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discussion of the results already present in the literature is also given.

efficients can be obtained in all the considered schemes. A detailed

depend on the regularization, but the same scheme independent co
and DRED). We show that intermediate stages of the calculation do
b —» s g transitions in three different regularization schemes (HV, NDR
corrections to the Effective Hamiltonian which governs b -—> .s·y and

We discuss in detail the calculation of the leading order QCD
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lous dimension matrix obtained in ref. [7] differs from both the results of OCR Output
depend on the regularization scheme. Unfortunately the new NDR anoma
such as those of refs. [1, 2, 3] have been demonstrated to give results which
loop Feynman diagrams. Calculations which use the reduced set of operators
one takes properly into account the scheme dependence of the one and two
for the Wilson coefficients are regularization scheme independent provided
Hooft-Veltman scheme (HV [10]) and it has been shown that the final results
of the complete LO corrections has been performed in NDR and in the ’t
tonian for B meson radiative decays has been clarified The calculation

Recently the question of the scheme independence of the Effective Hamil

some new matrix elements in the "full” basis.

lous dimension matrix in the “reduced” basis. However they disagree on
followed [5]-[6]. Refs. [5] and [6] confirm the result of ref. [1] for the anoma
NDR scheme using the full set of operators, then other similar calculations
paper [4] appeared where the complete LO correction was calculated in the
to cast doubts on the reliability of the DRED scheme. Two years ago a first

Later NDR result was confirmed [3] and this led the authors of ref. [9]

at the leading order.
mension matrix, that was believed to be regularization scheme independent
Effective Hamiltonian. They disagree on the results for the anomalous di
scheme (DRED respectively and used a reduced set of operators for the
mensional Regularization scheme (NDR) and in the Dimensional REDuction
The original calculations, refs. [1] and [2], were performed in the Naive Di
Hamiltonian for radiative B decays has been developed in the recent years.

Let us briefly recall how the calculation of LO corrections to the Effective

full details on our calculations in three different regularization schemes.
aim of this paper is to help clarifying the origin of these differences by giving
numerically small and have essentially no phenomenological relevance. The
in the recent literature on this subject, even if the residual differences are
the B phenomenology. In spite of this effort, different results are still present
the last five years [1]-[7]. In fact they turn out to be large and important for
the radiative decays of the B meson have been calculated by many authors in
Leading order (LO) QCD corrections to the Effective Hamiltonian governing

OCR Output1 Introduction
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The effective Hamiltonian for b --> .s ··y (b —> s g) transitions is given by

and Evolution for the Coefficients

2 Eff`ective Hamiltonian: Initial Conditions

critically compare our results with the other ones present in the literature.
dimension matrices in the different schemes are given. Finally in Sec. 7 we
briefly report other checks done on our calculation. In Sec. 6 the anomalous
loop diagrams induced by the scheme independence of the final result and
to the anomalous dimension. We discuss the relations among one and two
are given. The same is done for the contributions of the two loop diagrams
elements and counter-terms are considered and diagram by diagram results
contributions of one loop diagrams to anomalous dimension, operator matrix
discussing how they are implemented in our calculations. In Sec. 5 the
summarize the definitions of NDR, HV and DRED regularization schemes,
showing the scheme independence of the coefficients, is given. In Sec. 4 we
the coefficients are also given. In Sec. 3 the explicit solution of the RGE,
basis is given and compared with the reduced one. The initial conditions for
(RGE) governing the evolution of the Wilson coefficients. The full operator
Hamiltonian for b —> .s·y decays and the renormalization group equations

The paper is organized as follows. In Sec. 2 we recall the Effective

comment on the differences among the results, reported in refs. [11, 12].
wrong. Finally we compare our results with the most recent ones [5, 6] and
why the conclusions of ref. [9] on the reliability of the DRED scheme are
other two schemes, thus extending the result of ref. [11]. We also discuss
ularization independent results can be obtained in DRED as well as in the
present the calculation in the DRED scheme. We show how the same reg
[7], including tables with the pole coefficients for all the diagrams. We also

In this paper we provide full details on the calculation presented in ref.



In the “complete” basis this operator can be eliminated via the equations of motion. OCR Output

the anomalous dimension matrix as in ref. [15]. includes the contribution
where t = ln(M$V/pz) and cx, = g2/41r. The factor of 2 in eq. (3) normalizes

<3>g + ¤<¤.>£— va ¤.<t>> = 0.
·T

The coefficients C(,u) of eq. (1) obey the renormalization group equations

result, see ref. [7] and Secs. 3, 5, 7 below.
NDR calculations using the reduced basis give a regularization dependent
dependent contribution, which does not vanish in the NDR scheme. Hence
nately just the insertion of Q5, Q6 in the one loopdiagrams gives a scheme
actually does not fully consider the contribution of Q3,. . .,Q6. Unfortu
Also retaining the penguin operatorz Q p = §·yfD"tAGQ,,b as in ref. [3], one
“reduced” basis, one neglects the contributions of the operators Q3,. . . , Q6.
basis, to be compared with the "reduced” one of refs. [1, 2, 3]. Using the
[16] shows that it can be safely used. This basis is often called the "complete”
fields. While this procedure has been criticized in the past, a recent paper
basis in eq. (2) is obtained by using the equations of motion of the external

The choice of the operator basis deserves some comments. In fact the

normalization is Tr(tAtB) = 6AB/2.
and g (e) is the strong (electro-magnetic) coupling. The colour matrices
is the b quark mass, Q3 = —§ is the electric charge of the down-type quarks
Here (V ZF A) indicate the chiral structure, or and B are colour indices, mb

16W
(2);m¤§~¤f'¤7+A)*2¤b¤GfV`

167r
- V -imbsaJ€V+A)baF“,

Qde

q:u,d,•,···

Q4,6 (5¤b¤)(v-A) Z (<Y¤q¤)(v;A)
q::u,d,J,···

Q3,5 (5~b~)<v—A> Z (<i¤q¤)<v¢A>

Q2 (5¤¢¤)<v—A>(6¤6¤)<v—A>
(·%¢¤)<v—A>(6¤b¤)<v—A>

the following operator basis Q

where `[Gj are the elements of the CKM[13, 14] quark mixing matrix. We use



fermion operators with the magnetic ones. OCR Output
B8 = (*)*18,*)*28,...,*)/118), which account for the two-loop mixing of the 4
themselves and two 6-component column vectors B7 = (717,727, . . . ,767) and
to introduce the reduced 6 >< 6 matrix 7, which mixes Q1,.. .,Q6 among
Qg do not mix with the 4-fermion operators Q1, . . . , Q6. Then it is convenient
This "almost” triangular form is obtained because the magnetic operators Q7,

*1 = G (5)
as if ,67 Us QT 777 0 OT 'Ysr 'Yss

of the anomalous dimension matrix, which is
among matrices in different schemes in eq. (21), rely on the peculiar structure
discussed, following ref. The solution in eq. (7), as well as the relation
and the regularization scheme independence of the Effective Hamiltonian is
In this section the explicit solution of eq. (3) for the coefficients C(,u) is given

Effective Hamiltonian

3 Regularization Scheme Independence of the

h z =

-——— -——-—;— 2(1—z)‘*1nx+ 4(1—a:)3Cs(MW) 4 ’ ()
3:1:2 1:3 — 5:c3 — 2z

3111 2(1 — :c)4 z 4(1 —— 2:):*O7(MW)
30:3 — 22:28::3 + 52:2 -— 7m

) ¤3<MW> ,..., G6<MW

C2(MW)

C,(Mw)

by lm
the effective theory with the “full" theory at the scale Mw. They are given

The initial conditions for the coefficients can be easily found by matching

constant g, see e.g. refs. [3, 18] (see also Sec. 6).
due to the renormalization of mb, the gluon field and the strong coupling
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777— *,.B7 + ..,777 ·· 788-1 127;(i 7) [
with

(8)CSW) + 58 · G-(M)”8(#)

-j—G8(»»> 777 788vw) GTM) + 627 - GAM +
'Ysv

where

(7)§'788”¤(M)»2#2%5v8(}‘)

ii'7’v7vv(#)2Ii2$%i>-1'7(/L)

2 \A/ Y 2/* 730-(#) §'Y?Or(#)
al A q

tors, one obtains
B(a,)8/Ga,. Diagonalizing the submatrix which mixes the magnetic opera
Where C»(#) = (6'1(#) ,--- »G'c(#)), ¤» = ¤·(u) and #2d/dl? = #26/@#2 +

41r
(6)2#’fzG¤<»»> (F8 . GTM) + ·r¤8O*(")) ’

2#”j;¤7<»»> CAM) + .y87Os(P) 57 · o,(,L) +777; (M2

2#mCr(¤>
a AT3 ) ggpyr G4 - 2

In terms of these quantities the RGE are given by

operators (E7, 58) is a two-loop effect (always at LO).
loop effects (at LO), while the mixing between 4-fermion and magnetic-type
mjadng of magnetic-type operators among themselves (·y-{7, 787, 788) are one
The mixing of 4—fermi0n operators among themselves as well as the
the perturbative expansion both one-100p and tw0·100p diagrams contribute.

A very peculiar characteristic of this calculatiorr is that at the LO of



magnetic operators. They are calculated from the finite part of the penguin OCR Output
can be considered as the effect of a mixing of order 042 among Q5, Q6 and the
such that the matrix elements of Q6 and Q6 vanish. The vectors Z7 and Z8

Eqs. (10) and (11) can be seen as a finite renormalization of the operators

GBM) = CSW) + Z8 · Gr(#)· (11)

cm = cm + 27 · cio)

where the coefficients Q'7(;t), Q6(p) are defined as

6'¤(#) < $ylQ¤(u)lb >, (10)

< $g|H¢¢x|b > = CSM) < SyIQ8(u)Ib > +6'¤(#) <¤yIQ¤(#)|b >

Gm) < SvlQ7(u)|6 >

+6’6(#) <—¢vlQ6(u)lb >

<—¢1!H¤rr!b > = CAM) <¤v|Q7(#)|b > +6'5(#) < 3v|Q¤(#)|b >

can be written as

the same order in a,, so that the matrix elements of the Effective Hamiltonian
elements and the tree level matrix elements of the magnetic operators are of
diagrams in fig. (3) with massive b loop propagators. These one loop matrix
matrix elements between the b and $7 (sg) states, through the penguin

Moreover, already noted in ref. [4], the operators Q5, Q6 have non zero

and DRED schemes, as stressed in ref.
refs. [1]-[5], is responsible for the difference between previous results in NDR
scheme, even if they are LO results. Precisely this point, that was missed in
two loop diagrams (see Sec. 5 below) and they do depend on regularization

i

lation. On the contrary 57 and Bg, hence 67, 58 and O-,(;z), C'8(p), come from
leading order terms [15, 19], which are not to be considered in our LO calcu
regularization scheme independent. Indeed, C,.(p) is known up to next-to
LO solution of the RGE for the 4-fermion operators, which is known to be
scheme-dependent and ·independent quantities. In particular C,.(p) is the
However the expression of both ·v·;(p) and ·v8(p), eq. (8), contains both
tions C',(p), v7(p) and ·v8(p) are independent of the regularization scheme.

The rhs of eqs. (7) involves only one loop quantities, so that the solu
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Z?. Z3 — Z3)
calculated in the two different regularization schemes, i.e. AZ = (Z?

schemes, AZ is defined as the difference of the vectors Z·;_8 of eq. (11)
Imposing the condition that the renormalized operators coincide in the two
where 16,2 are 6 X 6 and 2 >< 2 identity matrices and AZ is a 6 >< 2 matrix.

19 <>
. -A16 Z . (O lg )

discussed above, the matrix 1* is simply
ce?. However, due to the peculiar form of the anomalous dimension matrix
a consequence of eqs. (10)—(12), wi differs from the identity already at order
1 by terms of order or,. Here we are not interested in such terms, but now, as

calculation of the AS = 1 Effective Hamiltonian. In that case f deviated from
This relation was already found in ref. [19] and applied to the next-to-leading

·)Z r)7. (18)¤ 1¤*·=

“a” and “b” is easily obtained from eqs. (15)-(17)

The relation between the anomalous dimension matrices in the schemes

introduced in eq. (11), as discussed in the following.
"a.”. In our case the matrix F is expressed in terms of the vectors Z·;,g
the scheme "b” necessary to define operators renormalized as in the scheme
where the matrix f· accounts for the change of the subtraction procedure in

(17)z¤ : z%=
lated through the equation

renormalization constants in two different schemes "a” and "b” can be re

adopt a suitable non-minimal subtraction in the other ones. So the MS
one can define them using the MS procedure in a given scheme and then
other. In order to have the same renormalized operators in all the schemes,
malized through the usual MS subtraction change from one scheme to an

Let us consider different renormalization schemes. The operators renor

—• na -1 -• ceo) = (Z ) QB.

renormalized operators in terms of the bare ones
OCR Outputwhere Z“ is the matrix of the renormalization constants which gives the



refer to the literature on the specific subject. OCR Output
refs. [20, 21] and references therein, while for more details the reader should

we have used for our calculations. Other nice discussions can be found in
In this section we briefly recall the definitions of the regularization procedures

4 Dimensional Regularization Schemes

schemes. Thus it can be a useful check of the calculation, see Sec. 5 below.
Eqs. (21) can be used to relate classes of diagrams calculated in different

(13), is independent of the regularization scheme.
too. In turn this implies that, as expected, the Effective Hamiltonian, eq.
binations 57, G8 in eq. (14) give AGES = 0, i.e. they are scheme independent
are scheme independent. Using eqs. (21), one can easily check that the com

<22>B8 — (mi — v.) Z8
B7 — (Wvvi -· 'S/T) Zv -· verge

where = 1,. . . ,6. This clearly implies that the combinations

@1)(Agslj = Awe

(AB?). = Aw iiZ..> 788— Wliali $(1,) AZ7 i%7
'YS

.

li/2 :1)*1

matrices of the form of eq. (5), we {ind
ture of the matrices. In fact, applying eq. (20) to anomalous dimension
However a scheme independent combination actually ezdsts due to the struc
diH`ere11ces between the two schemes or scheme independent by themselves.
it can not be written just in terms of quantities which are either calculated as
scheme independent combination of the one and two loop matrices, namely
Contrary to the already mentioned AS = 1 case, eq. (20) does not define a.

(20)b '··M = »y= - e: [AZ,¢] - A2;/A2.

At the order wc are interested in, eq. (18) gives
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75 in NDR in the same way they are defined in the HV scheme, see below.
one implemented by Schoonschip [22], which defines traces of odd number of
which shows a failure of this scheme. Our way to fix the 75 problem is the
to our knowledge, once the problem is properly fixed, there is no calculation
dimensions, traces involving odd number of 75 are ill-defined too. However,
Obviously, since the completely antisymmetric tensor is not defined in D

{‘m,1s} = 0 (24)

guugwl : D

ested in are simply
tensor is replaced by the D-dimensional one. The definitions we are inter
dimensional one, including the properties of 75, once the 4-dimensional metric
sumed to be in D dimensions. The Dirac algebra is identical to the 4
In NDR all the Lorentz indices appearing in the regularized theory are as

4.1 Naive Dimensional Regularization

Let us now separately discuss how the three schemes are implemented.

theory and must be considered in the renormalization procedure.
structures, which eventually vanish in 4 dimensions, appear in the regularized
does not hold in D dimensions. This implies that more complicated tensor
which, in 4 dimensions, projects the product of three 7 matrices on the basis

'Yu'Yv7p : 'Yugvp _ 7'vgup 'l` 'Ypguv “ 'i'7'q"Y5€uvw (23)

point is that the relation
schemes differ from each other in the way they treat 75. Another relevant
not have any meaningful extension in D dimensions. Actually the three
pressions containing the completely antisymmetric tensor e,,,,,,,,, which does
difficulty except for the properties of traces involving 75 and in general ex
The extension of the Dirac algebra to non-integer dimensions presents no
sions, thus turning the divergences into regularized 1/(4 — D) pole terms.
consists in performing the integration over the loop momenta in D dimen
all based on the dimensional regularization of the loop integrals [10], which

The regularization procedures we have used, NDR, HV and DRED, are
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in D dimensions.

In this way the bare vertices preserve the chirality of the external fields also

(V :}: A)7,,(V i A): 7,,(V ;h A). (27)

We use the symmetrized form
in different ways, all having the same limit when D tends to 4 dimensions.

Finally we mention that the chiral vertices in D dimensions can be defined

concerned.

the three considered here as far as the algebraic manipulation problems are
the splitting of indices, the HV scheme is the most difficult to handle among
inconsistencies or introduce ill-defined quantities. On the other hand, due to
75 in D dimensions is the only known one which does not give rise to algebraic
This is equivalent to define 75 as the product M0717273. This way of treating

{*%,75} = 0 , [*%,15] (26)

with 75. In fact the following relations hold in HV
7 matrices in D dimensions do not have definite commutation relation

the D-dimensional metric tensor g"” are assumed.
commutation relations among the D·dimensional Dirac matrices in terms of
of D dimensional matrices as §“"7, and §“"7,, respectively and the usual
matrices in 4 and (D — 4) dimensions can be written in terms
These rules define also the extended Dirac algebra, once one notes that 7

gwgyp : 0. (25)

§p»§'“’ = 4 , §W§‘“' = D — 4

gnu : gw: 'l‘ gmx

components, according to the rules
matrices are taken in D dimension, then indices are split in 4 and (D — 4)
together with the corresponding metric tensors gw, §,,,, and QW. All the 7
In HV [10], Lorentz indices in D, 4 and (D - 4) dimensions are introduced,

4.2 ’t Hooft-Veltman Regularization
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5.1 One Loop Diagrams

1/e = 2/(4 — D).
coefficients of the poles in the number of dimensions, appearing as powers of
schemes. Tabs. (1)-(10) contain the results of these diagrams in terms of the
lous dimension matrix are presented in the three considered regularization
the one and two loop Feynman diagrams in figs. (1)- (4) to the anoma
In this section the main results of our study are given. Contributions from

5 Diagrams and Counter-terms

in Sec. 5.

definition of the (4 — D)-dimensional operators is introduced, as explained
the renormalization procedure in D dimensions show out, once a suitable
neither inconsistencies of the regularization scheme nor other problems with
triangle anomaly, gives so far a wrong result. Concerning our calculation,

In spite of all these problems, no calculation, with the exception of the

(4 — D) dimensions, when higher order calculations are performed [21].
theoretical subtleties regarding the renormalization of operators, living in
sumed [24]. Finally it is well known that one has to take care of many
reproduce the triangle anomaly, unless further ad-hoc prescriptions are as
inconsistent [23]. Moreover one should also mention that DRED fails to
exchanged, but, contrary to that case, DRED is known to be algebraically
are formally similar to the HV ones provided the roles of gw, and _Z],,, are

9¤»§”" = 0 (28)

gx-wgw Z D s guvgw : 4 ' D

gpv : gpx: 'i"gpv

that 7,, in D dimensions is given by g,'j$·,,. The basic rules
the loop integrals, which generate the D-dimensional metric tensor gw., so
algebra is greatly simplified. The D-dimensional indices are introduced by
In DRED [8] the Dirac matrices have indices in 4 dimensions only, thus the

4.3 Dimensional Reduction
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P1 with a 7f ® 7,,;; vertex insertion gives
induces a finite mixing among Q5, Q6 and Q7, Q8. In fact the calculation of
in NDR, when massive quark fields propagate in the loop, the diagram P1
have neither pole nor finite parts on the magnetic form factor. Differently
appears already at O(a2). However penguin diagrams in HV and DRED
is re-absorbed in the definition of the magnetic operators, so this mixing
could mix 4-fermion operator with magnetic ones. The coupling constant
operators, already discussed in Sec. 3. The penguin diagrams in fig. (3)

Let us start with the O(cx2) finite mixing among 4-fermion and magnetic

mixing and the counter-terms to be used in the two loop calculation.
Figure 1: One loop diagrams which generate both the 4-fermion operator
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external gluon field renormalization, see eqs. (37)-(38), is taken into account.
that the gauge dependence of the diagrams M,-M5 cancels out when the
eqs. (43) and (44), coincide with those of refs. [251 and [18]. We just mention
results, as well as the corresponding anomalous dimension sub·matrices in
since a long time [18, 25], thus we omit the details on their calculation. Our
results, which do not depend on the regularization scheme, are established
found in tabs. (1) and (2), where the pole coefficients are reported. These
the magnetic operators among themselves. The corresponding results can be
leading order the 4-fermion operator mixing matrix 7,. and the mixing of

Figs. (1) and (2) show all the diagrams required to calculate at the

coincident results even at intermediate stages of the calculation.
vanishing of Z in both the HV and DRED schemes makes them to give
the values of the vector Z in eq. (12) can be readily obtained. The accidental

(30)m1»(1 + v¤)¢i% —>§, MU + *15)*M-> -§.

Selecting the magnetic form factor through the projection

omitted.

of the diagrams is also reported in the table. Colour factors and or,/41r are
4-fermion structures. VQ-lé are proportional to 72* ® 7,,. The multiplicity
a 7f ® 7,,R vertex insertion. H-V}, results are proportional to the inserted
Table 1: Singular parts of the diagrams in figs. (1), with a 7},* ® 7,,,; or

1 1 -4/2 1 -4/3
1 1 -4/3 1
2 1 1

2 1 -4 1 -1

2 1 1
0/¤> I (1/6)

diagram [ M | 1; ® '7pL I 'YZ ®'YuR
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known from ref. [21]. We confirm all previous results and give some details
"effervescent” operators generated by the 4-fermion diagrams in {ig. (1) are
and NDR, since it is fully explained in refs. [15, 19, 20]. Also the DRED

Here we do not repeat the procedure to define these operators in HV

counter—terms in the two loop diagrams, in order to have the right iinal result.
in the renormalization procedure, namely they must be properly inserted as
is well known [15, 20, 21] that “efl`ervescent” operators must be considered
proportional to the operators already present in the 4-dimensional basis. It
vanish in 4 dimensions, are generated along with the usual counter-terms
the diagrams in figs. (1)-(3). Many scheme dependent operators, which
Counter-terms to be inserted in the two loop diagrams are obtained from

5.2 One Loop Counter-terms

netic operators.
Figure 2: Diagrams responsible for the one loop renormalization of the mag
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only to the "efl`ervescent” part of the two loop diagrams. By summing the
The dots indicates further terms that can be omitted since they contribute

36
01 + 2l)“7»§”"(1 — 15) + ?(¢h’“ - ‘/'“é)7»§'“"(1 · *15)+ ··- (32)

_
·§g(<1 + 2()“‘r~§"’°(1 · vs) + ? (¢lv" —‘r"xi)v»§""(1 — vs) +

cent” parts are found to be respectively
Concerning the diagrams PyV(a) and PVV(b) in fig. (3), their "efl`erves—

This result coincides with the corresponding one of ref. [ll].

(31)A U —§;q2y" vv (1 - vs)
21

The “efi`ervescent” part of the penguin diagrams in DRED is then given by
have (4 -— D)-dimensional Lorentz indices saturated on the external fields.
vescent” operators can be readily defined by inspection as those terms that
dimensions so that no complicated tensor structure appears and the “effer

Contrary to other schemes, in DRED the 7 algebra is performed in 4

ref. [11].
penguin and gluon-photon diagrams in fig. (3), recently presented also in
only on our DRED calculation of the "effervescent” operators due to the

gauges.

diagrams M4 and M5 are calculated both in the Feynman and background
proportional to the magnetic operators. The factor cx,/4*rr is omitted. The
Table 2: Singular parts of the diagrams in fig. All the results are

MP I -2
Ms I —$

MP I 5
M, I 6
M3 I -1
M2 I -4

Diagram I 1/ e
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We thank M. Misiak for clarifying this point.

be taken into account.

DRED the diagrams of fig. (3) give "efl`ervescent" contributions that must
4-fermion operators only as counter-terms in the Hamiltonian. However in
the longitudinal parts of the penguin diagrams vanish, so that one can retain
counter-terms generated by the diagrams Pvv and Fyv in fig. (3) and by

It is worthwhile to note that, as shown in ref. [15], the insertions of the

normalization of the operators are taken into accounts
one presented in ref. [11], once the charge of the c quark and the different
two terms in eq. (32), we obtain a counter-term in agreement with the

In DRED they generate "eft`ervescent” contributions that cannot be omitted.
Figure 3: Diagrams which generate the counter—terms discussed in the text.

Pvv Fvv
(a) (¤)(b) (b)

IQ Pq <1Q PI IQ Pq qQ PI
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(1 + *x5)1#q" —> 0 (34)< 1+ 75)#pp. A-} _l

(1 + *rs)éq”—> 0 (1 + WP" s `%

mb(l + *rs)P" —> + 75)q# _-) 0

Tn " + 'Y .mb(1 + ‘/s)1%¢" —> 0 M .

b(1 +'Ys).q2pu _é ZZé 1mb(1 + ‘rs)@q“—> 0
TTL 2mb(1 + *15)*7% —> 0

required, besides those in eq. (30)
tures, containing mb mass and / or external momenta. Further projections are

The calculation of the two loop diagrams results in many tensor struc

only when q = b is taken in Q5, Q6.
just because of the massive loop propagators, thus these diagrams contribute
right operator insertion in the P—type diagrams, tab. (7), does not vanish
the results in tabs. and (9)-(10) respectively. Note that the left
7},* ® 7,,;; 4-fermion vertex, inserted in P- and F-type diagrams, originate
from 72* ® 7,,L insertion in F—type diagrams can be found in tabs. (5)-(6).
the P-type diagrams of fig. (4) are reported in tabs. (3)-(4). Those coming
see eq. (41) below. Results from the insertion of a 72 ® 7,,;, upper vertex in

D = D — C — :rE (33)

one collects the final results of the renormalized diagrams (D), obtained as
terms (C) and the insertion of "effervescent” counter-terms The second
coefficients of the bare diagram (D), the insertion of 4—dimensional counter
inserted in the upper vertex are presented. The first one contains the pole
magnetic form factor. Two tables for each different kind of Dirac structure
(3)-(10), which contain the pole coefficients of the diagrams projected on the
results in the three considered regularization schemes can be found in tabs.
The relevant two loop diagrams are shown in Hg. (4) and the corresponding

5.3 Two Loop Diagrams
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coincide diagram by diagram, so that eqs. (36) are not really interesting.
in the other two schemes. As already noted, HV and DRED calculations
(8), with the exception of P{“", which is equal to 2 in NDR and vanishes
with a mass insertion into the loop propagators. They can be found in tab.
Quantities denoted by 77'Lb refer to the results of the left-right P·type diagrams
where A indicates the difference between two different regularization schemes.

A(P{"° -1- P,{"" + P,§“" -1- P§”") = —-2APf”", (36)

A(P§”" + Pg”" + PQ"') = -5AP{”

A(P{"" + P§‘° + PQ”" + P,T”" + Pg"*· -1 PQ") = —7AP{""

AP-, = —§P1AP{”", AF? = -—§F4APf”

A(P2 -1- P4) = 0, A(F2 -1- F4): 0

A(P2 -1- P3) = O, A(F2 -1- F3) : 0

are

lous dimension matrix (i.e. its Dirac and colour structure). These relations
easily obtained by considering how each diagram contributes to the anoma
enforce a set of relations among one and two loop diagrams, which can be

Let us consider now the relations among different schemes. Eqs. (21)

(1 + v¤)%§3¢"""" app, (4 - D). (35)

(1 + ·r5)i~¢""""<1,»1>¢»

‘1 · Dm¤»(1 + ·r¤)‘r¤‘7»§S ¢"'“"°1>¤ j()

m¤»(1 + ·r5)·7¤‘rp§S€"”"°q¤ (4 · D)

m¤»(1 + ·rs)%·?.»¤"”""1>.7

m¤»(1 + ·x¤)·?»*?p<“””°q¤

pI0j€CtiODS BIC
pure 4-dimensional expressions or in tensors involving §,,,,. In these cases the
Moreover in DRED also the antisymmetric tensor e;,,,,,, appears, either in
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ground gauges [26].
the gauge independence, checked by using the Feynman and the back

then the first one;
the insertion of the counter-terms, the second being two times larger
the usual relation between the double poles of the bare diagram and

leading order calculation, see eqs. (41);
the cancellation of all the double poles, as an indication that this is a

Among the other checks passed by our results, one can readily verify

and one can verify that all our diagrams satisfy eqs. (36).
However, when comparing HV or DRED with NDR, this check is eitective
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67,8 in eq- (5)
Eigure 4: The two loop diagrams relevant for the calculation of the vectors
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(33).
7f ® 7),;, vertex insertion. These results are obtained from tab. (3) using eq.
Table 4: Singular parts of the renormalized P diagrams in fig. (4) with a

54 2 54 4 54 2
,12Pig

54 54 54

_}.§
5454 5 -54

_§ 54 AQ 54 92_54
,.@. -QQ

E 6

1HV INDR ]DR.ED

and background gauges.
to the magnetic operators. Diagram P4 is calculated both in the Feynman
(C') and the "eHervescent” counter-terms. All the results are proportional
NDR and DRED, are presented for the bare diagrams (D), the 4-dimensional
insertion. The common double poles and the single poles, calculated in HV,
Table 3: Singular parts of the P diagrams in fig. (4) with a yf ® 7,,L vertex

9 9
,2 - § }. 2 .. Z

54 5454 27 27 27 4
Ql E ZZ 12Pfa 54 25 54 54 27 10 27 27

54 25 54 27 §i L2 27 10 27 27 22 LQ
_Q .. .. Z
54 27 27 LZ 3254 27 65 25 27 10

P2!-é -32 _Q _lQ .. .. E_2Z _Q I_Z.,2
e c c c z e I ¢¢ eaTNI?

1 HV INDR IDRED I 1 1HV 1NDR IDHED I ]_HV INDR IDRED
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insertion.

Table 6: The same as tab. (4) for the F diagrams with a yf ® 7,,;, vertex

54 4 54 254 2
FF

5454 ____ 54
54 554-54
54 9154 91 54 AQ

_Q-21 _Q
c c

1HV 1NDH IDRED

insertion.

Table 5: The same as tab. (3) for the F diagrams with a 72* ®··y,,L vertex

9 9
F7 I— ... .. Z- § L

27 2754 2 54 54 27

g Q Q 12E Q 12Fflé
54 54 54 27 27 27

.. ..- __!54 25 27 10 27 27 22 1054 27 H E
-__F3 .. .. Z54 54 27 B Q Z§ 27 10 27 27 Q 22

F2 Ii -19 _Q _LQ ... .. Q-2 _m -22 I -2
c c c c e e I c c c

IHV IND}! IDRED 1I c z . 1HV INDR IDRED | IHV INDR IDRED
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insertion.
Table 8: The same as tab. (4) for the P diagrams with a yi ® yp}; vertex

b png

b png

s c c

1HV INDR IDRED

insertion.

Table 7: The same as tab. (3) for the P diagrams with a yi ® 7,,;; vertex

— -2b Peg
——6

b pf

16— -20

6 6 € e c c I e c c

1HV INDR IDRBD { 1HV INDR IDRBD1HV 1NDR IDRED | 1
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insertion.

Table 10: The same as tab. (4) for the F diagrams with a 7f ® 7),); vertex

54 2 54 2'E
Fig

5454 -. 54
54 1 54 554

54 7 71 “54 71 54 59
EQL 192

e e e

LHV 1NDR IDRED

insertion.

Table 9: The same as tab. (3) for the F diagrams with a 7}; ® 7,,;; vertex

F7|_ Z54 2 54 8 54 27 27 27
Q Q H 19E 37Fig ::

54 54 54 27 27 27
Qli

64 54 37 27 27 10 27 27 22 10a; F4I?
_Q9}. ME2Fl

54 54 27 29 27 10 27 27 22 10
_F'-;

E -19 _Q ,12Q 5.2

E E (

" _···

c e c I ( ; eTNI?
Hv l urn; LDREp I 1Hv N 1 DR LDRED]_HV 1NDR IDRED | 1
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·· ~ _, ~ A Z Z 1 _{_ #-26 Z-,1 + Z,1_+ Z,1 + Z,11 1 (8p) QLKS;_) e 4vr e

while the multiple expansion of the matrix Z is given by

(39)”— 2ZZ1|(—ea +,B(cx + 2-- Z 70 _ 8 I ll 72Gas

expression of the anomalous dimension becomes
the dimension between 4·fermion and magnetic operators. Thus the usual
subtraction scale pe, starting already at order O(ozE), due to a mismatch in
now the renormalization constants include an explicit dependence on the
the regularization parameter f, more involved than in other cases. In fact
has an expansion, in terms of the renormalized coupling constant oz, and
of the renormalization constants as shown in eq. (15). In turn this matrix

The operator anomalous dimension $0 is defined in terms of the matrix

The two values of 79 refer to the Feynman and background gauge calculations.

..., B(C¥,)—·;;pg—I—... —
of ll 2

= ·2 N ‘ 22· 2" Z r2 N r11 2 5 2 (3$) $Gsm)
_ ”’ Z hm 2 lm Z Z°'3Iw7

N2 - 1 N2 — 1

external fields and to the explicit couplings and masses are known to be
6;767j -l— 5;868j, and (S2);j = :286%. The anomalous dimensions due to the
fermion and gluon external fields of the operator they are applied to, (S1);j =
where the diagonal matrices fz; and hg respectively count the number of

(37)
· ~

. . . . v = E (vo + 5 (ww + vang) - ·rm.,S1 — @$2) »cr. 1

The anomalous dimension matrix appearing in eq. (3) is defined as

6 Anomalous Dimension Matrices
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elements between 4-dimensional operators are concerned. On the contrary,

which are not included in the MS renormalization constants as far as matrix

these terms are actually purely "effervescent”, since they involve finite parts,
which are generated in 4 — D dimensions by the diagrams in fig. Both
term includes the peculiar operators, present only in the DRED scheme,
vescent” contribution coming from one loop 4-fermion diagrams. The fourth
In particular the third term in eq. (41) accounts for the well-known “effer·
formula, see e.g. refs. [15, 20], even if this is a leading order calculation.

The expression of $0 inieq. (41) is similar to the next-to-leading order

operators.

matrices run over the full D-dimensional basis, including the "effervescent”
terms of $0 in eqs. (41). In fact the summed indices in the products of the Z
are retained, the “effervescent” contribution being included in the last two
vescent" ones. Moreover only matrix elements between "physica.l” operators
set of "physical”, i.e. 4—dimensional, operators, while E refers to the "effer·
which hold for our MS renormalization constants. P indices get values in the

(42)
’’12}*12}-2 Z}·Z§·: 0, 4,j : 0,1

(Z;'1)EP Z (2;’2)EP<Z£'1)EP

·‘= 0(28,1) PE <2é>PE
(Zé'1)PP : (Z¥,1)PP(28,1) PP

by using the relations
the one and two loop diagrams, see also eq. (33). This equation is obtained
dimension matrix in terms of the single pole coemcients and finite parts of
eqs. (41) must be satisfied. Then the second equation gives the anomalous
In order to have a finite $0 when D tends to 4 dimensions, the first of

. .. A ,. _ . . : -22* - 4 2* - z·‘z·* - 2*2-*1 ]}(}§}§53,}) (41)
21.2 : O

Using eqs. (39) and (40), we obtain

of loops involved in the calculation and cis the order in the E expansion.
The c0cfHcients are labeled as Zjb, where a is the order in a,, bis the number
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For the vectors 5, which depend on the regularization scheme, we obtain

788 4N (44)

2N
787

N2 -1

2N
'777

N’ -1

also scheme independent and is given by
The mixing of the magnetic operators Q7 and Q8 among themselves is

flavors.
where N is the number of colours and nj = nu + nd is the number of active

0 0 —{% {£% 12?$ + {2 2 2 ¤- 2 L —·NL

0 0 0 0 %

:3 s

hu0 0 0 Zh 6 EL 221 ` sN —7v`+ "N
VT Z (43)

0 0 -5% % —$

N szv a szv

6 z 2

0 0—% 6 0

The regularization scheme independent matrix Q, is given by

results for $4, B7, B8 and 177, 787, 188.
Splitting the anomalous dimension matrix as in eq. (5), we give the

the results reported here can also be found in ref.
the DRED scheme gives a, matrix which is identical to the HV one. Hence

dimension matrices in the three considered schemes. The new calculation in

In the last part of this section we summarize the results for the anomalous

retained in the matrix of the renormalization constants, even in the MS case.
matrix elements connecting "physica.1" and "eH`ervescent" operators must be
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ror in both the NDR and DRED calculations. However refs. [1, 3] did not
to scheme dependent results. Apart from this, there is no computational er
works used the "reduced” basis. As we have shown, this approximation leads
Let us start with the original calculations, from ref. [1] to ref. These

rection to the b ——> S7 Decay

7 Status ofthe Calculation of the QCD Cor

*8 · v+ WNn 6211 g; L

4N - - sn23 ,

22Nn 4611 12 + ·?" · mi
B8 _NDR _

? r%1! ‘ gi+ 6"

9 9N
@ _ :*2

(46)

9 2N zzv zzv
l@;N2—1 __ 12at(N°-1) + 40N[N2-1]

4O%2- 1

s zzv 2N
yg¤_N¤_1 + 12F4t(N°—12[Ji=ma

s 2N
ggzvki

9 2N Q4 2N
;1;§N°—1 _[_ gglzvki

OCR Outputwhere if = nd + %;-nu. The NDR result is given by
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stated in ref. [12].
sented there do not include the "effervescent” counter-terms, as also

• the calculation of ref. [6] differs from our one because the results pre

the diagrams P2 and P3 in tab. (8);
• the calculation of ref. [5] differs from our one because of the values of

as a reference

summarized in ref. [11]. We shortly repeat them here, taking our calculation
when N = 3 and nf : 5. The origins of these differences have been clearly

• 1`€f- [7] giV€$ 757 = ¥, 767 = 2;*:%% 758 Z ··%, 76s = rfgégi

• ref. [6] gives 757 = %§, 767 = %-Q, 758 = —¥, 768 = —%¥;

• ref. [5] gives 75-,- : -32, 75-,- = $%, 755 = 10, 768 = —%;;

dimension matrix elements. ln particular, using our normalization,
works on the subject [5, 6, 7] give three different results for some anomalous
tonian are no more present, as shown in ref. However the three latest
so that now problems with the scheme independence of the Effective Hamil
tioned O(a2) mixing have been taken into account, starting from ref. [4],

Coming to more recent calculations, the full basis and the already men

the contribution of the DRED “effervescent” counter-terms.
checked that the two results of ref. [9] actually coincide, once one includes
(36) show that the sum P2 + P3 is indeed scheme independent. We have
regularization scheme and obtained again different results. Incidentally eqs.
P2+P3 in fig. They computed this sum in DRED and in a 4-dimensional
in ref. [9] was based on the explicit calculation of the sum of the diagrams
any failure of the regularization scheme. A second, more specific, argument
we know that those results can differ (and indeed they do) without implying
[9] to the incorrect conclusion that the DRED scheme fails in this case. Now

lations obtained different final results. This difference led the authors of ref.
"effervescent” counter-terms. Thus the two original NDR and DRED calcu
On the other hand the authors of ref. [2] overlooked the contributions of the
the magnetic operators, which is present in NDR, while it vanishes in DRED.
include the contribution coming from the O(o42) mixing among Q5, Q5 and
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counter-terms.

Incidentally the final result is not scheme independent without the “e1fervescent"
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