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reactions.

reactions, equilibration appears more complete than for the 14N-induced
populations are incompatible with statistical distributions. For the Xe-induced129

kinematics reaction 129Xe + 27Al at E/ A = 31 MeV. In all cases, the relative
nearly symmetric reaction 129Xe + 122Sn at E / A = 31 MeV, and the inverse
normal kinematics reactions MN + 27Al and 14N + 197Au at E / A =75 MeV, the

Relative populations of particle unstable states in 10B were measured for the
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Yc(q) = ]dE *¤<E*.q)I (3) OCR Output* l|9%%2|c}
spectrum, |d¤(E*)/dE *[c , of particle unstable 10B nuclei via the relation

The decay coincidence yield is related to the decay excitation energy

curves in Figs. 2 and 3.
assumptions about the background correlation function indicated by the dashed
In our analysis, we extracted the coincidence yield for the two extreme

Back (Q) = [1+ Rback (q)lY1 (2)

conveniently expressed [1] in terms of the background correlation function
and 2 which are not attributed to decays of 10B* nuclei. The background yield is
denotes the background yield resulting from coincident emissions of particles 1
YC(q) denotes the yield from decays of particle unstable 10B nuclei and YbaCk(q)
coincidence yield was assumed to be given by Yg(q) = YC(q) + YbaCk(q), where

In order to extract the populations of particle-unstable states in 10B, the

indicated in the panels for the 129Xe + 2'Sn reaction.12
locations and spins of the relevant states (see Ref. [12] and references therein) are
groups of states resulting from the decays 10B* Z 6Li + or and 9Be + p. The
values of q. The correlation functions show clear peaks due to single states or
motion, and C is a normalization constant chosen such that R(q) Z O for large
are the measured momenta of particles 1 and 2, q is the momentum of relative
Here, Y1 and Y2 denote the single- and two-particle inclusive yields, pl and pg

Y1(P1)Y1 (P2)
(1)1+ R<q>= cr-}-{ZE

"singles" technique:
(lower panels) reactions. The correlation functions were constructed by the
Figs. 2 and 3, respectively, for 14N-induced (upper panels) and 129Xe—induced

Two-particle correlation functions for 6Li + on and 9Be + p are presented in

isotopically unresolved boron nuclei.
nuclei and particle unstable 10B* parent nuclei to be the same as those for
we assumed the angular and kinetic energy distributions of particle stable B10
determination of the relative yields of B and 10B. In our efficiency calculations,
boron isotopes, but a number of telescopes had sufficient _E—reso1ution to allow
by the solid curves in Fig. 1. Most detectors did not allow a clean separation of
of Coulomb barriers, Eq. 2 of ref. [5]. The quality of these interpolations is shown
interpolated with a two-source parametrization assuming a smooth distribution
parametrization, Eq. 1 of ref. [5]; the yields for the Xe-induced reactions were129
interpolated the yields for the 14N induced reactions with a simple three-source

For the calculation of the two-fragment detection efficiency [1], we

and / or fusion residues.
dominated by near-equilibrium decays of rapidly moving heavy projectile
preequilibrium components, while those for the 1Xe-induced reactions are29



degree of equilibration was observed for the 129Xe + 122Sn reaction. In all OCR Output
7Al reaction and the nearly symmetric 129Xe + 122Sn reaction. The highest
targets and compared them to those measured for the inverse kinematics Xe +129

OB nuclei in normal kinematics for 14N-induced reactions for 2Al and Au7197
In conclusion, we extracted relative populations of states of particle unstable

confirmed experimentally.
of this 3+ state is highly uncertain since, to our knowledge, it has never been
modify the extracted value of ni. We should caution, however, that the existence
the group at E; _ 6.0 MeV. The open points in Fig. 4 show how such a state could
to its statistical weight, it would lead to a decreased population probability for
of 6 MeV. If such an unresolved state existed and if it were populated according
by Warburton et al. [17] predicted a 3+ state in IDB around an excitation energy
unresolved state in the group of levels at E; = 6.0 MeV [17]. In fact, calculations
information for 10B may not be complete and there may be an additional
assumed in the Hauser-Feshbach model [12]. Alternatively, the spectroscopic
MeV could be goverened by branching ratios that differ significantly from those
cannot yet be computed. It is also conceivable that feeding of the group at E), _ 6
which evolve into the asymptotic states. Unfortunately such perturbations
perturbations by the surrounding hot nuclear matter affect the ordering of levels
conceivable that the levels in 10B are populated at a stage of the reaction where
origin and independent of details of the reaction dynamics. For example, it is
for very different reactions suggests that this anomaly may be of a more general
MeV. The persistently enhanced population of the group of states at E; _ 6 MeV
perturbations cannot explain the inverted population of states around E;] _ 6
unbound states. Previous investigations [11-13] have shown, however, that these
probability can be attributed to sequential feeding from higher lying particle

Some deviation from a purely exponential dependence of the population

concepts in heavy-ion—induced fragmentation reactions.
as it could provide important clues with regard to the applicability of statistical
Experimental corroboration (or disproof) of this assumption would be important

attained when near-central collisions are selected for the Xe-induced reactions.
[13]. It is hence conceivable, that even higher degrees of equilibration could be
peripheral 36Ar + Au collisions at E/ A = 35 MeV had been reported in ref.197
angles). Evidence for enhanced equilibration in central, as compared to
induced reactions (for which preequilibrium contributions are large at forward
reactions reflect a higher degree of equilibration than the distributions for MN
by the group of states at E}, = 6.0 MeV. The distributions for 129Xe-induced
observation corroborates previous findings [11-13] of the anomalous role played
more strongly populated than the lower lying group at E), = 5.2 MeV. This
inconsistent with thermal distributions, the group of states at E;_ = 6.0 MeV being

For all projectile-target combinations, the population probabilities are

lines with the temperatures indicated in Fig. 4.
distributions (taking particle stable states into account) are plotted as dashed
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