

INSTITUTE FOR HIGH ENERGY PHYSICS

IHEP 93-148

N.N.Roinishvili, V.N.Roinishvili, A.A.Volkev

THE b-QUARK FLAVOR TAGGING VIA Λ-HYPERON FOR CP-VIOLATION STUDIES

Submitted to Phys. Lett.

Protvino 1993

UDK 539.1.076

Abstract

Roinishvili N.N. et al. The b-Quark Flavor Tagging via A-Hyperon for CP-Violation Studies: IHEP Preprint 93-148. – Protvino, 1993. – p. 4, refs.: 6.

A method of the b-flavor tagging via Λ is proposed for the CP-violation parameter $sin(2\beta)$ measurement at a collider detector. The statistical error is expected to be about the same as in the case of b-tagging via muons.

Аннотация

Ройнишвили Н.Н. Определение аромата *b*-кварка посредством А-гиперонов для изучения СР-нарушений: Препринт ИФВЭ 93-148. – Протвино, 1993. – 4 с., библиогр.: 6.

Предлагается новый метод определения аромата *b*-кварковой струи по Λ -гиперонам для измерения параметра нарушения СР-четности $sin(2\beta)$ в экспериментах на коллайдерах. Статистическая точность в измерении этого параметра такого же порядка, как и в случае применения традиционного метода определения аромата *b*-струи по знаку мюонов.

© Institute for High Energy Physics, 1993.

There are several problems in the field of HEP where it is necessary to know the flavor of the *b*-quark produced in hadron-hadron or e^+e^- interactions. Ordinary and simplest way of *b* tagging is the measurement of the charge of muons from the semileptonic decay of beauty hadrons. In this case, a wrong tagging due to the cascade decay $b \rightarrow c \rightarrow \mu$, π -, *K*-decays, punchthrough in detectors and possible false muons arises.

We propose another method – to tag $b(\bar{b})$ via inclusive decays of beauty hadrons into $\Lambda(\bar{\Lambda})$, i.e. $b \to c \to s(\bar{b} \to \bar{c} \to \bar{s})$ chain, which is free from the above mentioned misstagging sources. The $\Lambda(\bar{\Lambda})$ can be identified by its decay into $p\pi^-(\bar{p}\pi^+)$ in a detector with a good tracking system in magnetic field. The ambiguities between Λ and $\bar{\Lambda}$, will be, as it is known, very small even without particle identifications, since the $p(\bar{p})$ momentum is in average much larger than the pion one. The expected branching ratio: $b \to \Lambda + X$ (the same for $\bar{b} \to \bar{\Lambda} + X$) can be roughly estimated as:

$$Br[b \to \Lambda X] = f(b \to \bar{B}X) \times Br[\bar{B} \to \Lambda X] + f(b \to \Lambda_b X) \times \\ \times Br[\Lambda_b \to \Lambda X] = 0.074,$$

where $\bar{B} = (B^-, \bar{B}^o_d, \bar{B}^o_s)$, using:

i) the measured values of $Br[\bar{B} \rightarrow \Lambda X] = 0.042^{/1/}$ and $Br[\Lambda_c \rightarrow \Lambda X] = 0.45^{/2/}$,

ii) the assumption that $Br[\Lambda_b \to \Lambda_c X]$ is equal to the $Br[B \to DX]$, which is the sum of the measured values^{/1/}:

$$Br[B \to D^{\pm}X] + Br[B \to D^{o}/\bar{D}^{o}X] + Br[B \to D_{s}^{\pm}X] =$$

= 0.227 + 0.46 + 0.115 = 0.80,

iii) the assumption that the values of the production fraction of beauty mesons and baryons (mainly Λ_b) are equal to:

$$f(b \to B^- X) = f(b \to \overline{B}^o X) = 0.38, \quad f(b \to \overline{B}^o X) = 0.14$$

and $f(b \rightarrow \Lambda_b X) = 0.1$.

One can expect an additional source of $\Lambda(\bar{\Lambda})$ which is not directly connected with the $b(\bar{b})$ decay, but giving the right tagging. In the case of the $b(\bar{b})$ fragmentation into $\bar{B}_d^o(B_s^o)$ an extra $s(\bar{s})$ -quark from the sea, strongly correlated with the $\bar{B}_s^o(B_s^o)$ momentum, will arise. This quark with the probability of about 10% can hadronizate into $\Lambda(\bar{\Lambda})$ and will give additional right tagging in about 1.4%.

Thus we expect that the probability of the good *b*-tagging via Λ can be equal to 0.074 + 0.014 = 0.088, or 0.055 including $Br[\Lambda \rightarrow p\pi]$. This value is only twice less than $Br[b \rightarrow \mu X]$.

However, there will be quite a lot of Λ 's produced in pp interactions and not related to the b production in the energy range of LHC/SSC. Though most of them will have low transvers momentum and can be removed by the proper p_t cut, there still exists a probability of wrong tagging and one must take it into account when studing certain physics problems.

We apply here the method of *b*-tagging of via Λ for investigation of the possibility to measure the *CP*-violation parameter $sin(2\beta)$ (β - one angle of the unitarity triangle of the CKM mixing matrix) in B_d^o and \bar{B}_d^o decay. There are several suggestions, how to measure this parameter at LHC colluder^(3,4,5). All of them are based on the detection of B_d^o/\bar{B}_d^o by their decay into $J/\Psi K_s$, followed by $J/\Psi \to \mu^+ \mu^- (e^+e^-)$ and on tagging of associated beauty hadrons by the charge of the muon in their semileptonic decay.

The angle β is related to the time-integrated asymmetry:

$$A = \frac{\Gamma(B_d^o \to J/\Psi K_s) - \Gamma(\bar{B}_d^o \to J/\Psi K_s)}{\Gamma(B_d^o \to J/\Psi K_s) + \Gamma(\bar{B}_d^o \to J/\Psi K_s)}$$

and mixing parameter x_d :

$$\sin(2\beta) = A \times \frac{(1+x_d^2)}{x_a}$$

The measured asymmetry $A_m = (N^+ - N^-)/(N^+ + N^-)$, where $N^+(N^-)$ are the numbers of the detected events with B_d^o or \bar{B}_d^o decaying into $J/\Psi K_s \rightarrow \mu^+ \mu^- \pi^+ \pi^-$ associated with $\mu^+(\mu^-)$ in the case b-tagging via μ or with $\Lambda(\bar{\Lambda})$ in the case of b-tagging via Λ , is affected by dilution effects due to the mixing of the tagged $B's(D_m)$ and due to the wrong tagging (D_w) arising from the $b \rightarrow c \rightarrow \mu$ chain, π -, K-decay, etc. in the case of b-tagging via μ or from the soft Λ yield in the case of b-tagging via Λ . Note, that in the last case D_m is more close to unity than in the case of b-tagging via μ , since about half of Λ 's are decay product of beauty-baryons, which can not mix.

Thus, the CP-violation parameter can be measured as:

$$\sin(2\beta) = \frac{A_m}{D} \times \frac{(1+x_d^2)}{x_d}$$

with the statistical error for $sin(2\beta)$:

$$\delta[\sin(2\beta)] \simeq \frac{1}{D\sqrt{N}} \times \frac{(1+x_d^2)}{x_d},$$

where N is the number of tagged events and $D = D_m \times D_w = 1 - 2 \times W$. W is the probability of wrong tagging including mistagging because of mixing and wrong muons or soft Λ 's.

For the estimation of the efficiency of the b-tagging via Λ for CP-violation studies we used PYTHIA 5.6 and JETSET 7.3 to generate B_d^o in the reaction $pp \rightarrow b\bar{b} + ...$ at $\sqrt{s}=14$ TeV. To reduce the computing time we forced: $Br[J/\Psi \rightarrow \mu^+\mu^-] \equiv Br[K_s \rightarrow \pi^+\pi^-) \equiv Br[\Lambda(\bar{\Lambda}) \rightarrow p(\bar{p}) + \pi] = 1$. We also forced $Br[B \rightarrow \Lambda \bar{p} + 3\pi] = 0.042$ (instead of $B \rightarrow \Lambda X$) and kept the probabilities of beauty baryons production and decay corresponding to the PYTHIA version used. Note, we use only events with $B_d^o \rightarrow J/\Psi K_s$. The events with $\bar{B}_d^o \rightarrow J/\Psi K_s$ have the same efficiencies and we take them into account when estimating the total number of the expected events.

The 1.2×10^6 generated events with $B_d^o \to J/\Psi K_s \to \mu \mu \pi \pi$ passed through a collider detector with properties similar to the CMS^{3,5/} applying the following cuts:

i) for muons from $J/\Psi - |\eta| < 2.4, \ p_{i\mu} > 3.5 \ {\rm GeV/c};$

ii) for π 's from $K_s - |\eta| < 2.4$, $p_t > 0.5$ GeV/c, K_s decay length in the transverse plane is between 2 and 40 cm and $|Z_{vertex}| < 1.5$ m.

In the remaining events we looked for Λ 's and $\bar{\Lambda}$'s with $p_{\perp} > 2 \text{ GeV/c}$ which for their decay products fulfil the requirement ii) and move in the direction oposite to the B_d° in the transverse plane – $\Delta \varphi > 90^{\circ}$.

After all cuts we are left with 677 events with $B_d^o \to J/\Psi K_s \to \mu \mu \pi \pi$ and Λ or $\bar{\Lambda}$. The events are distributed: N_r =505 and N_w =172, where N_r and N_w are the numbers of right and wrong tagged events corrected for $B^o - \bar{B}^o$ mixing. (We call here right/wrong tagged event if B_d^o is associated with $\Lambda/\bar{\Lambda}$). These numbers give the dilution factor D=0.49.

The total number of events for:

 $-L_{int} = 10^4 \text{ pb}^{-1},$ $-\sigma(b\bar{b}) = 500 \ \mu\text{b},$

- probability of B_d^o or \bar{B}_d^o production equal 0.8,
- $Br[B_d \to J/\Psi K_s] \times Br[J/\Psi \to \mu\mu] \times Br[K_s \to \pi^+\pi^-] = 1.35 \times 10^{-5},$
- $-Br[\Lambda \to p\pi] = 0.64,$
- losses of Λ due to the Λ/K° ambiguity 0.9,
- trigger and tracking efficiency of muon $(0.8)^2$,
- tracking efficiency for K^o and Λ decay products 0.95,

expected to be N=9100. With such statistics $sin(2\beta)$ can be measured with the precision $\delta[sin(2\beta)] = 0.045$. We use $x_d = 0.7^{6/6}$. The obtained error is about the same as those in the case of b-tagging via $\mu/3-5/6$.

In conclusion – the *b*-flavor tagging via Λ can be used as a method to measure the CP-violation parameter $sin(2\beta)$ at a collider detector, as well as the *b*-flavor tagging via μ .

We would like to thank Yu.Antipov for helpful discussions.

References

- [1] Particle Data Group, Phys. Rev. D45, Part 2 (1992).
- [2] G.Grawford et al., Phys. Rev. D45, 752 (1992).
- [3] CMS Leiter of Intent, CERN/LHCC 92-3.
- [4] ATLAS Letter of Intent, CERN/LHCC 92-4.
- [5] N.Neumeister, B Physics Workshop, CERN, May (1993).
- [6] H.Albercht et al., W. Phys. C55, 357 (1992).

Received December 07, 1993

В.Н.Ройнишвили и др. Определение аромата *b*-кварка посредством Λ-гиперонов для изучения СР-нарушений.

Оригинал-макет подготовлен с помощью системы IAT_EX. Редактор А.А.Антинова.

Подписано к печати 09.12.1993 г.Формат 60 × 90/16.Офсетная нечать. Печ.л. 0,25. Уч.-изд.л. 0,32. Тираж 260. Заказ 935.Индекс 3649.

Институт физики высоких энергий, 142284. Протвино Московской обл.

60 руб.

•

Индекс 3649

ПРЕПРИНТ 93-148, ИФВЭ, 1994