a fabrication point of view, a flat is like a sphere with a
easiest surface of all is a sphere with a loose tolerance on the radius, which is in many ways

Just as toroids are easier than conics to fabricate, so spheres are easier than toroids. The
1988) or to condense a beam into a monochromator entrance slit.
but is now more often used in a demagnifying geometry to form a microprobe (Underwood,
used in a magnifying microscope configuration in the 1940s and 1950s (Kirkpatrick, 1948),
stigmatic toroid at the same grazing angle and is easier to make with good tolerances. It was
in two dimensions as shown in Fig. 3. Such a scheme has less aberration than a single
second spherical mirror focusing in the sagittal plane of the first to achieve a focused image
first sight, this appears to be a disadvantage, but in fact it is very useful because one can use a
sagittal plane and the rays continue to diverge (or converge) at the same angle as before. At
astigmatism is essentially complete. That is, the mirror achieves almost no focusing in the
ln fact, when spherical mirrors are used at extreme grazing angles (a few degrees or less), the
R. In view of this, a stigmatic image is not obtainable using a spherical mirror unless tx = O.
The theory given so far for toroidal mirrors applies to spherical ones in the special case p =

6. Spherical Mirrors: Kirkpatrick-Baez Systems

above, it vanishes at unity magnification or, more generally, it is zero on the Rowland circle.

use on an undulator beamline with a monochromator that has an entrance slit. As we noted
aperture defect is the dominant aberration in spherical condensing mirrors such as one would
that half the rays have aberrations less than one-quarter that of the marginal ray. The
ray and is thus a rather pessimistic estimator of image degradation. One can see, for example,
involved. lf w is the mirror half-width, then this equation gives the aberration of the marginal
which applies equally to spherical and toroidal mirrors since the sagittal properties are not

yw us)% ·Aé=§

of thumb

or in the common case of grazing incidence (sina =l) and M<<l, we get another useful rule

’ 2 R
(14)Ayéwzw

éz sin0:(M—l)

the tangential focus so that we can apply Coddington’s equations, this reduces to
Specializing to the case of a toroid for which (230 = O and :120 = 1/2R and assuming we are at

A `, _ J 2 . , )3OO —-:W {Sli'] G(M—1) COS(Z·+··2020 ·4l' 0301 1 (;;;)

which leads, in the general case to
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does extend up to 1.5 meters but with some worsening in cost, weight, and tolerances for
limit is the difficulty of making mirrors larger than about one meter long. Current capability
performance for the spherical condensing mirrors that are now quite widely used. Another
the aperture defect, which we have already discussed and which is typically the main limit to
(Hogrefe, etal., 1986). The largest aberration for long·radius spherical mirrors is therefore
Eq. (2) and the line image becomes essentially straight as one would expect [see Eq. (8)]
Without the steep curvature of the toroid we now have p large and therefore f, large by
synchrotron source, then the defect becomes tolerable and the spherical mirror is very useful.
fields. However, if one only wishes to image a small distant object such as a slit or the
in popularity of the Kirkpatrick-Baez microscope as a device for imaging extended object
avoiding the loss of performance caused by this defect was partly responsible for the decline
the grazing angle: obviously a very unfavorable condition for imaging. The difficulty in
where ag is the grazing angle of incidence. The angle Q is seen to be always smaller than

Br' , M +1,3,, G = KQ) = ESQ

the principle ray is given by
condition F 200 = 0 and noting that the tangent of the angle 9 between the focal plane and
description. Nonetheless, the behavior can still be described by considering the focusing
plane field aberration and there is no field coordinate in the symmetry plane in the Noda
obliquity of field, is not represented in the listing in the Appendix because it is a purely in
One example of such an inclined focal plane is the Rowland circle. This defect, known as

planes perpendicular.
Figure 3. The layout of the two spherical mirrors in the Kirkpatrick-Baez microscope with their tangential

•’ object

Image /•
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The coordinates of the pole of the mirror are

bz = a2l — e(z)
(16) OCR Output(2ae)2 = rz + r'2 —2rr’cos 201

Za = r + r'

the geometry of Fig. 2:
quantities r, r' and tz by means of the focus—directrix definition of the shape of the ellipse and
ellipse parameters a, b and the eccentricity e can be expressed in terms of the user-specified
X2/a2 + Y2/b2 = l where a and b are the semi-major and semi-minor axes, respectively. The
conjugates r and r' and the included angle 20: (see Fig. 1). The equation of the ellipse is

First consider an elliptical mirror whose action is defined by the object and image
the surfaces of revolution, but the polishing problem described above still remains.
the surface to be manufactured as a flat. Diamond tuming is an acceptable way to generate
opinion, is to use bending, which is only applicable for an elliptical cylinder but does allow
The most promising strategy for obtaining an ellipse of high accuracy, in this author's
were similarly limited in resolution by the fabrication tolerances of their parabolic mirrors.
resolution. The plane-grating monochromators at the National Synchrotron Light Source
those systems, and their manufacturing tolerances determined the achievable spectral
category. The ellipsoidal mirrors in the SX700s have always been the limiting component of
than using a large lap. The result is that it is hard to get good-quality mirrors in this
an approach gives much worse errors in figure and finish and with greater effort and cost
polishing, so one must have recourse to zone polishing using a small or a flexible lap. Such
rotation in a single direction for the surfaces of revolution. This is not sufficient for good
surface without losing contact is a linear motion in a single direction for the cylinders and
contact with any of these surfaces, then the only possible motion of the lap relative to the
discuss it further in the section on the sine condition. Secondly, if one puts a full-size lap in
object point, and other points are imaged poorly. This is not a fatal disadvantage, and we
useful than they might appear. Firstly, the ideal imaging property only applies to the axial
with one conjugate equal to infinity. However, it often tums out that these cases are less
obvious applications and, as we have seen, can often be regarded as a special case of an ellipse
point·to-point imaging. Paraboloidal cylinders and paraboloids of revolution also have
choices for many applications as the two-dimensional and three-dimensional surfaces of exact
SX70O plane-grating monochromator (Petersen, 1982; Nyholm, 1986). They are obvious
have been used on beamlines. For example, both have been used as focusing mirrors for the
Mirrors shaped as elliptical cylinders and as ellipsoids of revolution are both of interest and

7. Ellipse- and Parabola-Shaped Mirrors

undulator beams.

photon energy is above a few-hundred eV. However, such systems are well suited to use with
Kirkpatrick-Baez systems used on bending magnets are rather severely restricted when the
figure and finish. The consequence of this size limit is that the horizontal collection angles of
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1976) states that for all rays one must have
incidence systems with an axis of symmetry. Thesine condition (Abbe, 1879; Welford, 1962,
We tum now to the role of the sine condition in determining the aberrations of grazing

8.1. GENERALARGUMENTS

8. The Sine Condition and Coma in Axisymmetric Grazing-Incidence Mirrors

1968; Combleet, 1984; Korsch, 1991).
in the literature that deal with conic and similar mirrors at a deeper level (Brueggemann,
fronts in a more complete way. In such cases, the reader is referred to one of the treatments
a simple shape, this situation changes and one needs to understand the behavior of the wave
For applications in which a high-resolution image is required, as opposed to reproduction of
quite unsophisticated, and one has little need to understand the geometry in a serious way.

The applications of conic mirrors that one encounters in synchrotron practice are usually
systems.

for paraxial design, and 6 for making coordinate transforms between the X-Y and x-y
and the angle 6 between the tangent at the mirror pole andthe x axis is cot -*:1. Rp is useful

P cos3 0:
22 ( )O R =-——

2a

Rp is given by

(21)X0=a0tanl0z YO=2aOtana

while the pole of the mirror is the point

do = rcos‘ a

4a0X, where ag is the semi-latus rectum. The latter is given by
For a parabola, defined by the focal length r and included angle 2a , the equation is Y2

(19)6 = cos-] g(g) e

and the angle 6 between the tangent at the mirror pole and the x axis is given by

,
18()R =——rrr3/2

than r'. The tangential radius of curvature Rp at the pole of the mirror is given by
where the square root is +, 0, or —, depending on whether r is greater than, equal to, or less
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the ray intersection point P be the circle AB is equivalent to the sine condition.
the object and image points O and I. Draw a circle on AB as diameter. The requirement that the locus of
Figure 4. The geometrical form of the sine condition. Let A and B be harmonic conjugates with respect to

li-\——V—>|

N ~\

\—i P
~\ /

system
Uptlcal / \— Principal surface

corresponding outward rays to I should be the sphere AB. This locus, called the
requirement that the locus of the intersection points P of the inward rays from O and the
sphere with AB as diameter. It can be shown that the sine condition is equivalent to the
That means that B divides OI extemally in the same ratio that A divides it intemally. Draw a
construct a new point, B, such that A and B are harmonic conjugates with respect to O and I.
I lying on the axis and distant u and v, respectively, from the center A of the system (Fig. 4),

The first important idea can be expressed as follows. Given object and image points O and
follows and discuss the possibility of applications to synchrotron-radiation systems.
implement the ideas effectively became available. We give a distillation of these ideas in what
first described by Wolter in a landmark paper in 1952, long before the technology needed to
systems are widely used in x-ray telescopes. The main ideas on which they are based were

Of course, there are grazing·incidence systems that do have a symmetry axis. Such
they are not corrected by obeying the sine condition.
aberrations of greatest interest to us-line curvature and aperture defect—are not really coma,
aberrations is discussed further in the Appendix. Here we only emphasize again that since the
corrected by obeying the sine condition or any derivative of it. The proper naming of
plane of symmetry (which have been loosely called coma by some workers) cannot be
pointed out by Underwood (1992), the aberrations of grazing-incidence systems with only a
measured from the symmetry axis and is defined, for example, by Born and Wolf (1980). As
strictly the aberration of the axisymmetric system, which depends linearly on the field angle
system free of spherical aberration is also free of coma. The coma involved in this theorem is
and cp], are the same thing in the paraxial regime. Satisfying the condition guarantees that a
where ¢ and ¢'are the angles of the inward and outward rays to the symmetry axis and gb,
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radius of the circle Rc must be given by
inclined to the axis by 5, the image will be a circle centered on F, and, from (25) and (26), the
By considering other reflection points on the ring PlP2P3, we can see that, for the rays

(26)y = r'5

while F2 has

cos yr
y=—- . (25)

i‘?

same, and both have

where r' = PIF and the angle 21;/= PIFP3. If we now take 5 << 1;/, Fl and F; become the `

1_...32cos(t;1+5) cos(1;1-5)
(24)E?.§. Fp:.l§1rL‘§.. pp=,*mn5

is above F. From the geometry of the figure we can see that
projection, in which the ray is seen through P2, it appears undeflected and arrives at F2, which
downward and will meet the focal plane at F2 and F3, which are both below F. In the
5 below the axis-parallel ones, the reflected rays from P] and P3 will both be deflected
Thus, there is no spherical aberration. For the rays (shown dashed) that enter at a small angle
parallel to the axis, shown as thin lines, the image is perfect and the rays unite at the focus F.
consider the image formed by a thin ring of reflecting surface P]P2P3. For the rays that enter
First consider a paraboloid of revolution being used to focus parallel light (Fig. 6) and

8.2. CALCULATION OFTHE COMA CIRCLE

principle can be used to correct it.
plausibility arguments showing how coma is produced and how the double-reflection
been widely used in recent years, particularly as x-ray telescopes. In the next section, we give
reflection as in the Wolter telescope and microscope systems (Fig. 5c). Variants of these have
similarly high degree of coma correction in a grazing-incidence system is to use a double
condition. A high degree of coma correction is therefore expected. One way to achieve a
itself, but now it closely approximates the spherical surface required to satisfy the sine
the foci but this time in normal incidence. In this case, the principal surface is still the mirror
different segment of the ellipse (Fig. Sb) again operating with the object and image points at
sine condition grossly and can never be coma-corrected. On the other hand, consider a
1978). It is obvious from this that any single-reflection grazing-incidence mirror violates the
to the spherical surface that it would need to be to obey the sine condition (Underwood,
principal surface in this case is the surface of the mirror itself, and it is roughly perpendicular
with object and image points at the foci of the ellipse (Fig. 5a). We immediately see that the

Suppose now that we have a segment of a single grazing·incidence ellipsoid of revolution
plane through A normal to the axis will be a reasonable approximation to the sphere.
point of view of grazing-incidence systems, which generally have small deflection angles, the
"Knieflache" by Wolter, is usually translated "principal surface" in English. From the
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that the radius of the circle is actually given by
This has been an approximate treatment (Howells, 1980). Wolter's more accurate one reveals

.. 2 cos up (27)Rc =
'6 l r

in which the principal surface is a much better approximation to the desired surface than in (a),
surface almost coincide and thus lead to much higher quality imaging. (c) Double-reflection Wolter system
Another single-reflection geometry but now at near normal incidence; the mirror and the desired principal
is roughly perpendicular to the principal surface (shown dashed) needed to satisfy the sine condition. (b)
Figure 5. (a) Single·reflection imaging geometry in which the principal surface is the mirror itself, which

Hyperbola

Ellipse

ze<¤>
LZ- Principal surface

. Ellipse
Act al rinci al surface U p p -7

(bl
surfaces
principal
Desired

Ellipse

(a) Actual principal surface
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= O.

well-corrected coma. For this case, the value of 1;/is roughly 180° leading to (1 + COS1;/)/COS\;/
It is also clear from the above treatment that the normal-incidence conic has the expected

coma (Welford, 1962).
once round the ring P]P2P3, the ray traces out the circle twice, which is again characteristic of
circular aberration figure in the focal plane. Furthermore, each time the reflecting point runs
with the field angle 6 and also because each circular zone of the aperture contributes a

That this aberration is really Seidel coma can be seen from the fact that it varies linearly
such as t0 pass through the paraxial image point.
conclusion is that the image of an ajjiaxis point is a circle centered on the axis with a radius
Rc = (r7r)A or A times the magnification. Moreover, (1 - COSI;/)/COSW = O so s = 0. The
Since 1;/ is small for grazing-incidence systems, we have (l + COSI;/)/COSl;/‘-= 2. Consequently,
finite distance r from PIPZP3 and displaced a distance A from the axis so that 6= A/T.
Now consider a grazing-incidence ellipse in the same geometry but with the object point at a

S=_ (29)
r tanl— cosw5() 2 cos1|/

and that the center is shifted off axis by s where

RC= (28)
r’tan6l+cos1[p) 2 cos 1;/

reflection, grazing-incidence mirror with a symmetry axis.
Figure 6. Definition of the points F, F], Fl', F2, F3 used in explaining the origin of coma in the single
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nearly axisymmetric) shape is implemented over a segment of angular width Q = l6.5°
Figure 7. Explanation of how coma leads to a "bow-tie" image when a mirror with an axisymmetric (or

Gaussian image
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Actual “image”

behavior becomes significantly different for magnifications far from unity.
aberrations are no longer strictly Seidel coma. Although there is no sudden change, the
continues roughly similarly, but the symmetry of the system has been broken and the
image lying on it. However, as the magnification departs from unity, the behavior initially
toroid, which does have a type of symmetry axis with the center points of the object and
Fig. 7. Note that this behavior also follows the theory closely for a unity-magnification
synchrotron radiation sources often are, the result is a "bow-tie" image as explained in
point. When the object is extended in one direction much more than the other, as
be an arc of the image circle of angle 2Q passing through the paraxial image of the object
revolution that subtends a maximum angle Q at the axis. The image of an off·axis point will
widespread. Consider a unity-magniiication mirror comprising a segment of an ellipsoid of
troublesome at synchrotron radiation facilities before low-emittance electron beams became
incidence mirror, we can understand the well-known "bow—tie" shaped image that used to be

With this insight into the dominant field-angle-dependent aberration of the single grazing
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proposed, and we can understand their operation in terms of the principles described above.
mirror pairs in general are not useful. Indeed, there are already several examples existing and
probably do not have a role in beamline systems for the time being. This is not to say that
"lens" is an oversimplification of what is needed. The conclusion is that Wolter optics
grating monochromators must be combined with those of the grating, and the use of a better
beamline component. Moreover, the aberrations of focusing and collimating optics in
high cost of a Wolter system of sufficient optical quality being considered acceptable for a
system. However, even when such advantages are taken into account, it is hard to imagine the
illuminating crystal monochromators which could probably be avoided by using the Wolter
and vertical divergences of the beam from a bending magnet, and this is a disadvantage in
would have certain advantages. For example, even a perfect paraboloid mixes the horizontal
focusing system for a monochromator. This is a different case and the higher-quality "lens"

One might ask whether there could be a role for the Wolter system as a collimating or
accompanying systems.

and would scarcely repay the investment needed for an extra aspheric mirror and all its
the flux that could pass through a slit would hardly make up for the losses of the mirror itself
system as a condenser would be to eliminate the bow·tie effect, but as Fig. 7 shows, the gain in
is not significantly enlarged. The only useful improvement one would get by using a Wolter
not accurately reproduced in the image is unimportant provided the overall size of the image
fact that detail features within the object (which is usually the synchrotron source or a slit) are
useful in x-ray microscopes. However, beamline mirrors are generally condensers and the
Wolter system is useful in imaging systems such as x—ray telescopes and may eventually be
generation of improved beamline mirrors. The kind of high—quality image provided by a
understanding of grazing—incidence minor systems, it does not provide a blueprint for a new

Although this discussion of the Wolter double-reflection principle contributes to our
the principal surface for the double-reflection system as shown in Fig. 5.
normal-incidence conic. This is in accord with expectations based on the sine condition and
allows one to design grazing-incidence systems with image quality similar to that of the
introduction of the double reflection brings about a large reduction in the aberration and
whereas the corresponding factor in Eq. (28) for Rc was approximately equal to 2. Thus the
Equation (31) for R,. has the factor (1 —cosy1)/cost;/= 0 for a grazing-incidence system,

RW 2 (31)@(1121) 2 cos 1;/

a Wolter system, has a radius RW given by
while the ray through P2 continues to have y = r'6, so that the aberration circle, in the case of

cos 1;/
(30)y=+.[._i

downward and arrive at Fl' as shown in Fig. 6. The rays through P] and P3 now have
behaves as before, while the rays through P1 and P3 are now deflected upward by 6 instead of
just in front of and just behind the joint. Considering the same three rays, we find that P2F2
P1P2P3 contains the joint between the two reflectors and imagine the rays to be reflected twice,
elucidating the principle of the Wolter double-reflection system. Suppose that the ring
We now retum to the analysis of the focusing system shown in Fig. 6 with a view to

9. Mirror Pairs in Wolter Geometry
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and line curvature), while (b) and (d) are not.
configured for approximate cancellation of point aberrations depending on an odd power of w (aperture defect
ingoing side; (b) and (d) satisfy the sine condition in this sense. On the other hand, (a) and (c) are
condition grossly because the angle to the axis decreases at the outgoing side when it increases on the
Figure 8. Four possible ways of combining two toroidal mirrors in pairs: (a) and (c) violate the sine

(d)

tc)

(bl

(al

ideal paraboloid), we would expect the wave front emerging from the first mirror to be
mirror is too weak on the upstream side and too strong on the downstream (compared to the
Fig. 8a and take F 300 as an example. Based on the fact that the circular curvature of the
symmetry axis and the sine condition has an exact meaning. First consider the toroid in
expect a high degree of correction to be achieved only if there is an exact or approximate
analyze this possibility in terms of wave-front errors. Even for the field aberrations, we
not be improved by obeying the sine condition, but they can still be made to cancel. We will
disobey it (¢' decreases when dg increases). The dominant point aberrations F 300 or F12;) will
which tend to obey the sine condition (¢' increases when ¢increases). Others radically
Chrisp, 1983). Figure 8 shows several contigurations involving two identical toroids, some of
two mirrors or a mirror and a grating (Pouey, 1981, 1983; Aspnes, 1982; Hunter, 1981;
There have been several studies carried out to identify the best way to combine the action of

10. Mirror Pairs in General
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advantage of conics.
likely to be larger for a conic than a toroid and will often more than outweigh the aberration
imaging surfaces. However, it is important to recognize that manufacturing tolerances are
these have no point aberrations, whichever way round they are, since they are the ideal point

One can obviously design mirror pairs analogous to those in Fig. 8 using conics. Naturally
to explore further can refer to the paper by Namioka et al. (1983).

This discussion does not exhaust the possibilities of two-mirror systems. Readers wishing
normally be one that corrects the point aberrations.
small source sizes of modem storage rings, the best system design for a condenser will
one. On the other hand, the potential damage due to point aberrations is unlimited. For the
effect that enlarges the short dimension of the synchrotron source `or slit to equal the long
Roughly speaking, the worst that can happen due to a field aberration is an extreme bow·tie
separately and their relative importance depends on the source size and aperture size.
vanish at that value. As we have seen, the point and field aberrations must be considered
aberrations, line curvature and aperture defect, which would normally be dominant, happen to
limited to unity or infinity. The choice of unity has special consequences because the point
interpreting the results given by Aspnes because the toroids used had magnification values
sine condition reported by Aspnes (1982) and Hunter (1981). One has to be careful in

There are some similar comparisons between pairs of mirrors that do and do not obey the
not be met in real beamlines.

magnitudes (although maybe not the same signs) in each mirror. This is a condition that may
together that each ray is reflected at aperture coordinates (w, l ) with substantially the same
of arguments depend on the aberrations being small enough and the mirrors close enough
8b) can be verified by ray tracing for particular geometries. It is noteworthy that these types
indeed gives a better image of the axial point than the inverse configuration (shown in Fig
canceling for the same mirror configuration (Fig. 8a). That the configuration in Fig. 8a
corresponding to line curvature (which also depends on an odd power of w) will also be self
strongly disobey.: the sine condition. Similar arguments show that the wave-front errors
reflection, provided its direction is as shown in Fig. 8a. Note that this is the direction that
second mirror, we see that wave-front errors of opposite sign will be introduced by the second
sphere above the principal ray and lagging it below. If we apply the same argument to the
twisted, as described earlier, by an amount proportional to w-* and to be leading the reference
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Figure A1. Coordinate system used discuss the optical path function analysis (after Noda, 1974).

=El:jk(a,T,Z)+Eiik(B,T,,Z/) ,

possibility that the grating is a holographic recording. This leads to
subgroup of the expressions for the F ;ik`s. First we reject the parts that represent the
they do not represent aberrations. For the study of mirrors, we can use a still more restricted
omitted, being equal to zero by symmetry, and terms that have i = j = 0 are omitted because
+ k S 4) and are exactly those given by Noda et al. Those that have j + k = odd have been
represents a particular geometrical optical aberration. The terms go up to fourth order (i + j
and k are the powers of w, I, and z (or z' ) in the series expansion of F , each term of which
100 term. F is the actual path length AB, and w and l are defined in Fig. Al. In F {ik, i, j,
We have included the 102 term explicitly, whereas Noda ez al. included it implicitly in the

(Al)

22%4%2£2%3%2+%WlF22O +IF04O +WF2O2 +·lF022 +lFO3l +WlF2l 1+..
- · 4 F- WFIOO +wF1O2 +]},:0]] +:W FZOO +5l F020 +5W Fm +:wl F120 +wlF]1] +:W F4OO

I 2 I 2 1 3 I 2

According to Noda etal. (1974), the diffraction·grating optical, path function is given by

Appendix. The Optical Path Function Expansion for Gratings and Mirrors
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TABLE Al. Values of Ei;O(<1,r,0).

the mistake of regarding z or z' as directly analogous to the "axisymmetric" type of field
depend on it, such as Seidel coma, have no analog in the present study. One should not make
measured from the axis, no longer exists in the absence of an axis and so aberrations that
completely different. In fact, the conventional field angle or field coordinate, which would be
has only a plane of symmetry rather than an axis, the notion of field coordinates is
the same as the aperture coordinates of an axisymmetric system. However, since our system
an axisymmetric optical system. The aperture coordinates w and I, for example, are basically

The terms in Eq. (Al) have some similarities with the terms in the aberration expansion of
parameters have been discussed in detail for some important surfaces in the main text.
S 'and T ’ are also defined and are the same as S and Texcept that r is replaced by r'. The aij

(A4)gg2T=-;--—2a20 com s=:-zaozeom

The function E;j0(¢2, r, O) is therefore tabulated in Table A-1, which uses the notations

FUD = EU0(a,r,O)+ Eii0(-¢1,r',O) (A3)

0. We also know that from the law of reflection that B = -0:, so that (A2) becomes
consider a point source located in the symmetry plane of the mirror. This means z = z' = 0, k
where Eyk is the expression given in Table A1. For a beamline mirror, it is often sufficient to
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and

<A5>Ayiio = r' BF ——(—] cosa Bw UO

(displacements from the paraxial image point), which in our notation are known as Ay'and
approximation. For each term of the aberration series, we calculate the ray aberrations
particular aberration. We now proceed to address that issue in the geometrical optics
thing, which is the extent of degradation (blurring) of the image that will be caused by any
Of course, the treatment given so far does not enable one to calculate the most interesting

F211 211 aberration

F031 031 aberration

F022 022 aberration

F202 202 aberration

Higher-order astigmatismF040

F220 220 aberration

F400 Spherical aberration

F111 Line curvature

Line curvatureF120

F200 Aperture defect

Astigmatism (sagittal defocus)F020

F200 Tangential defocus

Law of reflection in the sagittal planeF011

F102 Line curvature

F100 Grating equation

only when the analogy is fairly complete. The following system of names is proposed:
section on the sine condition). Therefore we propose to continue to use traditional names
Underwood (l992).that this can lead to important errors in the treatment of coma (see the
The present author has been among those guilty of this. It has been pointed out by
there could be no similarity in their dependence on the field coordinates, as explained above.
aperture coordinates as conventional coma, have been referred to as "coma," even though
system. For example, the F 120 and F 300 aberrations, which have the same dependence on the
(Al) based on only partial similarities to the corresponding aberrations of the axisymmetric
synchrotron-radiation community of giving traditional names to the aberration terms in Eq.

In light of the above, it is perhaps unfortunate that a tradition has grown up in the

coordinate.

and none of our coordinates w, l, or z (or z') can be identified as a conventional Held
terms. But these terms are both symmetry-forbidden. There is no coma in the usual sense,
same error might lead us to look in Eq. (AI) for terms like wz or wlz to End the coma3z
symmetric system, the restriction to the tangential (symmetry) plane implies z = z' = O! The
axisymmetrical system still has a field coordinate measured from the axis, but for the plane
specialized to two dimensions so that only their tangential planes are considered. The
coordinate. To scc thc error of this, consider the case in which both types of system are
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mirror. The rays travel from left to right.
This figure shows the pattem of intersections of the rays with the tangent plane at the pole of the toroidal
Figure A2. Layout of the 5 >< 15 ray points and their plot labels used in the ray trace shown in Figure A3.

Position (cm)

-10 10

.50

general case, we approximate Ax' and Ay' as
explain the general features of the ray traces in terms of the lowest-order aberrations. In the
Eqs. (A5) in determining the pattem of ray intersections in the receiving plane, we try to
aberrations up to very high order are accurately represented. To illustrate the action of
Fig. A3. The rays traced are shown in Fig. A2 and are done in double precision, so all

As an example of the application of Eqs. (A5) and (A6), we show some ray traces in
as provided, for example, by McKinney and Palmer (1987).
approximation. For very fast systems of f-1 and faster, more complex expressions are needed
ray. For the slow systems involved in grazing-incidence optics, Eqs. (A5) give an excellent
involved in rotating the exit pupil so that it can be perpendicular to the outgoing principal
factor 1/coszz in the first of Eqs. (A5). This arises simply from the coordinate change
the case of grazing incidence, which differs from the standard case of axial symmetry by the
example, by Welford (1962) and Bom and Wolf (1980). Neither of these authors includes
Equations (A5) are central to the geometrical theory of aberrations. Proofs are provided, for

(A6)Ay'=ZAy£i0 and Az'=ZAz$0

when done deliberately) is possible and is sometimes useful.
This means that partial or total cancellation of aberrations (known as "aberration balancing"
The total ray aberration in the Ay' (Az' ) direction is the algebraic sum of the Ay'Ug's (Az'Ug's ).

U
, , rAZ,. : r —. Oa) [al no
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transverse scale so that the residual aberrations can be seen.
the line image indeed becomes straight as predicted. Figure (d) is the same as (c) but with an expanded
that the value of p has been increased to the value (0.l744974840 m) given by Eq. (10) to demonstrate that
downstream of the focus and with a 5 x 31 ray pattem. In Figure (c) the system is the same as in (a) except
plane for the above system. Figure (b) shows the image from the same system but in a plane 15 cm
extreme precision for calculated numbers input to the ray·trace code. Figure (a) is the image in the focal
mm2. R and p are calculated to give a stigmatic image, and we follow the standard practice of using
p = 0.1 163316560 m. The mirror area (tangential x sagittal), measured in its tangent plane, is 300 x 40
parameters of the system for the image shown in (a) are: r = 10 m, r' = 2 m, a = 88°, R = 95.55123612 m,
conditions. The 5 x 15 pattem of incoming rays and their plot symbols are shown in Figure A2. The
Figure A3. Ray traces of the images of a point source produced by a toroidal mirror under various

Position (mm) Position (mm)

-5 0 5 -0.3 -0.2 -0.1 0.0

. 1 (¤>(¤>

Position (mm)Position (mm)

-2.0 -1.5 -1.0 -0.5 0.0-1.5 -1.0 -0.5 0.0

-1.0

-0.5 •··°"$

0.0

<il"`W¢n

O·-°__;\0.5

(b)(a)1.0



l" ` T ` T`

26 OCR Output

hallmark of the F 220 effect.
line curvature with equal sizes but opposite signs for positive and negative values of w: the
should be, since we are now in focus. Moreover, we see another aberration that gives a slight
reveals that the only horizontal shift along the Ay' axis is the wz one (aperture defect), as it
correctly delivers a straight focal line. Examination of the expanded diagram in Fig. A3(d)
(long focal line) and no defocus, and we see clearly that application of Eq. (10) in choosing p
the Ay' axis are intelligible on this basis. Tuming to Fig. A3(c), we see a large astigmatism
Starting from the plus sign at (O, 0), we can see that the sizes and directions of the shifts along
we have two effects determining Ay', a w effect (defocus) and a wz effect (aperture defect).
but it continues to show, basically, a family of parabolas. In the symmetry plane (l = Az = O),
i.e., Az' proportional to I3. Figure A3(b) shows more aberrations because now FOQQ, F 200 ¢ O,
at which Az' increases with l (measured in plus-sign intervals) shows it to be an F040 effect,
at low l, but at high l, some higher—order aberrations give an increase in Az'. Study of the rate
Eq. (A7) predicts that Az' = 0. The line traced out by the plus signs does show this behavior
seen in Fig. A3(a). On the other hand, when F020 = w = O (the plus signs in Fig. A2),
with increasing w and a Ay ’—directed shift proportional to wz. Most of these features can be
A3(a), Eq. (A9) predicts a family of parabolas, each with a semi·latus rectum that increases
F O20 = F 200 = O representing a stigmatic focus, which is the condition prevailing in Fig.
Equation (A9) shows some of the characteristics we see in the ray traces. For example, when

—+F w+—F0Ow 2 2°° * 3 (A9)' Ay’=— F ”°cowl 2,·2(g,,,, + gww)
1 2Aziz

(p << R). Substituting for lfrom (A7) into (A8) we get
curvature aberration. This is valid provided we are dealing with a steeply curved toroid
Notice we are ignoring the second and third terms in Eq. (6) in our representation of the line

(A8)
A ’=——F l‘+F w+-F w N 120 200 sooT, I com [2 3 2] 2

and

(A7)Az' = r'[F02Ol + 1·;20w1]
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