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Introduction

The discovery, in 1983 at CERN, of the predicted intermediate vector bosons, W
and the Z°[1], has been a great success of the Standard Model, the theory describing the
interactions between all fundamental particles. A drawback, however, is its large number of
free parameters. Assuming the neutrinos to be massless, the Standard Model, containing
three families is characterised by 18 parameters. These are three coupling constants, six
quark masses, three lepton masses, three quark mixing angles and one phase and the mass
and the vacuum expectation value of the Higgs particle. These parameters have to be
determined experimentally. Before the discovery of the b quark, in 1977, only the three
coupling constants, four quark masses, three lepton masses, one quark mixing angle, the
so-called Cabibbo angle, and the weak mixing angle were known more or less accurately.

With the numerous Z%'s produced with the Large Electron Positron collider, LEP, at
CERN, some parameters of the Standard Model can be determined more and more ac-
curately. This thesis describes the study of heavy flavour production and its implications
on these Standard Model parameters. Heavy flavours are selected by the “lepton tagging”
method. This method relies upon certain properties of the lepton to indicate the production
of a heavy quark pair. Since the production of inclusive taus is very small and the tau life
time very short as compared to muons and electrons, only the latter leptons are suited for
this kind of analysis. The author of this thesis participated in the L3 inclusive muon analysis.
Therefore, this thesis focuses on the part of the analysis that is done by muon tagging only.

The theory relevant for the analyses, presented in this thesis, is described in the first
chapter. The second chapter describes the L3 experiment. Chapter 3 is devoted to the L3
muon simulation and reconstruction. In chapter 4, the event selection is discussed, followed
by a detailed study of the Monte Carlo and data event samples thus obtained. The event
selection is focused mainly on selecting ete~ — bb events, but as ete~ —» cC events
are not rejected rigorously by this selection, most of them are still present in the sample.
The so-called mixing parameter, XB, is determined in chapter 5. The determination of this
parameter serves two purposes: it constrains the above mentioned quark mixing angles, also
described in this chapter, and it allows us to calculate the forward backward asymmetry,
App. The observed forward backward asymmetry, Ag})’s, is measured, which together with
the mixing parameter gives A,5. Moreover, since the data contains c& events, the forward
backward asymmetry for ete™ — ¢, Az can also be measured and the description of
these computations can be found in chapter 6. Having obtained A;;, the Standard Model
weak mixing angle and the top quark mass are calculated. The branching ratio Br(b — p +
X) is determined in chapter 7. Like the mixing parameter, this quantity serves two purposes
as well: it constrains the quark mixing angles and it allows for determining the partial width
of the Z° decaying into a bb pair, I';z, both described in the same chapter. Apart from
[y, T'cz is extracted from the data. This thesis ends with a chapter devoted to drawing
conclusions from the performed analyses.



Introduction

In relativistic quantum field theory it is convenient to choose both the velocity of light in
vacuum and Planck’s constant dimensionless and equal to unity (¢ = = 1). These factors
will be suppressed in the formulae in this thesis. With this convention only one dimensional
unit remains: for example length may be chosen, in which case mass parameters have

dimension [length] =1, or one may adopt mass as the basic unit so that length and time have
dimension [mass]~1.
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and the differential Born cross section for e+e~ — ff changes to [11]:
do 0 L0 4 cos? iy ain?
e 4"17{0,[”@ 8+ (1 - %) sin?0) (1.5)
= 8@ (e [1 + 00804 (1 = 3%)sin? ) - Ba, cost)
+ 4\?(.7?“ +402)(1 4+ cos? 0 + (1 — 3) sin0)

+3%a3(1 + 403)[1 + cos6) — 1630, vy ay cos 9)}

with
| s(s = M3)
- . Z 1.6,
v 163in? - cos? By (s — M3)7 + T3 M3 e
1 s
\e

2565in° Oy cos* Oy (s — M3)7 + T, M3
Figure 1.4 shows the Feynman diagram which together with figure 1.3 corresponds to equa-

et f

o I
Figure 1.4: First order Feynman diagrams corresponding to the reaction *¢= — 2% 5 [ .

tion 1.5.

QED corrections. which include initial and final state photon radiation. are of utmost
importance. Initial state photon radiation has a strong influence on the cross section around
the Z° resonance (= 35% [12]). QCD radiative gluon corrections. affecting only the final
state. give a correction of approximately 4% to the total cross section for heavy flavours [12]

Higher order corrections to the diagrams above. such as final state fermion mass effect,
vacuum isati ions of and vertex ions, shown sch icall
in figure 1.5, play an important role and have to be accounted for. These corrections can
be taken into account by redefining the constants involved in the Born formulae, yielding
the so-called improved Born formalism.

For heavy flavour production. the improved Born cross section, is given by [12. 13]:

i%)}
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1.1 The Standard Model

The Standard Model, which describes the interactions between all (known) fundamental
particles’, is based on the gauge group SUc(3)xSU(2)xUy(1). The groups SU¢(3) and
SUL(2)xUy (1) describe a specific part of the Standard Model and have their own typical
gauge coupling constants. The group SUL(2)xUy (1) corresponds to the unification of
the quantum mechanical extension of Maxwell's electromagnetic theory (called quantum
electrodynamics or QED, specifying the interactions between the fundamental particles and
the photon) and the theory describing the weak force, which is, for instance, responsible
for the instability of many nuclei through B-decay. SUp(2)xUy(1) is referred to as the
Standard Model of the electroweak theory [2]. The group SUc(3) describes the strong
interaction between the coloured quarks and gluons. This part of the Standard Model is
referred to as quantum chromodynamics or QCD.

The Standard Model, in its present form, contains three types of fundamental particles:

1. The spin % fermions: quarks and leptons

They are treated as pointlike particles which couple to the force carriers related to
SUc(3) and SUL(2)xUy(1). Two quarks and two leptons together form a family. The
number of families is not constrained by the Standard Model itself and therefore has to be
determined by experiment. The number of light neutrino families has been determined by
the four LEP experiments [3] to be 3.00 & 0.05. Assuming that all neutrinos are massless,
this implies that the number of families equals three. Hence, the number of fermions equals
twelve, see table 1.1. The main difference between quarks and leptons is the fact that

Leptons Quarks
Charge Q¢ 0 -1 % —%
Isospin I 3 -1 i -1
Ist  family Ve e U d
2nd  family vy I c s
3rd  family v, T t b

Table 1.1: The left handed leptons and quarks as arranged in the three families.
The charge is in units of positron charge.

only quarks take part in the strong interaction, because only they have a colour charge,
the charge related to the strong force. In the Standard Model the left handed quarks and
leptons are arranged in three doublets whereas the right handed quarks and leptons are

1The quantisation of the gravitational force has not yet resulted in a satisfactory addition to the Standard
Model.
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arranged in singlets.

2. The spin 1 gauge bosons: the force carriers

These are the eight coloured gluons g belonging to SUc(3), the charged vector bosons
W=, the neutral vector boson Z° and the electromagnetic force carrier, the photon 7, of
SUL(2)xUy (1) (see table 1.2).

Force Mediator

Strong massless gluons (g)
Electromagnetic massless photon (7)

Weak massive intermediate vector bosons (W, Z°)

Table 1.2: The three Standard Model forces and their associated mediators.

3. The neutral spin 0 Higgs boson: H

All particles are assumed to get their mass by interacting with the Higgs field. The
neutrinos, the gluons and the photon form an exception, since they are assumed to be
massless. The principle describing the mass generation for the vector bosons is called the
Higgs mechanism and proceeds through so-called spontaneous symmetry breaking [4]. The
fermion masses are generated by Yukawa couplings to the Higgs field. The Standard Model
does not predict the mass of this Higgs boson and for as long as this particle is not found,
this part of the theory remains speculative.

In the Standard Model with three families, the bottom quark plays an important role.
The b quark was proposed as the fifth quark in 1973 by Kobayashi and Maskawa [5], together
with the as yet unobserved sixth quark, the top quark. The six quarks were also needed
to restore lepton quark symmetry after the discovery of the third lepton, the T [6]. The
existence of the b quark was experimentally confirmed in 1977 with the discovery of the
T resonances, which are bound states of a b quark and its antiquark b [7]. Over the last
fifteen years, the knowledge of the b quark properties has become more and more detailed,
both through the investigation of the Y resonances and, especially, through the study of
the weak decays of B mesons which contain a b quark. The year 1987, in particular, was
fruitful with the observation of B®B° oscillations [8].

The weak interaction quark eigenstates are mixtures of the flavour (mass) eigenstates.
This implies that the weak interaction, contrary to the electromagnetic and strong in-
teractions, violates flavour conservation. Such a violation does not occur in the lepton
sector provided that the neutrinos are massless. The transformation between the weak
and flavour eigenstates is described by the quark mixing matrix, the Cabibbo-Kobayashi-
Maskawa (CKM) matrix V, which generalises the four quark case, where the matrix is
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parametrised by a single angle 6, the Cabibbo angle. By convention, the charge % quarks

(u,c,t) are unmixed and all the mixing is expressed in terms of the matrix V' operating on
the charge —1 quarks (d, s,b):

d d Vud Vus Vub d
S 1=V s|=|Va V.. Vu s (1.1)
v b ‘/td V;:s ‘/tb b

This unitary 3 x 3 matrix with complex elements is determined by three angles and one

phase, which possibly accounts for the observed CP violation in the X meson system. The
strength of the coupling between the charge —% and charge % quarks is then given by the.

elements of the CKM matrix. The coupling between the quarks is illustrated in figure 1.1.
In this figure only flavour changing charged currents are allowed. Flavour changing neutral

currents are absent in the lowest order perturbation theory. This is retained in the unitarity
of the CKM matrix.

t
s Y b
c u
d

Figure 1.1: The allowed transitions between the six quarks in the Standard Model
with three families.

At the time the Standard Model of the electroweak interactions was developed, it was
realised that, in addition to the charged weak currents, neutral weak currents had to exist,
in order to keep the theory renormalisable. Thus, apart from the electromagnetic neutral
current, another neutral current had to play a role in the description of the electroweak
interactions. Since both neutral currents couple to the fundamental fermions, the so-called
weak mixing angle Oy was introduced to describe the relation between the weak and elec-
tromagnetic neutral currents. In terms of this angle y and the electric charge e of the
positron, the couplings of the fermions to the massive W and Z bosons and the massless
photon -y can be written as follows [9]:

¥ f
f
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1 z° f
* ie’yu(vf - af75)2sin0w cos Oy T <
f
1 w= f
® ey, (l—vs)—-———: o ___
K 2\/§sin9W f

in which v; with (i = 1,2,3,4,5) are the Dirac y-matrices. The vector and axial vector
coupling constants vy and ay are defined by:

vg=1I{ ~2Qssin?6w  and  ay=1If (1.2)

The subscript f refers to the particular fermion produced, Qy is its electromagnetic charge
in units of the positron charge and Ig the third component of the fermion weak isospin,
a quantum number reflecting the SUL(2) symmetry of the electroweak interactions. The
mixing angle Oy is given by the relation between the masses of the W and Z bosons:
M2
. 2 w
sin“ Oy =1— —~ (1.3)
M3
A remarkable aspect of the Standard Model is that the three coupling constants are not
real constants but they are said to be running. This means that their values change with the
energy scale at which the interaction takes place. Even more remarkable is the fact that two
of them become stronger (Uy (1) and SU[(2)) and the other becomes weaker (SUc(3))

as the energy increases. This effect is a consequence of renormalisation in a Yang-Mills
theory.

1.2 The b quark: an overview

The investigation of B hadrons, i.e. hadrons containing a b quark, allows for the deter-
mination of five more parameters of the Standard Model. These are the masses of the b and
(indirectly) the ¢ quarks, which together represent the third family, two quark mixing angles
and the phase §, which could be responsible for the CP violation. These quantities can be
determined by measuring the lifetime and the semileptonic branching ratios of B hadrons,
by studying flavour oscillations in the neutral B meson system and by searching for rare
B decays. For the determination of the mass of the ¢ quark from b quark related physics,
theoretical input is needed. The best way to determine this mass is the direct method of
studying states with a ¢ quark. Then only the determination of the mass of the Higgs boson
remains in order to fix all the parameters of the Minimal Standard Model.
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T (bb) mass (in MeV)

T(15) 9460.32 4+ 0.22
1(25) 10023.30 + 0.31
1(35) 10355.3 + 0.5
Y(45) 10580.0 +3.5
B (ub)
Mass 5277.6 £ 1.4 MeV
Mean lifetime (11.8+1.1) 10713 5
ctp = 0.35 mm
B° (db)

Mass 5279.4 + 1.5 MeV
TRO /TB+ 0.44 to 2.05, at 90% C.L.
B
Br(b — £ + X) (23.1+£1.1) %
Br(b — e + X) (12.1 £ 0.6) %
Br(b — p + X) (11.0 £ 0.9) %

Table 1.3: Some of the properties of the b quark system as known before the
startup of LEP and SLC.

Furthermore, the importance of b quark related physics lies in the fact that its inves-
tigation allows for valuable tests of the validity of the Standard Model. Certain processes
which are induced by loop diagrams, such as flavour oscillations in the neutral B system
or rare decays of B mesons, are also sensitive to physics beyond the Standard Model with
three generations. The observation of CP violation in the B system will certainly shed light
on this important phenomenon, which so far has not been fully understood. In this respect,
the physics of B mesons is complementary to that of the K mesons, which has contributed
enormously to our understanding of elementary particles and their interactions.

Information on B mesons and their decays has been obtained mainly by studying B
mesons from the decay of the Y(4S) meson that is produced in ete™ annihilations at
the CESR and DORIS e*e~ storage rings. Since the B mesons at CESR and DORIS
are produced (almost) at rest, lifetime measurements could only be made at the higher
energy ete~ machines PETRA and PEP. For this reason, proposals for possible future
high luminosity Y(4S) machines contain beams with unequal energies. This will cause
the produced B mesons to travel a measurable distance in a laboratory system. B°B°
oscillations have been studied at all ete™ machines and at the CERN and Fermilab pp
colliders.

Table 1.3 shows the properties of the b quark system as they were known before the
advent of LEP and SLC [10]. From this table one can see that a pair of B mesons can most
efficiently be produced from the T(4S5) or higher state. The lower Y states can only decay
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through a three gluon decay mode which gives a very narrow width; for instance the width
of the T(1.5) resonance is 52.1+ 2.1 keV, which is very small compared to the width of the
Y (4S) resonance which is approximately 23.8 + 2.2 MeV.

1.3 Cross sections

For pointlike spin % fermions in the centre of mass system, the differential Born, i.e.

to first order in perturbation, cross section for ete™ — ff via single photon annihilation
is [11]:

d 2
% = %ﬁ[l+cos20+(1—ﬂ2)sin20]Q} (1.4)

where 3 is the velocity of the final state fermion in the centre of mass system and 6 is
defined in figure 1.2.

/ ) et
7

Figure 1.2: Definition of the production angle 8: the opening angle between the
fermion and the e~ direction.

In this equation a = a(s) is the running QED coupling constant, a(M32) ~ 1/128,
and s is the centre of mass energy squared. Figure 1.3 shows the corresponding Feynman

e~ f
Figure 1.3: First order Feynman diagram corresponding to the reaction ete™ — v — ff.

diagram of equation 1.4.
At higher energie; the Z°, with mass Mz and width T'z, must be taken into account
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and the differential Born cross section for ete™ — ff changes to [11]:
do o? 2 2 2y 12
a9 = E,B{Qf[l-i—cos 0+ (1 - B%)sin® 0] (1.5)
-8Qfx1 (vevf[l +cos? 0 + (1 — B?)sin? 6] — Bay cos 0)
+ 4x2 (v;(l + 4v2)[1 + cos? 0 + (1 — #?) sin? 0]

+ ﬁ2a§(1 + 4v2)[1 + cos? ] — 16[vevsay cos 9) }

with
1 s(s — M2)
= 1.6
X1 16 sin? Oy cos? Oy (s —MZ)2+TZM2 (1.6)
1 52

X2 = bGsint Ow cost Oy (s — MZ)2 + T2 M3

Figure 1.4 shows the Feynman diagram which together with figure 1.3 corresponds to equa-

Figure 1.4: First order Feynman diagrams corresponding to the reaction ete™ — Z° — ff.

tion 1.5.

QED corrections, which include initial and final state photon radiation, are of utmost
importance. Initial state photon radiation has a strong influence on the cross section around
the Z° resonance (=~ 35% [12]). QCD radiative gluon corrections, affecting only the final
state, give a correction of approximately 4% to the total cross section for heavy flavours [12].

Higher order corrections to the diagrams above, such as final state fermion mass effect,
vacuum polarisation corrections of propagators and vertex corrections, shown schematically
in figure 1.5, play an important role and have to be accounted for. These corrections can
be taken into account by redefining the constants involved in the Born formulae, yielding
the so-called improved Born formalism.

For heavy flavour production, the improved Born cross section, is given by [12, 13]:

332

0= p——

oVV 4 BPoh = Ug +oh (1.7)
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Figure 1.5: An example of a vacuum polarisation correction for the Z° propagator
and two vertex corrections.

with
- 3s |
4G, a( M2 B MZ(s— M32)
+ I eQ fUe
75 QQy I MIE ([s/Mz]Tz)?
& Mgs
(52 + a2)p2 2
T o e Y R (AT,
G2 Mjs
AA - B (52 52)22 Z
M o e v Y EB (P  y

in which G, is the effective muon decay constant. The effective electroweak vector and axial

vector couplings, 7y and ay, and the effective weak mixing angle, sin® Oy, are expressed
as:

2 o= 2
&f = Iéf + g(SfbApt ’l_)f = (Iéf - 2Qf SlIl2 0W) + g(sfbApt (19)
and
sinOw; = sin®Oy + cos? Ow Ap; + i[ln(& +1)-2] (1.10)
~ 47 17.3
Gu = Gu/(1-Apy)
3vV2G, M}
Ap, = 3v2G, M?
1672

6sp = 1 for b quarks and 0 otherwise



12 Chapter 1. The theory

The additional correction in equation 1.9 for the production of bb pairs comes from top
quark vertex corrections as shown in the lower right diagram in figure 1.5.

The effect of these corrections to the Born level cross section, calculated with the
program ZFITTER [14], is shown in figure 1.6. ZFITTER uses analytical formulae to
calculate cross sections, forward-backward asymmetries and angular distributions of final
state fermions in e*e™ interactions. It includes electroweak radiative corrections to O(a)
and a common exponentiation of initial and final state bremsstrahlung. Furthermore, the
O(a) corrections are supplemented with O(a, a,) and leading O(a>M2/M3,) corrections
from top quark insertions in the gauge boson self-energies.

o 10 o 10
£ £
e 9 F P w 9 F
el Y (3]
© gt i % Bom © 8 [ Born
7k 7 b
6 i 6 F i )
1All corrections % All corrections
5 4 5 \
4 4
3 3
2 2
1 E.- 1
0 L 1 L Il 1 1 L o L Il L L L Il L
87 88 83 90 91 92 93 94 95 87 8 8 90 91 92 93 94 95
Vs (GeV) Vs (GeV)

Figure 1.6: ZFITTER cross section predictions for the process ete™ — bb (left)
and ete™ — ct (right). The dashed lines are the Born cross sections, the solid
lines are the ones with full QED and QCD corrections. The integration has been
performed over the angular region 35° < 6 < 145°.

For many applications the improved Born approximation is an excellent description for
the partial Z decay width into heavy quarks,

3— ﬂ2 14 31 A
Lgq = ﬁ———2 Poq+ BTy (1.11)
with . G
G,.M M
vV _ Z -2 A _ GuMz _»
g = 2“\/57‘_ vy and = o a; (1.12)

where G,,, 1‘)3 and 63 are defined in equations 1.9 and 1.10. Final state photon and gluon
emission are identical to those discussed above and the corrections are in the order of 0.05%
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and 4% respectively [12]. The program ZFITTER predicts the following heavy flavour partial
widths:
Iy = 376 MeV and ez = 297 MeV (1.13)

All electroweak predictions are obtained by using the parameters sin 6y = 0.222, M, =
91.181 GeV, M; = 193 GeV, My = 300 GeV [15] and a; = 0.115 [16] unless specified
otherwise.

Figure 1.7 shows T'y; (left) and T'y5/T'haq (right) as a function of the mass of the top
quark, M;.

S 380 3 022
%’ —
= ~
[fe]
L.‘B a7s |- i
02175 |

376 _/\
\ 0215 |-
374 |

0.2125 |
372 |

370 | Il 1 1 i Il
80 120 160 200 021 80 120 160 200

M, (GeV) M, (GeV)

Figure 1.7: T'y5 (left) and T3 /T'p,4 (right) as a function of the mass of the top quark, M;.

1.4 Forward backward asymmetry

The forward backward asymmetry is defined as:

App=—_"8 (1.14)

with

! do 0 do
oF = d(cos9)d and oB =/ d(cos 0) (1.15)
0

cosf 1 d cosf

where the angle 6 is defined in figure 1.2. Integrating equation 1.5 over ¢ gives do/d cosf.
From this equation it can be seen that:

do
d cosf

8
~ (1+c0520+§AFBc059) (1.16)
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which demonstrates that App is a result of the interference between the pure photon and
Z° boson exchange diagrams. In the improved Born approximation, Arg, for the fermion
of type f, can be cast into the form [13]:

36%a}4
Ajp=73 p (1.17)
in which 04 is defined by:
4G a(M2) M2(s — M2)
ovA = TR 270.Qa.a Z Z 1.18
YR Py v (7 s R e
2G2 Ms

+ —W“ DeleDyas

(s = M2)? + ([s/Mz]T2)?

On top of the Z° resonance, the asymmetry is dominated by the pure Z° amplitude.

2 '8
< <
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Figure 1.8: ZFITTER predictions for the forward backward asymmetries of
*te™ — bb (left) and ete” — cc (right) as a function of the centre of mass
energy /s.

[

Therefore, to a very good approximation,

3 2v.a. 2vsa 3

= o Ly = TAA; (1.19)
49; +azvy+ay 4

which defines the quantity Ay:

25f&f

Af = —=—3
Uy +af

(1.20)
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Figure 1.8 shows the forward backward asymmetries for ete~ — bb (left) and ete™ — cc

(right) as a function of the centre of mass energy /s, as predicted by the program ZFITTER,
with and without higher order corrections.

1.5 BYBY oscillations

Investigating the oscillations in the neutral B meson systems, i.e. BIBY and B°B?,
will provide constraints on the parameters of the Standard Model. In particular, the CKM
matrix elements V,q and V;; can be obtained from this analysis. Massive or exotic virtual
particles can also contribute to the amount of mixing and this makes the mixing phenomenon
sensitive to physics beyond the Standard Model [17].

Oscillations in the neutral B meson systems proceed via box diagrams as shown in fig-
ure 1.9. The BY B system can be described by the following phenomenological Hamiltonian

matrix H: o ) ) o
B M, — i P (B )
H | 5 = 7 274 9, . = 1.21
(Bé) ( 7 Mq—%qu> B8 (121)

The diagonal elements in this matrix describe the decay of the By (BY) meson with M,
and I'y, the mass and the decay width of the meson respectively. The off-diagonal elements
are responsible for the BB mixing:

P2 = (Bg|H|BY) (1.22)
q: (Bg|H|BY)

The quantities p§ and qg can be evaluated by calculating the box diagrams from figure 1.9.
By diagonalising H the mass eigenstates can be determined:

1,2\ _
qu >_

1 _
T el 1B9) £ lal 1B)) (1.23)
If pg # g4 then |B»?) are not eigenstates of CP since:

2 _ 412
BY B2 = Pq|” — 14|
(B4lBy) [pg? + |gq|?

£0 (1.24)

[
+
1
FI
40
o+

p— — — — —

u,c,1

Figure 1.9: Box diagrams for Bng transitions.
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In the context of the Standard Model, this effect has been shown to have an order of
magnitude of about 1073 to 107 [12].

Neglecting CP violations in the neutral B meson system (i.e. pg = gq), the mass

eigenstates B1 and B2 obtained by diagonalising matrix H, are linear combinations of the
flavour elgenstates

1 —
1B%) = 5 (180) = 1B))) (1.25)
with mass M; 5 and decay rate I'1,2 where
1 .
Mz = Mg+ AM, with  AM, = Re(p})
1 .
Pz = Tyt JAT, with AT, =2 Im(p2) (1.26)
The oscillation frequency between the B0 and B0 flavour eigenstates is proportional to

the mass difference between the two mass elgenstates AM,. For this mass difference one
obtains [17]:

G2 . M7
AM, = =L Bp, f, Mg, |ViVill® M} F (M_év> 1QCD (1.27)

with

Flo) = §<1 N (3 -9z 622 ln(m))

1-z)2 (1-z)3 (1'2‘8)

where Bp_ is the so-called bag parameter and fB, the B, decay constant: B}B/quBq =
140 + 40 MeV[17]. Mp, (M) is the mass of the B, meson (t quark) and nqcp is a QCD
correction factor, nqcp = 0.85.

The amount of mixing is measured by determining the mixing parameter Xq

3 P(B] — BY) ozt yl
X = P(BY S BY) + P(BY = BY) _ 2(1 +22)
q q q q q

(1.29)

in which £, = AM, /Ty and y, = AT'y/2T;. Unlike for K° mesons, where AT ~ T, for
B® mesons ATy < AM, [12]. This implies that:

oL
Xq = 55 (1.30)
2(1 + 22)
By measuring x4, AM, can be calculated, via equation 1.30. This, together with equa-
tion 1.27, gives information about the CKM matrix elements.
If discrimination between the various hadrons containing b quarks is not possible, as is
the case in the analysis described in this thesis, not x, but xp is measured:

Br(b— B — B) _ Br(b— B° — BY)
Br(b—B) ~  Br(b— B)

XB
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Br(b— B?) Br(b — B% — B?)

Br(b— B) Br(b — B9)

Br(b— BYJ) Br(b — BY — BY)

Br(b— B)  Br(b— BY)

= fsXs + faxa (1.31)

The relative abundances fg and f; in this equation are assumed to be 0.40 and 0.12
respectively. These values correspond to a strange quark suppression factor v = f,/fs =
0.3, which is consistent with measurements at LEP [18] and lower energy eTe™ colliders [19,
20]. Assuming f,, = fq, a b-baryon fraction of fg = 0.08 is implied.
In the analysis described in this thesis, the b quarks are tagged by their semileptonic
decay into muons. Thus what is really measured is:
_Br(b— B — B — pX)

s = 1.32
XB= "Br(b— B — puX) (1.52)

which, under the assumption that all hadrons containing a b quark have the same semilep-
tonic branching ratio, equals xp.

If CP violations can not be neglected, there will be an asymmetry in P(Bg — Bf;) versus
P(Bg — Bfl)) and, as a consequence, an asymmetry in the number of positive dimuons
compared to the number of negative dimuons coming from a semileptonic B decay.

Two methods are used to measure the mixing parameter xg. These methods, their
results and their implications will be described in chapter 5.

1.6 Heavy flavour fragmentation

Figure 1.10 schematically shows an e*e™ annihilation in which the Z° produces a quark
antiquark pair, which generates a large number of hadrons in the final state. Depending
on the energy scale Q2 of the interaction, this process can be split into four parts. The
first part is described completely by the electroweak theory of the Standard Model. The
other three parts are dominated by QCD. Part two can be calculated with perturbative
QCD due to the fact that in this energy region the strong coupling constant, a, is small.
Two approaches to the modeling of perturbative QCD exist. One is the matrix element
method, in which Feynman diagrams are calculated exactly, order by order. Because of the
technical difficulties of these calculation, only the second order matrix element is presently
available. Therefore, a maximum of four partons in the final state can be produced. The
other approach is the parton shower method. In this method, an arbitrary number of partons
are branched in order to yield a description of multi jet events, with no explicit upper limit on
the number of partons involved. It is based on the approximation of the full matrix element
expression. Part three and four, however, cannot be calculated using perturbative QCD,
since at these energy scales the strong coupling constant is too large. At present, one has
to rely on QCD inspired phenomenological models that are developed by combining simple
kinematical considerations with the results from e*e~ experiments. Part four in figure 1.10,
the decay of unstable hadrons into experimentally visible particles, is completely described
by empirical results such as measured branching ratios and masses of the produced particles.
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The phenomenological models for heavy quarks are based on very simple kinematical
considerations, which were first pointed out by Bjorken and Suzuki [21]. Attaching a light
antiquark g (or diquark gq for baryon production) to a heavy quark Q decelerates the heavy
quark in this so-called fragmentation process only slightly. Thus Q and Qg (or Qqq) carry
almost the same energy.

Where to draw the borderline between region two and three depends on the energy scale
at which one can still perform perturbative QCD calculations to predict the interactions.
As stated above, this depends on the size of the running strong coupling constant which
in turn depends on the energy scale at which the interaction takes place: typically a few
GeV. This means that, for heavy quarks, a; is smaller at the quark energy scale. Mele
and Nason have taken advantage of this and have performed purely perturbative (next-to-
leading) QCD calculations, where they show that, for heavy flavours, the simple kinematical
considerations, as pointed out by Bjorken and Suzuki, are valid already at the perturbative
level [22]. As non-perturbative effects cannot be neglected, purely perturbative QCD does
not suffice and phenomenological models have to be used.

Three widely used phenomenological models are:

e the Colour String Fragmentation Model [23],
e the Independent Fragmentation Model [24] and
o the Cluster Fragmentation Model [25].

In the Colour String Fragmentation Model, fragmentation proceeds along so-called QCD
inspired, colour-flux lines between quarks and gluons. As the distance between the quark

Figure 1.10: Schematic illustration of an e™e™ annihilation where the Z° produces
a,quark antiquark pair which generates a large number of hadrons in the final state.
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and antiquark becomes bigger, this string is stretched and may eventually break, producing
a new quark antiquark pair resulting into two new colourless systems. The sharing of energy
and momentum between these new systems is given by a scaling function. The new systems
may again break up, until only on-mass shell hadrons remain. The advantage of this model
is that at all steps in the process, energy and momentum are conserved.

The Independent Fragmentation Model is carried out in almost the same manner as
the Colour String Fragmentation Model. The sharing of energy and momentum, however,
is done in isolation from each other, which results in violation of energy and momentum
conservation during the fragmentation process. The independent fragmentation model was
shown to fail to describe some experimental data [26].

In the Cluster Fragmentation Model, gluons from the perturbative phase are first split
into quark and anti-quark pairs. The quark and anti-quark pairs then form colourless clusters
which, depending on their masses, decay either into lower mass clusters or directly into
particles. In the cluster fragmentation, the distributions of particle momenta are determined
by the momenta of the clusters and their decay properties.

The fragmentation process in the first two models is parametrised by a scaling function
f(2) where z is defined by

5= (E +p||)hadron
(B + p)quark

(E + P )hadron is the sum of the energy and momentum component, parallel to the frag-

mentation direction carried by the primary hadron. (E + P)quark is the energy-momentum
of the quark.

Examples of f(z) are:

(1.33)

1 bM?2
o Lund [27]: f(2) x ;(1 — z)%exp(— MT)
e Peterson [28]: f(z) o (2[1 — 1 G—Q]Z)‘1
z 11—z
Parameter Value
Peterson €Q 0.535
Lund a 0.500
b 0.900
Mz 0.250
Collins and Spiller €Q 0.807
Kartvelishvili g 3.25

Table 1.4: Typical fragmentation parameters.
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1-—
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e Collins and Spiller [29]: f(z) o< ( £ 4 zeQ)(l +22)(1— 1_ e )2
1-2 z 1-2z
o Kartvelishvili [30]: f(z) ox 2%2(1 — 2)
N
= —@— Peterson
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Figure 1.11: The four scaling functions as mentioned in the text. The parameters
were chosen in such a way that the average z is the same for all distributions
(0.68), except for the Lund scaling function which represents the distribution for
a K meson.

In these equations, €g, a, b and ag are the so-called fragmentation parameters and My
the transverse mass defined by M? = m? + p2 . The Lund scaling function is well suited to
describe the fragmentation of the light quarks, whereas it does not give a good description
for heavy quark fragmentation. For this purpose, the other scaling functions are used.
Figure 1.11 shows the four scaling functions with the fragmentation parameters as shown in
table 1.4. The parameters were chosen in such a way that the average z is the same for all
distributions (0.68), except for the Lund scaling function which represents the distribution
for a K meson. The so-called hardness of the fragmentation is determined by this average
value for 2: the more this value is peaked towards 1.0, the harder the fragmentation.

The Peterson function has been widely adopted in analyses determining the hardness
of heavy quark fragmentation functions; its biggest attraction being that it follows directly
from the afore mentioned simple kinematical considerations, pointed out by Bjorken and
Suzuki.

Although z, the quantity defined in equation 1.33, is the best choice to describe the
fragmentation process theoretically (see [31]), it is difficult to be determined experimentally,
since it is not possible to measure the energy and momentum of the primary quark directly.
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Therefore numerous quantities approximating z are used in the literature, of which one has
become particularly popular. This frequently used experimental variable is

— Ehadron
Ebeam

TE (1.34)

and is a directly measurable quantity.

et v

Vp

Figure 1.12: Schematic illustration of an e* e~ annihilation where the Z° produces

a bb pair, producing a B meson which decays semileptonic into a muon and
neutrino.

In publications, often only < zg >q is quoted, assuming a scaling function f(zg) to
describe the fragmentation distribution. The drawback of this quantity lies in the fact that
(initial and final) photon and gluon radiation will reduce the quark energy: Eq ok < Epeam-
As a consequence, <zg > depends on the centre of mass energy of the experiment and
on the Monte Carlo models used. This is schematically illustrated by figure 1.12.

Heavy flavours are well suited for studying the fragmentation mechanism since heavy

quark pair production is suppressed during the process itself. Hence, a heavy quark is almost
always a primary quark.

1.7 Heavy flavour decay

The description of weak decays of hadrons is complicated by the fact that the decaying
quarks are not free particles, but bound by the strong force. Therefore, QCD effects have
to be taken into account, making the weak decays of hadrons a testing ground for QCD as
well.

For heavy mesons, such as B® or B*, an approximate description of their weak decays
is given by the Spectator Model. In this model, the heavy b quark, e.g. in BS = bd, decays
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into a lighter (c or u) quark by emission of a W~ boson, while the d quark, having no
influence on the decay rate, acts as a spectator. Semileptonic decays are obtained if the
W boson couples to a lepton £ (£ = e, u,7) and its antineutrino. Figure 1.13 shows two
examples of heavy meson decay in the Spectator Model.

f! c
q—l
W—r
4 f /
b > > c b > - > q
w-
d < < d d < < d

Figure 1.13: Two examples of heavy meson decay in the Spectator Model.

The semileptonic decay rate, I'}, as calculated in the ACCMM model is [32]:
r, = GFm v |2:r(ﬂ e O)f (b— )+ |V, |2I(ﬁ e 0)}' (b c)
sl 19273 ub my’ ™y sl cb sl

mb’ my ’
(1.35)
The function Z(x,y, z) describes the phase space corrections and F) incorporates radiative
gluon corrections:

I(eq,O, 0) = fo~(1- 863 + 862 - eg - 2463 Ineg)
2 as(m? 31 3
Faboa) = -2 Sy ey ly 1)

where €, = mg/ms,.

To calculate Z and Fy, the following quark mass values are used: m; = 4.95+0.07 GeV
and my —m. = 3.30 £ 0.02 GeV. These values are obtained by the ARGUS Collaboration
in the framework of the ACCMM model from a fit to the lepton momentum spectrum in
semileptonic B-meson decays [33]. In order to include uncertainties in the model, the error
on my is increased to +0.3 GeV and m, = 0.2+ 0.2 GeV is taken, keeping the above error
on my — m.. The value used for a,(m?) is 0.20 £ 0.03, which has been obtained from
extrapolating the L3 measured value at \/s &~ Mz, a, = 0.115 % 0.009 [16], to Q2 = mi.
In this way, it is assumed that, in accordance with the spectator model, the light B-mesons

produced at the Y (4S5) have the same semileptonic widths as the heavier B-hadrons which
can be produced from the Z°:

_ Br(b —»£X) Gim;

Ls B T 19278

(0.84|Vub|2 + 0.40|Vcb|2) (1.37)

in which 7p is the average lifetime of all B hadrons.

In the Spectator Model lifetimes of charged and neutral hadrons should be the same.
However in B decays, as in charmed particles, non-spectator effects can take place, such
as interference effects due to the presence of identical quarks in the final state, flavour
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Figure 1.14: An example of W exchange in B® decays and an example of flavour

annihilation in Bt decays.

annihilation by W exchange or soft gluon effects. In figure 1.14 an example of W exchange
in B° decays and an example of flavour annihilation in B* decays is displayed.

Generally, non-spectator effects are expected to decrease the lifetime and semileptonic
branching ratios of the B®. However, a difference of more than 10% is not expected, justify-
ing the averaging of lifetimes and branching ratios for unknown mixtures of B particles [34].
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2.2.2 The precision chambers

The momentum measuring. or "P" chambers, each contain a few hundred signal wires,
the so-called sense wires. and a total of about 3000 field shaping wires. These wires are
about 5.6 m long and are supported by three bridges. one at each end. precisely positioning
the wires and one in the middle to reduce the gravitational sag of the wires to 96 um. The
drift times measured by the wires are converted into digits by (multi hit) TDC's, time to
digit converters. The cell structure of the chambers contain 16. 24 and 16 sense wires for
the MI, MM and MO chamber respectively. each cell being exactly 101.500 mm wide, see
figure 2.4,

mesh (cathode) piane

Figure 2.4: Wire configuration of a precision chamber cell. The open circles in the
middle plane stand for the sense wires, the closed circles for the field (shaping)
wires. The closed circles in the upper and lower wire plane are the mesh wires.

The chamber cell has been designed to have a uniform electric field throughout the
active region. The sense wires are spaced 9 mm apart and interspaced with field wires.
Three additional guard wires beyond the last sense wire equalise the drift time behaviour of
the sense wire plane. A plane of cathode (mesh) wires spaced 2.2 mm apart. is at 50.75
mm from the sense wire plane.

The time-to-distance conversion function. called the cellmap function, has been mapped
in test beam runs and its dependence on slope of the track, magnetic field and barometric
pressure was measured, see [37] and section 3.3.1. Chapter 3 will elaborate more on the
geometry of the P chamber cells while discussing the reconstruction algorithm.

2.2.3 The Z chambers

Z chambers consist of two layers of drift cells offset by one half cell with respect to
each other, to solve the left-right ambiguities. see figure 2.5. So in total, if a muon passes
through both Ml and MO. its position in the (r. :) plane is measured eight times. Measured
resolution [41] is found to be 700 yim

25
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2.1 Introduction

The L3 detector is one of the four large detectors at the CERN electron-positron collider
LEP. The experiment is designed to measure electrons, muons, photons and jets. Not
attempting to identify hadrons, L has aimed at providing a better resolution for electrons,
muons and photons. The experiment uses a time expansion chamber for charged tracks

and vertex detection, a large scale electromagnetic shower detector and an accurate muon
detector.

Figure 2.1: Perspective view of the Ls detector. Starting from the beam pipe,
the time expansion chamber (TEC), the electromagnetic calorimeter (BGO), the
hadron calorimeter, the support tube, the muon chambers, the aluminium coil and
the return yoke of the magnet are visible.

All detectors are installed inside an octagonally shaped magnet. The magnet is a so-
called warm magnet, giving a relatively low magnetic field of 0.5 T. A relatively low magnetic
field is used because of the fact that the muon momentum, p, resolution improves linearly
with the field, B, but quadratically with the effective length of the track, L, inside the field:

Ap As 8 As (2.1)
p s 02998 BL2Y '
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in which s is the sagitta and As its error, see [35] and AB and AL are assumed to be
negligible. In this equation p is in GeV, B is in T, and both L and s are in m. The sagitta,
s, of a curve is defined as the maximum deviation of that curve from a straight line going
through two fixed points on the curve (see figure 2.2):

_ntys
2

5=y (2.2)

Figure 2.2: Definition of the sagitta, s, of a curved track.

To protect the detectors inside the magnet from the radiated heat an active thermal
shield is placed on the inside of the coil. This keeps the volume occupied by the muon
chambers at a constant temperature of 21.0 + 1.5°C. The poles of the magnet are double
doors, which makes it possible to access the detectors (see figure 2.1). Going outwards from
the beam pipe, the following detectors are installed.

e A central detector (Time Expansion Chamber, TEC), detecting charged particles (sec-
tion 2.7).

e An electromagnetic calorimeter (BGO, named after its type of crystal material used:
BisGe3012) to measure photon and electron energies (section 2.6).

e A scintillation counter array, used to measure the arrival time of traversing particles
(section 2.5).

* A hadron calorimeter (HCAL), measuring hadron energies. This calorimeter also acts

as a filter to provide a clean muon sample by absorbing the hadrons. In addition, the
HCAL tracks muons as well (section 2.4).

* A muon detector (MUon CHambers, MUCH) consisting of 176 large drift chambers
which are able to measure the sagitta of muon tracks (section 2.2).

The detectors (not including the magnet) are supported by a steel tube, 32 m long with a
diameter of 4.45 m. Both ends of this tube rest on adjustable jacks, placed on concrete
pillars. In this way all L3 detectors can be aligned relative to the LEP beam. The muon
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chambers are supported by two torque tubes on rails, attached to the exterior of the support
tube. Due to this construction, the muon chambers can 'easily’ be pulled outside the
magnet without interference with the other detectors. The detectors are complemented

by a luminosity monitor, triggering and data taking electronics and a cluster of online and
offline computers.

2.2 The muon detector

2.2.1 Design considerations

The L3 muon detector has been designed [36] to measure the momentum of high energy
muons to an accuracy of 2.0%. For the 1990 data, a resolution of Ap/p = 2.5% at p = 45
GeV has been reached, thus providing a 1.8% dimuon mass resolution at 90 GeV. This
is achieved by using a configuration of three layers of drift chambers which measure the
curvature of a muon track in the region between the support tube and the magnetic coil,
as is shown in figure 2.3.

The drift chambers are mounted on two Ferris wheels called Master and Slave, which
are mirror images of one another. The Master Ferris wheel is located at positive z. A Ferris
wheel has eight independent units, called octants, which are attached to the torque tube.
Each octant is made out of five precision chambers. There are two chambers (MO) in the
outer layer, two chambers (MM) in the middle and one inner chamber (MI) (figures 2.3A
and B). These chambers measure the track coordinates in the bending plane.

In addition, the top and bottom covers of the Ml and MO chambers are made of (less
precise) drift chambers and they measure the z coordinate along the beam, as will be
described in section 2.2.3.

In order to reach the afore mentioned resolution, a 45 GeV muon track sagitta s, must
be measured with an accuracy As better than 90 um. This follows from equation 2.1 and
the fact that s(45 GeV) = 3.57 mm. There are four components to As:

e one due to the intrinsic resolution of the chambers, As,,
e one due to the multiple scattering, Asms,

e one due to the systematic error in the relative alignment of the three layers, As,,
and

e one due to the systematic error in the electronics and electron drift path reconstruc-
tion, Asgp,.

From measurements with a test chamber [37], a single wire resolution of about 200 zm was
found. Using the multiple-sampling technique described in [38], the maximum error on the
measurement in Ml and MO, ¢; and €3 respectively, and MM, ¢,, can be calculated:

200 pm
€] = €3 = —————— = 53 um, 2.3
TR /09 x 16) g 23)
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N i

v / ' —_— -

Figure 2.3: Three views of the muon chamber system, containing a muon track
from a real hadronic event. Picture A shows the right half of octant 4: an M|
chamber at the bottom (cut in two), an MM chamber in the middle and an MO

chamber at the top. Picture B shows the zy view of the eight octants and picture
C shows the yz view.

200 pum

€g = ——————— =43 m, 24
? 7 /09 x 24) g (24)

where the factor 0.9 takes into account 10% inefficiencies and 16 (24) is the number of
measurements in MI/MO (MM). This means that Asg, is about 57 pum. The multiple
scattering contribution, Asys, is estimated to be about 31 pm at 45 GeV[39]. Regarding
the alignment of the chambers, muons coming from the origin and more energetic than 3
GeV are confined to one octant. Therefore alignment is only critical between chambers of
the same octant. This is taken care of by complex optical and mechanical measurements
(RASNIK, see [40]) as well as UV laser and cosmic ray verification. A systematic error of

about 30 um was found [35]. Combining these three components with a Asy, of 50 um,
the total error, As, stays below 90 pm.



30 Chapter 2. The L3 experiment

2.2.2 The precision chambers

The momentum measuring, or “P" chambers, each contain a few hundred signal wires,
the so-called sense wires, and a total of about 3000 field shaping wires. These wires are
about 5.6 m long and are supported by three bridges, one at each end, precisely positioning
the wires and one in the middle to reduce the gravitational sag of the wires to 96 pm. The
drift times measured by the wires are converted into digits by (multi hit) TDC's, time to
digit converters. The cell structure of the chambers contain 16, 24 and 16 sense wires for

the MI, MM and MO chamber respectively, each cell being exactly 101.500 mm wide, see
figure 2.4.

mesh (cathode) plane

...................... l}...............-.....

sense (anode) plane
e e e e AT, 0.{.}.0

9.0 mm

..............................

...............

Figure 2.4: Wire configuration of a precision chamber cell. The open circles in the
middle plane stand for the sense wires, the closed circles for the field (shaping)
wires. The closed circles in the upper and lower wire plane are the mesh wires.

The chamber cell has been designed to have a uniform electric field throughout the
active region. The sense wires are spaced 9 mm apart and interspaced with field wires.
Three additional guard wires beyond the last sense wire equalise the drift time behaviour of
the sense wire plane. A plane of cathode (mesh) wires spaced 2.25 mm apart, is at 50.75
mm from the sense wire plane.

The time-to-distance conversion function, called the cellmap function, has been mapped
in test beam runs and its dependence on slope of the track, magnetic field and barometric
pressure was measured, see [37] and section 3.3.1. Chapter 3 will elaborate more on the
geometry of the P chamber cells while discussing the reconstruction algorithm.

2.2.3 The Z chambers

Z chambers consist of two layers of drift cells offset by one half cell with respect to
each other, to solve the left-right ambiguities, see figure 2.5. So in total, if a muon passes
through both Ml and MO, its position in the (r, z) plane is measured eight times. Measured
resolution [41] is found to be 700 um.
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Figure 2.5: Schematic side view of the wire configuration of a Z layer (the units are in em ).

2.3 The muon filter

The muon filter is mounted on the inside wall of the support tube and adds 1.0 absorption
length, A, to the hadron calorimeter. It consists of eight identical octants, each made of six
absorber plates, interleaved with five layers of proportional chambers and followed by five
absorber plates matching the circular shape of the support tube, conform the left picture
of figure 2.6. It covers a polar angle region of 53° < 0 < 127°. The coordinates of the hits
measured by the muon filter are only in the (7, #) plane.

2.4 The hadron calorimeter

The energy of hadrons coming from e*e~ collisions is measured in Lz by the “total ab-
sorption” technique (calorimetry) with the BGO crystals and the uranium hadron calorime-
ter. The hadron calorimeter is made out of two parts: the barrel part, HBAR (section 2.4.1)
and the forward-backward part, HCAP (section 2.4.2).

It is a fine-sampling calorimeter made out of depleted uranium absorber plates inter-
spersed with proportional wire chambers. It acts as a filter as well as a calorimeter, allowing
only non-showering particles to reach the precision muon chambers. Uranium has a short
absorption length, A7, thus maximising the amount of absorber material in the available
space. Because uranium is radioactive it acts as a built in gamma source for the calibration
of the wire chambers. By orienting the wires in alternating planes in different directions, a
better determination of hadron jet directions is possible.

2.4.1 The barrel hadron calorimeter

The hadron calorimeter barrel, shown schematically in figure 2.6, covers the central
region (35° < 6 < 145°). It has a modular structure consisting of 9 rings made out of
16 modules each. The innermost ring is centered at the interaction vertex and flanked on
either side by one ring of long modules followed by three rings of short modules.
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Figure 2.6: The left picture shows the xy view of the barrel hadron calorimeter
(1) and the muon filter modules (2) surrounding it. The right picture shows the
Yz view with the endcaps of the hadron calorimeter (3). (1a) are the so-called
long modules, (1b) the short ones. The tracks displayed are simulated tracks of
charged pions and their shower products in the calorimeter. They are different for
the left and right plot.

Over the barrel region, the amount of material traversed by a particle originating at the
vertex varies between 5.9 and 7.2 nuclear absorption lengths. The response of prototypes
and the finished modules to beams of hadrons and electrons with energies ranging from 1 to
50 GeV was measured. The resolution of the hadron and electromagnetic calorimeters com-
bined, o, defined as the standard deviation of a gaussian fit to the pulse height distribution,
as a function of E was found to be:

55

= (ﬁ +5)% (2.5)

&l Q

where the energy E is in GeV.

Using two-jet events with both jets in the barrel part of the detector, an total energy
resolution of 10.2% has been reached [42]. This value compares very well with the o/E
relation as found in the test beam. Figure 2.7 shows the total energy distribution for two-jet
events (left) and the acollinearity angle between the jets (right) for data (solid dots) and
for Monte Carlo (histogram) for the complete solid angle. The acollinearity angle between
the jets is defined as 180 degrees minus the angle between the two jet directions. Assuming
the same accuracy for each jet, an accuracy of 30 mrad on the determination of single jet
angles is obtained for data and 28 mrad for Monte Carlo events.
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Figure 2.7: Left: The distribution of the total energy measured with the calorime-
ters for two-jet events for data (solid dots) and for Monte Carlo (histogram) for
the complete solid angle. Right: The acollinearity angle between the two Jets for
data (solid dots) and for Monte Carlo (histogram) for the complete solid angle.

2.4.2 The forward-backward hadron calorimeter

The endcaps of the hadron calorimeter cover the polar angle region 5.5° < # < 35° and
145° < 6 < 174.5° over the full azimuthal range (see figure 2.6). The solid angle covered
by the endcaps (18% of 47) extends the coverage of the calorimeter to 99.5% of 4r.

The HCAP is made out of removable half-rings to provide easy access to the inner
detectors. Just like the barrel, HCAP is made out of separate modules, consisting of layers
of uranium plates with proportional wire chambers in between. The wires of two overlapping
chambers are rotated over 22.5° in ¢ with respect to each other. In this way the coordinates

of ¢ orthogonal to 6 can be measured and gaps are arranged such that they do not coincide
in successive layers.

2.5 The scintillation counters

The scintillation counters are situated between the hadron calorimeter and the electro-
magnetic calorimeter. The counters cover a polar angle region of 34° < 6 < 146° and they
cover therefore the acceptance of the middle muon chambers (MM). In the azimuthal angle
@, 93% of the solid angle is covered.

The good time resolution (=~ 0.46 ns) of the scintillation counters can be used to
discriminate dimuon events from cosmic muons. A single cosmic muon which passes near
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the interaction point resembles a muon pair produced in an ete~ interaction. The time-of-
flight difference, however, between opposite scintillation counters is about 6 ns for a cosmic
muon and zero for muon pairs, as can be seen in figure 2.8.
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Figure 2.8: The scintillation counter time difference distribution for dimuon events
and cosmics. Through both peaks a Gaussian is fit.

2.6 The electromagnetic calorimeter

The electromagnetic detector has a very good energy and spatial resolution for photons
and electrons from 100 MeV to 45 GeV. It uses bismuth germanium oxide (BiyGe3O1,,
or BGO) as both showering and detecting medium. BGO is a suitable material for an
electromagnetic calorimeter because it has high stopping power (short radiation length,
Xo = 1.12 cm), low afterglow and it is not hygroscopic.

The electromagnetic calorimeter consists of approximately 11,000 BGO crystals pointing
to the interaction region (see figure 2.9). Each crystal is 24 cm long resulting in a total
radiation length of 21X. It is a truncated pyramid of about 2 x 2 cm? at the inner end and
3 x 3 cm? at the outer end. For electrons and photons, the energy resolution is about 6%
at 100 MeV and about 1% for energies above 2 GeV and the measured spatial resolution
above 2 GeV is better than 1 mm [43]. The detector surrounds the vertex chamber and
is made of two half barrels (EBAR). Two endcaps (ECAP) complete the electromagnetic
calorimeter.

The barrel contains 7680 crystals, giving a polar angle coverage of 42° < § < 138°
(figure 2.9).

The two endcaps are made out of 1536 BGO crystals each, covering the angular region
of 10° < @ < 35°. Both endcaps have a hole of three by three crystals to allow for the
RFQ, a device to calibrate the crystals in situ (figure 2.9). Installation took place between
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Figure 2.9: The left picture shows the zy view of the barrel electromagnetic
calorimeter (1). The right plot shows the yz view in which the barrel (1) as
well as the encaps (2) can be seen.

the 1990 and 1991 running periods of LEP. Because of extensive shielding and cabling of
the TEC, the endcaps do not closely fit to the barrel.

Before the installation of the BGO endcaps in 1991, another electromagnetic calorimeter
was installed to enable low energy single photon analysis [44]. These so-called veto counters,
large blocks of electromagnetic absorber (lead plates interspaced with sheets of scintillator

material), added 15 radiation lengths. When the BGO endcaps were installed the veto
counters were removed.

2.7 The central track detector

The L3 central track detector is designed for the detection of charged particles. It is a
so-called time-expansion-chamber, TEC, and is made out of two concentric cylindrical drift
chambers surrounded by two cylindrical proportional chambers with cathode strip read-out,
the Z detector.

The two inner cylinders consist out of 12 and 24 sectors respectively (see figure 2.10).
Their sensitive length is 982 mm. There are three types of sense wires: standard wires (sw)
to measure the r¢ coordinate, charge division (CD) wires to measure the z coordinate and
groups of five grid wires on each side of the amplification region which determine the left-
right ambiguity by measuring the induced signals (LR wires).

The inner sectors include 8 SW, 2 CD wires while the outer sectors include 54 SW, 14
LR wires and 9 CD wires.

During the operation of 1990, the CD and LR wires did not perform as designed and the
Z detector was switched off part of the time because it caused too much noise. This made it
almost impossible to measure the z coordinates of the hits found by the TEC. Furthermore,
due to a broken wire in outer sector 12 of the TEC, this sector was also switched off during
the 1990 run. During the shutdown between the 1990 and 1991 data taking, the noise
problems were solved and the broken wire was taken out.
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Figure 2.10: The left picture shows the zy view of the TEC. The right plot shows
the yz view. (1) is the beam pipe, (2) an inner sector, (3) an outer sector and
(4) belongs to a Z layer. The tracks drawn in both views are simulated tracks of
charged particles and are different for both plots.

2.8 The luminosity monitor

The L3 luminosity monitor is designed for luminosity measurements at LEP by measuring
the rate of small angle Bhabha events, Ngpapha- Because the cross section, OBhabha. for

the Bhabha process (ete™ — e*e™) is well known, the integrated luminosity, Cint, of the
running period can be calculated:

Lint = NBhabha/%Bhabha (2.6)

The monitor is located at about 2.7 m from the interaction point in the angular region
30 mrad < 6 < 65 mrad, where the contribution of diagrams describing the Z° exchange is
very small [15]. The monitor, as is shown in figure 2.11, consists of a cylindrical BGO array
arranged in 8 rings.

To ensure optimum shower containment, the acceptance is limited to crystals that are
not at the edge of the half rings (see figure 2.11). Thus the luminosity monitor will accept a
polar angular region of 30.92 - 64.41 mrad for 1990 and 29.56 - 61.66 mrad for 1991 and an
azimuthal angular region of |¢ —90°| > 11.25° and |¢ — 270°| > 11.25° with full efficiency,
corresponding to an effective Bhabha cross-section of about 88.5 nb for 1990 and 90.7 nb
for 1991. At an average luminosity of 103! cm~2s~! a trigger rate of about 1 Hz will result,
to be compared to the 0.3 Hz expected rate from Z° events. Thus, after a 3 hour run the
statistical error will be around 1%. The L3 1990 and 1991 luminosity measurements reach
a 0.6% systematic precision [45]. In table 2.1 the various contributions to the systematic
errors are shown.
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Figure 2.11: Endview (left) and the side view (right) of the luminosity monitor
showing the half rings of 8 rings of BGO crystals. The fiducial volume is shown

by the line drawn in bold.

2.9 The L; trigger

lN—w

After each beam crossing, the L3 trigger decides if an ete— interaction took place and
if so it decides whether the event should be recorded. This function is performed at three
levels reducing the 45 kHz beam crossing rate to a few Hz of tape writing rate. At the same

- time the quality of the accepted data and the detector parameters (for detector calibration)
are monitored. The trigger control box implements the final level-1 trigger decision and
distributes it to all subdetectors and higher level triggers. It synchronises the whole data

acquisition system.

Contribution

1990 and 1991 (%)

Luminosity trigger uncertainty <0.1
Geometry of luminosity monitor 04
Bhabha event selection criteria 0.3
Background subtraction <0.1
Monte Carlo statistics 0.1
Theoretical systematic uncertainty 0.3
Total systematic error 0.6

Table 2.1: The various contributions to the systematic error on the 1990 and 1991

luminosity measurement.



38 Chapter 2. The L3 experiment

2.9.1 The level-1 trigger

The level-1 trigger is operated at 45 kHz, i.e. within 22 us it decides whether or not to
start digitising and storing the detector data or clearing the electronics. A negative decision
at level-1 does not contribute to the dead time. The level-1 trigger is a logical OR of 4
trigger conditions:

o calorimetric (energy) trigger

e muon trigger in logical AND with the scintillator trigger

o TEC trigger
e scintillator trigger

These four triggers are described below. The trigger rates quoted are from the 1990 running
period of LEP.

Calorimetric trigger

The calorimetric trigger itself consists of 6 subtriggers again all in a logical OR state
and reaches a final decision in 21 us. It processes the information from the ECAL, HCAL

and luminosity monitor (256, 384 and 32 channels respectively). These subtriggers together
describe the calorimetric trigger:

o Total energy trigger (~ 0.2 Hz): if the total energy detected in the calorimeters is

larger than a certain threshold this trigger is satisfied. This cut is divided into four
cuts in logical OR:

— The energy in HBAR and EBAR should be more than 15 GeV,

The energy in all (including the endcaps) the calorimeters should be more than
20 GeV,

— The energy in EBAR only is larger than 10 GeV,

The energy in the (including the veto counters or endcaps) electromagnetic
calorimeter is larger than 20 GeV.

e Cluster trigger (~ 1.2 Hz): the number of clusters found, where the minimal cluster
energy is 1 GeV, should be bigger than 7.

e Single photon trigger (~ 2.1 Hz): the energy in the BGO is larger than 1.0 GeV
and the area of the hit should be small and contain at least 80% of all the energy
deposited in the BGO.

e Hit counting trigger (~ 0.2 Hz): The energy of one or more of the calorimetric trigger
channels is above a certain value.

o Luminosity trigger (~ 0.6 Hz): more than 15 GeV in both monitors or more than 25
GeV in one and more than 5 GeV in the other. (Only every other event is written to
tape).
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e Single tag trigger (~ 0.2 Hz): more than 30 GeV in one luminosity monitor. (Only
every 20th event is written to tape).

The total rate of this trigger is about 3.0 Hz.

Muon trigger

The muon trigger uses the information from MUCH and looks for tracks pointing to the
interaction region. It accepts events with a transverse momentum larger than 1 GeV. The
muon trigger consists of three subtriggers:

o Single muon trigger (~ 2.2 Hz): two out of three'P chambers are hit and three out of
four Z chambers in the same octant covering the angular range of: 44° < § < 136°

e Dimuon trigger (~ 6.0 Hz): two out of three P chambers are hit and one of the MI
Z chambers in the same octant together with two out of three P chambers hit in one
of the five opposite chambers, covering the angular range of: 36° < 6§ < 144°

e Small angle dimuon trigger (~ 4.2 Hz): one P chamber hit in Ml and one Z chamber
hit in Ml in the same octant together with the same conditions in one of the three
opposite octants, covering the angular range of: 24° < 6 < 44° and 136° <0 <156°,
Furthermore, the tracks should be in opposite z direction.

The muon trigger rate is 9.5 Hz. However, after requiring at least one scintillator counter
in time, this rate goes down to 1.5 Hz.

TEC trigger

The TEC looks for two back to back tracks within a cone of 20°. The rate of this trigger
is 1.2 Hz.

Scintillator trigger

The scintillator trigger, based on the signals from 30 counters, requires a coincidence

of five out of the 30 counters and serves as a simple backup for the energy trigger. This
trigger rate is about 0.2 Hz.

If the event is rejected by the level-1 trigger the system is reset by the trigger control box
and ready for the next event. This signal also stops the level three trigger, which started
working in parallel. If, however, the event is accepted, the trigger control box starts the
subdetector data conversions and buffering and the level-2 trigger is activated.

2.9.2 Higher level triggers

Based on all level-1 trigger data and decisions, the level-2 trigger makes a more complex
coincidence. The level-3 trigger is embedded in the main flow of the data acquisition. Unlike
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the level-1 and level-2 triggers, the level-3 trigger has access to the complete digitised data
with finer granularity and higher resolution. Algorithms, comparable to the ones used in
the offline reconstruction program, are applied to reject background events. In case of a
positive level-2 and level-3 decision, the event is written on tape.

The level-4 trigger is an offline implementation of the level-3 trigger. It contains more
refined algorithms and it served as a temporary substitute and testing ground for the 1990

level-3 trigger. During the 1991 running period most of the level-4 software was implemented
in the level-3 trigger.

2.10 The L; software packages

Just like building the L3 detector, “building” the L3 software took several years and it is
still subject to changes in order to bring it to perfection. In this section the L3 simulation
and reconstruction packages, Sigel3 and Regel3 respectively, will be described shortly after
which the data flow in L3 is illustrated. Before describing Sigel3, the structure of the L
database system is discussed in the next paragraph.

2.10.1 The L; database system

Nowadays high energy physics experiments require the use of powerful database sys-
tems. The data consists usually of a part that is largely time independent, for instance
the parameters which describe the geometry of the experimental setup, and another part
whose content may vary with time and with different frequencies, like the temperature of
a particular subdetector and the calibration corrections for a particular sensor. This data
has therefore to be recorded repeatedly with a frequency depending on the data type. The
time dependent data represents a large amount of information. The L database is split
into six independent subdetectors and three global databases. The amount of information
stored in these individual files is in the order of 10 MB per file. As an example, the database
belonging to the muon detector contains among other things:

e alignment (RASNIK) information of the relative position of the chambers,

® to values for every P and Z chamber wire,

e the information of malfunctioning wires,

e high voltage settings of the wires,

e the conditions of the drift gas, like pressure and temperature.

Since the L3 experiment is operating in a multi-user and multi-computer environment
a centralised database is maintained by a database 'server’, a program that controls all

the different databases, streamlines the communication between them and avoids clashes
between different processes, like writing at the same time to the same database file.
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2.10.2 Sigel3: the L; detector response simulation package

Precisely simulating detector response to an interaction is very useful for a number of
reasons. A good understanding of how the detector reacts to a specific simulated interaction
will provide useful information for studying the data sample and hence systematic errors will
be reduced, thus resulting in more precise analyses. The geometrical detector acceptance can
be studied and precisely calculated as well as acceptances in specific phase space regions.
The exclusion of specific phase space regions is obtained by the application of so-called
cuts on event parameters. The way this procedure is used will be shown in the analysis
chapters of this thesis. Furthermore, simulating detector response can be used to test the
reconstruction package while developing it.
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Figure 2.12: The input and output of Sigel3, the L simulation software.

Sigel3 has been designed to simulate the response of the L3 detector to events taking
place at LEP with the best accuracy and the highest precision. To achieve these goals the
following ingredients are necessary:

e The geometry of the apparatus is described in a realistic way.

o The particles are tracked from the interaction vertex through the detector, correctly
simulating all physical processes, to the best of our knowledge, that may occur.

e The response of all subdetectors is simulated using all the knowledge one has about
its behaviour.
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To perform these tasks, Sigel3 has been built around the Geant3 [46] package which:

e provides powerful tools to describe the geometry of any experimental set-up,

® uses accurate tracking routines which take into account all dominant physical pro-
cesses,

e provides the user with a modular framework and many utilities which may also be
used in the reconstruction phase.

Initialization u Eve*
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Figure 2.13: The internal structure of the L simulation package Sigel3.

As shown in figure 2.12, Sigel3 can take input from the database, describing any deviation
between the L3 detector, as programmed with Geant, and the real detector (e.g. broken
wires) and giving realistic detector noise. It needs input from the user by the use of so-
called data cards, a set of specific commands e.g. where Sigel3 has to save its output on disk,
and most importantly from Egl3, the L3 generator package. Egl3 is a special L3 interface
ensuring that all the different e*e™ generators (see box 2.1) give the same output format.

Figure 2.13 shows the internal structure of Sigel3. First the detector geometry is set up
in the initialisation phase. Once this is done the Egl3 generator output is read from disk
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Box 2.1 Physics generators

By calculating all the Feynman diagrams up to the nth order of a spe-
cific process, an approximated cross-section can be computed. Using this
cross-section and relevant branching ratios and decay rates, known from
experiment, generators calculate the reaction kinematics of such a process.
Since successively generated events ought to be independent of each other,
during this generation so-called weighted pseudo random numbers are used.
Hadronic (QCD) final states cannot (yet) be described by calculating di-
agrams alone, for the details of hadronisation and fragmentation are still
unknown, and phenomenological models and hadron decays from lower cen-
tre of mass energy experiments have to be used.

Generators predicting kinematics for (non Standard Model) new particles
are of course all speculative and must be used with great care. There are
also a few generators calculating background processes to the Z° physics,
viz. cosmic muon simulation and the simulation of the two photon process.
As a last remark it should be noted that the CPU time spent generating
one event is generally much less than the time needed to simulate the L3
detector response of that event.

BABAMC radiative bhabha scattering in the 2nd and 3rd order QED .
KORALZ ete™ - 7= (y) or = ptp=(v) or - viv
JETSET7.3  efe™ — Z%y — qq(v)

which contains the kinematics from the particles produced in the ete~ interaction and the
vertices belonging to the produced particles.

The particles are tracked through the detector by Geant where the interactions with
the detector and the possible particle decays are simulated. If a particle passes through a
sensitive volume of the detector, information quanta like position and energy are stored.
These information quanta are called hits. With these hits the response signals of the
detector are calculated such that they are as close as possible to the ones generated by
the real detector, including resolution effects and digitisation. Section 3.2 explains this
procedure for the special case of the muon subdetector.

Once all particles have decayed, are stopped in the detector or have left the detector,
the digits, combined with the information of the corresponding sensor (a wire, a photodiode
or a scintillator), are stored on disk together with the generator information, the particle
trajectories in the detector and the hits as calculated by Geant. The output thus obtained
is ready for reconstruction and analysis.
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2.10.3 Regel3: the L; reconstruction package

The package Regel3 is a program that uses the digitised output of the detector or the
output from Sigel3, the package described in the previous paragraph, as input.

RAW Data

e

Pre-Processed data
Ecal CLUsters
Tec TRacKs

MUon ch. TracKs

\ Event
AMUI

‘ASRC selection
ASJT

A/—Ez_R’Ea;ucted file
Data SUmmary file

Figure 2.14: Flow diagram of the L3 reconstruction program, Regel3.
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Shown in figure 2.14 is the structure of Regel3. The input is read from disk and the
subdetector reconstruction units (TEL3, ECL3, ...) start to analyse the digits as read by
the respective subdetector components. At this stage the subdetector packages do not use
information from one another. Their outputs are separate objects, like TEC tracks, muon
chamber tracks and the energy contained in a cluster of BGO crystals.

The combination of these reconstructed objects across the L detector is done by the
package AXL3, a program that reads all the output of the lower level subdetector packages.
AXLS3 then creates the final reconstructed objects that aim to represent as close as possible
particles and groups of particles: “muons”, “electrons”, “photons”, “jets’ and “clusters
of particles”. However, AXL3 makes no physics assumptions and it does not perform any
physics analysis; this is left to analysis groups as described in the next section.

AXL3 is partitioned into several distinct modules which produce the following objects:
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® AMUI: muons reconstructed across the L3 detector giving the best estimate of their
energy and direction at the vertex, see section 3.4.

e Asrc: smallest resolvable clusters made out of TEC tracks and calorimeter hits. The
algorithm is optimised towards forming combinations of TEC tracks and clusters of
BGO crystals, that could be electrons or photons.

o Asjt: jets using the Asrc’s as fundamental building blocks, giving well separated
objects. A geometrical algorithm is used to combine the Asrc's into jets [42]. An
angular resolution of 30 mrad is reached. These jets are used to determine the initial
quark direction in the forthcoming analyses chapters.

2.10.4 Data flow and selection in Ls

Data from the L3 experiment is analysed by first filtering and reconstructing events in a
series of production steps. The output of this production is a group of datasets which are
ready for detailed physics anaiysis. Figure 2.15 shows the outline of the L3 analysis strategy.

During PASS 1 the raw data is checked for internal consistency (Validate), first order
calibrations are applied (DBL3), obvious background is filtered out (Level 4) and the re-
maining events are fully reconstructed by REGEL3. The program splits the reconstructed
candidate events into several output streams called “Physics Datasets”, one for each major
event candidate classification (e.g. multihadron events used for the analyses described in
this thesis). The event will always be written to the Master Data Reconstruction (MDRE)
file. PASS 1 takes place in 'pseudo-real-time’, that is within a few hours of data taking,
using 'first round’ calibrations.

After several PASS 1 jobs have been run, the output physics datasets corresponding
to each event candidate category are collected onto tapes. This results in a concentrated
sample of events for each of several analysis topics. The events are also written in a so-called
data summary format (DSU), a compressed version of the MDRE format, which can easily
be handled by the analysis groups. The physics analysis may include reconstructing selected
samples of events with improved calibrations and software.

The PASS 2 reconstruction is run after a full recalibration of the detector has been
completed. The number of events processed by PASS 2 is about one tenth of those processed
in PASS 1, if luminosity events are excluded. '

2.11 LEP

The energy of the LEP electron and positron beams in 1990 and 1991 ranged from
88.2 GeV up to 94.2 GeV divided into two times seven scan points around the mass of the
Z°. The absolute error for 1990 on the centre of mass energy was found to be 20 MeV,
obtained from a calibration of the accelerator with protons [47]. For the 1991 runs this error
was reduced to 5.3 MeV using the resonant depolarisation technique [48]. The luminosity
of the LEP machine in 1990 was typically 0.4 to 0.6 10%! cm~2s~! and in 1991 it was
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Figure 2.15: The L3 data analysis strategy.

approximately a factor 1.5 higher. This has yielded a total hadronic data sample of 428,006
events, corresponding to 17.6 pb™!.
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Box 2.2 The subdetector parameters
MUCH:
Angular acceptance: 44° < 6 < 136° for three layers
Angular acceptance: 36° < 0 < 144° for two layers
Ap/p =25% for p = 45 GeV and three layers
Ap/p = 20.0% for p = 45 GeV and two layers
Average radial distance: MI: 2.53 m

MM: 4.01 m

MO: 5.43 m
HCAL:
Angular acceptance: 35° <0 <145° for the barrel
Angular acceptance: 5.5° <0 <174.5° with endcaps
Absorption length: Ar=59-72
SCIN:
Angular acceptance: 34° < 0 < 146°
Angular acceptance: 93 % of the solid ¢ angle
Time resolution: 0.46 ns
ECAL:
Angular acceptance: 42° < 6 < 138° for the barrel
Angular acceptance: 10° < 0 < 35° for the endcaps
Energy resolution: ~ 6% at 100 MeV

~ 1.5% for energies above 2 GeV
Spatial resolution: better than 1 mm above 2 GeV
Radiation length: 21X,
Combining HCAL and ECAL (two-jet events):
Energy resolution: o/E = (55/VE + 5)%
Energy resolution: 10.2% at 91 GeV

Spatial resolution: 1.7° (30 mrad)
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Box 2.2 (continued):

TEC:

¢ resolution (SW):

z coordinate resolution (CD) :
Two track resolution:

LUMI:
Angular acceptance:
Angular acceptance:

Total error on luminosity:

TRIGGER (1991):
Beam crossing rate:
Level-1 trigger rate:
Level-2 trigger rate:
Level-3 trigger rate:

58 um
63 mm
640 pum

30.92 mrad < 0 < 64.41 mrad
|¢ — 90°| > 11.25° and

|¢ — 270°| > 11.25°

0.6% (1990)

0.6% (1991)

45 kHz
< 8.0 Hz
<6 Hz
2-3Hz
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Figure 3.22: Momentum dependence of resolution for triplets and doublets in the
Monte Carlo before smearing.
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The six fractions from the data are compared with the six fractions from the adjusted Monte

Carlo (M P) and a \* fit to yield 1. ¢; and 2 is perf d. The i

using the following equations:

Pinefl =

are

Naar (1= (1=9)")
(1= (1= 1)")
Vaur (1= (1= )% = 39(1 - 9)*)

+Ngea (1= (1= m)* = 39(1 = 9)")
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3.1 Introduction

As described in the previous chapter, section 2.2, the L3 muon detector consists of three
layers of drift chambers that measure position in the bending plane, and two layers that
measure positions in the non-bending plane. Since this configuration differs fundamentally
from other (LEP) detectors like ALEPH, OPAL and DELPHI [49, 50, 51], the algorithm for
reconstructing muon tracks is different as well. Where L3 has the muon chambers inside its
magnet, causing the muons to bend in the muon detector, the other LEP experiments have
their muon chambers outside their magnet.

Muon tracks in the L3 experiment are reconstructed in two detectors: the vertex detector
(see 2.7) and the muon detector. The muon detector samples the track in a 0.5 T magnetic
field over a distance of approximately 3 m (BL? ~ 4.5 Tm?). Taking an average energy loss
into account, the track is then back-tracked through the calorimeters to the vertex region
where the muon chamber track is matched with the corresponding TEC track yielding an
improved angular resolution at the vertex. Tracks that do not enter the TEC region are
considered to be cosmic muons or punch through coming from hadronic showers in the
hadron calorimeter.

The other three LEP experiments sample a muon track in their inner tracking detector(s)
in a larger magnetic field (1.5 T for Aleph) but over a shorter distance (=~ 1.5 m for Aleph
giving BL? ~ 3.4 Tm?). Since their muon detectors are situated outside the magnet, these
detectors are only used to tag the corresponding inner detector track as belonging to a
muon. In a high multiplicity event it will of course be difficult to combine the proper inner
detector track with the hits found a few meters away in the muon detector. Also the power
to reject tracks as being punch through in a high multiplicity event is reduced this way.

In this chapter the simulation and reconstruction of muons in the L3 detector are dis-
cussed. Emphasis is put on the algorithms used to project the measured drift time onto a
point in space on the muon trajectory.

3.2 Simulation of muon tracks in the L; detector

The simulation of the muon chamber response to charged particles is based on the
accurate simulation of the trajectory of this charged particle by Geant, on the accurate
description of the position of the wires in three dimensions and on the precise knowledge of
the real muon chamber’s response to charged particles.

The simulation of the response of the muon chambers to charged particles starts with the
hits that Geant produces in these volumes. The simulation of the drift times including time
of flight from the vertex to the muon chamber area of interest, time of signal propagation
along the wires and noise and resolution effects are steered by a routine which starts the
digitisation routines for the P chambers and the Z chambers respectively. In the rest of this
section only the part relevant to the P chambers will be described.

The digitisation algorithm starts by looping over all hits in the P chambers. This is done
in pairs, resulting in a string of pairs per layer, see figure 3.1. The drift time depends on the
pressure and temperature of the gas and on the magnetic field. Therefore, if the two hits are
in the same chamber, the pressure, the temperature and the magnetic field are calculated
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/
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Figure 3.1: Hits (depicted as crosses) recorded during a GEANT simulation of a
muon passing through two cells of a MM chamber.

midway between these two hits. This approximation is valid since the temperature and the
magnetic field gradient are small inside the muon detector. Sigel3 uses the magnetic field
map B(z,y, z), which has been computed by applying a fit to the data of magnetic field
sensors, mounted on the muon chamber system, see [52]. The temperature is assumed to
be constant all over the L3 muon detector.

All wires in a chamber that should give a signal are identified and the corresponding
drift times are calculated for each of them. The intercept of the particle trajectory (see
box 3.1) and the so-called “standard drift path” (see paragraph 3.3.1) of these wires is
calculated. With this information the drift time is calculated, using the “drift time drift
distance” relationship which will be described in paragraph 3.3.1.

To be able to do this accurately, the exact position of the sense wires must be known.
Due to gravity the wire positions are described by a chain curve and the deviation from a
straight line is described by: ;

z
8, =445(5-1)
in which A is the maximum deviation, 96 um, z the coordinate along the wire and X the
total length of the wire, see figure 3.2.
Once the actual position in space and the drift time are known, the time of flight and the
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Figure 3.2: Schematic drawing of the shape of the sense wires in the muon detector.

time of propagation can be computed and they are added to the drift time. The resulting
signal time is smeared by an approximated gaussian chamber resolution. The time obtained
is digitised, taking the TDC resolution into account. It should be noted that only a distance
dependent resolution is taken (see figure 3.3) whereas it is well known that the resolution
also changes as a function of the slope of the track, see [37]. This deficiency of the Monte
Carlo will be corrected for as explained in section 3.5.

350f

3005

2505

2oo§

15°<;' T T e e 50
Xinmm

Figure 3.3: The single wire resolution function used by Sigel3. x is the distance
from the sense wire.
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3.3 The L; muon reconstruction

Tracks in the muon chambers are reconstructed in several steps. During the first step
the reconstruction is limited to the individual P and Z chambers. Two dimensional pattern
recognition is performed yielding candidate track segments: P segments in zy and Z seg-
ments in yz. For this purpose a drift time drift distance relationship is exploited. In the

next step, these segments are associated with one another to form three dimensional track
candidates.

DataBase Dara cards

—

T ——(Initialisation

. RAW dara
Pre Processed
dara Mu prep

Mupseg

\

1
i

MUTK

Figure 3.4: Flow diagram of the Ls muon reconstruction programme, Mul3.

Figure 3.4 shows the flow diagram for the L3 muon reconstruction package. Following
the flow chart, the raw data is prepared before starting the pattern recognition (Murawd and
Muprep). After it has been checked that the necessary database information is read, the
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actual pattern recognition is started (Mureco). The data from the Z chambers is analyzed
first and once the Z segments are found, the algorithm for the analysis of the P chambers is
started. Mupseg, together with its subroutines, will be discussed in detail in section 3.3.2.
Once the P segments are found, Z segments are matched into Z tracks: a combination of
a Ml and a MO Z segment.

The P segments and Z tracks are matched together to form muon tracks. At this stage
the matching is limited to one octant only. Later on the inter octant matching is tried. The
matching is based on a x? test and the x? of any combination should be below a certain
threshold for the match to be accepted.

Once the three dimensional position of a segment is known, time of flight, and time of
propagation corrections as well as alignment corrections are applied to the individual hits.
The resulting parameters of the muon track, like position in space, momentum, curvature
and sagitta, are recalculated and stored in a data bank called MUTK.

There are three types of muon tracks:

e Triplets: the P segments from MI, MM and MO are combined into one track.
e Doublets: only two of the three possible P segments are matched to form one track.

® Singlets: Only one P segment was found and it could not be matched with any other
P segment in this octant.

This thesis will only describe the pattern recognition of P segments. For the equivalent
Z segment description | refer the reader to [41].

3.3.1 The L; drift time drift distance relationship

Probably the most critical routine in Mul3 is the routine that derives from a drift time
a point in space on the muon track. Because of its importance and because of its sophisti-
cation, the next paragraph is devoted to this routine.

A muon that crosses a L3 muon chamber creates about 100 ion-electron pairs per cm.
All the created electrons start to drift towards the sense (anode) wires along different drift
paths.

From the drift time recorded by the TDC connected to the wire one can calculate a
point P with coordinates (X(t),Y(¢)) on the muon track. The muon track parameters are
determined from a fit through a set of such points collected for all the wires (16 in a Ml or
MO chamber, and 24 in a MM chamber). In principle all the points P are points in three
dimensional space, but since the z coordinate is measured independently by the Z chambers,
the problem of finding the point P in the P chambers is treated in 2 dimensions. Corrections
as wire sagging due to gravity and relative alignment of the chambers are treated later in
the reconstruction program. The function (X (¢),Y(t)) is called the cellmap function. A
more elaborate description of the first three paragraphs can be found in [37]. Here | will
just give a brief introduction to these subjects in order to explain the paragraphs starting
with the paragraph “Near-wire corrections” on page 58.
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Mucell: the cellmap function for small slopes (|S| < 0.5)

The functions X (t) and Y (¢) are taken to be the same for all the wires in a cell and
for all cells. They depend on the magnetic field and the pressure, known quantities, and
on the slope of the track, where the slope of the track is the tangent of the angle between
the track and the wire plane. The drift time recorded by the TDC, after correction for the
zero-time offset and the time of flight differences, is represented by t. The aim is to find
the relations (X (t),Y(t)), given the pressure and the magnetic field. The different effects
to be taken into account are discussed in the following sections: for simplicity, the cellmap
function is first explained for zero magnetic field.

Cellmap for B =0

The cellmap function for zero magnetic field is given by:

— )
1 = e
where ¢ is the corrected drift time, v, (p) the drift velocity:
Vz(P) = Va0 + P15 + p2p” (3.2)
in which p is given by:
_FoBE T
P="g = (P77 —Po)/Po (3.3)

o

and in which S is the reduced slope of the track defined as the tangent of angle ¢ between

the track and wire plane normalised to the tangent of 22.5° (half the opening angle of an
octant):

S = tan(¢)/ tan(22.5°) (3.4)

and Yy ire the y coordinate of the wire on which the signal arrived.

Figure 3.5 shows the different paths along which electrons drift towards the sense wire.
The parabolic shaped lines, called isochrones, connect points of equal drift time on these
paths. Point Q is the position along the track where the first few electrons originate from.

The point P = (X (t),Y(t)) is defined as the point where the track crosses a “standard
drift path”. In the case of zero magnetic field the line Y = Ywire is used. For a track parallel
to the wire planes, the points P and Q are the same. If, on the other hand, the track is not

parallel to the wire plane, the point Q does not correspond to P and the slope dependent
correction term is needed.

Cellmap function for B # 0

If a magnetic field is present, the particles will drift under an angle a with respect to the
electric field, the so-called Lorentz angle, displayed in figure 3.5B. The first complication
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Figure 3.5: The drift paths of the electrons which all end on the sense wire and
the isochrones (parabolic shaped lines) in the drift cell showing the position of
point P and point Q in case of zero magnetic field (plot A) and in case of non
zero magnetic field (plot B).

presented by a nonzero field is this drift angle «, which varies as function of the electric
and magnetic fields and is parametrised as follows:

B
tana = c—— = a,B + a;p ~ tan(18.5%) (3.5)

E/p
The standard drift path is given by (see figure 3.6):

Ywire (X(t) <dp)
Y(i)= 3.6
0= e s frante)x)- ) (x5 4) (39)
The shape of this line roughly corresponds to the drift line of the earliest arriving electrons.
Very close to the sense wire the electric field increases. Since the drift angle is proportional
to B/E (see equation 3.5), the particles start to drift parallel to the field lines, which are
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more or less radial with respect to the sense wire. From extensive Monte Carlo studies the
distance d,, over which the drift paths are radial, was estimated to be 3.5 mm. The number
I is 1 or —1, depending on the side of the sense plane the particle passed through the cell
and on the sign of the magnetic field.

©B

Figure 3.6: Standard drift path (solid line) in a nonzero magnetic field. At small

distances from the sense plane (d, < 3.5 mm), the standard drift path is perpen-
dicular to the sense wire plane.

The geometrical effects in a magnetic field are not symmetric with respect to S, requiring
a correction to X (t) which is odd in S. Higher order terms in S are included to compensate
for deviations of the isochrones from a parabola; these terms are only important for large
slopes (i.e. S~ 1).

The magnetic field in the vicinity of the L3 muon chambers varies as function of position.
In the middle region the field is approximately 0.51 T, but closer to the doors the field goes
up to 0.58 T. This influences the drift velocity and so equation 3.2 is changed to:

v,(B,p) = Vg0 + P15 + pop® + 01 B (3.7)

-where the variable B is introduced, which corresponds to the normalised deviation of the
magnetic field from the nominal value of B, = 0.51 T:

*__(B_Bo)
B="—5

The final expression for X (t), used in this method is:

(3.8)

X(t) = va(B, B)t + co + boB + ¢15 + 352 + €383 + ¢, 5 (3.9)
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in which the coefficients all have been obtained from test beam data [37].

Near-wire corrections

Closer than 10 mm to the sense and mesh wires, the electric field starts to deviate
strongly from the homogeneous field in the middle region of the cell, see figure 3.5. An
attempt was made to include several corrections to X(t) for these regions. As mentioned
before, we need a cellmap function of the following form:

T = vm(B,;ﬁ)t + xo(B,ﬁ, 5’) (3.10)

where v, and o are known functions. This map can however not be used near the wires
and we need to correct x; for near wire effects. This correction takes the form:

2
Ty = 31 + Fy(5) <M> (3.11)
Td — Tyire
where z4 is the border of the region near the sense or mesh wire plane. Generalising this
approach, six areas (three at each wire plane) are distinguished: a border at 10, 6, and 3
mm (near sense) and at 45, 48 and 50 mm (near mesh) from the sense plane respectively.
If z1 is in the smallest near sense area, say z; = 2 mm, then Fj, Fg (if o < 6 mm)
and F3 (if z3 < 3 mm, z, is replaced by z, in equation 3.11) are applied in succession,

giving corrections on corrections. The functions F;(S) are of the following form (and are
not necessarily positive):

Flo(g) wo+w1§+w2.§2+w35’3
Fﬁ(g) = w4+w55’+w6.§'2+w75’3
F3(§2 = wsg+ wgé’ -|- w10§2 + w11.§'3 (3 12)
Fus(S) = wiz +wi3S? ’
Fis(S) = wia
F5o 5) = Wis

The constants wg, w1, ..., w;s have been determined from test beam data and are listed in

table 3.1.

After setting up this cellmap for the reconstruction, the inverse function is needed to
calculate the drift time t from a known drift distance z in order to produce events in the
Monte Carlo simulation. A problem occurs because the algorithm described above cannot
easily be inverted. One way out is to modify the cellmap function slightly and to iterate the
correction of equation 3.11 a few times (note that z;, the first variable on the right hand
side of 3.13, does not change in the iteration):

2
~ g — T
r3 = I +Fd(S) <#) (313)
Zd — Twire
~ [xqg—T 2
T, = z1+ Fy(S) (M) (3.14)
T4 — Twire
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This iteration converges rapidly such that z, — & = z, for n relatively small. Now the
inverse function can be calculated directly from equation 3.10 and 3.13 with z,, and z,,_;
replaced by a given 7 as:

~ 2
o = #- FyS) (ﬁ) (3.15)
t = (xl_xo(-é’ﬁﬂg))/vw(-éaﬁ) (3'16)

The number of iterations required depends mainly on S. Five iterations are enough for
|S| < 1.0 to guarantee that |z — X (f)| < 1.2 um. The mathematical details of this problem
are described in reference [53].

Muclbs: cellmap function for big slopes (|S| > 0.5)

The cellmap function, as described in the previous sections, will diverge if the slope
becomes too large (|S| > 0.5). In all cases where the muon has a momentum larger
than 7 GeV and originates from the interaction vertex the standard cellmap function will be
adequate. But for low momentum inclusive muons, relevant for the analysis presented in this
thesis, P segments with slopes larger than 0.5 are possible and they should be reconstructed
as well. For that purpose an additional routine to the standard cellmap function, called
Muclbs, has been constructed.

The construction of Muclbs

The parameters of the standard cellmap function were fitted to test beam data. In
contrast to this, the parameters used for this cellmap function are partly taken from simu-
lations [54] and partly adapted to real data from the L3 detector.

The idea is as follows. Instead of taking point P, see figure 3.5, point Q is taken to
describe a point on the muon track. This has the advantage that the coordinates of this
point will always stay inside the cell coordinates whereas the coordinates of P can get much
bigger than the cell coordinates if the muon travels about parallel to the standard drift path,
as can be seen in figure 3.5. In order to calculate point @ a mathematical description to
approximate the isochrones is needed.

wo = 0.062 w; = —0.25 wy = —0.63 wz = —0.027
wy = —0.14 ws = 0.29 we = 0.27 wy = —0.060
wg = 0.0037 | wg = —0.050 | wyp=—0.15 | wy; = 0.060
wiz = —0.050 | w3 =0.18 | wyy = —0.020 | wyz = —0.74

Table 3.1: The constants w; (in mm) which define the cellmap near wire corrections.
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Figure 3.7: The four regions dividing up the drift cell for Muclbs.

Figure 3.7 defines four regions in the drift cell. In region 1 and 2 circular isochrones are
assumed, with the sense wire in the origin:

2+ (y - z)2 = r% for region 1 (3.17)
a
2 +y? = 72 for region 2 (3.18)
The difference between equations 3.17 and 3.18 will be explained later on in this paragraph.
Region 3 and 4 are more complicated. The function describing those regions should stay
well inside the drift cell and have an approximate parabolic shape. Having these conditions
in mind, the following function was taken:
byz .
From this function only the part inside the asymptotes, see figure 3.8, is taken.  This
parabolic part is rotated and shifted, in order to get the z axis of figure 3.8 along the
standard drift path to match figure 3.5. Having chosen the function by which the isochrones
will be described, the parameters (b, ¢ and d) have to be chosen in such a way that three
conditions are satisfied:

1. The cellmap for (|S| > 0.5) has to be continuous with the one for (|S| < 0.5);
2. It has to be continuous between the four different regions;

3. It has to reconstruct real data as well as possible.
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X-axis

+|c| y-axis

Figure 3.8: The graph of function z = y%%f +d which has been used to construct
the cellmap function for large slopes.

The first condition simply implies that X (t) for |S| < 0.5 equals X (t) for [S| > 0.5 in the
case that |S| = 0.5 for all t. This is achieved in the following way.

Muon track

Figure 3.9: Picture to illustrate the algorithm of Muclbs in region 1 and 2.

® Region 1 and 2 (see figure 3.9): point P on the standard drift path is calculated with
given drift time ¢ and slope S = +0.5, depending on the region (1 or 2) by using
Mucell. Then the distance from the origin of the circle to the line ! going through P
with slope S = £0.5 is determined. This distance will be the radius r of the circle.
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Figure 3.10: Three pictures to illustrate the algorithm of Muclbs in region 3 and 4.

e Region 3 and 4 (see figure 3.10): line [ with slope £0.5 and point P on the standard
drift path, calculated with given drift time ¢ and slope S, are turned over the Lorentz
angle around point (3.5,0), the point where the standard drift path changes direction:
P’ " and S’ see figure A and B.

In figure B, the position of the asymptotes and point T, the point on line I’ through
P’ and on the isochrone, are imposed. Then the parameters b, ¢ and d are known.
After this the position of point Q' is calculated by parallel shifting a line with slope
S’ until it touches the isochrone. The point where they touch is Q’.

Finally, in figure C, Q' is turned back over the Lorentz angle to get Q and the point
on the track is reconstructed.
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The second condition means that in between the regions 1 and 3 and in between 2 and
4, there should not be a region of points through which no isochrone or two isochrones can
go. This is, however, inevitable and the best that could be done (so far) is to introduce
the % term in equation 3.17 to make the region between 1 and 3 as small as possible, see
figure 3.11. The value for parameter a is chosen to be 2.0.

- Region 3
3
Region 1
2

Figure 3.11: Isochrones showing, the
discontinuity between the regions 1, 2
and 3, 4. The drift time ranges from
K 81 ns to 101 ns with steps of 1 ns.
For slopes in between —0.5 and 0.5
point Q is projected on the standard
drift path which gives the solid line in
the area of y = 0.

-1

Region 2
-2
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-3
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Finally figure 3.12 shows the result of this algorithm. The isochrones are drawn discon-
tinuously because in the region |S| < 0.5 the cellmap for small slopes is used which maps
everything onto the standard drift path.

The construction of the inverse Smptbs

In the Monte Carlo package SIGEL3 a muon will give a track through a drift cell. This
track will cross the standard drift path in point P which is calculated. At this point, only the
coordinates of this point P and the local slope S are known. With these two quantities the
drift time ¢ has to be constructed. First the region (1, 2, 3 or 4) for point Q is determined
and then the parameters of the isochrone that will touch this muon track are calculated.
Knowing the isochrone the drift time can be calculated by extrapolating the isochrone to

the standard drift path for |S| = 0.5. The drift distance drift time relationship for small
slopes will give the drift time .
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Figure 3.12: The isochrones as produced by Muclbs and the projection of the
isochrones on the standard drift path by Mucell. At = 10 ns.

Figure 3.13 shows the maximum difference, M(S), as a function of the slope S, with
M(S) defined as

M(S) = max|z - C(I(z,S5),S)| for  z€[0.0 mm,50.7 mm] (3.20)

in which C(t, S) represents the cellmap function, I(z,S) its inverse and z the distance
from the sense plane. Figure 3.13 A displays the region for small slopes and figure 3.13
B shows the complete slope domain. From plot A it can be concluded that the error
stays well below 1.2 um which should be small compared with real data. Plot B shows a
discontinuous behaviour in the areas where the absolute value of the slope is around 2.0,
which is explained by the existence of the discontinuous areas in the cellmap for big slopes.
Despite this deficiency of the cellmap the error stays well below 100 um which is much
better than in the case of real data.

From tuning the parameters to real data it was found that the displacement in the zy
plane is less than 3 mm even for very big slopes.

3.3.2 The L; muon P pattern recognition

The starting point of the pattern recognition of tracks in the muon P chambers is the
investigation of the drift times from three neighbouring cells. Using a first order approxi-
mation of the drift time drift distance relation (see section 3.3.1), each drift time yields two
ambiguous points in the zy plane: a left and a right one, since the drift time does not carry
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Figure 3.13: Maximum difference M (S) as a function of the slope (see text). Plot
A shows the region for |S| < 0.55 and plot B displays the region from —10.5 to
2.0.

any information on whether the particle’s trajectory is situated on the left or on the right
side of the sense wire.

Each pair of consecutive wires gives four points which form two ambiguous vectors in Ty
space by combining the two left points and the two right points. The slope and the intercept
with a horizontal of all vectors in the three cells are put in a two dimensional histogram.
The bin with most entries gives a straight line, the first approximation for a track segment
candidate. All points closer to this straight line than a certain threshold, are used to fit
a parabola. At this stage in the reconstruction a parabola is a good approximation to a
circle. Through all ambiguous points a parabola is fit as well to avoid losing a valid segment
candidate too early.

A “drop-and-pick” algorithm is used to improve these segment candidates. The ones
that remain are called P segments and the procedure for finding tracks is repeated with the
drift times that have not been used so far.

Figure 3.14 shows the flowchart of the P chamber pattern recognition part. Mupseg is
the driving routine that loops over all muon cells that are “hit”", i.e. sense wires in those
cells received a signal.

Starting from octant 0, going from MI via MM to MO, all eight! octants are looped
over. As seen in figure 3.14, the first routine called in this loop is Mupmap, the routine
that creates a local map of the cell with a hit and (if possible) its two neighbouring cells.

1At this moment there is no z information yet, so there is no differentiation between Master and Slave
Ferris wheel.
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Figure 3.14: Flow diagram of one loop over a cell in the muon pattern recognition
programme, Mupseg. If a “stop” sign is encountered the pattern recognition in
this cell is aborted and the next cell with a hit is investigated.

This means that for these three? cells the identifiers of the wires with hits are stored along
with the number of (consecutive) hits on that wire.

The next routine being called is the most important one. Muppat performs the actual
pattern recognition as sketched above and patterns not found at this stage are lost. Muppat
uses a so-called histogram method to recognise patterns in the local map of the three cells.
First of all Muppat checks if the hits are distributed uniformly over the three cells: if the
number of hits in the left cell is below two and the number of hits in the right cell is above
two the pattern recognition will stop and it shifts one cell to the right. An average time of
flight correction is calculated for all hits in these cells by assuming the average z coordinate

2For the rest of this description | will assume that the primary cell is not an edge cell and has therefore
two neighbours.
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of 0.4y. This correction is applied to all drift times found in these three cells. In the next
step all drift distances, are estimated by using a first order approximation of the cellmap:

X(t)=(t— tcor)'vac,o +ca (3.21)
wire (X(t) < 3.5 mm)
Y(t) - { zwire + 1 - tan(a) . (X(t) — 3.5mm) (X(t) > 3.5 mm) (3'22)

In this way, each wire is associated with two coordinate pairs, viz. a left and a right side
solution, see figure 3.15. These coordinates are grouped two by two (left by left and right

left : right
ambiguity . ambiguity

Figure 3.15: This plot shows the result of the first step of the pattern recognition.
For each pair of neighbouring wires two vectors are created.

by right) to form two vectors in a two dimensional space.

The two properties of the vectors, the slope and the intercept with the horizontal line
perpendicular through the middle of the sense plane (see figure 3.15), are stored in a two
dimensional histogram. In this way the histogram gets about twice as many entries as hits
in the three cells. Figure 3.16 shows this histogram for a complicated real situation. The
two spikes in this histogram stand for the two left right ambiguities® of which the larger
one belongs to the segment that was finally chosen by Mupseg and which is drawn in the
three cells. All hits in the first cell are accepted, 4 hits in the second cell are dropped and
3 hits in cell 3 were never considered. This relatively low efficiency is due to the fact that
the slope is very large (see section 3.3.1).

Once the histogram is created, it is scanned for the highest population in a 2 bins by 2
bins square. The average slope b and intercept c are calculated and a first approximated P
segment candidate is found:

z=by+c (3.23)

3The term “ambiguity” will also be used for “one of the ambiguous solutions” .
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Having found this straight line, the pattern recognition starts all over again only this time
with the knowledge of the segment candidate: Muppat loops over all wires and calculates
the distance of each drift point P to this segment. If this distance is smaller than a certain
threshold the hit is accepted as belonging to this P segment. At the end the number of
accepted hits, Ny;is and the parameters b and ¢ are stored for further use.

Cell 1

Figure 3.16: The left picture shows three cells in a MM muon chamber in which a charged
particle created 32 hits. The small closed circles are the sense wires, the plusses are the hits
that are accepted by Mupseg and the open circles stand for hits that were accepted but dropped
later on. With these 32 hits the two dimensional histogram, shown on the right side, was filled.

If Npjits is too small, less than 6 for Ml or MO and less than 9 for MM, pattern recognition
in this cell is stopped and the next cell is tried. This check is performed after every step in
the pattern recognition. If on the other hand, Ny is large enough a parabola will be fit to
the accepted hits using a x? fit. Using the corrected drift time, the slope b, Zyire and Yyire
as input, Mucell will now calculate precisely point P in (x,y) space. With these coordinates
the three parameters of the parabola are calculated and stored for later use. Monte Carlo
simulations have shown that the pattern recognition is 100% efficient for muon tracks that
pass through a muon chamber by crossing three or less cells.

Now a “drop-and-pick” algorithm is started. This algorithm is tuned to the Monte Carlo
to maximise its efficiency. Addition of more “drop-and-pick” loops in the algorithm is shown
to be unnecessary. Hits that contribute most to the x? will be dropped. This deactivation
occurs if there is a hit that has a distance in z from the fitted parabola larger than 1 mm.
The parabola is recalculated and the drop procedure starts all over again until finally the
maximum deviation is smaller than 1 mm. With this new situation of used hits, the parabola
is refitted and a routine to recover (lost or never used before) hits, is started.
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So far, the pattern recognition has only found one ambiguity of the, in principle, two
possible P segments, see figure 3.17. At this stage in the muon reconstruction, the rejection
of one of the two ambiguities is only possible if it is certain that a P segment crosses a cell
boundary and has hits in two adjacent cells, see figure 3.16. The segment chosen so far

L R A I S T
9 o o 6 o 0 0 0 0 0 0 0 0 0 e o
e o o 6 o o 6 0 0 0 0 0 0 0 e o

Cell 1 Cell 3

Figure 3.17: This picture shows the fundamental problem in solving left-right
ambiguities if no cell boundaries are crossed: solution 1 can be just as valid as
solution 2. Only if one of the two does not match with another P segment while
the other one does, this can be solved. The dashed line (3) in the picture is the
standard drift path.

was picked by the histogram method of Muppat assuming a straight line P segment. Since,
at this point, the knowledge about the P segment is certainly not sufficient to decide that
the segment chosen is the only one possible, the ambiguous segment is created as well.

The three parameters of the parabola of the flipped P segment are calculated by taking
the “mirror image” of the parabola in the sense plane, taking the Lorentz angle into account,
as shown in figure 3.17. Starting from these parameters a parabola to the hits on the other
side of the sense wire plane is fit. From now on the pattern recognition has to loop over
two segment candidates.

By looping over all wires in the three cells additional hits are picked up. For every wire,
the hit closest to the parabola is tested to see if it is closer than 5 mm and if so it is
accepted. During the loop over one ambiguity the number of hits picked up in each of the
three neighbouring cells is counted and the middle value is saved. The number of wires
without picked up hits, no hits at all or too far off (i.e. more than 6 mm), while they should
have been picked up are counted as well.

A first attempt is made to solve the left right ambiguity problem. An ambiguity is
thrown away if one of the following conditions is satisfied:
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1: The ambiguity has too few hits, i.e. less than 3, accepted.

2: One of the two ambiguities crosses a cell boundary and picks up at least six hits more
in the neighbouring cell than the other, see for instance figure 3.16.

3: One ambiguity misses at least 8 hits more than the other.

4: The ambiguities have more than 50% of the hits in common which can occur if the
track is very close to the sense wire plane and one solution crosses the plane while
the other is parallel to it. In this rare case the solution that was found first is kept.

A parabola is fitted to the new situation of picked up hits. This is applied in parallel on
both versions if the second ambiguity is still present. The pick algorithm is applied again
after which the drop algorithm is used, only this time with a threshold of 2 mm in stead of
1 mm and it may have to loop over two ambiguous segment candidates.

If, after this series of picking and dropping hits, the number of accepted hits is still large
enough the parabola is converted into a circle with the parametrisation explained in box 3.1.

All hits that are used for a P segment are marked and Mupseg returns to see if in the
same cell another P segment can be found. This is done until the number of accepted hits
is below the limit (< 6 for Ml or MO and < 9 for MM) and the loop in Mupseg continues
to the next cell until the last one is reached. All important properties of the P segment(s)
are stored to be used by the matching algorithm discussed next.

3.3.3 The segment matching algorithm

The combination of the independently reconstructed P segments and Z tracks is done
octant by octant. In each octant all possible combinations of reconstructed Z tracks and
one, two or three P segments are investigated, where only combinations of P segments from
different chamber layers, MI, MM or MO, are considered. The P segments are refitted using
the time of flight and time of propagation corrections corresponding to the yz information
of the associated Z track. Depending on how many P segments (three or two) are matched
with one Z track, a specific x? test is performed on this candidate muon track. All resulting
tracks in one octant are tested for consistency with one and other: tracks that share P
segments are considered inconsistent. If two tracks are inconsistent, the track with fewer P
segments is rejected.

All the hits on the resulting tracks are recalculated taking into account all chamber align-
ment and wire sag corrections. Through these recalculated hits a “swim” fit is performed
taking the deviations from the nominal magnetic field, the energy loss and the multiple
scattering into account.

Tracks found in different octants are investigated to see if they could be combined in
one track. All the tracks are then back-tracked from the muon chambers through the
calorimeters to the interaction region, giving a first approximation of the momentum and
direction of the track at the vertex.

The x? test used for combinations of three P segments, triplets, is defined as follows.
For every P segment a set (z,y, S, C) is known with (z,y) the coordinates in the middle of
the cell on the circle, S the local slope at (z,y) and C the curvature of the circle. Through



3.3. The L3 muon reconstruction

71

Box 3.1 Muon trajectory representations in L;

A muon trajectory is represented by a helix, which corresponds to a particle
moving circularly in one direction and along a straight line in the perpen-
dicular direction. A helix can be represented by a circle and a sine going
through a reference point P which for simplicity is taken to be (0,0).

For P segments a parabola is a good enough approximation for a circle and
has the advantage that it can easily be fit through any number of points.
Subsequently, the parabola is converted to a circle.

The circle is represented by its curvature Cy which is the inverse of the
radius R and by a normalised vector (a, 3), (o + 32 = 1), pointing to the
centre of the circle from the reference point:

Co(z® + y?) — 20z — 28y = 0
This representation was chosen because of the following advantages:

e Cy = 0 is equivalent with a straight line.

e It involves no subtractions of large numbers in contrast to the 'normal’
circle representation, which makes this form more reliable on accuracy
limited computers.

e It is very easy to recompute («, ) if the reference point on the circle
is changed.

The sine can be represented by one parameter, ~:
C
sin (z_o - arcsin(ﬂ)) +Co(B—y)=0
Y

with v/a = tan(6), 0 the (pitch) angle between the plane z = 0 and the
direction of the sine in the reference point P.
A muon track is completely represented by : P,Cq,a, 3 and 7.
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the three sets of (x,y); a circle is computed and of this circle the slopes, S!, at the three
points (x,y); are calculated. With these quantities the x? is defined as:

2 _ E(5i=8)* | T(C:-C')?
o} ¢

X (3.24)

The o’s used in this formula are chosen such that good triplets are not lost due to P
segments with a bad fit at this stage of the reconstruction.

If the x? is less than a certain threshold the combination of P segments in question is
accepted as a “good” triplet. If no “good” triplets in this octant are found the x? value
is compared with ten times this threshold and if smaller the combination is accepted as a
“bad” triplet.

Due to the angular acceptance of the muon chambers in the zy plane (gaps between
octants) and, more importantly, in the yz plane (see figure 2.3) and due to wire cells that
are not operational, tracks may consist of only two or even one P segment. The x? test used
for matching two P segments, doublets, is defined as follows. From the two P segments
two sets, A and B, (z,y, S, C) are known just as for triplets. From (,y,5)4 and (z,9)p
a circle curvature is calculated: C;. From (z, y)a and (z,y,S)p the same is done: Cs.
Then the average is taken: C = 1(C; + C3) and the x?2 is defined as follows:

Ca—C)2+(Cp—C)? . (C1—C)2+(Cy—C)?
X2 ( A ) 2( B ) ( 1 ) 2( 2 ) (325)
o oz
AB 12

Again the o's are chosen such that the matching is 100% efficient. Remaining singlets
might later on be matched with tracks in the other octants.

After finishing all combinations quality checks are performed to reject “bad” triplets if
they use a P segment that is also used by a “good” triplet and to reject tracks that use
P segments that are also used by other larger tracks. Equally long tracks that share one
or two P segments are kept. In order to reach the resolution aimed for as described in
section 3.3 the three dimensional position of each wire has to be known with an accuracy
as good as 30 pum. For this purpose, all hits are calculated once again, only this time
using all alignment and sagging corrections of that particular wire with respect to the global
experiment coordinates. This information is present in the muon database, described in
section 2.10.

Now the best approximation of hits on the muon track are known and a swim fit through
all these hits is performed to find the best solution of the muon track. This fit is done by
using the average tracking and error propagation package GEANE [55]. This package makes
use of the accurate description of the geometry of the muon detector and uses the predictions
given by GEANT about the interaction of the muon with the detector materials. In this
way the best average muon track in the muon detector itself is found.

So far, all muon tracks are limited within the geometry of one octant. Tracks from
different octants are tested to see if they can be fit on one trajectory covering more than
one octant. Rare muon tracks with more than three P segments can be formed in this
way. All the muon tracks are then back-tracked through the calorimeters to the interaction
region using GEANE to give a first approximation of the momentum and position of the
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muon at the vertex. Energy losses and multiple scattering, especially in the calorimeters,
are calculated by GEANT. The muons obtained this way will be used by AXL3 to create
the final reconstructed muon tracks: the so-called Amui's.

3.4 AMUI: combining all information

All the subdetector packages have finished their local reconstruction and now AXL3 will
try to link all these building blocks together to form the earlier mentioned final reconstructed
objects. For the part of AXL3, that tries to find the best reconstructed muon track pa-
rameters, four subdetectors, besides the muon chambers themselves, are important: TEC,
ECAL, HCAL and MFLT. The flow diagram of the part of AXL3 that is specific for muon
tracks is shown in figure 3.18.

As stated before, at the end of MULS3, all muon tracks found were back-tracked to the
vertex region, i.e. the TEC area. During this back-tracking all errors on the track parameters
are propagated to this region as well. A very first attempt to solve possible ambiguities is
performed by crudely matching the muon track with the calorimeter hits. The ambiguity
that clearly misses calorimeter hits while the other matches them, is rejected. Muon tracks,
not originating from the inner detector region, are not further investigated by AXL3.

An attempt is made for the remaining muons to find a match with a TEC track. To
describe the quality of this match, for each combination a x? is calculated:

X=@E-HV@E-9 (3.26)
with £ and Eare defined as:
. (Q
T = (;7 ¢7 J") TEC
s _ (9
- (;’ ¢, x) MUTK (3.27)

where V is the inverse of the covariance matrix (weight matrix) of the measured # and &
V = (ohuTK +0% )", Figure 3.19 shows an event before and after performing the TEC
matching algorithm.

With this new constraint on the muon track an improved trajectory through the calorime-
ters is computed as described in reference [56]. Energy depositions in ECAL, HCAL and
MFLT are picked up if they are consistent with a minimum ionising particle and if so the
track parameters are adapted to these calorimeter hits.

Finally a global fit is performed to obtain the best information of the muon track at
the interaction vertex. For this purpose the following variables are used: all parameters
measured in the muon chambers, Q/p, the z and ¢ of the matching TEC track, the z of
the fill vertex, the z of the HCAL hits, the z,y,z of the ECAL hits and the z,y of the
MFLT hits.

Using all information from the other subdetectors, AXL3 will try to solve the ambiguities,
setting a flag for the best one. Those muons not originating from the primary vertices are
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Figure 3.18: Flow diagram of the muon part of the package AXL3. The finally
created object is called an AMUI track.

given a special tag as well. This can help the analysis groups to decide whether an AMUI

could originate from a prompt b — p decay at the vertex or from a m —  decay somewhere
in the middle of a jet in HCAL.

3.5 The resolution of the muon chamber system

Figure 3.20 shows the momentum spectrum for Z° — u*pu=(7) events. A Gaussian fit
to the data gives a momentum resolution, p = 0y,,/(1/p), of 3.1% (2.1%) for triplets and
21% (14%) for doublets at 45 GeV where the numbers in parenthesis are for Monte Carlo.

In contrast to what was mentioned in 2.10, the Monte Carlo used for the analyses
described in this thesis, has not been corrected for malfunctioning wires or other non-
constant effects affecting the performance of the muon chambers. In order to eliminate the
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Figure 3.19: An event before (left) and after (right) performing the TEC matching algorithm.

differences between data and Monte Carlo, the Monte Carlo momenta are smeared with a
Gaussian distribution until the two spectra are the same, see figure 3.21. This procedure

guarantees that the Monte Carlo predicts the same fraction of events above and below a
certain cut in this spectrum.

Since the momentum resolution is momentum dependent a Monte Carlo study is made
to investigate this behaviour. Figure 3.22 shows the result of this procedure. Also shown
in this figure is the parametrisation of this momentum dependence:

2 T1/p12 2 2, 2, 7
=|—] = —2.5)°+ + 3.28
p [ 1/;0] a“(p )+ B p ( )

with the Amui muon momentum, p, in GeV. The term 2.5 (GeV) in the above expression
is the average energy loss of the muon in the calorimeters. The parameters «, (3 and « in
equation 3.28 represent the following three contributions:

e o the intrinsic resolution of the muon chamber system;
e 3: the multiple scattering in the muon chambers;
e v: the energy loss in the inner detectors.

Assuming that the multiple scattering () and the energy loss () are well simulated, the
Monte Carlo resolution has to be changed by:

2 _ 2 2 _ 2 2 2
Psmear = Pdata — PMonte Carlo — (adata ~ OMonte Carlo)(p - 2'5) (3'29)

or

Psmear = \/(afiata - a%/lonte Carlo)(p - 2‘5) = Aa(p - 2'5) (3'30)
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Figure 3.20: Momentum, p, distributions for Z° — p* 1 () events. The dots are
data and the histograms are Monte Carlo. Left plot: triplets, right plot: doublets.

‘ Taking p{onte Carlo 20 P3ata from.ﬁgure 3.20 for the Z° —>'u+u‘ () events, equa-
tion 3.30 can be used to adapt the multi hadron Monte Carlo, making sure that it describes
the lower momentum inclusive muon tracks accurately as well. The values used for A, are:

_J (0.054+0.001)%  for triplets
Ao = { (0.37£0.01)% for doublets (3.31)

For the systematic error analysis in the forthcoming analysis chapters the error on A, will
be estimated to be 30% to take into account possible deviations at lower momenta.

3.6 Inefficiencies of reconstructed data muons with re-
spect to Monte Carlo

Since the multi hadron Monte Carlo describes the response of a perfect detector and does
not take into account malfunctioning wires, noise and other unexpected or non constant
effects, the Monte Carlo predicts not only better resolutions, but more muons as well.

Several methods are used to estimate this inefficiency which are described in refer-
ences [57, 58]. For estimating this inefficiency, muons with at least two P segments and at
least one Z segment are required. Here only one of the methods will be explained and the
results are compared with the other methods.

By counting the number of muon tracks with p P segments and z Z segments in the data
sample as well as in the Monte Carlo, a global inefficiency is calculated. This method takes
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Figure 3.21: Momentum, p, distributions for Z° — putu(v) events. The dots

are data and the histograms are smeared Monte Carlo. Left plot: triplets, right
plot: doublets.

the number of the muon tracks with 3 P and 2 7 segments, N3;, 3 P and 1 Z segments,
N31, 3 P and 0 Z segments, N3g, 2 P and 2 Z segments, Nay, 2 P and 1 Z segments,
N3 and 2 P and 0 Z segments, Ny from the data and the Monte Carlo sample. The
addition of the subscript M means Monte Carlo and the subscripts M P stand for adjusted
Monte Carlo (Monte Carlo prime). To avoid dependence on normalisation, partial widths
or branching ratio differences between data and Monte Carlo, all these numbers are divided
by the sum of the six numbers. Thus two sets of six fractions are obtained.

It is assumed that the probability to lose a P segment due to a malfunctioning cell or
due to data reconstruction problems is n whereas the probability to lose a Z segment when
it is a 2 Z segment track is €5 and the probability to lose a Z segment when itis a 1 Z

segment track is €;. Then the adapted number of muon tracks with p P and 2 Z segments
can be calculated:

Noomp = Noon (1 - 77)2
+Na1nm (1 - n)e;
+Naon (1 — n)%e2
+N3on3n(1 — n)?
+N3103n(1 — n)?e;
+Na2a3n(1 — n)?e2

Naamp = Nam(1-1)*(1 - €)
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Figure 3.22: Momentum dependence of resolution for triplets and doublets in the
Monte Carlo before smearing.
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+N2am2(1 — n)%ex(1 — €3)
+N31:30(1 — 1)%(1 — €1)
+Na2m6n(1 — n)2ea(1 — €3)
Naam(1—n)*(1 — €3)?
+Nsam3n(1 = 1)2(1 — €2)?
Nasoa (1 —n)?
+Ns1m (1 — n)’e
+N3apr (1 — )32
Naim(1—n)*(1 — 1)
+Na2pr2(1 — 1)3ea(1 — €3)

Naanr(1—n0)2(1 — €3)?) (3.32)

The six fractions from the data are compared with the six fractions from the adjusted Monte
Carlo (M P) and a x? fit to yield 7, €; and €5 is performed. The inefficiencies are calculated

using the following equations:

Dineff

Naim(1—(1—1)?)

+Noapr (1 — (1 —1n)?)
+Napm(1— (1—n)% = 3n(1-n)?)
+Na2ar(1 = (1 —n)° = 3n(1 - n)?)
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Prefft = Pineft/(Naim + Naans + Naiag + Naoar)
Noin(1 = (1 —€1))
+Noapr(1 — (1 — €)% — 2€5(1 — €))
+N31m(1 — (1 —€1))
+N3apm (1= (1 —€2)® — 262(1 — €3))
Zineff =  Zineff/(N21mr + Naaas + Naim + Naoar)
tineff =  Nam(1-(1-n)*(1-¢))
+Naam (1= (1= n)%(1 = €2)% = 2(1 — 9)2e2(1 — €3))
+ N3 (1= (1 —n)°(1 — e1) — 3n(1 — n)%(1 — €1))
+Na2m (1= (1 —1)°(1 — €2)® — 6n(1 — 1)2e2(1 — €3)
=3n(1 = n)*(1 - €2) — 2(1 — n)%e2(1 — €2))
tineff/ (N21:m + Naaar + Nains + Naaag) (3.33)

Zineff

Tineff

By using the method as described above, the total and partial inefficiencies for 1990,
1991 and 1992 are tabulated in table 3.2. As the momentum decreases the fraction of

1990 1991 1992

Pref |37 £03% | 234+02% | 40+02%
Zineff |21 £02% |19+01% |26+01%
Tineff | 57+£03% [ 414+02% | 64+02%

Table 3.2: Estimating the inefficiency of the 1990, 1991 and 1992 inclusive muon
sample with a 3 GeV lower momentum cut.

doublets and the fraction of 1 Z segment tracks rise. This is due to the fact that a low
momentum triplet can become a doublet because the track will curve outside the sensitive
volume. Therefore, the inefficiencies, higher for doublets and 1 Z tracks, rise as well with
decreasing momentum. Table 3.3 shows the momentum dependence of the inefficiencies
for 1990, 1991 and 1992 data taking period. In order to check the momentum dependence
prediction of this method, it is also applied to the Z° — ptu=(y) data sample. This result
is in perfect agreement with the lower momentum muons, as can be seen in table 3.3, and
with results obtained by other methods on this sample [41]. Comparing these results, when
possible, with the other methods mentioned yields a good agreement. The sum of the
statistical and systematic error is estimated to be 1.0%.

The numbers obtained in this and the previous section will be used in the systematic
error studies of the forthcoming analysis chapters.
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Total Inefficiency (%)
3-4GeV |4-8GeV | 8-12GeV | > 12 GeV | 45 GeV
1990 | 81 +1.0 | 54406 43+08 | 44+£08|42+02
1991 | 55+ 06 | 41403 35+05 30£04 | 324+0.2
1992 | 82+ 06 | 6.8 +0.3 51+04 | 49+£04 |49+01

Table 3.3: The total inefficiency of the 1990, 1991 and 1992 inclusive muon sample
as a function of the muon momentum. For comparison, the last column lists the
inefficiencies found using the Z° — p*u~(v) data sample.
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4.1 Motivation

The main motivation to study heavy flavour production at the Z° resonance is to inves-
tigate the Standard Model of electroweak interactions. In figure 4.1 the Feynman diagrams
for the first order electroweak processes ete™ — ¢z and ete— — bb are shown. As the

et c et b
> z° < > z° <
e” ¢ e” b

Figure 4.1: First order Feynman diagrams corresponding to the reactions
ete™ — cc and ete™ — bb. '

physical parameters obtained from heavy flavour physics should be the same as the ones
obtained from other physics channels, e.g. Z° — ¢+¢- (7), this results in a consistency test
of the Standard Model of electroweak interactions.

At LEP energies the huge increase in the cross sections for ete— — qq, displayed in the
left plot of figure 4.2, opens the possibility to perform detailed high statistics research.

As described in chapter 1, the physics related to the b quark is potentially interesting
and therefore emphasis is put on the study of the bottom quark. As will be explained in
section 4.2, the main background of e*e™ — bb events are e*e~ — ¢ events and at LEP
energies the signal to background ratio is relatively large. Let R be the ratio of the cross

sections of these two channels:
__o(ete™ — bb)
~ o(etem — co)

The Standard Model gives the following prediction if the centre of mass energy is below the
Z° resonance, where the photon exchange dominates (see equation 1.4):

olefe” —qq) ~ Q2

and so, together with table 1.1, one gets:
T Q2

On the Z° resonance the cross sections change dramatically (see figure 4.2) and become
proportional to the sum of the squared vector and axial vector coupling constants (see
equation 1.7):

=0.25

olete” — qg) ~ 'vg + ‘IZ
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Figure 4.2: The left plot shows the cross section for ete™ — bb (solid line) and
forete™ — ce (dashed line) as a function of the centre of mass energy \/s. The
right plot shows the ratio R of the two cross sections as a function of the centre
of mass energy /5.

From equation 1.2 and table 1.1 one gets:

vEx 050 al=1

V2017 a?=1
with v, the neutral current vector coupling constant and a4 the neutral current axial vector
coupling constant between the Z° and quark g. This implies:

o(ete™ — bb)
o(ete= — ce)

= ~ 1.3
and now a much more favourable situation occurs.

Another motivation to study heavy flavour physics is the following one. The forward

backward asymmetry at the Z° resonance is described by the Standard Model as (see
equation 1.19):

3
Asr = ZAeAf (4.1)
Figure 4.3 shows the quantities A; (left) and Ay 7 (right) for muons, ¢ and b quarks. From
equation 4.1 and figure 4.3 we can see that A, is more sensitive to sin® 8y, a fundamental
parameter of the Standard Model (see equation 1.3), than App. This implies that with the

same error on the forward backward asymmetry it is possible to extract a more accurate
measurement of sin® 6y from B physics than from lepton physics.
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Figure 4.3: The quantities Ay (left) and Ay (right) for quarks and leptons as a
function of the weak mixing angle sin? vy .

4.2 Selection of bb events

In order to select one particular type of event, in this case Z° — bb, specific properties
of these events have to be known. First of all, it can be seen as a special case of the more
general hadron sample, Z° — qg, with quark type ¢ = b. Therefore it is only natural to
start the bb selection from this hadron sample. To discriminate the b quark from the lighter
quarks, specific properties of this quark have to be exploited.

It is possible to tag a b quark through its semileptonic decay into a muon (see figure 4.4).
Since about 12% of all b quarks decay into a muon, 23% of all bb events contain at least
one b quark that decays into a muon. Unfortunately, the ¢ quark can decay semileptonically
as well and kaons and pions, produced in a jet, can also decay into a muon. Finally, hadrons
sometimes penetrate into the muon chambers and can therefore be mistaken for a muon,
the so-called punch-through. As a consequence, by simply selecting all hadronic events
that contain at least one muon, a very contaminated bb sample (see table 4.3) is obtained.
Fortunately, the fact that the b quark is relatively heavy (= 5 GeV), makes discrimination
between the b quark and the lighter quarks possible for the following reasons.

1. The mass difference between the B and the D meson is large and as a consequence
the muon that is created semileptonically will have on average a high momentum in
the rest frame of the B meson. In the laboratory system this gives a large momentum
component perpendicular to the b quark direction (approximated by the jet axis), p;,
as is shown schematically in figure 4.5.
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Figure 4.4: The Feynman diagram corresponding to the Spectator Model semilep-
tonic decay of a B? meson into a D7 meson. The s quark is the so-called spectator
(see chapter 1).

2. The b quark has a hard fragmentation, whichvmeans that the B-hadron formed during
the fragmentation process (see section 1.6), will get most of the energy of the b quark.

This implies that the muon originating from this B-hadron will have a relatively high
momentum.

Based on these two properties, an enriched bb sample can be obtained by requiring high p, p;
muons. The c quark, with its lower mass (~ 1.8 GeV) and softer fragmentation, produces
muons with lower p and p; but nevertheless still higher than those of muons from the decays
of hadrons containing only lighter quarks.

The p; of the muon is calculated with respect to the nearest jet within a cone of 90°
half opening angle around the muon. The jets are reconstructed using the Asjt algorithm,
see section 2.10.3. The muon is excluded from the jet and the jet should at least contain
6 GeV. A more elaborate study on this definition of p; can be found in reference [59].

Jet axis

Muon p

Figure 4.5: Definition of the transverse momentum, pt, the momentum component
perpendicular to the jet axis.
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4.3 Trigger efficiency and data handling

Inclusive muon events are triggered by several independent triggers. The primary trigger
is the energy trigger which requires at least 15 GeV in the electromagnetic and hadron
calorimeters. A second trigger, the single muon trigger, requires one of sixteen barrel
scintillator counters in coincidence with a track in the muon chambers. These triggers,
combined with an independent charged track trigger and a barrel scintillator counter trigger,
give a trigger efficiency larger than 99.99% for hadronic events containing one or more
muons. The efficiency of each of the four triggers is calculated by comparing the coincidence
rates with the other three triggers. The result of this exercise is shown in table 4.1. As

Trigger Combined with Efficiency
Energy Scintillator 99.90 + 0.02%
TEC 99.96 + 0.01%
Muon 99.59 + 0.05%
Scintillator Energy 95.11 + 0.15%
TEC 95.14 + 0.15%
Muon 94.54 + 0.17%
TEC Energy 96.03 + 0.13%
Scintillator 96.05 + 0.14%
Muon 95.64 £+ 0.15%
Muon Energy 84.82 + 0.26%
Scintillator 84.62+0.27%
Tec 84.78 + 0.27%

Table 4.1: Trigger efficiencies for inclusive muon events.

the numbers between different combinations agree well, the triggers can be assumed to be
independent. The inclusive muon trigger inefficiency is then estimated by taking the product
of the four largest trigger inefficiencies, which results in (0+£4)1075. The trigger efficiency,
one minus this number, is then larger than 99.99%. For more details on these triggers, see
chapter 2 section 2.9.

The data for this analysis is obtained in the following way. The events are selected
by the PASS 1 hadronic selection criteria (see figure 2.15). This PASS1 selection is an
OR combination of relaxed versions of the selection criteria described in section 4.5. All
events that survive these cuts are written on disk in DSU format. These DSU files are then
analysed and all events that contain either an inclusive electron candidate or an inclusive
muon candidate are written on special inclusive lepton DSU files, called LXDSU files.

The Monte Carlo events are selected in a slightly different fashion. Only five flavour
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quark production is simulated and all events that contain either an inclusive electron or muon
candidate, are selected and written to LXDSU files. All events that contain a generated
inclusive lepton, which has not been reconstructed, are saved as well, to be able to calculate
the inclusive lepton acceptances. The analysis is performed on these LXDSU files.

4.4 Monte Carlo simulation and classification

A Monte Carlo study is performed to predict the bb contents as a function of the
applied selection criteria. Approximately one million events were generated by the Lund
parton shower programme JETSET 7.2 [60] which is tuned to represent the Lz hadronic
data [26]. Colour string fragmentation is used and the fragmentation of the heavy quarks is
described by the Peterson fragmentation function (see section 1.6). The b-quark and c-quark
fragmentation were adjusted to match the L3 inclusive muon 1989 and 1990 data [61, 62]
in agreement with the extrapolations from lower centre of mass eTe~ experiments [31].
The Monte Carlo used does not include B°B° mixing. The generated events were fully
simulated with SIGEL3 and reconstructed by REGEL3. Average semileptonic branching
ratios, measured by L3[62] and other experiments [63], are used:

e Br(b— p + X) = (11.7+£0.6)%
e Br(c — p+ X) = (9.6 £0.6)%

The branching ratios of the cascades b — ¢ — pand b — & — p are factorised as Br(b —
c/e) - Br(c — p). Therefore, for the systematic error studies in the forthcoming chapters,
the ¢ — p branching ratio error has been increased to 1.2% to allow for uncertainties in the
b — € — p branching ratio (see figure 4.6), as well as for a possible different mixture of
D* and D° mesons in b quark decays.

The lepton spectra, coming from the Y(4S) data obtained by ARGUS and CLEO,
show that approximately 20 to 30% of all B hadrons, decaying semileptonically into a D
meson, produce a high mass D state, called D**: B — D**fv. D** is the generic name for
resonances with JPC = {0=+,17—, 1+~ 1% 2%}, The recent ARGUS measurement [64]
of Br(B — D** £71) of (2.3£0.6£0.4)% or (2.7 0.5+ 0.5)%, depending on the Monte
Carlo model used, indicates a D** abundance of (20 + 6)% and (23 + 6)% respectively.
Other studies [65, 66] seem to indicate an abundance of about 32%, whereas the theoretical
prediction using the ISGW model is about 11%[67]. Due to the large mass difference between
the D**and the lower mass D states (= 400 — 600 MeV) its presence yields a softer inclusive
lepton spectrum. Hence, the uncertainty of this abundance gives an uncertainty on the
inclusive muon spectrum and is therefore a possible source of systematic error. From the
above numbers, a D** abundance of (22 + 7)% is estimated and used in the Monte Carlo.

Monte Carlo events with inclusive muons are classified into eight categories!:

1: prompt b — u

1The notation b — p means the decay of a hadron containing a b quark into a muon plus its neutrino

and anything else. Similarly for ¢ — pu, etc. Charge conjugate processes are also implied. The notation
b 75 p means the decay ipto anything but a muon.
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the cascade b — ¢ — g
the cascade b — 7 — p
the cascade b — ¢ — p, explained in figure 4.6
b — background, containing also b — /v —u

prompt ¢ —

N9 RN

backgrgund muons: e.g. from pions, kaons and muons coming from gluon splitting
(g — bb with b — u)

8: background non-muons: punch through.

Figure 4.6: The diagram corresponding to cascade decay b — ¢ — p.

This classification will be used frequently in the analyses in the forthcoming chapters.

In order to correct for the effect of the differing resolutions in the data and the Monte
Carlo, the resolution of the momentum of the simulated muon and the angle between this
muon track and the simulated jet (or thrust) axis are changed by smearing them. The
amount by which the momentum and the angle have to be smeared have been obtained in
section 3.5 and section 2.4 respectively. The uncertainty of this procedure for the angular

smearing is estimated to be 50%. In doing so, the p; of the muon is automatically smeared
as well.

4.5 Selection criteria

Before continuing with the selection of the bb events the selection criteria of the Z° — qq
sample are described (see also [15]). The signature of these events is characterised by an
average energy deposition in the detector of about the centre of mass energy of the two
beams, a low energy imbalance in three dimensions and a high multiplicity of particles
produced in the interaction. An example of such an event is shown in figure 4.13. These
properties are therefore used to select Z° — qg events. After describing the hadron selection,
the inclusive muon selection is given, followed by the bb event selection.
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4.5.1 Hadron selection

Energy cut

0.42\/s < E;s < 1.5\/s, i.e. the total visible energy has to be in between 0.42 and
1.5 times the centre of mass energy. The total visible energy is defined as the sum of the
measured energy deposited in the calorimeters and the energy of the muons as detected
by the muon chambers. The lower limit is chosen somewhat lower than the one used for
the standard Z° — qg selection (0.5) to avoid losing events containing high momentum
neutrinos. Figure 4.7 shows the visible energy fraction for all selected events. All other

_
o
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e Data [] MC:all
ol MC: b

Events/0.05

10

0.4 0.8 12 16
Visible energy fraction

Figure 4.7: Visible energy fraction for selected events. All other cuts have been
applied. The hatched area indicates the bb events. The cuts are indicated.

cuts (to be discussed be|ow)_have already been applied. The hatched area in the figure
indicates contents of Z° — bb events. The normalisation of the Monte Carlo distributions,

as in all plots to come, is done by normalising to the number of selected hadron events.
There is good agreement of data and Monte Carlo.

Imbalance cut (1)

|Ey| < 0.5E,;, i.e. the missing energy parallel to the beam has to be smaller than 0.5
times the visible energy. The left plot in figure 4.8 shows the distribution for the longitudinal
energy imbalance fraction. Again all other cuts have been applied and the cut is indicated.

The small excess of data in the tail is due to two photon events [45] and will not cause any
systematic error.



90 Chapter 4. Heavy flavour production

Imbalance cut (2)

E, < 0.5E,;, i.e. a missing energy fraction transverse to the beam smaller than 0.5.

The distribution can be seen in the right plot of figure 4.8. The good agreement in the
signal region is evident.
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Figure 4.8: Energy imbalance fraction for selected events. All other cuts have been
applied. The hatched area indicates the bb events. The cuts are indicated.

Multiplicity cut:

The number of ASRC's, the smallest resolvable clusters of energy deposits in the
calorimeters (see 2.10.3), has to be large enough to ensure a high multiplicity event, thus
removing almost all 7+77 () events. The thrust axis is defined as the direction that max-

imises the projected energy flow. Quantitatively, the direction 7, which is called the thrust
axis, is chosen to maximise the following expression:

Rl (42

where p, is the momentum vector of particle a and the sum runs over all final state particles.
The multiplicity cut is then defined as:

Year | Thrust axis in barrel region | Thrust axis in endcap region

1990 > 13 >9
1991 > 14 > 18
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Due to the fact that the BGO calorimeter endcaps were only installed from the beginning
of 1991 these numbers are different for the two data taking periods. Figure 4.9 shows the
number of ASRC's in the barrel region (left) and the endcap region (right). All other cuts
have been applied. The hatched area indicates the Z° — bb events. The small peaks left of
the cuts are due to 777 (y) events. The excess of data on the right side of the distributions

is not yet understood. It will, however, not contribute to the systematic error since the cut
is not sensitive to this effect.
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Figure 4.9: The number of ASRC's in the barrel region (left) and the endcap
region (right). All other cuts have been applied. The hatched area indicates the

bb events. The cuts are indicated. The small peaks left of the cuts are due to
7t77(7) events.

4.5.2 Inclusive muon selection

A particle is identified as a muon if it satisfies all the following conditions.

P segment cut

The track has at least 2 (out of 3) segments in the muon P chambers to eliminate
spurious tracks and to get a good momentum resolution.
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Z segment cut

The track has at least 1 (out of 2) segments in the muon Z chambers in order to obtain
a good angular resolution with respect to the nearest jet.

Vertex cut

The track has to point to the intersection region in order to reject muons that clearly
do not originate from the interaction vertex:

e in the (x,y) plane the distance to the interaction vertex should be less than 404, with
a maximum of 200 mm, where o, is the error on the position of the track at the
interaction region in the (x,y) plane. The corresponding distribution is plotted in

figure 4.10. The inconsistency for small distances is not yet understood but causes
no systematic errors.
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[=]
Q . Bz .
S 3000 [+ [ Mmc: all £ ] MC: all
2z 2 2000
[0
>
w
2000
1000 F
1000
%9 100 T200 300 0
DCA R (mm) DCAR (inoy)

Figure 4.10: The muon vertex distributions in the (x,y) plane for inclusive muon

events compared to the Monte Carlo simulation. The hatched area indicates the
bb events.

e in the (y,z) plane the distance to the interaction vertex should be less than 40y, with
a maximum of 300 mm. The corresponding distribution is plotted in figure 4.11.

The inconsistency for small distances is not yet understood but causes no systematic
errors.
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Figure 4.11: The muon vertex distributions in the (v.z) plane for inclusive muon

events compared to the Monte Carlo simulation. The hatched area indicates the
bb events.

4.5.3 bb selection

Momentum cut

The track is required to have a momentum between 4 GeV and 30 GeV to reduce
background from p*pu=(vy) events, cosmic muons and to avoid any reconstruction error.
The left plot in figure 4.12 displays the muon momentum distribution for inclusive muon
events compared to the Monte Carlo simulation. The hatched area indicates the bb events.

Transverse momentum cut

The track has to have a transverse momentum, Pt, less than 6 GeV to avoid any
reconstruction error. The right plot in figure 4.12 shows transverse momentum distribution
for inclusive muon events compared to the Monte Carlo simulation. The hatched area
indicates the bb events. The inconsistency for the low p; is not yet understood.

4.6 Background

The contamination from ete™ — £+£~(v) processes, with ¢ = €, [t or T, is estimated
by analysing the main background process, i.e. £ = 7. Out of 20,000 simulated 7 events,
generated by KORALZ (see box 2.1), 688 events passed the hadron selection criteria and
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Figure 4.12: The muon momentum distribution (left) and transverse momentum
distribution (right) for inclusive muon events compared to the Monte Carlo simu-
lation. The hatched area indicates the bb events.

out of those 6 events passed the inclusive muon selection cuts. Let o},,4 and oy be the
cross sections for Z° — hadrons and Z° — £%4(7y) respectively and let A;pcmy be the

acceptance for inclusive muon events and Ay, the acceptance for background events, then
the fraction of background events, p, is calculated by:

Age g0
g Aincmu Ohad (4 3)
Using this equation, the estimated background from ete™ — 77~ () equals (0.17+0.01)
% for hadronic events and (0.025 4 0.011) % for inclusive muon events respectively. The
background coming from cosmic ray showers and beam gas or beam wall events were found
to be negligible by visually scanning [68] a number of events < 0.01%. This implies that
these backgrounds, not coming from Z% — ¢g, can be neglected.

4.7 Final event sample

After applying all the cuts, the total data event sample is known and shown in table 4.2.
Table 4.3 shows the results of Monte Carlo studies giving the fraction of each source of
muons and background for data samples with no cut on p; and with a p, cut at 1.00 GeV.
From this table, it can clearly be seen that the purity of the bb sample is increased if the

muon is required to have a high transverse momentum. Displayed in figure 4.13 is a selected
inclusive muon event.
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Year hadrons ¢+ hadrons
1990 114,346 5,833
1991 313,600 16,777
Total 428,006 22,610

Table 4.2: The data event sample as used for the analysis for the two running
periods separately and for the total of these two periods.

Category Ptp> 0.00 GeV Ptu> 1.00 GeV

Lb—opu 373 % 714 %
22b—oc—opu 108 % 65 %
3ZboT—op 18 % 18 %
4boe—pu 13 % 05 %
5: b — background 49 % 31 %
6:c—p 155 % 58 %
7. decay 85 % 32 %
8: punch through 199 % 77 %
Efficiency 430 % 346 %

Table 4.3: Monte Carlo estimates of the fractions of each type of muon in the

1991 data sample and the efficiencies of selecting a prompt b — p + X event with
these cuts.
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L RUN  NR | 318101 20/ 7/91
3 EVENT NR 252 02 32.02

Figure 4.13: An example of an atypical inclusive muon event.
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5.5. Determination of \, and CKM matrix elements 107

X
Figure 5.5: A comparison of Ls's B°B® mixing result with those from ARGUS
and CLEO. Also displayed is the Standard Model (SM) allowed (hatched) region.

Ja'=0.40 and f, = 0.12 is assumed, where \p = fava+ f.\.. The dashed lines
correspond to 1a errors in both cases.

AM, > 35107* eV at 90% confidence level
Equation 1.27 gives
Ma,Ba.f3, 14 _
= MaBn,, 1
Since the ratio &4, is expected to be close to 1.0, it is assumed that £4, = 1.0 and one gets:

As a last item of this chapter. the CP violation in the B system is investigated. Let a//
be defined by:

x4
e —
z.

(5.17)

= 0.5740.26 (5.18)

++

N V'

TN (5.19)
with N and N'”7 as in section 5.2. It can be shown that for leptons emanating from a
BaBg or B, B, system [73]

ap =

(5.20)

97
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5.1 Introduction

An event with two like charge inclusive muons is a signature for B®B° mixing since the
promptly produced muons propagate the sign of the b quark contained in the B meson.

Therefore, two high p, p; opposite side same charge muons are a candidate for an event in
which a B°B? transition took place.

Two methods are used to measure the mixing parameter xp defined in 1.5. One is
based on counting the number of high p, dimuon events with the same charge as compared
to the number with opposite charge and serves as a cross check for the second method.
The second method is based on a four dimensional fit to the complete p and Pt spectra
of the dimuons which uses the full information of the event. It requires large Monte Carlo
statistics to accurately determine the probability functions used by this method.

5.2 Selection of dimuon events

By requiring (at least) two muons with an opening angle ¢ larger than 60° in a hadronic
event the data sample, as tabulated in table 5.1, is obtained. Here the superscripts of the
capital N stand for the charges of the two muons.

Ptumin | NtT | N~ | N** | N*F | Total

0.00 GeV | 174 114 288 487 775
1.00 GeV 37 32 69 169 238

Table 5.1: The dimuon data sample containing the 1990 and 1991 data. The
superscripts of the capital N stand for the charges of the two muons.

The inclusive dimuon Monte Carlo sample can be divided into eight categories. Table 5.2
shows the Monte Carlo estimates of the fractions of these eight categories of dimuon events
in the data sample. The cascade decays b — 7 — u and b — & — p are contained in the
prompt b — u defined as category 21 in table 5.2.

Figure 5.1 shows the momentum distribution of the least energetic muon for like sign
dimuons (left) and for unlike sign dimuons (right) with p, > 1.0 GeV. The Monte Carlo
sample is normalised to the total number of dimuon events in the data. Since the Monte
Carlo contains no BB mixing, the excess of data dimuon events in the left plot and the
lack of them in the right plot is a clear signal for B°B°® mixing.  Figure 5.2 shows the
minimum transverse momentum distribution of the two muons for like sign dimuons (left)
and for unlike sign dimuons (right) with p; > 1.0 GeV. Again, the excess of data dimuon
events in the left plot and the lack in the right plot is a clear signal for mixing. Figure 5.3
shows a like sign dimuon event in the L3 detector (left) and an unlike sign dimuon event

(right).
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Muon Pair Category P> 0.0 GeV Pep> 1.0 GeV
21 bopbop 377 % 728 %
22: bocopub—oc—p 36 % 06 %
23: b boc—p 217 % 151 %
24: b — u, b — background 111 % 6.7 %
25: b — ¢ — p, b — background 29 % 09 %
26: b — background, b — background 07 % 02 %
27: cC— i, c— [ 73 % 07 %
28: others 150 % 30 %

Table 5.2: Monte Carlo estimates of the fractions of various categories of dimuon
events in the 1991 data sample. Since, in the presence of mixing, all charge
combinations are possible, the & superscripts on the muons are omitted.

5.3 The counting method

In the absence of mixing, as is the case in the Monte Carlo used, like sign dimuon events
can in principle only come from category 23 or categories where background is involved.
Other categories can only contribute to the true mixing by confusing the charge of one of
the muons in the muon detector. From table 5.2 it can be seen that, in the absence of
mixing, the fraction of events giving like sign dimuon events is small at high p;. Since the

charge confusion probability is small as well (< 0.5%), a large fraction of like sign dimuon
events in the data is a clear signal for B°B° mixing:

N:I:i N:I::t
(Data) = 0.290 + 0.029 ,
Niot tot

If a muon event is of type 21, there is a probability xp for each muon to flip sign due to
the oscillation of its B meson parent. This means that the probability to end up with two
like sign muons is the product of the probabilities of one muon flipping sign while the other
does not and vise versa: 2xp(1 — xB). For each category the same reasoning is applied.
Equation 5.2 shows how the mixing parameter, XB, can be obtained from the fraction of
like sign dimuon events.

(MC) = 0.198 + 0.017 (5.1)

N:I::i:
N, = (far+ f22) - 2xB(1 — xB)
tot

+fas - [(1 — xB)* + x%]
+f24 - [xB(1 = Xx5) + x5(1 — xB)]
+f25 - [(1 = xB)(1 — Xx5) + xBXS]
+f26 - 2x5(1 — x5)
+ fos - Pii (52)
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Figure 5.1: The distribution of the minimum of the two momenta for like sign
muons (left) and for unlike sign dimuons (right) compared to the Monte Carlo
distribution without mixing and with p, > 1.0 GeV.

In this equation xs, the effective mixing parameter for events of type 5, see table 4.3, is
defined as follows:

xs = (1= xB)(1 - c)+ xpc (5.3)
in which c is the probability that a b(b) quark will decay via some cascade (not b — ¢ — p,
b—¢— porb— 7 — u)into a negative (positive) particle which is detected as a muon
by the muon chambers. This implies that if ¢ does not equal 0.5 information about the
oscillation of the B meson is contained in the charge of the particle detected by the muon
chambers. P is the probability to detect two like sign background particles in the muon

chamber, which do not originate from a b quark (category 28). From the Monte Carlo
analysis we derive:

¢ =0.63 4 0.02 (5.4)
and
PEE = 0.54 4 0.02 (5.5)

Solving equation 5.2 for xp, using table 5.2 the following result has been obtained for
Pep> 1.0 GeV:
xB = 0.090 & 0.029 (5.6)

where the error is statistical only.

By varying all known quantities that could contribute to the systematic error in the

measurement of xp by their measured or estimated error, the systematic error on XB is
estimated.
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Figure 5.2: The distribution of the minimum of the two transverse momenta for

like sign muons (left) and for unlike sign dimuons (right) compared to the Monte
Carlo distribution without mixing and with p, > 1.0 GeV.

First, all known quantities that have a measured error are varied by this error (or in
case of Br(c — p + X) by two times this error as explained in section 4.4). Next, the
influence of the minimum p; cut is investigated. Figure 5.4 shows XB/XOB as a function of
the minimum p, with x% the nominal value for a minimum pt of 1.0 GeV: x% = 0.090.
This plot takes the relative change in statistics into account: for each Pt cut other than 1.0
GeV, the relative change in N** and Ny is calculated: ANEE and ANiot. Using the
same Monte Carlo fractions f; and Nior but N** + o(AN*%) instead of N*%, with

o(AN*E) = /ANy t(1 — 1) (5.7)

++
AN (5.8)
ANt

the change in xp is calculated. Applying this procedure to all points and normalising
them to x% results in the plot. As all variations in xB/X% are statistically consistent, no
systematic error due to this minimum p; cut is assigned.

Changing the definition of opening angle ¢ also changes the number of accepted events
and therefore this requirement has to be studied in a similar way as is done for the minimum
Pt cut. While the number of data events hardly changes by redefining ¢, the Monte Carlo
fractions f; do change slightly, causing a small variation in xB which cannot be statistically

accounted for by the change in the number of data events. Therefore, a systematic error is
estimated of £0.002.

with

t=
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22.4 GeV 15.1 GeV
2.3 GeV 1.7 GeV

Figure 5.3: Two inclusive dimuon events in the Ly detector; like sign (left) and
unlike sign (right). The two numbers assigned to each muon are Qupu and piy
respectively.

The uncertainty on the background fraction predicted by the Monte Carlo is estimated
by varying this fraction in the p, spectrum of single muons with 85% and 115% of the
Monte Carlo background. This covers the allowed variation of the background fraction and
the change in xp due to this uncertainty is +0.002.

As explained in section 4.4, the difference in muon momentum resolution and jet angular
resolution between data and Monte Carlo causes a difference in the muon p: resolution
between data and Monte Carlo. In order to study the systematic influence on xB of this
effect, the Monte Carlo muon momentum and angle between muon and accompanying jet
are smeared. The change in xp is 40.001.

The charge confusion for muons is estimated to be (0.2 4 0.2)% from a study of the
Z° — 77~ events [58] where a T decays into a muon. As the average muon momentum
for muons coming from 7 decay is higher than the average muon momentum for inclusive
muons, this is a conservative estimate. This value is also consistent with the study of
Z° — ptpu~ events, yielding 0.3%[41]. The measurement of x g is corrected for this effect
and its error corresponds to changes in xp by £0.002.

The effect on xp of the uncertainty in the D** abundance (see section 4.4) is studied
by varying this abundance in the range (22 + 7)%. The measurement of x5 changes less
than 0.001 and therefore no systematic error has been assigned.

Finally the influence of the limited number of Monte Carlo events on the knowledge of
the fractions f; is calculated to give an additional uncertainty of +0.008 on xB- Table 5.3
summarises this systematic error study. The biggest contribution to the total systematic
error, being the Monte Carlo statistics, can only be reduced by producing even more Monte
Carlo events in the future. Although the errors arising from the two branching ratios Br(b —
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Figure 5.4: The variation in x/x% as a function of the minimum p;.

1 + X) and Br(c — p + X) are among the three largest contributions, no effort has been
put in reducing them since the value for xp obtained in this section is only to be used as a
cross check for the method described in the following section.

5.4 The four dimensional unbinned likelihood fit

In stead of the straight forward calculation of the mixing parameter x g as demonstrated
above, an event by event unbinned maximum likelihood method is applied to the complete
p and p; spectra of the selected dimuon events. Unbinned indicates that a likelihood is
calculated for each data event separately contrary to calculating one likelihood for several
data events contained in one bin, i.e. a four dimensional box in (p1, ps1, P2, Pr2) space.

The likelihood function is defined as

N
1

c=T[rG) with  £G) = S Npy())Wis(s 5.9

16 0= S L O (69

in which f(i) is the probability density and Ny ; is the number of Monte Carlo dimuon
events of type (k,l) found in the volume of the four dimensional box Vj(i) around data
point i. N(M) is the total number of data (Monte Carlo) events selected as dimuons. M
is normalised by multiplying it with the ratio of the number of selected data hadron events

and the number of selected Monte Carlo hadron events. Wi,i(4), the weighting function, is
defined as follows:

Wk l(z) _ (1 _ Xk)(l _ Xl) + XeX1 for (Q1(I2)Data — ((I1Q2)M°nte Carlo
, (1 _ Xk)Xl + (1 _ Xl)Xk for (Q1Q2)Data # (qlqz)Monte Carlo
(5.10)
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Contribution Axp
¢ =0.63 £+ 0.02 0.001
P** =0.54 + 0.05 0.001
Changing the definition of opposite side from 45° to 90° 0.002
Br(b — p + X)=0.117 & 0.006 0.005
Br(c — p + X)=0.096 £ 0.012 -| 0.005
Variation of the background fraction by +15% 0.002

Smearing of the muon momentum by Ap/p = A, £30% and smear- | 0.001
ing of the angle between the muon and the nearest jet by (0.6 +0.3)°
Changing the fragmentation parameter e,= 0.050%0.006 and chang- | 0.002
ing the fragmentation parameter ¢.= 0.5 & 0.1

Charge confusion: (0.2 + 0.2)% 0.002
Monte Carlo statistics 0.008
Total systematic error in xp 0.012

Table 5.3: The various contributions to the systematic error of XxB as derived by
the counting method.

Category k Xk
Lb—p XB
22b—oc—op XB
Zbo>T—>p XB
4 boc—p XB
5: b — background X5
6:c—pu 0
7: decay 0
8: punch through 0

Table 5.4: The amount of mixing used in the fit method for each category.

The amount of mixing, xx, for category k is given in table 5.4 in which ys is defined as
before (equation 5.3). The two cases in the definition of W}, ;(i) reflect the two possibilities
to match the product of the muon charges, (g192), of the data event with that of the Monte
Carlo event found in the box: if the product of charges is the same then either both Monte
Carlo muons flipped their sign due to the oscillation of their parent B meson or none of
them did; if the product of charges is not the same then one of the muons changed its sign
and the other did not.
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By maximising this likelihood £ as a function of xp, or as is done in practice, by
minimising —log £, a value of xp is found that gives the most probable Monte Carlo
description of the data. For the minimisation procedure MINUIT [69] is used.

The size of the four dimensional box is an unphysical parameter and has to be chosen
a priori in unbinned fit methods and, as a consequence, has a systematic effect on the
measurement. The box size is initially chosen to be (0.5 x 0.5 x 0.1 x 0.1) GeV* but is
allowed to increase with a factor 1.2 in both p; and p;; until it contains at least 40 dimuon
Monte Carlo events. The box size is limited to (7.7 x 7.7 x 1.54 x 1.54) GeV*, which
corresponds to 15 steps in p and p;. A few events do not satisfy this requirement and
are no longer considered in the analysis since their calculated likelihood is considered to be
unreliable. The minimum number of events in the box is varied in order to estimate the
systematic error arising from this procedure. For this purpose special Monte Carlo files were
used in which at least one b quark decayed semileptonically.

The main difference between the counting method and the likelihood fit is that the
counting method is more sensitive to variations in the background (punch through etc.)
which makes it necessary to apply a minimum p; cut. This restriction can be released in the
likelihood fit method thus providing more selected events and thus reducing the statistical
error on xp. Also the systematic effect when changing the branching ratios Br(b — p +
X) and Br(c — p + X) is reduced in the unbinned likelihood fit method.

The following result has been obtained from the fit:

xp = 0.118 + 0.027 (5.11)

where the error is statistical only.

The same systematic error study as for the counting method is performed. One new
possible cause is investigated, namely the minimum number of Monte Carlo events sampled.
By requiring a minimum of 30 and 50 in stead of 40 events in each box, xp changes by
+0.006. Again, as in the counting method, the uncertainty in the D** abundance is of no
influence on xp. The result is summarised in table 5.5. The biggest contribution to the
systematic error comes again from the limited number of Monte Carlo events. The use of
the additional special Monte Carlo files helped to get the uncertainty down to 0.006 but
even more Monte Carlo events are needed in the future to reduce this number.

Comparing this result with that obtained with the simple counting method it can be
concluded that both methods give consistent results. The L3 measurement of XB, Which

includes the inclusive electron analysis as well, is 0.121 £ 0.017(stat) + 0.006(syst) [70], in
good agreement with this analysis.

5.5 Determination of x, and CKM matrix elements

‘In figure 5.5 the L3 mixing result is shown in the x, — xq plane together with the
Standard Model constraint on these two parameters [17]. Also shown in this plot is the
combined result from the recent ARGUS and CLEO measurement on BYBY mixing on the
Y (4S) resonance [71]:

x4 = 0.177 £ 0.021 (5.12)
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Contribution

Axgs
c=0.63 +0.02 <0.001
Changing the definition of opposite side from 45° to 90° 0.001
Br(b — u + X)= 0.117 & 0.006 0.003
Br(c — u + X)= 0.096 £ 0.012 0.002
Variation of the background fraction by +15% 0.001

Smearing of the muon momentum by Ap/p = A, +30% and smear- | 0.003
ing of the angle between the muon and the nearest jet by (0.6+0.3)°
Changing the fragmentation parameter e,= 0.050+0.006 and chang- | 0.002
ing the fragmentation parameter e.= 0.5 + 0.1

Charge confusion: (0.2 + 0.2)% 0.002
Minimum number of Monte Carlo events sampled: 30 to 50 0.006
Total systematic error in xp 0.008

Table 5.5: The various contributions to the systematic error of XxB as derived by
the likelihood fit method.

Xs can be calculated using these two measurements and xp = faxa + fsxs (1.31). It
is assumed that all B mesons have the same semileptonic branching ratio and values for
fs and f4 are taken as described in the corresponding theory section in chapter 1. Not
imposing the physical constraint 0 < x, < 0.5, yields:

Xs = 0.42+0.17 (5.13)
Imposing this physical constraint, gives a one-dimensional limit of:
Xs > 0.18 at 90% confidence level. (5.14)

The measured value of x; is sensitive to the relative production fractions of different
b-hadrons. The dependence of x, on f, is shown in figure 5.6, under the assumption that
Ju = fa. The 1o errors include a 50% uncertainty on the value of fg. The effect of this
uncertainty is a factor 5 smaller than the statistical errors. The value of x, is consistent
with maximal mixing for any reasonable choice of f;, f, and f5g.

Using equation 1.30, x4 = #2/(2(1 + z2)), the quantities 4 and z, can be calculated,
giving:

zg = 0.74+0.07 (5.15)
zs > 0.70 at 90% confidence level

Combining equation 5.15 with the L3 measurement for 75 = I'g' = 1.32 + 0.12 ps [72],
constraints on AM; and AM, are obtained, assuming I'y = I'y = I'p:

AMy; = (3.7+£05)107% eV (5.16)
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Figure 5.5: A comparison of L3's BB mixing result with those from ARGUS
and CLEO. Also displayed is the Standard Model (SM) allowed (hatched) region.

fa=0.40 and f, = 0.12 is assumed, where xp = faxa + fsxs. The dashed lines
correspond to 1o errors in both cases.

AM, > 3.5107% eV at 90% confidence level
Equation 1.27 gives:

V 2 M B 2 .
td) _ B 7B.JB, Bsf‘gs Td _ ¢, Td (5.17)
Vis MBdBBded Ts Ts
Since the ratio {45 is expected to be close to 1.0, it is assumed that &4s = 1.0 and one gets:
Vi
24 = 0.574+0.26 (5.18)
Vis

As a last item of this chapter, the CP violation in the B system is investigated. Let ag
be defined by:

(5.19)

with N*+ and N~ as in section 5.2. It can be shown that for leptons emanating from a
BgBj or BB, system [73]:

++ —
Ng™ — Neg _ lpgl|® — lgq|?
N;,—;+ + N,:f,_ Ipq|? + gq|?

aq

(5.20)
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Figure 5.6: x. as a function of f;. The dashed lines are 1o errors and include a
50% uncertainty on the value of fg, the fraction of B baryons produced.

with p, and g, as defined in equation 1.23. Using equation 1.24, we get:
aq = (B}|B?) (5.21)

Since By and B, mesons are both produced at LEP, ay is a weighted average of ay and
as [73]:

age ~ 0.59a4 + 0.50a, (5.22)
In order to calculate ay, the following equation is used, with fi as in section 5.2:
28
au(data) = Z fiage(i) (5.23)
=21

in which ag(3) is the asymmetry for category i. Taking f; from table 5.2, age(data) from
table 5.1 and ag(i) for i = 23,...,28 from the Monte Carlo sample, ag = ap(21) =
age(22) can be calculated using equation 5.23:

age = 0.10 £ 0.16 (5.24)

where the error is statistical only. This implies 0.59(B}|B2) + 0.50(B}|B2) = 0.10 +
0.16 which is consistent with 1073 to 10~* as estimated in the context of the Standard
Model [12].
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XB
XB
XB

Xs
Via
Vis

Box 5.1

xB» Xs and CKM constraints

0.090 £ 0.029 (stat) + 0.012 (syst) from counting
0.118 + 0.027 (stat) + 0.008 (syst) from fit

0.121 £ 0.017 (stat) + 0.006 (syst) from L3

0.18 at 90% confidence level

0.57 +0.26
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Mean /5 A

89.33 GeV | 0.044 + 0.067 + 0.008
91.24 GeV | 0.086 £ 0.022 + 0.008
93.08 GeV | 0.102 £0.053 + 0.008

Table 6.5: A4,; for different center-of-mass energies. Note that the systematic
error 0.008 is common to all points.

Ly measurements of A,; and A, which includes inclusive electron analysis as well, are
0.086 & 0.015(stat) & 0.007(syst) and 0.083 % 0.038(stat) = 0.027(syst) respectively [74].
in good agreement with this analysis.

To study the asymmetry as a function of the centre of mass energy. the data sample is
divided in energies below. on, and above the Z" resonance. The results for Ay are shown
in table 6.5. Because of limited statistics, this procedure has not been performed for the
Ace measurement.

6.5 Determination of sin?#f,

After including the Ly measurement of A,; and Ace with inclusive electrons, the results
for Ay; and Ace are [74]:

Ay = 0.08620.015:+0.007 (6.15)
A = 0.0830.038 % 0.027

The program ZFITTER [14] is used to perform the QED and QCD corrections and

extract sin® fyy ~
sin? fiy = 0.2336 % 0.0029 (6.16)

Figure 6.5 shows the energy dependence of -1, for the Standard Model expectation with
sin? fiy = 0.2336 compared with the data.

A comparison with the results from the Ly lepton asymmetry [45] and Ly  polarisation
measurement [75] is shown in figure 6.6. The measurement of sin® fyy: from A,; has the
smallest error (see section 4.1). Averaging the three numbers gives: 0.2315 % 0.0019.

The top quark has not yet been observed directly. However, from the Born approxima-
tions for I;,. equation 1.11. and ;. equation 1.19, one can see that depending on the
isospin quantum number 5 the following is obtained:

Puiliy=-1/2

380 MeV  Aylp_im 008
Puilig=o

= 30 MV gl %0 (6.17)
Clearly. the case [5 = 0 (isospin singlet) is ruled out, not only by the measurement of
I, = 389 £ 23 MeV., as described in the next chapter, but by the ., measurement as

111
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6.1 Introduction

In this analysis, the forward backward asymmetry, App, defined in section 1.4, is cal-
culated by tagging b and c quarks through their semileptonic decay into muons. With the
charge of the muon, Q,,, the direction of the b quark is given by —Q, cos Oinrust- Othrust
is the angle between the thrust axis of the event, the best approximation of the quark di-
rection, and the ete™ beam. The direction of the thrust axis, two possibilities, is chosen
to be the one closest to the muon, see figure 6.1. For ¢ quarks, since the semileptonically

Forward Backward

n;e{“/; et / et
b

Figure 6.1: Definition of forward and backward through —Q,, cos O thrust-

produced muon has the opposite charge of a muon from a b decay, not A but —A
determined this way.

For the b quark asymmetry a complication occurs due to the BY B oscillations, described
in the previous chapter. This effectively reduces the observed asymmetry by a factor (1 —
2xB) because such an oscillation will change the event from being interpreted as forward
to backward and vise versa:

cé IS

AP = Ag(1 - 2x) (6.1)

As there is no observable mixing in the D meson system, A,z is measured directly.

6.2 Event selection and angular distribution

Events with (at least) one muon are required and the data sample is described in ta-
ble 6.1. The data sample is split into three energy bins:
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1. below the Z° peak: /s < 90.75 GeV;
2. on the Z° peak: 90.75 GeV< /s < 91.75 GeV,
3. above the Z° peak: /s > 91.75 GeV.

DPtumin | below | on the peak | above | Total

0.00 GeV | 1957 17,788 2865 | 22,610
1.00 GeV | 825 7,706 1257 | 9,788

Table 6.1: The single muon data sample containing the 1990 and 1991 data.

Figure 6.2 shows the —Q,, cos Oypyst distribution for all selected inclusive muon events
with p, > 1.0 GeV. By counting the number of events in the forward and in the backward
direction, a rough estimate of the observed asymmetry, A", is calculated. Using only

events with |cosfipryst| < 0.8 and correcting the observed asymmetry for this angular
acceptance, yields:

obs _ NF — Np 3+ cos?(0.8)
A = Nr+ Ny 4cos(0.8) ~ 0.045 + 0.011 (6.2)
This observed asymmetry is a net effect of all the different sources of inclusive muon pro-
duction in the sample (see table 4.3). After requiring p;,> 1.0 GeV, the fraction of prompt
b — p events is almost doubled and the background fraction has become small enough to be
subtracted without introducing a large systematic error. Applying geometrical acceptance
corrections and sequentially subtracting all background processes results in figure 6.3. For
this plot, the geometrical acceptance is estimated by adding to the data —Q, €08 Oipryst
histogram its mirror image @, cos Oyp,yst- This should result in a (1 + cos? 0) distribution
and each bin is, after normalisation, corrected to meet this (1 + cos? §) distribution. Under
the assumption that the detector is symmetric in Q,, cos fypyust, this procedure guarantees
that the asymmetry will not be influenced by a discrepancy between data and Monte Carlo.
This assumption is shown to be valid using the Z° — putp~ sample [15]. This fact will
be exploited in the determination of A,; as described in the following section. The dis-
tribution in figure 6.3 is clearly asymmetric. The solid curve shows the distribution for
A‘;Ebs = 0.067 £ 0.015 obtained in the following sections.
The b quark asymmetry is determined in two ways. The first, based on a simple method,
will serve as a cross check to the second, more complicated, method.

6.3 Simple fit method

In this section a simple way to determine A,; from the data is described. It makes
use of the fact that after requiring that all muons have a high Ptu, most of the events
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Figure 6.2: The distribution of the measured b quark direction (thrust axis) for the
inclusive muon data with p; > 1.0 GeV.

will be prompt b — u events, see table 4.3. Since all events are produced with the same

1+ cos?26 + gA,- cos distribution, the observed asymmetry, A°*S can be calculated as
follows:

A = (1-2xB)Ay(fr — fo+ fs + fa) (6.3)
+  Asfs — Acefe + Avack(f7 + fs)

in which the f; are the relative fractions of the various event types, (table 4.3). In this
equation, Agsbs is already replaced by (1 — 2xp)A,; as explained in the introduction of this
chapter. The negative sign for f, is a consequence of the fact that in this cascade decay
(b — ¢ — u) the sign of the muon is opposite to the sign of the muon coming directly from
a b quark. The minus sign in front of A.; is needed because in the decay ¢ — p the muon

has the opposite sign of a muon originating from a b — u decay. The quantity As (strongly
related to x5 of equation 5.3) is defined by

As = (2¢— 1)Ag(1 - 2xB) (6.4)

in which c is the probability that a b(b) quark will decay via some cascade (not b — ¢ — p,
b—¢— porb— T — pu)into a negative (positive) particle which is then detected by the
muon chambers. This means that as long as ¢ does not equal 0.5 information about the
charge of the B meson is still available in the charge of the particle detected by the muon
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Figure 6.3: The acceptance corrected distribution of the measured b quark direction
(thrust axis) for the inclusive muon data withp, > 1.0 GeV. The solid curve shows

the distribution for the fit result Af,;bs = 0.067 £ 0.015. The dashed lines indicate
the experimental statistical uncertainty.

chambers. From the Monte Carlo c is determined to be 0.63 + 0.02 (equation 5.4). A is
removed from equation 6.4 by exploiting the fact that the Standard Model constrains Az
to approximately 0.7A,; at \/s & Mz. Ap.ck is taken from the Monte Carlo asymmetry
for events of type 7 or 8, restricting the muons to Ptp> 1.0 GeV.

A% and Apack are derived, from the data sample and the Monte Carlo sample re-

spectively, in the following way. The —Q 08 Oy pyst distribution is divided into 20 bins
and out of these 20 bins 10 pairs are taken by coupling each bin with its opposite bin in
—Q. €08 Oihpyst. For each pair of bins at + cos6; the likelihood f () is constructed:

1 §A°bs cos8;

. F; B; : 3 i

i . 7 \Nt . + 1 6
f(l) Ps (1 pZ) ith  pi 2 ( 1+ cos? 6; > ( 5)

in which F; and B; are the number of events counted as forward respectively backward
in this £ cos®; pair and p; is the probability to be a forward event. By pairing opposite
bins in cos 6, acceptance effects can be neglected under the assumption that the detector
is symmetric in cos @ and symmetric for positive and negative muons. This then gives the
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likelihood function L:
10
=116 (6.6)
i=1
By optimising £ (as described in the previous chapter) A°PS and Apack are calculated:

A% = 0,040 +0.011 (6.7)
Apack = —0.010 £ 0.022 (6.8)

Now equation 6.4 can be solved for Az, using xp = 0.121 + 0.018 (see previous
chapter), giving:

Ay = 0.086 £ 0.022 (6.9)

where the error is statistical only.

By varying all known quantities that could contribute to the systematic error in the
measurement of A, by their measured or estimated error, the systematic error on A is
estimated.

First, all known quantities that have a measured error are varied by this error (or in case
of Br(c — p + X) by two times this error as explained in section 4.4). Changing the number
of bins from 20 to 14 did not change the measured values and so no systematic error has
been assigned due to the bin size. The Standard Model constraint used to eliminate Ace
from equation 6.4 is varied with (0.7 £ 0.3) A3 giving a systematic error of 0.002 on Ayg.

Next, the influence of the minimum p, cut is investigated. Figure 6.4 shows AbB/Agg
as a function of the minimum p; with Agz the nominal value for a minimum p, of 1.0 GeV:
AgB = 0.086. This plot takes the relative change in statistics into account: for each p; cut
other than 1.0 GeV, the relative change in Nr and Niot is calculated: ANp and ANiot.
Using the same Monte Carlo fractions f; and Niot but Ng +0(ANF) in stead of Nz, with

O'(ANF) =/ ANtot t(l - t) (610)

with
,_ ANp
A Nyot

the change in Ay is calculated. Applying this procedure to all points and normalising
them to AP;, results in the plot. As all variations in Ayp /Ay are statistically consistent, no
systematic error due to this minimum p; cut is assigned.

The systematic error coming from the uncertainty on the background fraction predicted
by the Monte Carlo is estimated as explained in the previous chapter. The change in Az
due to this uncertainty is 40.002.

The difference in muon momentum resolution and jet angular resolution between data
and Monte Carlo causes a difference in the muon p; resolution between data and Monte
Carlo (see section 4.4). In order to study the systematic influence on A, of this effect, the
Monte Carlo muon momentum and angle between muon and accompanying jet are smeared.
The change in A, is £0.004.

(6.11)
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Figure 6.4: The variation of Ay;/AY; as a function of the minimum p,.

The effect on A5 of the uncertainty in the D** abundance (see section 4.4) is studied
by varying this abundance by (224 7)%. The measurement of Apg changes less than 0.001
and therefore no systematic error has been assigned.

The charge confusion for muons is estimated to be (0.2 4 0.2)% as described in sec-
tion 5.3. The measurement of Az is corrected for this effect and its error changes A,; by
+0.001.

Table 6.2 summarises this systematic error study. The poor knowledge of Ay, provides
the largest contribution to the systematic error. However, reducing this contribution will
not decrease the total systematic error significantly and as the value for Ay obtained in
this section is only to be used as a cross check for the method described in the following
section, no effort has been put into reducing this error.

6.4 The two dimensional unbinned likelihood fit

As in the previous chapter, an event by event unbinned maximum likelihood fit is per-
formed. Only this time the advantage over the simple method is twofold: more statistics
can be used and the forward backward asymmetry for the ¢ quark can be determined.

The likelihood function is defined as

N
c=T[f6@) with  f@)= m 3 N Wili) (6.12)
i=1 X k

in which f(7) is the probability density and Ny, is the number of Monte Carlo muon events
of type k found in the volume of the two dimensional box Vbox (@) around data point i,
in (p,pt) space. N(M) is the total number of data (Monte Carlo) events selected. M is
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Contribution AAyg
¢ =0.63 £0.02 0.001
Changing Az from 0.44,; to A 0.002
Changing Apack 0.005
Br(b — 1 + X)= 0.117 & 0.006 0.002
Br(c — p + X)= 0.096 £ 0.012 0.004
Variation of the background fraction by +15% 0.002

Smearing of the muon momentum by Ap/p = A, £30% and smear- | 0.004
ing of the angle between the muon and the nearest jet by (0.6+0.3)°
Changing the fragmentation parameter £,= 0.050+0.006 and chang- | 0.001
ing the fragmentation parameter .= 0.5 & 0.1

Charge confusion: (0.2 £0.2)% 0.001
xB = 0.121 £0.018 0.004
Total systematic error in Ay 0.009

Table 6.2: The various contributions to the systematic error as derived by the simple fit method.

normalised by multiplying it with the ratio of the number of selected data hadron events

and the number of selected Monte Carlo hadron events. Wy (i), the weighting function, is

defined as follows: ) 8A 0
. k cos 0;

Wi(i) = 2 [1 + 3(1 + cos? 0,—)]

The asymmetry for category k, Ay, is given in table 6.3 in which As is defined as before
(equation 6.4).

This likelihood £ is maximised as a function of Agl-l)’s and A.z. The correlation coefficient
between Agl-l,’s and A is obtained from the fit procedure and equals +20%.

By varying all known quantities that could contribute to the systematic error in the
measurement of A,; and Az by their measured or estimated error, the systematic errors on
Aps and Acg are estimated. The summary is shown in table 6.4. No special attention was

. put in reducing the major contribution to the total systematic error on Aggs. The reason
being that the contribution from xp and the statistical error are still (much) larger. The
uncertainty on Ap, was determined by calculating Ay, in the Monte Carlo. Due to the
low statistics the error on Ap,c is as large as 0.018, yielding the largest contribution to the
total error on A.z.

After correcting Agl-l)’s for the effect of mixing, Ay = A‘g%’s/(l — 2xB), with xp =
0.121 £ 0.018, one gets:

(6.13)

Agp
Acé

0.088 + 0.020 (stat)  0.008 (syst) (6.14)
0.095 + 0.039 (stat) = 0.028 (syst)

This result for Az is consistent with that obtained with the simple fit method. The
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Category k Ay

1 b—p Ap®
2b—oc—p —A‘;gbs
b1 A;’;‘,’s
4:b—-c—pu Af,’;'?s
5: b — background As

6:c—pu —Ace
7: decay Apack
8: punch through Apack

Table 6.3: The asymmetry used in the fit method for each category.

Contribution AAES | AA.,
¢=0.63 £ 0.02 0.000 | 0.001
Apack = 0.000 + 0.018 0.000 | 0.025
Br(b — p + X)=0.117 £ 0.006 0.001 | 0.002
Br(c — p 4+ X)=0.096 + 0.012 T 0.001 | 0.005
'y =378 £ 10 MeV 0.000 | 0.001
ez =297+ 10 MeV 0.000 | 0.001
Variation of the background fraction by +15% 0.001 | 0.004

Smearing of the muon momentum by Ap/p = A, £ 30% and | 0.004 | 0.005
smearing of the angle between the muon and the nearest jet by
(0.6 +0.3)°

Changing the fragmentation parameter e,= 0.050 + 0.006 and | 0.000 | 0.004
changing the fragmentation parameter .= 0.5 & 0.1

Charge confusion: (0.2+0.2)% 0.001 | 0.001
Minimum number of Monte Carlo events sampled: 30 to 50 0.000 | 0.002
Total systematic error 0.005 | 0.028

YFor AAcz 0.096 + 0.006 was taken.

Table 6.4: The various contributions to the systematic errors as derived by the
likelihood fit method.
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Mean /s Ay

89.33 GeV | 0.044 £ 0.067 + 0.008
91.24 GeV | 0.086 4 0.022 + 0.008
93.08 GeV | 0.102 £ 0.053 & 0.008

Table 6.5: Ay for different center-of-mass energies. Note that the systematic
error 0.008 is common to all points.

L3 measurements of A,z and A,z which includes inclusive electron analysis as well, are
0.086 =+ 0.015(stat) £ 0.007(syst) and 0.083 + 0.038(stat) + 0.027(syst) respectively [74],
in good agreement with this analysis.

To study the asymmetry as a function of the centre of mass energy, the data sample is
divided in energies below, on, and above the Z° resonance. The results for A5 are shown
in table 6.5. Because of limited statistics, this procedure has not been performed for the
Az measurement.

6.5 Determination of sin? 6y,

After including the L3 measurement of A,; and A.: with inclusive electrons, the results
for Ayp and A; are [74]:

Ay = 0.086 % 0.015 £ 0.007 (6.15)
Acz = 0.083 % 0.038 +0.027

The program ZFITTER [14] is used to perform the QED and QCD corrections and
extract sin? Oy

sin? Oy = 0.2336 + 0.0029 (6.16)

Figure 6.5 shows the energy dependence of A for the Standard Model expectation with
sin? By = 0.2336 compared with the data.

A comparison with the results from the L3 lepton asymmetry [45] and L3 7 polarisation
measurement [75] is shown in figure 6.6. The measurement of sin® €Ay from A,z has the
smallest error (see section 4.1). Averaging the three numbers gives: 0.2315 & 0.0019.

The top quark has not yet been observed directly. However, from the Born approxima-
tions for I'y;, equation 1.11, and A,;, equation 1.19, one can see that depending on the
isospin quantum number I the following is obtained:

Fb6f1g=—1/2 ~ 380 MeV AbE|Ig=—1/2 ~ 0.08

FbBlIg:O

Clearly, the case I¥ = 0 (isospin singlet) is ruled out, not only by the measurement of
I'ys = 389 & 23 MeV, as described in the next chapter, but by the A,; measurement as
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Figure 6.5: The energy dependence of A,; compared to the Standard Model ex-
pectation with sin® By = 0.2336. The errors are statistical only.

described in this chapter as well. Hence, I = —1/2 and therefore the b quark must have
an isospin I = +1/2 partner, namely the top quark.

In fact the above mentioned observables do not only require the top quark to exist but
also constrain its mass. From sin? fy, obtained from the Ay measurement, a constraint
on the top quark mass can be obtained. Using the L3 measurement of sin? 6y = 0.227 +
0.005 [45] and the relationship between sin® fy and sin? 8y, (1.10), gives:

M, =157 + 75 + 13 (Higgs) GeV (6.18)

The second error on M, is estimated by varying the mass of the Higgs boson from 50 GeV
to 1000 GeV.
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Figure 6.6: A comparison of the sin? @y determination from Ay with the results
from the L3 lepton asymmetry, Ay, and L3 T polarisation measurement, P, .

Box 6.1 Results

Ay = 0.088+0.020 (stat) + 0.008 (syst)

Acs 0.095 + 0.039 (stat) £ 0.029 (syst)
sin? Oy 0.2336 + 0.0029

M; = 157+ 75+ 13 (Higgs) GeV
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Measurement of Br(b — u + X), T'y;
and Fcé
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Figare 7.3 Constraints on the u and d type quark electroweak couplings derived
from the total hadronic decay width of the Z° (thin inclined band), from photon
distributions in qiry events (thick inclined band) and from the measurement of
I'ys and I'.; as described in this thesis (thick vertical and horizontal bands). The
Standard Model values of the couplings are shown as a solid circle.
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7.1 Introduction

For the analyses described in this chapter, part of the 1992 data run has been added
to the 1990 and 1991 data sample. This results in an approximate doubling of the data
sample.

By counting the number of muons from a prompt b decay the branching ratio of B
hadrons decaying into a muon, Br(b — u + X), times the fraction of bb events produced,
I'y5/Thad. is obtained. In order to measure 'z /T'},.q one has to determine Br(b — p + X)
independently.

In the next section Br(b — p + X) is calculated, exploiting the fact that the number
of events with two prompt muons relative to the number of events with just one prompt
muon is almost independent of I',;/T'haq. With the value for Br(b — u + X), the CKM

matrix element |V| is calculated in section 7.3. In section 7.4, Iy and T’z are extracted
from the data.

7.2 Determination of Br(b — 1 + X)

By counting the number of dimuon events! and the number of single muon events, the
branching ratio Br(b — u + X) can be calculated. The ratio of dimuon events over single
muon events is, to first order, proportional to Br(b — u + X) and independent of ;. This

can easily be seen in the simplified picture where all inclusive muons come from prompt
b — u decay:

N B? 2R
=" =—_ or B=

N,  2B(1-B) 1+ 2R
with B = Br(b — u + X). Due to the presence of background processes, equation 7.1 is an

oversimplification of the real situation. For the purpose of calculating the branching ratio,
all events are divided into four categories:

(7.1)

1: b — pand b — p: both b quarks decaying into a muon,

2: b— pand b4 p: only one b quark decaying into a muon while the other does
not,

3: b/ pand b A p: both b quarks not decaying into a muon and
4: wu,d, s, c events where no b quark is involved.

These four categories can then be subdivided into “seen as single muon event” (1a, 2a,
3a, 4a) and “seen as dimuon event” (1b, 2b, 3b, 4b). Let a; and b; (i = 1,...,4) be the
acceptances for these eight subcategories, then equation 7.2 shows the relation between R

and B = Br(b — p + X):
_ N2 5:1B% +2b;B(1 = B) +bs(1 = B)? + by(Thaa/To5 — 1)
"~ N1 a1B?+203B(1 - B) +a3(1 - B)? + ag(Thaa/Tis — 1)

After requiring the muons to have a p; larger than 1 GeV, the background fraction is
largely reduced. From Monte Carlo the acceptances a; and b; are calculated for muons with

R

(7.2)

!Dimuon events are defined as in chapter 5.
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Acceptances
) a; b,
1 319 % 132 %
2 333 % 03 %
3 14 % 00 %
4 05 % 00 %

Table 7.1: Monte Carlo estimates of the acceptances of each subcategory in the
1991 data sample for p, > 1.0 GeV.

Pt > 1.0 GeV and listed in table 7.1. The simplified picture, used to argue that R gives
information on Br(b — u 4 X) independent of T'y;, is obtained by taking az = b; and
all other acceptances zero which is clearly too rough a simplification, as can be seen from
table 7.1. Taking R from the data sample and using table 7.1, equation 7.2 can be solved
for Br(b — p + X):

Br(b — p + X) = 0.117 + 0.004 (7.3)

where the error is statistical only.

A systematic error study is performed much the same way as in the previous analysis
chapters. The influence of the minimum p; cut is investigated in the same manner as
described earlier. Figure 7.1 shows Br(b — p + X)/Br(b — p + X) as a function of
the minimum p; with Br(b — u + X)° the nominal value for a minimum pt of 1.0 GeV:
Br(b — 1 + X)° = 0.117. Calculating 0(AN3) and ANiot, with Niot = Ny + Ny, the
change in Br(b — p + X) is calculated, using the equivalent formulae of equation 6.10
and equation 6.11. As the variations in Br(b — u + X)/Br(b — p + X)° are statistically
inconsistent, a systematic error due to this minimum p: cut is assigned: £0.002.

The quantities obtained in the previous analysis chapters were all insensitive to the
absolute normalisation of the number of events. The measurement of Br(b — p + X),
however, depends strongly on this normalisation. Therefore, the uncertainty on the inclusive
muon selection efficiency is investigated. Using the numbers in table 3.3, obtained as
described in section 3.6, this yields a systematic error on Br(b — p + X) of 0.0012. Table 7.2
summarises the systematic error study. The two major contributions to the systematic error
in this table come from the uncertainty in the D** abundance and from the lack of Monte
Carlo events. Whereas the latter contribution can be reduced by producing more simulated
events in the future, the former has to be reduced by studying the D** a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>