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square mean values for intermediate times during equilibration. OCR Output
large, the local variances of the relative 4-momentum becoming comparable to its
counter—streaming nuclear fluids (cf. sect. 4). The fluctuations are found to be
are illustrated by studying effects of fluctuations in the equilibration process for
associated with the collective variables, have been derived. The resulting equations
three-Huid model (cf. appendix). The interflow friction and diffusion coefficients,
the relativistic BLE to a stochastic two-fluid model (cf. sect. 3) and a stochastic
small statistical errors within the BLE approach. Therefore, we have reduced
equations [11, 12, 13], it is rather impossible to compute results with sufficiently

Whereas it is with some effort possible to obtain numerical solutions of the BUU
(cf. sect. 2).
approach was generalized on the basis of the Walecka—type mean-field theory [22]
fluctuation properties of a collision process. For relativistic nuclear collisions this
Langevin equation (BLE), provides a consistent basis for treating dissipation and
the BUU equation. This stochastic BUU equation, referred to as a Boltzmann
19, 20, 21], giving rise to generalized fluctuating forces of the Langevin type in
Such extensions have been performed in a statistical approximation [16, 17, 18,
of fluctuations in the ensemble, an extension of the BUU-type equations is required.
models are not appropriate for treating fluctuation phenomena. For the description
models describe an average evolution of an ensemble of systems. Therefore, these
“molecular chaos assumption” in the derivation of such kinetic equations, these
are neglected in all these single—particle models. As is evident, e.g., from the

Many-body correlations, other than those leading to the binary collision term,
models have the great advantage of being fast numerically solvable [14, 15].
the description of gross properties of the phase—space distribution, these multi-fluid
one obtains a closed set of equations for the collective variables. By keeping only
relevant collective quantities. Using local equilibrium distributions for each fluid,
multi-fluid models the local momentum distribution is parametrized by a set of
models have been developed for describing nuclear collisions [2, 3, 14, 15]. In these

As an alternative to the simulations by kinetic equations, mean-field multi—iiuid
been recently applied to heavy—ion collisions at intermediate energies [11, 12, 13].
Uehling-Uhlenbeck (BUU) type [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Such equations have
self-consistent mesonic mean fields and a binary collision term of the Boltzmann

space distribution function which is determined by a transport equation containing
In the semi-classical limit the Wigner function reduces to a single-particle phase
Wigner transform (Wigner function) rather than by its many—body density matrix.
transport models the system is represented by its one-body density matrix or its

single—particle transport models based on effective quantum-field theories. In these
Many aspects of nuclear collisions can be described in terms of relativistic



dom can be naturally performed according to refs. [2, 3, l4, 15, 23] OCR Output
*A generalization to inelastic interactions and to an explicit treatment of isospin degrees of free

(7)Mx) Z / d‘1>p» F(¢.1>)

(6)p(¢) = MX: / d“1¤F(¢,;v)»

current J M which are self-consistently defined in terms of the distribution function,
The source terms in eqs. (4) and (5) contain the scalar density p and baryon

(5)(D 'l' miwwu Z gwJu·

(4)(¤+mZ)¤+dU/d¤=y¤p,

tensor w"" = 6"w" — 5”w", cf. [24, 25]. They are determined by the equations
equation (2) via the effective nucleon mass M;] = M N — gga and the field-strength
scalar field a(x) and the vector field w,,(x). The 0- and w—fields enter the kinetic
The left-hand side of eq. (2) describes the Vlasov propagation in terms of the

· Pu
(3)D Z pug}; _ gwpuwwi 'l'

for the fluctuating distribution function F (1:, p) with

D·F(¢»1>)= K(¤>,p)+6K(¤¤,1¤), (2)

we obtain a stochastic BUU-type equation
the nucleon spin-isospin degeneracy factor, respectively. In the semiclassical limit
ventional occupation number, M if and dN stand for an effective nucleon mass and
where f(x,p) (a function of the time :1:0, space :1: and 3—momentum p) is a con

Q (1)( 2 *2 F(¢.1¤) = 9(1¤¤)6(1>— MN ) f(¤¤,p),
2 dN

phase-space distribution function
binary collisions and consider the semi-classical evolution of a spin—isospin averaged
particle density. For the sake of simplicity, we restrict our treatment to elastic
into the equation of motion yielding a stochastic transport equation for the single
effects of the binary collisions, i.e. dissipation and fluctuation, can be incorporated
induce fluctuations by propagating correlations in the phase space. These two
the momentum distribution of the constituent particles and, in addition, (ii) they
dynamical evolution of a system: they produce dissipation by randomizing
the main results of the model. Binary collisions play a twofold role during the
effective—field theory was presented in ref. [22]. Here we give a brief survey and

A derivation of the relativistic BLE in the framework of the Walecka—type



(2;,p) and (1') E (z',p'). The correlation coefficients, G(1,1’), L(1,1'), G(1,1') OCR Output
Here, F(l) and F( 1) represent locally averaged distribution functions with (1) E

(14)+ 6('°(P — P') lF(1) L(1) + F(1) @(1)]
F(1)L(1,1’) F(1’) — F(1) G(1, 1’) F(1')

@(1.1’) = F(1) L(1,1') F(1') + F(1) @(1»1')1$`(1')

nucleon c.m. frame. The correlation function (10) can be expressed as
where sl; = (pl + p2)2, and da/dflcm is the differential cross-section in the nucleon

2 dflm
W(12 l 34) Z -312 ·6 (P1 +P2 ·· Ps —P4)» (13)1 (IU (4) ‘—

it reads

the case of elastic scattering, to which we confine ourselves in the present paper,

rate. This transition rate is expressed in terms of the scattering cross-section. In
where F (j ) E F(x, pj) etc., and W(12 | 34) denotes a Lorentz—invariant transition

(12)L(1) = / d4p2 d4p3 d4p4 W(12 | 34) F(2) I?`(3) Ii`(4),

(11)@(1) = / d°1¤z dlps d4p4 W(12 I 34) 1i`(2) F(3) F(4)»

sion term takes a usual BUU form. The gain and loss rates read

collision term and the correlation function can be explicitly calculated. The colli
In the weak—coupling limit together with a quasi-particle approximation, the

which is assumed to be local in space and time.

(6K(;c,p) 6K(a:’,p')) = C(x,p; a:’,p’) 6(x —- xl),(4)

term is characterized by a correlation function,
and 5K(:r, p) acts as a random force. In such a description the fluctuating collision
process, in which the entire distribution function F(z, p) is a stochastic variable
treatment of the Brownian motion, it is assumed that eq. (2) describes a stochastic
degrees of freedom, which are not explicitly considered. By analogy with the
whenever one deals with a reduced treatment. It describes a coupling to remaining
part of the collision term. Such a contribution always arises in a transport theory
is the Pauli factor. An additional term, 6K(x, p), in eq. (2) presents a fluctuating

(9)F(¤»p) = 2 6’(1>¤)6(1>2 — MR?) (1 — f(m>))
where

K(¤=,p) = F(¤=»p)@(=¤.p) · F(¤,1>)L(<v,p) (8)

The collision term, in general, can be written in terms of gain and loss terms,
3 4
lbag + lc0".
Equation (4) includes a self—interaction of the 0-field, which is described by U(0)



(18)‘“’‘°’K‘°’(m¤) = —F‘°’(¤¤.p)L‘”’(m>) + F(¢.p)G(¢»p) OCR Output

where the D operator is defined by eq. (3) and the collision term is given by

(17)(°"(°’ °°’D · F(¤¤.1¤) = K(¤¤»1>) + 6K(¢.1>)»

fluctuating partial distribution functions F (")(x, p) can be obtained:
keeping in mind that P`(°‘l E The following set of coupled BLE’s for the
for the sake of convenience we shall use notation 1i`(‘”')(x, p) for the Pauli factors,
determined by all the or-components due to the identity of particles. Nevertheless,
Pauli factors F (ar, p) in the same way as that in eq. (I6), since the Pauli blocking is
difference of the present case consists in the fact that we cannot decompose the
when each species is characterized by its own distribution function. An essential
is similar to a kinetic treatment of a mixture of different (nonidentical) particles,
different groups according their position in the momentum space. This approach
(I6) means that at each spatial point we subdivide the identical nucleons into
in the form of eq. (2) describes a system of identical particles. The decomposition
the three—fluid model [I5, 31, 32]. It is worthwhile to note that the relativistic BLE
dynamics [I4, 26, 27, 28, 29, 30], and in addition or = s for “stopped” particles in
and t, respectively, for the projectile- and target—like particles in the two-fluid
where F (°‘)(x, p) denotes a partial distribution function for an os-fluid with or = p

<w>F<x.p> - 2F<¤><x.p>.

phase—space distribution function,
27, 28, 29, 30, 31, 32], we introduce a multi-fluid decomposition of the nucleon

In order to prepare a basis for a multi·iluid model as in refs. [2, 3, I4, I5, 26,

relativistic BLE.

dynamical fluctuations in a statistical approximation. Below, it is referred to as a
single-particle transport description of the collision process by incorporating the
the phase—space distribution. The stochastic BUU eq. (2) provides an extended
as a fluctuation-dissipation theorem associated with the stochastic evolution of
tionship between the correlation function and the collision term can be regarded
each other through a "fluctuation—dissipation theorem”. Therefore, the close rela
ties, described by the collision term and the correlation function, are related to
properties of the single-particle density. The fluctuation and dissipation proper
tion is closely related to the collision term and is entirely determined by average
evaluated with the locally averaged distribution functions. The correlation func

6L(1)/6F(1')»L(1, I') ]F,F
L(1, l') (15)[6L(1)/6F(1')]F,F ·

6G(1)/6F(1’),G(1,1') ]F‘F
G(1, I') [6G(1)/6F(1’)]F_p,

(11) and (12) with respect t0 F(1) and F(1):
and L(1, I'), are given by variational derivatives of the gain and loss rates of eqs.



0 O CX ‘ )( ’‘’* ‘ F(¤¤»1>)= @§56(P2 — MN2) 9(1¤°) l<=><p{(~‘P‘¤/)/T} + 1I » (25) OCR OutputO 2 d ‘ )]I

distribution functions,

(2). To simplify the problem, we introduce a Fermi—Dirac ansatz for the partial
and the solution of the set of eqs. (17) is not easier than that of the originaleq.

So far the set of kinetic equations (17) is equivalent to the original equation (2)

3 Stochastic Two-Fluid Model

evaluated with the locally averaged partial distribution functions.

’ ) ,5L(°‘)(1)/6F(B)(1/)F ’i,(¤@)(1I' lF.

(, ) (24)6L<¤>(1)/6F(1 l’L(¤U)]_l' ‘”’ lpr
6G(¤)(1)/6I?'(m(1:)’(, )G(¤@)1l' lF,F

(,) 6G<·~>(1)/6F""(1'>»G<¤¤>11* lF,F

and loss rates

Similar to eqs. (15), the correlation coefficients are defined in terms of the gain

(23)‘°’(°’(¤’‘¤’+ Mp — p’)6.p [F(1)L(1) + F(1)G(1)1.
)(,)()() (,) ()_ F(¤)(1L(¤@)11'j:'*(@)1’_ j:'*(¤)1G(¤B)11'F(@)1’

C(¤0)(1’1/) ; F(¤)(1)L(¤B)(1’1’)F(p)(1’)+ 1$—(¤)(1)@(¤6)(1,1*)j5(¤)(1(

Its elements are defined as follows

(22)(5K(x,p) 6K(x',p')) = C(a:,p; z’,p’) 6(2: — x').(4)(°‘p)(°'l (p)

matrix

The fluctuating part of the collision term in eq. (17) is speciied by a correlation
two—fluid model and the appendix for the three-fluid model).
is necessary in the further formulation of multi-Huid models (cf. sect. 3 for the

(21)W(1a 26 | 3 4): Z W(1a 2,8 | 37 46),

p3 and p4. The decomposition of the total transition rate into partial rates,
spectively, and another pair of states from the 7- and 6—components with momenta
states with momenta pl and pz from the 0- and H-components of the system, re
Hcrc W(1a 26 | 3146) denotes the transition rate between a pair of single-particle

L<~*<1> = ij dm dw dm Wm M 1 rw 46) F“"<2) FW3) F“’<4)- (20)f B16

c¤<~><1> = Z wp; M3 dm Wm 2¤ 1 sv 46> F<”><2> FM) F“’<4>, 09)/ @#6
with the gain and loss rates



describe the local balance of the number of particles and the 4—momentum in the OCR Output
Equations (28) and (29) have a conventional hydrodynamical meaning. They

(6R£°’(¤¢) 6R£”’(3')) = 6("’(3 —¤¤’)d"p d"p’z>))1>L C‘“”’(¤v)ps 3’)1>’)- (34)//

(33)Ria) = / d"pp» Kr).

of collisional interfluid interaction are expressed as

ture, effective chemical potentials and effective baryon masses, cf. [33]. The terms
expressed by standard statistical relations in terms of the corresponding tempera

partial scalar density p(°’) and the local-rest-frame density n("‘) of the o(—fluid are
of their parameters. The pressure P, the internal energy density E, the(°') (°')
These quantities are defined via the model distribution functions (25) in terms

(32): (EM) + P<¤>)u{,¤)ug¤> - 1¤<¤>gu,.

‘’ ("’T)$Z(3) = / d"m>).1>» F (¤¤)p)

(31)J,i"’(¤¤) = / d"p1>))F(“’(¤¤»p) = ¤(°’(3>)~f.°’(¤¤)»

(30)<¤’M3) 2 M3 / 3**13 F(:»,p).

energy—momentum tensor of the a—fluid:
where p, J ,9and Tiffare, respectively, the scalar density, baryonic current and(°‘)*) )

(23)wi:) — g.J,£¤>~~. + g.p<¤>3.¤ = R9) + 33%

,, (28)@#19*) : 0

With the explicit form of the D operator, we obtain these equations in the form
pendent equations for the parameters of the model distribution functions (25).
with respect to the 4—momentum, we have the required number of linearly inde

(27)d4pp,, D · Fi"')

(26)(1*pD - F<¤),

Taking the first two moments of eqs. (17)
model are presented in the Appendix.

two—fluid model. The results of the same reduction to a stochastic three-fluid

In this section we perform a reduction of the relativistic BLE to a stochastic

condition ulf")u(°)“ =
determined from the kinetic equations. The 4-velocities are normalized by the
effective nucleon chemical potential of the o(—fluid, respectively, and have to be
tities u(")(a:), T(°‘)(x) and u(°')(:c) denote the local 4-velocity, temperature and
where (1 = p, t (as well as s in the case of a three-fluid model). The quan



(41)n Z M [$1%*912 —4MRF)]%¤u(5) » `
1/2D 1 ( A) Al N Ut.,-(5) ( ) éal(.§) OCR Output

transport coefliciens to a more transparent form

means of the explicit form of the transition rate, cf. eq. (13), we transform these
and 9,,,,, is the scattering angle of two nucleons in their center-of—mass frame. By

(40)

d4p3 d4p., W(1p 2t | 3p 4t) F(3) F(4) %(1 — cos Om)21 ll =: F/i ND AAL 1 — cos 0,,,,, 3; sinz 0,,,,,
where

(39)

(Au ‘ Ax)(P1 · P2)»(P1 · P2)v + A19»··»(P1 · P2)2 l »

(6Rf,°)(x) 6Rg¤·>(m’)) Z g6<·*>(x - x') Mg, E [ .1**p,d*p, F<¤’>(1)F<”>(2)

RMI) - —M]z / d"P1d“‘1>zD(p1-1¤2)» F(“)(1)F(6‘)(2), <38>

the friction force (35) and the correlator of its stochastic part (36) is expressed as
vation laws for the nucleon-nucleon scattering and from symmetry considerations,
introduced according to [2, 3, 14, 26, 27, 28, 29, 30]. Proceeding from the conser
determine the interfluid coupling. To simplify this task, a further approximation is
integrals of eqs. (35) and (36) at each step of the two-fluid simulation and, thus,
pling to the characteristics of the fluids. One can calculate the multidimensional

ln principle, eqs. (35)-(37) solve the problem of relating the interfluid cou
where6=tif6=p,while6=pif6=t.

(37)rmx ,mr,x m2(6R,, (.1,) u.u.V (23,)) = (.1,) uu.V (2},)),<¤·>(¤> (¤>»<¤>

(“’`(pz — pm (pa — pm F‘“’(1)F(2)F(3)F(4), (36)

°’°)(6Rf,(¤=) 6R£(¢’)) = 6(4)(z — z') / d4p1d4p2 d4p3 d4p4 W(1a 26 | 30 46)

(35)‘¤’‘*"(pa - my F<1>F<2> F<3> F<4>,

d4p1d4p2 d4p3 d4p4 26 I 30°’R£(¤) =

matrix of the stochastic force (34):
expressions for the average friction force, RL"), and the corresponding correlation
and the correlation matrix C(°’B), cf. eqs. (18)-(24), one obtains the following
distribution functions (25). By using the explicit forms of the collision term K (°')
the interHuid interaction, Rff') and 6R£°'), in terms of the parameters of the partial
interacting Huids. T0 make this set of equations a closed one, one should express



, (47) OCR Output.1;*) : 1]**1 1;*)

(46)p(=t) :_. p(v) i PU),

define new stochastic variables as follows

The diagonalization in the space of “fluids” can be done straightforwardly. Let us
such a way that the correlation matrix [see eqs. (37) and (45)] becomes diagonal.
diagonalize it in the space of random forces [34], i.e. transform the variables in
we have more than one random force. To treat such a problem, one should, first,

The derived model presents a multidimensional stochastic problem, since here
needs the mean—field parameters and the cross sections as input.
argument specified by eq. (43). Like the BLE the stochastic two-fluid model only
(40) in terms of cross sections and Pauli—blocking factors at the value of the su
(28), (29), (37), (44) and (45). The transport coefficients are determined by eq.
we have obtained a closed set of stochastic equations consisting of eqs. (4), (5),
port coefficients and the p(°‘), J L") and Tl]? variables of the two-fluid model. Thus,
tic force, as given by eqs. (37) and (45), are completely determined by the trans
The average interfluid friction force (44) and the correlation matrix of the stochas

Now we can summarize the derived equations of the stochastic two-fluid model.
with D = D(.§), etc.

,4lguVM]·;](p(6)p(B) _ JU?) , _](B))

<6R$.“’<w> 6R£¤><x’>> - Mx - xv im. - »L><T,£€>p“’> - Mw,£">Js”>>

(44)[/¤)(x) = _D(_]l(¤>p(6·) _ p(¤)_].(6¤)),

calculated. The result reads

to be reasonably good. With this approximation the integrals can be immediately
of the sl; argument. Such a choice for 5 was analyzed in refs. [14, 15] and found

g : M1·;J2[(u(r) + u(¢))2 + 2(u(v) , ,,0)) ](,,(z»)/p(r))(,,(¢)/p(¢)) _ 1} ’ (43)]

constants obtained for some intermediate value,
product. Due to this slow variation we replace D, AH and Al in the integrals by
Al appear to be slowly varying functions of sl; as compared to the F (1) F(2)
function of the incident energy, we find that the transport coefficients D, AH and
the integrals of eq. (42). Assuming the cross-section to be a sufficiently smooth
the individual momenta pl and pg from the Pauli factors (1 — f(3)) (1 — f(4)) in
of one variable sl; = (pl + p2)2, only, thereby neglecting the weak dependence on
The transport coefficients D, All and Al can be approximately treated as functions

(42)d¤ (1 - f(3)) (1 · f(4)) (1 —¢<>S9m)’Un =/ 0cm<7|'/2al, Ul 1 — cos 6,,, · 20 S1I1 cm
where the corresponding cross sections are defined as follows



10

'= 1/(Mh). (54) OCR Output
and (42),
drift coefficient D or, equivantly, by the transport cross section 0*,,, cf. eqs. (41)
order of the mean free path. In our case the mean free path is determined by the
volume is estimated proceeding from the fact that the correlation length is of the
of the system in cells of the correlation volume in the equal-velocity frame. This
magnitude of the local fluctuations. For this purpose, we perform a coarse graining
not solve the multi-fluid equations to a full extent, but rather want to estimate a

volume in which the fluctuations of the fluid variables are correlated. Here we do

these auto-correlation functions one can deduce a correlation volume, i.e. the

calculated by a numerical simulation of the stochastic multi—fluid equations. From

In general, auto-correlation functions of the fluid variables can be directly

the sake of simplicity, we consider here the case of zero mean fields (g., = gw = O).
multi—fluid description with the complete solution of the kinetic equation [6, 7]. For
already been treated within multi—fluid models [14, 15] in order to compare the
collisional coupling between the fluids is turned on. Such a simplified problem has
(nc). We follow the time evolution of the system starting from the moment the
spatially homogeneous counter—streaming nuclear fluids of normal nuclear density
system. It is assumed that initially there are two cold (TU") = 0 and Tit] = O)
effects of fluctuations, we consider the equilibration in a homogeneous nuclear

To illustrate the stochastic two—fluid model of sect. 3 and to study qualitative

4 Equilibration of Counter-Streaming Fluids

u(P) ;_— -u(t)
sity and temperature, this tensor is already diagonal in the equal-velocity frame
space. Note that in the particular case of two interacting fluids of the same den
random forces. The correlation tensor (53) is diagonalized in the 4-dimensional
(—)-subset describes the dissipative interaction of two fluids and, hence, contains
tem. Hence, it does not include any terms of the collisional interfluid coupling. The
The (+)-subset of equations takes care of the global conservation laws in the sys

(53)·’·’ >P*(6RL(x) 6R$(=»’)) = 4 <4R£r(x) 6R$(4’))
, (52)R9) = 2R£*·’

, (51)R9) : 6Rf+) : 0

In this (zh)-representation we have

(50)8*‘T,§§) — g._,J,§*)w*‘_, + g,p(*)8,,a = RW + 6R[,*).

(49)0#Jg*> Z 0,

differences of eqs. (28) and (29) for cv = p and a = tz
Equations in terms of these new variables can be obtained by taking sums and

,
(48)Tg? = ;r§5> 4 Tg?.
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(63) OCR Output°’°’(6Rf."’(¢) 6R£")(¢’)) = —<6RL(¢) 6R£(¢'))

(62)

.= Mt - t’> {(1. —»h><P6’— P“>>..<P*P’— PM + 2»hg....<Mz — P6 - P“>>

°’°’<6RL<t> 6R£<#>> = M <6RL¤><x> 6R£¤’<x’>>A

The correlator of the random force in the cell, 6R£°‘l, is obtained straightforwardly

(61)N<¤>i1¤;·~> I -15(1>;¤> - 1¤5¤>) + 6129.

dt
60 ( )N6) = 0 7

for an average or-fluid 4-velocity. The corresponding equations of motion are

)where ch') is an average interna.] energy per nucleon in the a—fluid and usfstands

/cw
(59)oz 1 0* cx oz j ) : @A(1% TQ,) ; 4 luf, ),

and the energy—momentum flux,

, (58)N6) Z (1%; .13*)/ Vccrr

the number of nucleons in the cell,
velocity reference frame. Thus, we have the following integral variables of the cell:
integrate equations of motion (28) and (29) over the cell volume in the equal

Having such a coarse graining, we can employ the technique of refs. [35]. We
correlation volume is streched along the "beam” direction.
Because of the original anisotropy of the system in the momentum space, the

0:0: Um
(57)mon z Sign = ,r]3 2_

as a cylinder with area SL and length I", yielding the volume
with (sinz 0,,,,,) = JL/am, cf. eq. (42). Thus, the correlation volume is estimated

(56)SL = ·rrl2(sin2 9,,,,,)

cross section. Correspondingly, the transverse area of the correlation volume is
where (cos Bm) = (0,,,, — ah)/47,,,,, cf. eq. (42), and 0,,,, is the total Pauli-blocked

lll = l(cos 0,;,,,), (55)

is estimated as

relevant to the two-fluid evolution. The longitudinal size of the correlation volume
density of one fluid, since only collisions between particles of different fluids are
fluids are equal in the equal—velocity frame in our case.) Here we take only the

°)where n = J(lis the density of one of the fluids. (Note, the densities of both
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(70) OCR Output_; I (p(1¤) _+_ p(¢))2 + (2M; _ €(P)2 __ CU)?
with

lv n _ _ _ °"‘
1/2D · A L Ug,·(§) gal (5)

we obtain the following expressions

frame. Now, using the definitions of transport coefficients of eqs. (41) and (64),
where Em, is the initial energy per nucleon in the equal—velocity (center—of-mass)

((t=0 ’I (P§P)P§!))_;

conserved and nonfluctuating quantity,

in the fluctuations, and hence in linear approximation, the (Pép)Pét)) product is a

p) t)follows that ((P(§— Pé)) = 0. Therefore, the r.h.s. of eq. (66) is of second order
Due to the fact that we have two interpenetrating fluids, which are identical, it

<< >><.><>>. cwPéP’6R£" + Pé"m£r’2= P§*" — Pé"’<6R$P’2

The correlator of the random force in eq. (66) is

<66>N;§<P.§*"P.§"> = —v><Pé*" — PW + <PéP’6R§." + Pé"6R£”’>

of the new transport coefficients (64). gFrom eqs. (61) one obtains

p)l)First, let us consider the quantity PéP(), since it is included in the definition
not violate the conservation law.

we neglect the terms of the order of (c(°‘) — M N) /M N as compared to 1, if this does
Below, we solve eqs. (60) — (64) up to linear order in the fluctuations. In addition,

(65)P¤> + P0) = 0.i(§5dt

that due to relation (63) eq. (61) gives the exact conservation law
N, since we consider interpenetration of two fluids of equal density. One can see
neighboring cells would, otherwise, be correlated. Hence, we have N = N =(P) (0
exchange between neighbouring cells but they do not, since the fluctuations in the

of particles in the cell, N , do not fluctuate. They could fluctuate only due to an(°‘)
in different cells are statistically independent. As seen from eq. (60), the numbers

When performing the averaging over a cell, we have assumed that fluctuations
used, which is valid at not too high excitation energies (c(°‘) — MN < MN).
In deriving eqs. (61) and (62) the approximate relation, p(°‘) z MNn(°‘)/el"), was

(64){lu = dai J<iP)(¤>) ·’<l°(¤=) {iu7% A COTTP M @A-L 0 0 P

The appropriate transport coefficients are
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2T
(75) OCR Output· *~ ·‘ 2 ‘·· 2 (P · 6R) = $(./1]] + 3A]_)(P ) = ;;D(P ) =

(P2)
we find

HU) = —(P»)t=¤<·>><p(—f/2T) + <·=><1>{(t’ - i)/2T} 5R»(¢') di'» (74)

mean value does not vanish. Using the formal solution of eq. (71)
for P2. Here, the quantity P · 6R is not exactly a "random force”, because its

(73)*: -;P’+%1¤-6R$5

Multiplying eq. (71) by P", we obtain the equation
have neglected all terms of order (e(°‘) —— M N)/M N.
this equation are considered to be constant in time. In deriving eq. (72) we again
for the correlator of the random force. The transport coefficients A]], AL and ·r in

(6R,,(t) 5R,,(t’)) = 4 6(t —— t') [(.xI]] -— ./I]_)P,,P,, + J1Lg,,,,P2} (72)

with T = (4D/N)‘1 and

n = —%P.. + [—6R.iY,

P5?) — P5'). Taking the difference of eq. (61) for ev = p and or = t, we find
Having done this preliminary work, we can consider an equation for P.,

gives us a possibility of a simple analytical treatment of our equations.
constancy of D is a rather poor approximation. However, we accept it, since it

Pauli blocking for Em], > 500 MeV/u. We also see that the assumption of the
one can see, the D and .A]] transport coefficients are only slightly affected by the
Pauli-blocking effect, since at finite temperatures it becomes less important. As
that there are two cold Fermi distributions. This is an upper estimate of the
expression (70). The calculation, taking into account the Pauli blocking, assumes
to complete stopping. It is calculated by means of the conservation law (65) and the
initial energy EM, = 1 GeV/ u, 5 fi,. is a final value of the 5 argument, corresponding
in the laboratory frame. Whereas 5;,, is an initial value corresponding to the true
presented in fig. 1 as functions of an effective kinetic energy Efab = (5 -4M /2MN
transport coefficients D and .24]] calculated with and without Pauli blocking, are
a modification of the cross sections is a natural extension [14, 15, 28, 29]. The
particles in the center—of—mass frame, respectively. For inelastic scattering such
by pm · pfm,/pim, where pcm and pzm are 3—momenta of the incident and scattered
elastic and inelastic nucleon-nucleon cross sections and replace the factor cos 0,,,
sections of interest. In doing so, we use the Cugnon parametrization [36] of the
and A]] are calculated from eq. (69). We use eq. (42) for the calculation of the cross
quality of this approximation is illustrated in fig. 1. The transport coefficients D

Below we assume that D is constant as a function of the 5 argument. The
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anism of intermediate—energy heavy-ion collisions. However, a direct simulation of
tuation dynamics and for investigating the gross properties of the reaction mech

The relativistic BLE approach provides a useful basis for describing the fluc

5 Summary and Conclusion

not contain thermal fluctuations.

in the energy—m0mentum tensor, cf. eq. (45), is neglected. As a result, P2 does
in the correlator (62). In this correlator the contribution due to the pressure term
there thermal value is, partially, a consequence of the approximation introduced

The fact that the fluctuations in P2 go to zero at large times rather than take
the magnitude of the local fluctuations in energy—momentum space.
of KW, is not very well known, our results should be taken as a crude estimate of
proportional to the the square-root of the correlation volume (57). Since the value
mean value already at t : ·r. However, the magnitude of fluctuations is inversely
stage of nuclear collisions. The mean—square deviation exceeds one third of the
with P2 is a sizable fraction of its mean value (P2) during the interpenetration
with Pauli blocking. As seen from fig. 2, the magnitude of fluctuations associated
lation we have taken the transport coefficients (cf. fig. 1) calculated at 1 GeV/u
pm correspond to a nucleus-nucleus collision at EM, = 1 GeV/ u. For the calcu

Equations (77) and (78) are illustrated in fig. 2. The initial values for Em, and
in distribution functions, can be strongly affected by fluctuations [37].
duction (e.g. strange particles) and two-particle correlations, which are quadratic
mean value is affected by fluctuations. Indeed, the average values of particle pro
ponents but also their dispersion. Thus P2(t) is an example for a quantity, whose
ones. The (P’(t)) value contains not only the mean evolution of the P,,(t) com
(74) for P,,(t), their mean values are not shifted with respect to the nonfluctuating
results from squaring the fluctuating P,,(t) values. As one can see from the solution
tions is given by eq. (77) without the (1 + t/Nr) factor. Physically, this factor
mean evolution due to fluctuations. The solution for P2(t) without any fluctua

An interesting feature of the solution for P’(t) consists in a modification of its

in linear order of the fluctuations.

((()) P(/)»P2 · P22)1/2 = lglfrim ¢><·¢T2 _1/2 gfl

T
(77)(P2) = -41%.. <=><p(—¢/T) (1 + f).

mean value and dispersion of P2 is readily obtained as
velocity reference frame coinciding with the center-of-mass one in our case. The
where pm [= —- M§,)1/2] is the initial momentum per nucleon in the equal

P2(t) = -4pgm exp(—t/T) + exp{(t’—t)/1·}P(t')· 6I7(t’) dt', (76)%[)

Equation (73) is now written in the integral form
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(A.3) OCR Output(m + rn;)0 + dU/da : gm Z p<¤>,

with oz : p, t or s. The equations for the mean fields are

(A.2)a#T,$;*> - g.,J;¤>w; + g,,p(°’6,¤ : RW + 6R]f")

(A.1)a#Jg¤> : s<¤> + 6s<~>,

the continuity equations acquire source terms in the r.h.s’s
of nucleons in a separate fluid is not a conserved quantity any more. Consequently,
and target fluids into the stopped one within the three-fluid dynamics, the number
developed in ref. [15]. Since there are transitions of nucleons from the projectile

in sect. 3 but is more laborious. We follow the version of the three—fluid model

three-fluid model. Technically, this reduction is very similar to that described
Here we present results of a reduction of the relativistic BLE to a stochastic

Appendix: Stochastic Three-Fluid Model
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models previously developed at the mean—fie1d level with collisions [14, 15]. In this
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and without Pauli blocking. OCR Output
Fig. 1. Energy dependence of the 'D and Au transport coefficients calculated with

Ebb, MeV/nucleon
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