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scales, and the neighbor analysis of deviations from hierarchical scaling on smaller scales.
between these models, although it appears that the redshift-space VPF may do so on larger
over the length scales considered in this paper, the Sq and VPF statistics do not discriminate
the natural product of non-·]inear gravitational instability for models like CDM and CHDM. But

Our results confirm that the galaxy clustering observed at sma.ll (S 10 Mpc) scales represents

are related to the amount of bias and also show features in analogywith observations.
galaxy clustering from a sca.ling regime, however far less prominent than for DM. Such deviations

The simultaneous use of cell and neighbor counts allows us to observe slight deviations of

results is obtained.

by the VPF analysis. Again, in a.ll the cases considered a good agreement with observational
on our choices for the initial spectra. The hierarchical scaling of galaxy clustering is confirmed
clustering is just margina.lly affected by redshift distortions and also does not sensitively depend

and S4 ~ 7.5, in general agreement with observational results. Unlike DM, the sca.ling of galaxy

in redshift space. Galaxies follow hierarchical scaling far more closely, with coefficients S3 ~ 2.5

the hierarchical sca.ling, Sq E Eq/EQ= constant, although the deviation decreases somewhat`1

We find that clustering of dark matter (DM) particles systematically exhibits deviations from

also check the effects of dynamical evolution and redshift space distortions.

for DM particles and for galaxies, identified as massive halos in the evolved density field. We
close agreement and complement one another over different scale ranges. The analysis is made

tion functions are obtained both from counts in cells and counts of neighbors. Results are in
compare them with observational data, and test models of non—linear clustering. Correla

We evaluate high—order correlation functions and the void—probability—function (VPF),

and b = 1 (COBE-normalized CDM).
different initial random numbers. We also compare them with CDM simulations with b = 1.5
time corresponding to the linear biasing factor b = 1.5 (COBE normalization), starting from
box of 100 Mpc a side (h = 0.5) is used. We analyze two CHDM simulations with present
+ Hot Dark Matter (CHDM) with DCOM = 0.6, 9;,,,, = 0.3 and 0;,,,,,,,,,, = 0.1; a simulation
the development of non·linear clustering in a fl = 1 Universe, dominated by a mixture of Cold
We use high resolution (5123 grid points) particle—mesh (PM) N—body simulations to follow
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data compared to CDM on both small and large scales. For example, CHDM predicts lower OCR Output
The presence of the hot dark matter component in CHDM improves on the agreement with

simulations.

Klypin, and Primack (1993). In this paper we study the clustering properties of these latter
Nolthenius, and Primack (1993, hereafter KNP), and with CfA group properties by Nolthenius,
simulations have been shown to agree well with IRAS and CfA slice power spectra by Klypin,
with observations, including both small- and large-scale velocities. Higher resolution CHDM
which verified that COBE—normalized CHDM, with linear bias b M 1.5, is in good agreement
calculations in several simulation boxes (14, 50, and 200 Mpc) have been described by KHPR93,
(1992), with the initial neutrino fluctuations set equal to zero. Results from detailed N—body
Mpc'1; in the following we assume h = 0.5) has been done by Davis, Summers, 8; Schlegel
calculation in a 14 Mpc box for h = 0.5 (h is the Hubble parameter in units of 100 km s"
Primack 1993; Pogosyan 8; Starobinsky 1993; Liddle 8; Lyth 1993b). A simplified nonlinear
Dalen 8; Schaefer 1992; Schaefer 8; Shafi 1992; Taylor 8; Rowan—Robinson 1992; Holtzman 8;
established by several linear calculations (Holtzman 1989; Schaefer, Shafi, 8; Stecker 1989; van
8; Xiang 1984); and the fact that CHDM is a promising model for large scale structure was
1985; Valdarnini 8; Bonometto 1985; Achilli, Occhionero, 8; Scaramella 1985; see also Fang, Li,
(or "mixed dark matter") models were worked out some time ago (Bonometto 8; Valdarnini
0.3, corresponding to neutrino mass m., M 4.5 — 7 eV, is interesting. Basic properties of CHDM
parameter beyond those of standard CDM, the neutrino mass or 9,,; only the range (2,, M 0.2
references therein.) Moreover CHDM is a very well—deiined theory with only one additional
low-!) CDM with a cosmological constant, and tilted CDM, see e.g. Liddle 8; Lyth 1993a and
any other theory that we know about. (For a review of CDM and its main variants, including

The CHDM spectrum has been shown to agree with the available data at least as well as

that a.re in better agreement with the data than CDM.

with the data. It would be interesting to study the clustering properties of theoretical models

and references therein, Klypin et al. 1993, hereafter KHPR93), and various other disagreements
largerscale motions, but has small-scale velocities that a.re too large (e.g. Davis et al. 1992a
al. 1993). On the other hand, COBE—norma.lized CDM, with b M 1, is in good agreement with
streaming motions (e.g., Dekel 1992) and cluster correlations (e.g., White et al. 1987; Olivier et
(e.g., Maddox et al. 1990) and spatial (e.g., Loveday et al. 1992) galaxy correlations, large—scale
al. 1992) and other observations of microwave background radiation anisotropies, both angular
et al. 1985) with linear bias (Bardeen et al. 1986) b M 2.5 is inconsistent with COBE (Smoot et
matter (CDM). As has now become well known, standard CDM (Blumenthal et al. 1984; Davis

the only theoretical model that has been analyzed in any deta.il with these statistics is cold dark

sets have been studied with statistics that go beyond the autocorrelation function. However,

In recent years, the clustering properties of galaxies in both simulations and observational data

1 Introduction



equations (Davis & Peebles 1977; Fry 1984a; Hamilton 1988). In the mildly non-linear regime, OCR Output
Hierarchical scaling is predicted by models of strongly non-linear clustering, as BBGKY

with S4 ~ 10.

quasi—linear (EZS 1) regime. The reduced kurtosis does not show substantial scale dependence,
is S3 :2 3 over a quite large scale range, extending from the non-—linear (E-2 > 1) regime to the
indicate that the hierarchical scaling always provides a rather good fit. The reduced skewness
claiming the detection of a significant signal up to the ninth order. These analyses converge to
Gatzariaga (1993) applied the method of cell counts to the angular APM galaxy distribution,
analysis using neighbor counts in the Perseus—Pisces redshift survey (Haynes & Giovanelli 1986).
effects of redshift distortions. Bonometto et al. (1993) performed a 3- and 4—point function
and detected skewness and kurtosis. A particular attention was paid to take into account
to the fifth order. Fry 8: Gatzaiiaga (1993b) analyzed the CfA, SSRS and 1.2 Jy IRAS catalogs
spherical cells on the 1.2 J y IRAS sample and extracted signals for the correlation functions up
by using Gaussia.n—shaped cells. Bouchet et al. (1993) realized a similar analysis by using

Saunders et al. (1991) estimated variance and skewness for the IRAS QDOT redshift sample
large-scale structure studies), while q = 4 deals with the kurtosis of the distribution.
the skewness (see Coles & Frenk 1991, for a discussion about the relevance of the skewness in
with coefficients Sq independent of the scale. Here Eg is the variance of the counts, q = 3 is for

`"`Eq = $q€§. (ll

an analogous scaling for the cumulants:

& Peebles 1978; Sharp, Bonometto & Lucchin 1984). The hierarchical scaling for {Q turns into
of products of q-1 2—point functions, with suitable coefficients (e.g., Groth & Peebles 1977; Fry
of q—point functions has been detected. This allows fq to be expressed as a linear combination

Since the initial analyses of higher-order functions from angular data, hierarchical sca.ling
losing geometrical information.

3). Since Eq provides an integral description, it suffers less from statistical noise, at the cost of
§Tq(R), which are the average of the q—point function inside the sampling volume (see Section
§q(x1,...,x,,). The moments of counts in volumes of size R allow one to extract the cumulants
Further pieces of information are given by the higher—order irreducible correlation functions

As is known, the 2—point correlation function provides only a limited statistical description.

occur.

show in this paper, by analyzing CDM and CHDM simulations in parallel, that this does not
be reflected in the clustering properties of the dark matter or galaxies in this model. We will
interesting question whether the presence of these new length scales in the CHDM model will

cold as well as hot components on intermediate as well as small scales. But this raises the

on small scales, while their large free—streaming length decreases the fluctuation power in the

the relatively high velocities of the light neutrinos even at late times suppresses their clustering

small—scale velocities than CDM but has more cluster correlations than CDM. This is because
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whichihowever show hierarchical cumulants over a fairly wide dynamical range. This is one of OCR Output
problems. Nevertheless the same problems should be present also in observational data sets,
due to limited statistics (Colombi, Bouchet 8: Schaeffer 1993), inadequate sampling or boundary

Such discrepancies with respect to the hierarchical scaling have been interpreted as effects
power.

found that deviations from hierarchical scaling are significant for spectra with more largrscale
to the fifth order at different stages of evolution of scale-free spectra with --3 §_ n $ 1. They
between Gaussian and skewed initial conditions. Lucchin et al. (1993) estimated cumulants up
suming the CDM power spectrum, Coles et al. (1993) attempted to use skewness to distinguish
spectra with n = -1, 0, 1 starting both with Gaussian and non—Gaussian initial conditions. As
scaling (see, e.g., Fry & Gatzaiiaga 1993b). Weinberg & Cole (1992) calculated S3 for scale-free
reached by other authors, who claimed negligible redshift—space distortions of the hierarchical
S4 appear more constant in redshift space than in real space. Different conclusions were however
(1992). They ascribed the discrepancy to redshift-—space distortions and suggested that S3 and
at variance from what observational data indicate. A similar result was found by Lahav et al.

dependence of the S3 coefficient when going from the linear to the non—linear regime, which is
as spectra with larger small—scale power are considered. In particular, they detected a scale
noise initial spectra. They found deviations from hierarchical scaling, whose amount decreases
tions. Bouchet & Hernquist (1992) considered simulations based on CDM, HDM and white—

Several authors investigated whether hierarchical scaling is supported by N—body simula

the scales of weak coherence (i.e.» {2 < 1).
argued that hierarchical scaling is the natural outcome for any non—Gaussian distribution, at

hierarchical behaviour, at least in the weak correlation regime. Amendola & Borgani (1993)
have shown that selecting high—density peaks from a hierarchical background does not alter the

scription to select peaks (Szalay 1988; Borgani 8: Bonometto 1990). Fry & Gatzanaga (1993a)
(Matarrese, Lucchin & Bonometto 1986) background statistics, also independent of the pre
tribution of high density peaks for both Gaussian (Jensen & Szalay 1986) and non—Gaussian
et al. 1986), hierarchical correlations in the weak clustering regime are expected for the dis

In the framework of biased galaxy formation (Kaiser 1984; Politzer & Wise 1984; Bardeen

parameter D.

on n of both S3 and S4. Bouchet et al. (1992) studied the dependence of S3 on the density
for -3 $ n < 1. Catelan & Moscardini (1993) used a Gaussian window to find the dependence

(2)S3 : ¥`("‘+3)
sampling volumes, they found
well as on the spectral index n for a power—spectrum P(k) o: k". Assuming top—hat spheres as
Juszkiewicz, Bouchet & Colombi (1993) worked out the dependence of S3 on the cell shape, as
sequence of cumulants (e.g., Peebles 1980; Fry 1984b). Still adopting a perturbative approach,
second——order perturbative approaches to fluctuation evolution also generates a hierarchical



as in CHDM1, so that all large features in these simulations correspond. The two CHDM OCR Output
random numbers. The CDM simulations were done with exactly the same random numbers

Two CHDM simulations were done, CHDM; and CHDM2, with different realizations of
spectra given by KHPR93.

simulations were made for the case (20,,,,, = 0.6, 0;,,,,,,,,,, = 0.1, and 0,, = 0.3, using the power
(1986, eq. G3) was used to set initial conditions for the CDM simulations. The CHDM
a redsbifted Fermi—Dirac distribution (see KHPR93). The power spectrum of Bardeen et al.
Each pair of the hot particles was given oppositely directed "thermal" velocities drawn from
CHDM simulations; the hot particles had masses of 6.3 >< 103M® in the CHDM simulations.
The cold particles had masses of 4.2 >< 103M® in the CDM simulations and 2.9 >< 103M@ in the
the CHDM simulations had an additional 2 x 2563 hot particles, for a total of 50.3 x 103 particles.
the simulations (Kates et al 1991). The CDM simulations had 2563 = 16.8 >< 103 cold particles;
h = 0.5.) The Particle—Mesh (PM) code with 5123 force resolution (i.e., 195 kpc) was used for
100 Mpc boxes. (Here and throughout this paper we consider only Q = 1 models, and assume
In this paper we analyze two CHDM and two CDM simulations. All simulations were done for

2.1 Description of the Simulations

2 The Simulations

with data both in real and redshift space. Finally, in Section 6, we give our conclusions.
counts in cells and the counts of neighbors. In Section 5 we report our results and comparisons

In Section 4 we show how the skewness and kurtosis coefficients S3 and S4 are related to the

theoretical background on the counts—in—-cells and neighbors methods we use, and on the VPF.
as well as our procedure to identify galaxies in the simulations. In Section 3 we give the necessary

This paper is organized as follows: In Section 2 we describe our CDM and CHDM simulations

simulations and results are compared with those for the CDM model.

data and numerical experiments.3 In this paper, the analysis of VPF is extended to CHDM
consistently show that VPF closely follows hierarchical predictions made for both observational

1990; Maurogordato, Schaeffer & da Costa 1992; Bouchet et al. 1993). The above analyses
1991; Bouchet & Hernquist 1992) and observational data (e.g., Alimi, Blanchard & Schaeffer
model and compared with both N—body results (Fry et al. 1989; Bouchet, Schaeffer & Davis
1993). Properties of VPF have been studied by Fry (1986) in the framework of the hierarchical
diagnostic to characterize global properties of large—scale texture (e.g., Liddle & Weinberg
of all orders (e.g., White 1979; see also Section 3 below) and therefore represents a useful
probes geometry rather than clustering. The VPF uses information about correlation functions
precise consequences on other statistics, such as the void—probability—function (VPF), which

Other than specifying the sequence of correlation functions, hierarchical scaling also has
the points that we will address in this paper.
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of the resulting galaxies. A classical prescription is based on the bias paradigm for galaxy OCR Output

Different prescriptions have led to rather different conclusions about the clustering properties

and switch on in high-density regions, although it is not clear how to identify such regions.

a 1ong—standing problem. A generally accepted view is that baryonic material should collect

The problem of identifying luminous galaxies in dissipationless simulations of dark matter is

2.2 Galaxy identification

observational data, we must identify galaxies in the simulations.
_CDM and CHDM sample universes reasonably accurately. But in order to compare them with
that such changes would modify statistical conclusions. Our simulations therefore represent

marginal. Although CHDM1 was not reprocessed after correction, there is no reason to believe

by-particle comparison. The changes on the statistical parameters are henceforth absolutely

effects of the two errors almost precisely compensate, as was verified on the basis of a particle

we report here are obtained after such revision. However, as is also outlined in KHPR93, the

Note Added in Proof to KHPR93. These errors were fully corrected for CHDM; and the results

of the cold particles were 20% too high at large k. These are described in more detail in the
spectrum was 15% too low at large wavenumbers k ~ 10 Mpc"1, and (b) the initial velocities
were initially made in setting up the initial conditions for the simulations: (a) the fit to the cold

these two CHDM simulations thus gives some idea of the cosmic variance. Second, two errors

the finite size of the simulations. CHDM; has a more typical power spectrum; comparison of
once in ten or twenty realizations, and it can also be considered as roughly compensating for

unlikely one. We estimate that this much extra large-scale power would be generated roughly

times larger than expected for an average realization. This was a statistical fluke, but not an

First, the largest waves in the CHDM, and CDM simulations had amplitude about 1.3-1.4

summarizes some of the results. Two anomalies in these simulations should be mentioned.

The details of the simulations are presented in KNP; Nolthenius, Klypin, & Primack (1993)

simulations on the 16 Mpc bias-normalization scale.

exactly the same as CHDM1 on large scales, and CDM1.5 has the same variance as the CHDM

consider both CDM1 and CDM1.5 as useful comparison simulations: CDM1 is normalized
the results at zero redshift correspond to the linear bias parameter b = 1.5 (CDM1.5). We
corresponds to COBE normalization; if we regard the starting redshift as being z = 18, then

One of the CDM simulations (CDM1) was started at z = 27.5 with bias b = 1, which
fraction and/ or lowering the mass of hot particles.
Mpc box simulation those corrections could be largely compensated by decreasing the baryonic
& Lyth 1993b; Lucchin, Matarrese & Mollerach 1993; Turner 1993) were applied. For a 100
slight non-Zel’dovich tilt or for gravity waves predicted by inflationary models (see, e.g., Liddle
i.e. to the COBE amplitude (17p. for the rms quadrupole anisotropy). No corrections for a
simulations were started at redshift z = 15 and normalized to linear bias parameter b = 1.5,

_ 7 ._



and correspond to one galaxy. Very large "overmergers” (the number of them is very small) OCR Output
weight—per-galaxy is 2 171. This what one wants from the algorithm. Most halos were resolved
on average, a weight z 1.56 is required to give a galaxy. For w; >> ui, instead, the average

This prescription produces a small mean ratio N;/w; for peaks near the threshold where,
is equal to the expected number Nyc; of galaxies inside our box.
per “gala.xy”). The parameter 1D is chosen in such a way that the number of “gala.x:ies” E, N;
N, = [w;/111] galaxies, where [2] is the integer part of 23 and 1D is a free parameter (as weight
of galaxies in the simulation box is Nyc; = (100 Mpc /d)3. Each i-th density maximum gives
proceeds as follows. Let us assume that the mean galaxy separation is d. Then the total number
the i—th maximum by taking approximately equal weights for all galaxies. Galaxy identification

In the present analyses, we pass from the weight w, to the number of galaxies N, assigned to
maximum. One could consider the weight as sort of “luminosity" weighting.
criterion are assigned a weight w = p/ ( p), where the density is estimated at the position of the
50 one gets a reasonable prescription. Density maxima selected according to this threshold
mass resolution as in our 100 Mpc PM simulations), they argued that by taking overdensity
50 Mpc PM simulation with 2563 resolution and 1283 particles (thus, the same spatial and
the total density (“cold” plus "hot”) exceeds the average density by a fixed amount. In their
properties of the galaxies, in which we are also interested, they identified those cells where
field assigned on the grid at a given moment. For the purpose of studying the correlation

KHPR93 identified galaxies in their CDM and CHDM simulations by referring to the density ,
halos, but in detail our procedure is slightly different.

so as to recover the merged halos. We use the same idea of breaking “overmergers” to smaller
galaxy pairs. To overcome this problem, they devised prescriptions to break up massive halos,
dissipationaless simulations, which merges nearby halos, thereby decreasing the number of close
less correlated than real galaxies. They argued that this is due to overmerging occurring in
maxima). However, for a CDM initial spectrum, they found that on small scales the halos are
Bertschinger (1993) identified galaxies as massive halos of the evolved field (i.e. as local density
thus casting serious doubt on the reliability of the original peak-—biasing prescription. Gelb &
that a large fraction of massive halos in the evolved density field contains no peak particles,
associated with such halos. It was found ( Kates et al. 1991, Katz, Quinn & Gelb 1992)
halos of DM particles at the end of the evolution and by checking whether peak particles are

High resolution simulations made it possible to test this prescription, by identifying the

present time (i.e., when f takes the observed slope, or F").
threshold is chosen to produce the correct amplitude of the 2—point correlation function at the

Borgani 1991). The initial density field is suitably smoothed over an appropriate scale, and the
grid and follows them during the evolution (e.g., Davis et al. 1985; Park 1990; Valdarnini &
selects in N—body simulations the nearest particles to the peaks of the density field on the

height exceeds a fixed threshold (Kaiser 1984; Bardeen et al. 1986). In this approach, one
formation, which identifies galaxy sites with the peaks of the initial (linear) density field whose



to very high—density peaks and generates a. large number of very close pairs. OCR Output

This is probably due to the fact that the galaxy identification procedure assigns many galaxies
clustering, a sort of luminosity biasing. In all cases, f(1·) steepen at small (S 2 Mpc) scales.
sampled scales. Note the effect of taking rarer galaxies, which leads to systematically stronger

the CHDM; run, which reproduces fairly well the observational f(r) over the whole range of
is caused by the anomalous large—scale power in that realization. A weaker {(1-) is produced by
particle configurations. Note that the CHDM1 simulation exhibits stronger clustering, which

amplification of the correlation amplitude is attained by selecting massive halos in the final

the hierarchical merging of smaller structures into larger ones is less relevant and a substantial

over a larger scale range, instead of being concentrated at small scales like for CDM. Therefore,

antibiasing is present for the CHDM simulations. In fact, for this spectrum the power is spread

thus decreasing the corresponding correlation amplitude. Consistently with this picture, no

massive halos. Therefore, the number of galaxy halo pairs at small separation is suppressed,

tional clustering goes on from b = 1.5 to b = 1, small structures merge together to form very

place in the evolution of the CDM spectrum (see also Gelb & Bertschinger 1993); as gravita
than galaxies. This fact is essentially due to the presence of a large overmerging, which takes

a remarkable antibiasing, the DM particles being characterised by a larger correlation length

of correlation amplitude. For this more evolved configuration, Table 1 shows the presence of

weakly clustered galaades and evolution needs to proceed until b = 1 to reach an adequate level

for the comparison real space vs. redshift space). The CDM model at b = 1.5 produces too
law for all the models, for both galaxies and DM particles (see also KHPR, in particular
power—law model f (r) = (11/r)1·8. In Table 1 we give the best fitting parameters of the power—
dashed and solid lines are for brighter and fainter galaxies, respectively) and compare it with

In Figure 2, we plot the 2-point correlation function for both galaxy populations (short

simulations.

to be broken. CDM clusters have a rounder shape in real space than those in the CHDM

present in the CDM case. CHDM has better defined filaments, while filaments for CDM appear

underdense regions turn out to be nearly devoid of galaxies, while more field population is

However, the effect of selecting galaxies from high-density peaks is more pronounced for CHDM:
same assignments of initial phases, so that the emerging structures are directly comparable.

particles compared to that of brighter galaxies. Both CDM and CHDM1 runs are based on the
corresponding to usual and very bright galaxies. In Figure 1 we show the distribution of DM

We·shall report results obtained choosing two mean separations d = 5 Mpc and d = 9 Mpc



(8) OCR Output- M:=(¢) = I d¤=pz>(=)¤""’ = exp -me ¤— 1N — (F; (‘/N )]
2: = (pif/N is therefore pp(z) = pp(<p)N/5. Accordingly, the MGF reads
Poisson process cp with mean (5 is pp(4p) = 2*;:0 -"%e‘¢6D(4p — N). The PDF for a process
and fluctuations around this value are described by a Poissonian statistics. The PDF for a
number of points must obviously be an integer. Its expected (non—integer) value is (N / b)pR,
number of objects within VR. In a. random realization of a peculiar value of pg, the actual
represents a Poissonian realization of an underlying continuous field. Let N be the average

of its discrete realization. A usual assumption is that the point distribution one deals with

prescription is required in order to relate the statistics of the underlying density field to that

well as of N-body simulations one considers discrete point distributions. Therefore, a suitable
Instead of dealing with continuous distributions, in the analysis of galaxy catalogues as

. _ = ____ d —•¢nn/:>_ P(PR) ¢M(¢)¤o¤ hip /;i°__
1 +i

PDF is expressed as the inverse transform of the MGF as
which is the average value of the irreducible q—point correlation function. From eq. (4), the

(6)—§q(R) = 413::1...d°zqWR(x1)...WR(xq)§q(x1,...,xq),l E /
Here E1(R) E 1, while for q 2 2 Eq(R) are the q-th order cumulants,

q:]_ q'
(5)K(t) = lnM(t) = ZQTIQH.

or, equivalently, by the cumulant generating function

(4)M (¢) = (¢¤<v(¢p¤/P)) = / dns 1¤(nn)¤"’“"‘»

statistics of the distribution is fully described by the moment generating function (MGF)
p(pR) represents the probability density function (PDF) of the continuous variable pg, then the
which is the local average of the density within the sampling volume VR = f d°:z:W(x). If

(3)a nR(><) = - d yp(v)WR(><— ar).1 E[

quantity is the smoothed field
of size R, whose shape is described by the window function WR(x). The resulting observable
Let us consider a generic density field p(x) and suppose we sample it with volume elements

3.1 Count——in—Cell Analysis

3 The Statistical Background

— 10



/1:1 = -27/.; + 3%- + Ea OCR Output
2

#2 = é; + 62

At the lowest orders, it is

terize the underlying continuous field, in terms of the the measured moments of discrete counts.
relations and following the definition (6) of cumulants, it is possible to express fq, which charac
are the coefficients of the McLaurin expansion of the discrete MGF. According to the above

at- ¤...
13 ( l°° d"Maa.c(¢) N q = P N ° = -——— ( l N

pq = ((N — N)")/N", where the moments of counts

The statistics of the point distribution can be described in terms of the central moments

variable given by pg/§ = N/N.

N / N , eq.(11) gives back the continuous limit PN(R) = (p/N)p(pR), with the effective density
abilities of finding N points inside a volume of size R. For N —> co and N —> oo, with fixed
For analytical M (t) all the PN’s for N < 0 vanish, so that they acquire the meaning of prob

02)- P~<R> = dyy·(”·*>M[N<y — 1>1.1 5; f

In the above expression, the coefficients PN(R) are
The PDF vanishes except for a discrete set of values of pg/5 as it must for a point distribution.

= T 6 i ·· 1* P R . P(PR) D~() ()_ + N Oo pg N ) pN§®(p N
5-functions:

out to be a periodic function. Therefore, its Fourier transform can be written as a sum of Dirac

Since the variable e" takes values only on the unit circle of the complex plane, the MGF turns

(10)p(pR) :_. dt M[N(ei¢/N __1)]€—i¢pR/¤_L/im 27fp —oo

As for the PDF, in the discrete case eq.(7) gives

the limit N —> oo.

t —> N(e‘/N - 1) in the functional dependence of M (t), which leaves the variable unchanged in
The discrete nature of the point distribution is therefore accounted for by the change of variable

(9)_ Mdg,c(¢) = / dpg p(pR) exp pR etN -1; M N J/N -1N - - (/)] [()]
the pR process. In this way we obtain the MGF for the discrete counts, which reads

This procedure concerning a particular pg is to be averaged over all the possible realizations of

11 —



VR, centered on the object located at xo (due to the invariance of correlation functions to OCR Output
which are the average value of the irreducible correlation function within the sampling volume

g§°)(R) = -I daz, ...d°z,,_,WR(x, —— X0) WR(Xq-1 - xO)£,(x0,x1,...,x,,-1), (16)V;’/12
The statistics of the system is then described by the conditional cumulants

N=1

ua<~:> = Z Pt’~·*.

aff) = ((Nc — (NC))°)/{N,,)°, are obtained from
that such volume is centered on a sample object. Accordingly, the conditional central moments

)the conditional probabilities P,$(R) of finding N objects in a sampling volume of size R, given
In this case, sampling volumes are centered on each object, so that the relevant quantities are

native determination of correlation functions is provided by the moments of neighbour counts.

Instead of counting the objects within volumes centered on arbitrarily chosen points, an alter

3.2 Moment of Neighbours Analysis

us to span the largest dynamical range considered up to now in this kind of analyses.
1/ 1285 1·/ LS 1/4. Even with these restrictions, the high resolution of our simulations a.llows
for void sizes larger than L/4. For these reasons, we limit our analysis to the scale range
Melott (1992) found in their simulations that self-similarity in the void distribution is broken
of finite simulation volume are present already at smaller scales. For instance, Kauffman &
periodic boundary conditions, which led to consider cell sizes larger than L / 2. However, effects
that any shot-noise effect is negligible. Limitations at large scales are naturally imposed by
Therefore, we include 43 pixels in the smallest considered cell. In this way, we are fairly sure
which the gravitational potential is resolved, we prefer to adopt a more conservative approach.
force resolution. Although the nominal resolution should be given by the size of the mesh on
linear clustering with the available simulations. At small scales we are limited by the finite

A further question concerns the scale range where properly testing the development of non
at each scale r there are (L/1-):* non—overlapping sampling volumes.

In our analysis we sample the simulation box with cubic grids of varying spacing. Therefore,
corrections, especially when the sampling rate is very low (e.g., Borgani et al. 1993).
sampling. For this reason, some care must always be payed in the application of shot-noise
However, if the particles trace the high—density peaks, they are far from being a Poissonian
that the point distribution represents a random sampling of an underlying continuous field.
rections vanish for very large N values. It is clear that eqs.(14) are based on the assumption
while more cumbersome relations hold at higher orders. As expected, a.ll the shot—noise cor

#4 F§; (14)_ 2 " —·*11*+F+3M2+€4»
6 ff"2 M3
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use is made of smaller powers of counts, which potentially reduces effects of limited statistics. OCR Output
On the other hand, an advantage of counting neighbours is that, at a fixed correlation order,
(although the analysis carried on here is based on a. random subsample of 170,000 D_M particles).
limited number of points, it becomes crucial when analyzing the distribution of DM particles

represents a serious issue for the analysis of the galaxy distribution, which contains a rather

which scales as N2, the count-in-cell method is much less time consuming. While this does not
Furthermore, while counting neighbours in a sample of N points represents a computation

volumes centered on different points tend to have greater and greater overlaps as R increases.

this could represent an advantage of the first method, since it provides a better sampling,

a.ll scales, while in the cell count approach the number of volumes decreases as R'°. Although
particular, in the neighbour count procedure the number of sampling volumes is the same at

and the shot-noise terms enter in the relation between continuous and discrete descriptions. ln

are expected, due to the diiferent way in which the sampling volumes cover the point distribution

furnish equivalent evaluations of correlation functions. It is however clear that some differences

The two methods based on counts within cells or on neighbour counts should in principle

C4 = - + + 'dall (13272 d3Z3€3(2712,2.!23,23g3)| .if; I/1 C 1

-(1 + Q )
C3 = 1- [EY· (€)+ ·· d°=1 d°=¤¤€(=¤) · F2 2 V2 / l ’1 1 ) (°)2

provided that the cumulants are replaced by the more complex quantities

In the above equations the structure of the discreteness terms is the same as that in eqs.(14),

<N2><~>
18 ( ’(C) lz = -1- + 3— + C . 3 "

(¤) 2 i

®
Mi= + Ca;C 1 )

conditional probabilities, eqs.(14) must be modified into (Peebles 1980)

)tics, described by EY, to the discrete one, described by pif). However, due to the presence of
A formalism analogous to that of the §3.1 can be introduced to relate the continuous statis

where N is the expected number of objects within VR.

(17)EWR) = ?—1»C ( Nc >

is expressed in terms of the first—order moment of counts as

describes a top—hat sphere which encompasses a volume VR = 41rR° /3. For q = 2, the variance
of neighbours within a distance R from the chosen object, so that the window function WR(x)
translations, €g°)(R) does not depend on xo). In practical applications, one counts the number
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expressed directly through Nc (and not through Ng and R separately). OCR Output
distribution from Poisson, in the hierarchical scaling regime, the scale dependence of cr can be
dence goes through Nc. Therefore, while the value taken by cr — 1 states the deviation of the
and the assumption of hierarchical scaling is then expressed by the fact that all scale depen

q=1 q'
_ ¢’(N¤) — E ——·, $`q» (22)<.>—N···1

and (21) it follows that

will be convenient to introduce the scaling variable Nc = NRf_2(R) o: R°"’. Owing to eqs. (20)
depend upon R. (We define S2 5 S1 E 1.) Henceforth, under this hierarchical assumption, it

The assumption of hierarchical correlations implies that the coefficients Sq = Eq/$do not
-1

from unity represents the signature for the presence of clustering.

¤<NR,R> = £,§—@
departure of the quantity

completely uncorrelated (i.e. Poissonian) distribution, it is P0(R) = exp(—·NR), so that any
a description of the geometry, rather than of the clustering, of a point distribution. For a
no regards to the number of objects contained inside them. For this reason, it provides only
characterization. Note, however, that Pg depends only on the number of non—empty cells, with
any order, the VPF statistic has been suggested as a useful tool to provide a global clustering
(E,,(R)’s are defined in eq.(6); €1(R) E 1). Since Pg conveys information about correlations of

(20)- - Po(R) = M(·N) = ¢¤¢P —·»€q(R)°°<—N>·* ,T]
objects within a given randomly placed sampling volume. For N = 0, eq.(12) gives the VPF as
represented by the void probability function (VPF), which gives the probability of finding no
A further useful tool to characterize the statistics of the large-scale galaxy distribution is

3.3 The void probability function

overlaps with that relevant for the cell—count analysis.
al._ 1991). Taking this into account, the scale range chosen for the neighbours analysis exactly
1.6 R, quite independent of the slope of the 2—point correlation function (see, e.g., Saunders et
mind that a sphere of radius R sample an efectivc volume equal to that of a cubic cell of size

However, in order to closely compare the outputs of the two analyses, we should bear in

clustering.

counts are related to correlation functions and give a consistent description of the non—linear ‘

samples. To this purpose, we will show how the moments of cells counts and of neighbour

two procedures in order to make appropriate comparisons between simulations and real galaxy

Since observational data sets have been analyzed with both methods, we will also apply the



£3(==i, ..,=¤¤) = Qléizém + ---(3 t¤rm¤)]; (27) OCR Output

correlation functions:

(ra/r)", over all the relevant scales and hierarchical model expressions for 3- and 4—point
functions. We assume a pure power——la.w shape for the 2—point correlation function, §(r) =
In this section we shall report the relations existing between moments of counts and correlation

and Cell Counts

4 Correlation Functions from Moments of Neighbour

galaxies, identified to correspond to high density peaks as explained in §2.2.

their dependence on the population chosen to trace the density field, namely DM particles and
quantities on the initial spectrum and on the evolutionary stage, we will also concentrate on

the VPF for CDM and CHDM initial spectra. Other than verifying the dependence of these

In the next section, we will explicitly evaluate the third- and fourth-order cumulants and

0.50;h0.15 (note that for w = 0.5 eq.[26] coincides with the thermodynamical model prediction).
has been proposed by Alimi et al. (1990), which found a best fit to the CfA data for w =

26 ( )N, = 1 ¤( ) +- (i) 2w

Finally, the phenomenological model
and has been shown by Gatzariaga & Yokoyama (1993) to provide a quite good fit to CfA data.

(25)a·(Nc) =
log 1 + Nc ( · )

The negative binomial model, originally introduced by Carruthers & Shih (1983), predicts

<24>¤<N.> =
1 —‘N¤°

resulting hierarchical Poisson distribution gives
to a Poissonian distribution of clusters, each containing a suitable amount of members. The

A further model has been proposed by`·Fry (1985) and describes the galaxy clustering as due

o·(Nc) = (1 + Nc)`1/2.
predicts (Fry 1986)

Among these models is the thermodynamical model (e.g., Saslaw & Hamilton 1984) which
tested in the following against the outputs of our simulations.

proposed, each of which provides a different expression for the VPF. These models will be
1. However, in the framework of hierarchical correlation pattern, several models have been
asymptotically large NC, the power-law relation a(Nc) oz N;“’ should hold, with 0 < w <

In the analysis of their scale-invariant model, Balian 8: Schaeffer (1989) found that for



E <4¤>OCR Output’ C To lr I el ’<R> = Q (K? + Mo) () .

<3¤>
CZ3 Rm = K. .0 7 (g)

In a similar fashion, the hierarchical cumulants for counts of neighbours become

sa T. so ; s. a 12.4 Q (38)3)

for 1.2 S 7 $ 2.3 . Therefore, to a good approximation,

1; = 3.00 ( = 12.4 1· = 0.34 (37)

approximation however better than ~ 6%, they can be assumed constant with values
and for 7 in the range 1.2 to 2,2. Figure 3a shows 1;, ( and ·r as functions of 7. With an
The coefficients were evaluated numerically by Montecarlo integration in the case of cubic cells

(36)Q"" = QS."’ + 1(1)Q£“)
integrals, while
The factors 1;, f, ·r depend on 7 and on the shape of the window function through the J.,

<35>S. = c<·1>[c2.&·*>+ Tm cet"] = cm Q<

S3 = n(·1)Q , (34)

pendent (and so should be a.ll Sq’s). In fact, owing to eqs.(29)—(31), we have
(reduced skewness and kurtosis). Hierarchical scaling prescribes that S3 and S4 are scale inde

(33)S4 = MR)/l_€z(R)l“ .

(32)S3 == ?3(R)/l?¤(R)l” .

The analysis of count—in—cells is performed to work out the coefHcients
window function WR of Section 3.1. Their explicit expressions are given in the Appendix.
The quantities J2, J3, .}.4,,, Ju, are numerical factors depending on 7 and on the choice of the

(31)
*’acm = |12J...c2£;*> + 4J..Q£ ]

(30)EAR) = 3JzQ ;

(29)- o €z(R) = J2 3r'7 (E)

According to the definition (6) of cumulants of cell—counts, it is

{4(3¥1»··» $4) = Q¤(E12£23£34 + (12 t€1'¤1$)l + Qblfizfizsfu + (4 t¢1'm5)l§ (28)
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conditions (see, e.g., Ling, Frenk 8: Barrow 1986; Efron & Tibshirani 1991), for a sufficiently OCR Output
for repetition. The analysis is then repeated for each of these bootstrap samples. Under general
each bootstrap sample is realized by randomly selecting B(1·) times the set of counts, allowing
plementation proceeds as follows. Let B(r) be the number of non-empty boxes of side r. Then,

Error bars have been estimated by means of a bootstrap resampling procedure, whose im
scaling. The parameters of the fit are reported in Table 2.

d = 9 Mpc. The dotted lines are the best fit realized under the assumption of hierarchical

kurtosis relation for CHDM2 and CDM1.5 models for both DM particles and for galaxies with
In Figure 4 filled triangles indicate the variancerskewness relation and filled squares the variance

5.1 Moments of counts

settings.

environment). For the cell analysis the check was extended to a total of 8 different observer
corner and in the center of the simulation output (the two points have a radically different local
server. For the neighbour analysis, this has been verified by considering two observers set at a
outputs for redshift space do not show any significant dependence on the point chosen as ob

real space or redshift space, as a galaxy sample. It may also be worth mentioning that our

tained fixing the simulation, the value of the average intergalactic spacing d, either

peculiar velocities, as provided by simulation outputs. We shall refer to each galaxy set, ob

estimated through redsbifts (redshift space); galaxy redshifts are evaluated taking into account
coordinates and considering the apparent distribution in space which would result if distance is

CDM1.5, CDM1 simulations, at different evolution degrees, both on the basis of actual galaxy

Making use of the relations found in §4, we performed an analysis of the CHDM1, CHDM2,

5 Results and discussion

are suitable approximations for 1.2 $ 7 § 2.2 , with an error of ~ 6% at worse.

(42)<¤> ; 2.64 g<¤> : 6.96 T<¤> = 0.32

function yields the curves plotted in Figure 3b. The values

ing coefficients n, (and r. Their numerical evaluation in the case of top—hat window(‘)(°) ·(°)

lSy). If hierarchical sca.1ing holds, we derive expressions analogous to eqs.(35), with correspond
)As in the case of count—in—cells, we can define conditional skewness and kurtosis (Syand

of the window function (see the Appendix for their explicit expressions).
Again, K1, K2, K3, and Ky, are numerical coeflicients depending only on 7 and on the choice

<41>) ?]
°lE§(R) = 16 (KiK2 + r<..> Q5? + (K3 + mr.cz
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Although such departures from hierarchical scaling could also not be intrinsic to non—linear OCR Output

flatter.

from b = 1.5 to b = 1, the non-linearity scale shifts to larger values and the S3 profile becomes
hierarchical scaling, especially at a later evolutionary stage. In fact, as the clustering evolves
for the first run. It is also interesting to note that the CDM model develops a higher degree of
CHDM realizations, the coefficients for the second run being significantly smaller than those
values, with a shallower scale—dependence. Significant differences appear even between the two
hierarchical scaling for CHDM than for CDM, the second providing systematically smaller Sq
one. This is in fact confirmed by the plots in Figure 5 where we detect larger deviations from
case that effects of finite statistics are more apparent for the CHDM model than for the CDM
number of points is required to adequately sample it. As a consequence, we expect in our

spectra with more 1arge—scale power produces coherent structures of increasing size, a. greater

finite statistics, they found a much better agreement with the hierarchical scaling. Since any

(1993) checked this effect in detail for their CDM simulations. After suitably correcting for
Sq coefficients, which decrease even for intrinsically hierarchical distributions. Colombi et al.
der moments, but also going to larger scales. This induces a spurious scale—dependence of the
volume. Therefore, finite sample effects become more relevant not only considering higher or
maximum allowed value for the variable N / N decreases by increasing the size of the sampling
a single cluster approximately scale as N or 1·3"”’ (here 7 is the 2—point function slope), the
sively more weight to richer and richer clusters. Furthermore, since the number counts inside
becomes more important as one considers moments of increasing order, which give progres
in eq.(13) will be truncated, leading to an underestimate of (N "). It is clear that this effect
the maximum count N,,,,,,. Therefore, it turns out that PN = 0 for N > N,,.,,, and the sum
tion contains a finite number of points, there exist at any scale a cell which is characterized by
scale-invariant behaviour as due to the effect of finite statistics. Since any considered distribu
al. 1993). Colombi, Bouchet & Schaeffer (1993) interpreted such deviations from the expected
when going from the strongly non—linear to the weakly non—linear scales (see also Lahav et
noise, CDM, and HDM spectra. They found a smooth decreasing trend for the S3 parameter
detected. This agrees with previous analyses by Bouchet & Hernquist (1992) for intial white
respectively). Note that there is no evidence for a scale—range where hierarchical scaling is
from Figure 5, where we plot the scale-dependence of S3 and S4 (filled triangles and squares,
DM distributions (left panels), especially for the CHDM; model. This is even more apparent

Already from this plot, substantial deviations from the hierarchical pattern can be seen for
difference between the two realizations of the CHDM simulations.
are in general very different from the cosmic variance, whose amount can be judged from the
bootstrap deviations after 20 bootstrap resamplings. Note, however, that these sampling errors
estimates converge in all the considered cases. Error bars plotted in Figure 4 represent 10
true sampling variance of the distribution. We found that after 20 such resamplings the error
large number of resamplings the variance inside the bootstrap ensemble should converge to the

_. lg



DM distribution from N—body simulations do not. OCR Output
reason why the analysis of galaxy samples reveals a well defined hierarchical scaling, while the
from counts larger than Nm:/N in eq.(13) becomes less important. This could well beithe
inside clusters is much larger for galaxies than for DM particles. Therefore, the contributions
since galaxies are identified to correspond to high—density peaks, the value of the variable ·N / N
galaxy distribution, which has a much smaller average density that the DM particles. However,
seems rather surprising since effects of finite sampling should be even more impatient for the
a well defined hierarchical scaling over the whole range of non—linearity scales. This finding
the scales of non—linear clustering. In all the considered cases the galaxy distribution produces
CDM model at b = 1.5 and b = 1 (Fig. 6b). The effect of taking high peaks is really dramatic at
reduced skewness S3 as a. function of the scale for the two CHDM runs (Fig. 6a) and for the
the fit to the hierarchical scaling. This is even more apparent from Figure 6, where we plot the
of values taken by the fz variance by several orders of magnitude, and to remarkably improve

the results for the “bright" galaxies. The major effects of selecting peaks is to enlarge the range

field according to the prescription outlined in Section 2. In the right panels of Figure 4 we report

data, we analyze the distribution of galaxies, identified from high peaks of the evolved density
In order to understand the origin of these discrepancies between numerical and observational

such coefficients.

and Lahav et al. (1992) for several cosmological spectra, which gives much larger values for
of CDM and CHDM distributions, as well as from the analyses by Bouchet & Hernquist (1992)
the considered sample. This result is remarkably different from those obtained from our analysis

quantities S3 and S4 are not, with typical values S3 2 2 and S4 2 6, also quite independent of

although the moments of counts are significantly affected by redshift—space distortions, the

redshift samples, with particular care to account for redshift distortions. They found that,

are induced by redshift—space distortions. Fry & Gatzaiaga (1993b) analyzed different galaxy
initial conditions and found that no significant variations of the variance-skewness relation

Coles et al. (1993) analyzed CDM simulations obtained with both Gaussian and non—Gaussian
indications coming both from other numerical experiments and fromobservational data sets.

spectrum. However, such results from numerical simulations are at variance with respect to

but also their dependence on finger-of-God distortions, are sensitive to the choice of the initial
the hierarchical coefficients are decreased in redshift space. Therefore, not only the Sq values,

in the initial spectrum. In fact, differently from a.ll the other cases, in the CHDM] model

Sq profile, although they act in different ways, according to the amount of large-scale power
symbols) analysis. We confirm that redshift-space distortions tend systematically to flatten the
for all the considered models, from both real space (filled symbols) and redshift space (open
to redshift space distortions. To check this, we plot in Figure 5 the S3 and S4 coefficients

argued that the difference between observations and numerical simulations could partly be due
S3 2 const for the galaxy distribution over a quite large range of scales. Lahav et al. (1993)
DM clustering, nevertheless it is at variance with observational evidence, which points toward
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from the analysis of galaxy samples (note that Bouchet et al. (1993) found a value S3 2 1.5 OCR Output
In Table 3 we compare our best-fit S3 and S4 values for “bright” galaxies with those obtained

coupled with the occurrence of galaxy formation in high-density regions.
for the galaxy distribution represent the natural outputs of non-linear gravitational clustering
other hand, our analysis shows that both the hierarchical behaviour and the Sq values detected
for structure formation, the same is not true for the clustering of high-density peaks. On the
reduced skewness and kurtosis for the DM clustering resemble memory of initial conditions
quite independent of the initial spectrum. On one hand, these results indicate that, although
S4 coefficient to a much smaller value with respect to that relevant for the DM distribution,
for real—space analysis. Also in this case, selecting galaxies as high-density peaks ilattens the
the model. A similar result also holds for the reduced kurtosis S4, which is plotted in Figure 7
appears from Figure 6, is that galaxies with d = 9 Mpc have S3 2 2.5, quite independent of

Within the framework of the simulations considered here, the most striking result, which
noise.

quasi—linear dynamical evolution, taking also suitably into account effects due to Poissonian
guish amongst them. This comparison could be also based on analytical analyses of large scale
scales, if confirmed, can actually be different for different models and used as a test to distin
of the transition from linear to non-linear regimes. Velocity induced distortions of S3 at these
q > 2) tend to vanish in real space would be however valuable to deepen our understanding
in redshift—space as linearity scales are approached. Simulations reaching scales where Sq’s (for
models, which generate higher velocity dispersions, there appears some trend for S3 to increase
al. 1983), SSRS (Da Costa et al. 1991) and Strauss et al. (1992) IRAS samples. For CDM
tributions, but in accordance with the analysis of Fry & Gatzariaga (1993b) of CfA (Huchra et

Furthermore, no significant redshift—space distortions are detected, unlike for the DM dis
rare peaks.

SM = b2""Sq_DM and the coefficients decrease by increasing the biassing, that is by taking more
for the corresponding cumulants. In the framework of hierarchical scaling, this turns into
counts and in the DM distribution are related by 59 = b6DM. Therefore, it is €q'g = b°fq_DM
the framework of linear biasing for galaxy clustering. In fact, density contrast in galaxy number
show a. decreasing trend as the mean galaxy separation decreases. This can be understood in

The values of the S3 coefficient for galaxies is much smaller than for the DM particles and
regime, or merely represents a spurious effect of finite sampling.

decreasing trend of S3 is the imprint of the transition from strongly non-linear to quasi—linear

considered scales, especially for the DM distribution. Therefore, it is difficult to say whether the

already observed, effects of finite statistics are expected to play a significant role at the largest

which are reasonably close to those detected for galaxies in the same regime. However, as

applies to describe the matter distribution in the mildly non-linear regime, gives S3 values

approach the same value. This seems to agree with the fact that perturbation theory, which

Only as the linear regime is approached, does the S3 value for both dark matter and galaxies



PPS. Such an analysis was performed after some corrections for local motion, Virgo infall and OCR Output
to 3-cr’s. In the same plots we also show values and error bars obtained from the analysis of
(circles) and neighbours (triangles), both for real and redshift space. Here error bars correspond

In Figure 9 we plot the values of Q_ and QV), for different scales R, as obtained from cells
deviation of each measure.

distribution turned out to be consistent with Gaussian, and this allows to estimate the standard
were taken as possible companions. All quantities were measured 10 times in this way. Their
were randomly selected. Galaxies of such subsamples were used as centers, while all galaxies
Pisces redshift sample (PPS). Ten subsamples made of ha.l.f the galaxies of the original samples
essentially the same technique used by Bonometto et al. (1993) in the analysis of the Perseus
with those derived from counts of neighbours. In the latter case errors were estimated by

By virtue of the relations outlined in §4, results from counts in cells can be directly compared
produce a better defined scaling with lower hierarchical coefficients is confirmed.

by comparing the results for b = 1.5 and b = 1. Also in this case, the tendency of evolution to

density peaks. The effect of the evolution on the CDM model can be judged from Figure 6b,

reason for the slower evolution of brighter galazdes, which are identified with relatively higher

modes, so that their clustering attains the regime of dynamical stability earlier. This is also the
large—scale power, galaxies formed with greater probability in the crests of the long wavelength

CHDM, model shows less clustering evolution. Since this realization has a greater amount of

exist between the two runs as well as between differently biased ga.la.xy populations. The

is that of decreasing S3, while approaching the hierarchical scaling. However, some differences

while triangles are for the redshift z = 1. For both CHDM realizations, the effect of evolution

two runs of CHDM. In these plots, squares refer to the present time, as also plotted in Figure 6a,

In Figure 8 we show the effect of dynamical evolution on the high—peak clustering for the

velocities seem to give just a minor contribution to estimates of non-Gaussian behaviour.

scales inspected here no significant variation is found when passing from real to redshift space:

power. Both unbiased CDM and CHDM2, which has a more typical power, are better. Over the

realization, which probably represents a configuration with an anomalous excess of large—scale

b = 1.5 case generates margina.]ly larger S3 values. The same is also true for the CHDMI

S 20 level, nevertheless some of these seem to perform better. For instance, as for CDM, the
Although agreement with observational res11lts is in general achieved by all the models within
results coming from real galaxy samples and our "bright" galaxy distribution is rather good.

while also the different analysis technique could play a role. In general, the agreement between
separation decreases (deep angular samples include fainter galaxies than in redshift samples),
This could be partly due to the increasing trend of the Sq coefficients when the mean galaxy
galaxy sample are larger than any other observational value, especially for the reduced kurtosis.
tend to avoid rich clusters). The values found by Gatzanaga (1993) for the APM angular
suggest that this value is an underestimate of S3 for optical galaxies, since IRAS galaxies
for the Strauss et al. (1992) IRAS sample, which is smaller than any other detection; they
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PPS. However, in the case of Q, PPS behaviour can be probably accounted for by cosmic OCR Output
Differences between the two CHDM runs are less significant than those between CHDM] and
behaviours of CHDM1 (full circles), CHDM; (open circles) and PPS (triangles) in more detail.
4—point case, the PPS trend is stronger than the simulations. In Figure 11 we compare the
bars for CHDM1 and PPS almost overlap in the case of the 3-point function, although, in the

This behaviour is present for PPS observational outputs in still a more marked form. Error
namely for the CHDM; simulation.

particular, some evidence exists that both Q and QV) tend to increase towards smaller scales,
at large scales, slight deviations from a general hierarchical pattern can be appreciated. In

Note that, making use of neighbour counts and thanks to their smaller errors especially
stability of the hierarchical coefficients against redshift distortions.

the differences shown in Figure 10 are rather significant and make even more remarkable the
compa.rison of the distortions of the clustering pattern in redshift space. Although qualitative,
consider the CHDM; model, whose different assignment of the initial phases makes difficult any
10b) and b=1 (Fig. 10c). Here we plot the positions of the galaxies with d = 5 Mpc. We do not
between real and redshift space for a slice of CHDM1 (Fig. 10a) and CDM with b=1.5 (Fig.
in redshift space dramatically appear to the eye from Figure 10, where a comparison is made
velocities are remarkably higher than in the other models. Their disruptive effects on clustering
fact that strong deviations are not present even in the case of unbiased CDM, where peculiar
instead in a mild fashion on the nature of the clustering. This conclusion is reinforced by the
significantly affecting the apparent amount of clustering (i.e., the moments of counts), operate
also pertains to redshift space distributions proves that peculiar velocity distortions, though
leading dynamical component (cold or mixed dark matter). The fact that hierarchical scaling
of the galaxy distributions both in real and in redshift space, independently of the nature of the

We are allowed to conclude that all the models considered show a basic hierarchical character

because such a radius is only five times the resolution of the numerical simulation (2 0.2 Mpc).
scale considered (r = 1 Mpc). However the latter ones should be taken with some caution
space and the corresponding ones in redshift space', except perhaps for those at the smallest

All thegalaxy samples show a general agreement between the measures of Q and Qin real(°‘)
spurious feature.

R an irregularity is also visible in the scale dependence of S3, e.g. in Figure 7, and might be a
between cell and neighbour outputs. The only exception is a point at 6 Mpc for CDM. At such

It is however important to mention that, within error bars, no significant discrepancy appears

of volumes, over which the averaging procedure is performed, as the side of the cell increases.

namely at great scales, the difference is dramatic. This is related to the decrease of the number

Errors from counts of neighbours are significantly smaller than those for cells; in a few cases,
space outputs (both for simulations and real samples).

much questioned and we hope to be able soon to make a direct comparison among redshift

virial fingers. This tentative passage from redshift space data to real space ones can be however
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deviation in a·(N,,) has been proposed by Maurogordato & Lachieze—Rey (1987). Under the OCR Output
As for the error estimate in the VPF analysis, an analytical expression for the standard

galaxies both in real (Fig. 12a) and in redshift (Fig. 12b) space.
compare with analogous results from observations. In Figure 12 we plot a(Nc) for our brighter
a twofold aim: first, compare with the hierarchical VPF models introduced in §3.3; second,

Here, we analyze the cr(Nc) function for our simulated distribution of bright galaxies with
values increasing with the amount of small—scale power in the initial Huctuation spectrum.

quite well reproduced, the scaling parameter turns out to be smaller than observed, but with
& Hernquist (1992) for different initial spectra. Again, although the asymptotic behaviour is
(Alimi et al. 1990; Maurogordato et al. 1991). A similar analysis has also been done by Bouchet
particles with w 2 0.4, smaller than that observed from the analysis of galaxy redshift samples
cell analysis of CDM simulations that the asymptotic scaling ¢r(Nc) oc Ng’“' is obeyed by DM
gives in general a. good description. Bouchet, Schaeffer 8: Davis (1991) found in their count—in—
this statistic to both observational data and simulations and found that the hierarchical scaling

from Poissonian VPF, can be used as a test for the hierarchical ansatz. Fry et al. (1989) applied
As previously shown, the scaling of the quantity a(N,1·), defined by eq.(21) as the deviation

Gaussian and non—Gaussian initial conditions in their simulations.

for biased galaxy formation. Weinberg &: Cole (1992) used the VPF to distinguish between
Weinberg (1993) to apply the void statistics to N·body simulations to test different schemes
data about the VPF from the CfA survey (Vogeley, Geller & Huchra 1991) allowed Liddle &
(e.g., Betancort-Rijo 1990; Einasto et al. 1991). The availability of extended observational
the galaxy distribution has been suggested to be the signature of biased galaxy formation

the latter being sensitive to the clustering inside overdensitie . The presence of big voids in

statistical information which is in some sense complementary to that of correlation functions,

large—scale texture of the galaxy distribution. It is relatively easy to implement and provides

The VPF has long been recognized to be a useful tool to characterize global properties of the

5.2 Results on VPF

the galaxy luminosity function) that the present approach avoids.
This procedure would be linked to a number of assumptions and parameter choices (e.g., on
realization of mock galaxy samples, having the same size and selection effects as real samples.
sought either by analysing PPS and simulations directly in redshift space or passing through the

regime from the quasi——linear one. Agreement between theory and observations should be better

linear clustering, while analysis of real galaxy samples usually does not separate the non—linear
more general problem, as we should remember that our analysis involves mostly scales of non

which apply to groups and might have modified some inner characteristics. This reflects a
A word of caution, however: the analysis of PPS relies on corrections to virial fingers

variance (this is more problematic for Q(")).

—-— 23



The overall emerging picture for the VPF analysis of our simulated galaxy distributions is OCR Output
behaviour.

the fact the IRAS galaxy distribution does not sample the regime where 0 takes the asymptotic
(1993) of the IRAS sample. The same authors, however, ascribe the anomalous large w value to
Note that a quite good agreement is always found, except for the analysis by Bouchet et al.
that relative uncertainties as large as ~ 20% should be expected in the determination of w.
procedure. However, the presence of quite large errorbars, especially in the Nc values, suggests
observational data sets come from unweighted least square fitting, so that we also follow this
space. As far as it can be judged from published results, the uncertainties in w values for
lations in real and redshift space and for observational data sets, which are realized in redshift

In Table 4 we report the best—fit values of the scaling parameter w obtained for our simu
apparently restore to some extent the hierarchical scaling.
(see Figure 12b). The net effect is to partially compensate the spurious fall—off of c·(Nc), so to
is represented by the CHDM1 model, for which the effects of redshift distortion are less relevant
substantially unchanged at small scales (see also Liddle & Weinberg 1993). The only exception

The VPF is decreased in redshift space at large scales, which increases a· while leaving it
deviations observed for the CHDM runs compared to the CDM ones.

the dynamical evolution inside underdensities proceeds slower. This is the reason for the larger
scaling is observed up to N., ~ 10. Note also that for models with less power at small scales
the best—fit to eq.(26) only up to the Nc values where 0 starts falling off. In general, a good
gravity has still had no time to build up the hierarchical scaling. For this reason, we perform
preserved. Therefore, on the larger scales of the typical interparticle distance in the void regions
underdensities the structure of the lattice, on which intial conditions are settled, is essentially
al. (1991). They argued that, differently from what happens in the overdense regions, in the
scales (corresponding to large N, values). This fact has been already observed by Bouchet et
always provides a good fit. Even this model, however, is not able to reproduce the data at large

It is apparent that the phenomenological model, suggested by Alimi et al. (1990; see eq.[26]),
§5.1.

the plotted errorbars in the Nc variable come from the bootstrap method already described in
out to be systematically larger than that provided by eq.(43) by about 50%. In a similar fashion,
times both empty and occupied cells. The resulting A0 is that plotted in Figure 12 and turns

bootstrap resampling at the scale 1· is obtained by randomly selecting with repetition (L/r)°
is not satisfied. For this reason, we decided to estimate 50* through the bootstrap method; each

exist over all the considered scales, the assumption of independent counts in different volumes

where Ng is the number of empty volumes. It is however clear that, since significant correlations

M = <4=*·>-.%<%$>
_ 1/2

assumption that counts inside different sampling volumes are independent, these authors found
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is hard. This has been tested also in our analysis. The neighbour approach instead samples OCR Output

are allowed for count—in—cells. Bootstrap errors therefore rapidly increase and signal detection

of the distribution. Furthermore, as large scales are considered, only few sampling volumes

estimates. However, it provides the same sampling rate in the overdense and underdense parts
being much less computationally expensive, while providing in most cases reliable statistical

It is worth outlining that cell and neighbour approaches have different advantages, the former

expected hierarchical clustering pattern.

conclusions, however, refer to the connection between the observed clustering structure and the

infall motion cancellation, etc.) which made the comparison not fully homogeneous. Our main
ysis had been performed after a number of corrections (virial finger compression, virgocentric
et al. (1993) on the Perseus Pisces Redshift Survey (PPS) was also made, although such anal
are detected. A comparison with the outputs of a neighbour analysis carried on by Bonometto

CDM and CHDM models was inspected, and only marginal signals indicating a discrimination

neighbour counts. The possibility that such measurements can show differences between pure

tion) for the above simulations; q—point functions were worked out from the moments of cell and
We evaluated the 3-— and 4—point correlation functions and the VPF (void probability func

cases.

norma.lized CHDM runs. The initial density fluctuation spectrum is pure Zel’dovich for all

cosmic background anisotropies, while CDM1.5 has less power but the same bias as the COBE

Of these, the CHDM and CDM1 are normalized consistently with the COBE detection of
parameter b = 1.5 (CHDM, and CHDM2, respectively) and CDM with b = 1.5 and b = 1.
to weaken their influence. The outputs described two different realizations of CHDM with bias

simultaneously inspecting large scale structures up to a range where non—linearity effects begin
100 Mpc a side. This allows us to reach scales not much above the size of individual galaxies,

Ln this paper we analysed four simulation made with resolution ~ 195.3 kpc in a. cubic box of

6 Conclusions

discriminate between different models as larger simulations are analyzed.
to be more sensitive to the spectrum shape, which makes it a potentially useful statistic to
clustering of high—density peaks. Vice versa, the large-scale behaviour of the VPF seems
the reliability of the Saslaw’s thermodynamical model of eq.(23) to describe the non-linear
spectra. The value of the scaling parameter w is always very close to 0.5, thus supporting
differences do not occur when passing from real to redshift space or considering different initial
VPF. Even in this case, in the region where the sca.ling of <r(NC) is well detected, significant
correlation analysis, but also of the geometry of the large-scale structure, as described by the
only provide a good representation of the non—linear clustering, as shown by the high—·order
that it follows quite closely the hierarchical scaling. Therefore, the hierarchical ansatz does not
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earlier times. As gravitational evolution goes on, skewness and kurtosis values decreases until OCR Output
form earlier on the crests of long wave—length components and attain dynamical stability at
for CHDM;. The former realization has more power over large scales; therefore galaxies could
tributions at a redshift z = 1 indicates that clustering evolution is smaller for CHDM, than

The effect of dynamical evolution on clustering was also studied. A comparison with dis
observational data sets (Table 3).

ined here, are reported in Table 2 and turn out to remarkably agree with those detected for
estimated also in redshift space. The values of such coefHcients, for the simulations exam
not modify the values detected for the hierarchical coefficients, so that they can be efficiently

Quite differently from what is noticed for DM, the passage from real to redshift space does
kurtosis seen to converge on similar values both for DM and galaxies.
over the whole ra.nge of non—linearity. Only when linearity is approached are skewness and
with the peak distribution of the density field. Selecting peaks produces hierarchical scaling
galaxies are distributed in an almost hierarchical fashion. Galaxies are selected in accordance

However the main issue here is that, although the DM particle distribution is non—hierarchical,
1993).

distortion, at variance with indications from observational data analyses (Fry & Gatzanaga
more, the scaling of S3 and S4 coefficients for DM particles is significantly affected by redshift
clustering, still it contrasts with observational evidence on the galaxy distribution. Further

Even though such departures from hierarchical scaling may not be intrinsic to DM non—linear
agreement with the greater large scale power that characterizes this case.

the two different CHDM realizations — CHDM1 indicates an even stronger deviation, still in
show a stronger deviation from hierarchical clustering than CDM particles, while — between
show a stronger deviation from the hierarchical pattern. As a matter of fact, CHDM particles
particles. If this is correct, we should expect that models with greater power over large scales
Colombi et al (1993), this can be tentatively interpreted as an effect of scarce statistics for DM
according to previous analyses by Bouchet & Hernquist (1992), Lahav et al. (1993), and
pattern were found. No scale range where their behaviour is hierarchical is detected. Also
inspected. Substantial deviations of DM particle distributions from the hierarchical clustering

By using such techniques, the observed behaviours of DM particles and of galaxies were

scale.

when greater scales are considered, as the number of counts averaged does not depend on the
to results distributed in a Gaussian way. The neighbour method does not become less efficient
the centers — several times and in a random way — and verifying that different selections lead

provided by overlapping volumes. Within this context errors are evaluated by selecting half of

this reason, some doubt could be raised about the statistical independence of the information

integra.] measure, carried on a volume which intersects volumes centered on nearby galaxies. For

from which moments are evaluated is set by the number of galaxies. Each count however is an
regions centered on existing objects and therefore avoids empty regions. The number of counts
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dynamical consequences for the galaxy distribution. Here slight discrepancies from a purely OCR Output
DM particles. It is notable that the very significant deviations observed for DM do not have

Altogether our results confirm a hierarchical scaling picture for galaxies, in contrast with
hierarchical scaling.

thermodynamical clustering model of Saslaw 8: Hamilton (1984), still within the framework of
allowed value intervals for the parameter w always contain w = 0.5. This gives back the so—called
phenomenological model of Alimi et al. (1900) always provides a satisfactory fit. However, the
of hierarchical clustering and with observational·data over these scales. It is clear that the
smaller scales; here the aim was to compare the VPF with the prediction from different models
whose size is in the 30-50 Mpc range. The analysis carried on here is necessarily restricted to
voids is concerned. In order to test such effects on a statistical basis we need to sample regions
and CHDM, in the passage from real to redshift spaces, as far as the statistical character of
An inspection of Figure 12 also shows that we can expect a relevant difference between CDM
whose side is 100 Mpc is inadequate to test the scales where big voids are actually present.
likely to be a signature of bias. It should be however noted that a simulation covering a box
being sensible to the geometry of the distribution, rather than on its clustering. Big voids are

Results on VPF are expected to provide information complementary to correlation functions,
fluctuation detection does not allow standard CDM with b = 1.5, this point favours CHDM.
might be linked to the bias level, rather than to the nature of DM. However, as COBE CBR
CDM. A comparison between CDM outputs with b = 1.5 and b = 1 shows that this trend

there is some evidence that this is more easily reproducible with CHDM models than with pure

found there is confirmed by an analysis based on PPS without corrections and on other samples,

Neighbour analysis on real samples was carried on for PPS only, up to now. If the trend
space.

similar technique in the analysis of PPS. The trend is quite visible both in real and in redshift

models, although it is even more evident for CHDM;. A similar behaviour was detected with a

scales. The trend is almost negligible for CDM with b = 1, while it is visible for both CHDM

These deviations essentially amount to an increase of hierarchical coefficients towards smaller

deviations are within the error bars of the cell approach, but are hidden by their amplitude.

coefficient, slight deviations from a purely hierarchical behaviour seem to be detectable. Such

larger scales. Mostly because of this more precise large scale detection of the hierarchical

neighbour approach errors do not increase because of lack of sampling, when going towards

agreement between results coming from the two methods, as should be expected. Within the

a detailed conversion from cells to neighbours. As far as gala.xies are concerned, there is a generic
squared, for this kind of analysis. In this paper we also provide a set of numerical results allowing

for DM points would be highly time consuming, as the time increases with the number of points

Results from cells and neighbours can be compared only for galaxies; a neighbour analysis

identified to correspond to lower peaks, thus taking longer to reach a stable clustering.

a stable clustering is attained. This is more pronounced for our "fa.inter” galaxies, which are
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Through these relations the curves plotted in Figure 3 were obtained. OCR Output

6(1<,K, + K3,).T= K3 ’<> Z 1 + 2 gw Z " W ’¤K6(Kl’f;i·z2 m FV +.2%*;
and

3J4¤*.1 _ 7]:3-+*, {-12-7;, T
']4¤ J4b

The relations between such integrals and the coefficients 1;, §, ·r read
with 7, = s — 7.

Y7·7e'Yv/2 79/2 256 F('7s/2) 256 I`('71i/2)J _ [';''i’i 427 · 4l° 247'zs/24 + 72 717/2 4lx/$72 I`('7s) _ 47x/’TF(‘Ysl
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Gaztariaga. & Yokoyama 1993). It turns out that

In the case of spheres, some integrals can be worked out analytically (see Peebles 1980 and

Kgb = ‘v—3 / dsitl dal}; d3Z3 W1(X1)W1(Xg)W1(X3) ($12132713)-7 ·

Kga = 11`3 / dsibl daillg (13223 W1(X1)W1(Xg)W1(X3) (iB1{D122}23)_-Y;

Kg = TJ--2 / d321 dal; W1(X1)W1(X2)($]2]2)_7;

K1 = 1}-1 I d3Z[ W1(x])z1-,1,;
and

(A1)JM, = v“4 / dazl d3::2 d3z3 dax., W1(x1) . . . W1(x4) (3123131314)-7 ;

Jim = 11'4 I dsx; dai}; d32!3 d3£l74 W1(x1) . . . W1(X4) ($1gZ23334)—-7 {

J3 = 1)-3 I (13231d31!gd3LD3W1(X1)W1(Xg)W1(X3) (z]2z23)_-Y Q

J2 Z 1}-2 / d32D1d322W1(X1)W](Xg)Z;;;

The following expressions hold:

v = 41r/3).

spheres is unity. Let also be v = f dsx W1(x) (in the case of cubes v = 1, in the case of spheres
cell—count and neighbor—count methods, respectively. The side of cubes as well as the radius of

In the expressions of the above coefficients, cubic cells and top-hat spheres are taken for the

§,(°)·r(°) of Section 4.
K2, KM, Ky,. Suitable combinations of these coefficients yield the quantities n, Q, ·r and 1](°),
In this appendix we sha.ll provide formal expressions for the coefficients J2, J3, J4,,, Jib and K1,
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space distortions (see text). OCR Output

bars correspond to 3—c·’s. Let us remind that PPS data were tentatively corrected for redshift
and redshift space. Open circles refer to the analysis of PPS with neighbour technique. Error

Figure 9. Q and QM, for d = 5 Mpc, from cells (circles) and neighbours (triangles), for real

refer to the present time, triangles to z = 1.

Figure 8. Dynamical evolution of high—peak clustering for CHDM; and CHDM;. Squares

as in Figure 6.

Figure 7. The sca.le—dependence of the S4 coefficient in real space. The symbols are the same

and while lower panels are for the more evolved configuration at b = 1.

and redshift space, respectively. In Fig. 6b upper panels are for CDM at present time (b = 1.5)
run and the lower ones are for the CHDM2 run. Left and right panels are for analyses in real

the CHDM runs, while Fig.6b is for CDM models. In Fig. 6a, upper panels are for the CHDM;
(circles) and for galaxies having d = 5 Mpc (squares) and d = 9 Mpc (triangles). Fig. 6a is for
Figure 6. The scale dependence of the CHDM S3 coeiiicient in linear scales, for DM particles

evolved stage (b = 1) are plotted.
holds. Data for the two runs of CHDM and for CDM at present time (b = 1.5) and at a more
space. Note that S3 andS4 must be independent of the scale as long as the hierarchical model

are for S4. Filled symbols are for analysis in real space, while the open ones refer to redshift

of DM particles, plotted in log units as functions of the scale. Triangles are for S3 and squares
Figure 5. The skewness and kurtosis coefficients (S3 and S4, respectively) for the distribution

hierarchical model Eq = Sqggq
la scatter over 20 bootstrap resamplings, while the dotted lines are the best fit of data to the

for galaxies, identified as high density peaks, with mean separation d = 9 Mpc. Errorbars are

left panels data on the DM particle distributions are plotted, while on the right we show results
the CHDM runs (4a) and for CDM with b = 1.5 and b = 1 (4b) at the present time. On the
Figure 4. The variance-skewness (triangles) and the variance-kurtosis (squares) relation for

Montecarlo integrations.

(Fig.3b) inside spheres of unity radius. Error bars are standard deviations over ten different
(Fig. 3a) they are evaluated inside cubic cells of unity size and for neighbor-count analysis
Figure 3. The coefficients 1;, ·r and { are plotted as functions of 7. For the cell-count analysis

9Mpc and d = 5 Mpc). The long——dashed line corresponds to 7 = 1.76 and ro = 11 Mpc.
Figure 2. 2—point correlation functions for galaxies (dashed and solid lines correspond d =

km s“1 Mpc"1). CDM and CHDM, runs are shown.
Figure 1. Distribution of DM particles compared to galaxies at distance d = 9 Mpc (HO = 50

Figure captions
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model of eq.(26) with w parameters given by the best—fitting values reported in Table 4. OCR Output
Poisson model, short—dashed for the negative binomial model, dotted for the phenomenological

ferent curves are for the hierarchical models described in §3.3; long—dashed for the hierarchical

for the galaxies with d = 9 Mpc both in real (Fig. 12a.) and in redshift (Fig. 12b) space. Dif
Figure 12. The deviation from the Poissonian VPF, cr, plotted against the scaling variable Nc,

11b is for QU).
and PPS (triangles) based on neighbour counts. Fig. 11a is for the Q coefficient, while Fig.
Figure 11. Direct comparison in real space among CHDM1 (full circles), CHDM2 (open circles)

y = 20.

the observer is placed on the z = constant middle plane of the slice at position 2 = 20 and
conditions are used to draw points outside the box boundaries. In redshift space (left pannels)
respectively. The slice is chosen to pass through a high density concentration and periodicity
for the CHDM1 model, while Figs. 9b and 9c are for the CDM model with b = 1.5 and b == 1,
Mpc in a square slice of 40 Mpc thickness cut out of the 100 Mpc simulation box. Fig. 10a is
Figure 10. Effects of peculiar velocities on clustering. The plots show galaxies with d = 5
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0.9IRAS (Bouchet et al. 1993) OCR Output

0.6 zh 0.1SSRS (Maurogordato et al. 1992)

0.5 zh 0.1CfA (Alimi et al. 1990)

CDM1 0.48 zh 0.04 0.47 zh 0.04

CDM1.5 0.47 zh 0.05 0.49 zh 0.04

CHDM2 0.46 zh 0.03 0.47 t 0.03

0.41 t 0.05 0.44 t 0.04CHDM1

Rea.1 space Redsh. space

Sample

from Poissonian VPF, ¢r(Nc).
Table 4: The scaling parameter w for the phenomenological expression (26) of the deviation

3.8 zh 0.4 33 zh 7APM (Gatzaiaga 1993)

4.4 i 3.7IRAS (Bouchet et al. 1993) 1.5 :1: 0.5

9.2 zh 3.9IRAS (Fry & Gatzaiaga 1993) 2.2 dz 0.3

10 iz 3IRAS (Meiksiu et al. 1993) L2 i 0.2

5.4 i 0.2SSRS (Fry & Gatzaiaga 1993) 1.8 zh 0.2

6.3 t 1.6CfA (Fry & Gatzaiaga 1993) 2.0 :k 0.2

2.4 t 0.2CfA (Peebles 1980)

2.3 zh 0.2 6.9 -1; 1.4CDM1

10.0 t 2.92.7 j; 0.3CDM1.5

7.3 i 1.72.3 t 0.2CHDM2

2.6 j: 0.3 8.7 i 2.2CHDM1

Sample

galaxy samples. Only the Bouchet et al. (1993) result refer to redshift space.
Table 3: Values of the S3 and S4 c0eHcients in real space for our “bright” galaxies and for real

OCR Output36 —










































