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Abstract

We argue directly from Witten’s analysis of large N, baryons that the structure of the s-wave low-spin baryon states in QCD becomes
spin-independent as N, — oo. This property leads to SU(6)-like behavior of static matrix elements, such as the axial-vector current
matrix elements recently studied by Dashen, Manohar and Jenkins. Our analysis suggests a method for applying large N, results for
N, = 3, even though the baryon states for large N, are very different.
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Introduction

The classic paper by Witten on baryons in the large N, approximation
shows that low-lying large N. baryons can be described by a Hartree wave-
function with all (or almost all, for low-lying excited states) quarks in the
same ground-state wave function, bound in a potential produced by all the
other quarks. [1] One sentence in [1] hints that the spin structure of large
N baryonic bound states of light quarks may be an interesting thing to
study. Witten notes that while spin-orbit coupling will seriously deform
the high-spin baryons away from an s-wave ground state, the low-spin,
ground state baryons may not be deformed. In this note, we attempt
to make this notion precise. We will argue that spin-independence of
large N, baryons emerges as an approximate symmetry of a rather unusual
type. Spin dependent terms vanish as N. — oo when the baryon spin
is held fixed. Thus the states of low spin in the baryon multiplet are
spin-independent, while the states with spin of order N./2 are seriously
modified by spin-spin and spin-orbit interactions. We will then analyze
the matrix elements of operators in these baryon states and show that for
the ground states, the matrix elements have the structure suggested by
spin-flavor symmetry arguments. Applied to the axial-vector current, this
yields the results that Dashen and Manohar [2] and Jenkins [3] obtained
by studying pion-baryon scattering. However, we see that the result is far
more general, depending only large N, not on chiral symmetry.

One difficulty that arises in applying large N, ideas to baryons in our
world is that baryon states for large N, look nothing like the baryons for
Nc = 3. It is purely coincidental that for only two flavors of quarks, the
low lying states for any odd N, > 3 have the same quantum numbers as
the states for N. = 3. For more than two flavors, the quantum numbers of
the low-lying states look entirely different. It is thus important to extract

results from a large N, analysis in a form that can be unambiguously

applied to N, = 3. It seems clear that you should not directly compute
properties of the large N, baryon states and then just take over the results
to N. = 3. What we will suggest is to formulate the result as a sum over
quark states, without regard to the value of N.. This approach fits in
nicely with the rest of our analysis.

We will work entirely within the Hartree picture of large N, baryons.
However, to get started, we must know what spin states to consider. We
begin by considering heavy quarks, as discussed explicitly by Witten. In
this case, we know what the Hartree Hamiltonian looks like. The interac-
tions are approximately spin independent simply because the quark masses
are large and the baryons are nonrelativistic bound states. In this case, we
know that the states are nonrelativistic states of N, quarks, each with two
spins states and f flavors states (for f flavors), completely symmetric in
spin, flavor and space variables. This is conveniently described in a (2f)Ne
dimensional tensor product space with independent spin indices and flavor
indices for each of the quarks (labeled by z = 1 to N.). In the ground
states, all the quarks will be in the same s-wave space wave function, and
thus the states are completely symmetric in spin and flavor. The spin and
flavor states are then described by a tower of (spin,flavor) representations

of increasing spin as shown below (for odd N,):

(Ne—=1)/2 (Nc-1)/2 (N.=3)/2 (Ne—3)/2
—_—— —— —— ——
(1)
(Ne=5)/2 (N.-5)/2
e e s e,
LI OO ITT I
TT—11 [T—1

If the quarks are not heavy, we cannot in general ignore the spin de-

pendent interactions. We do not know how to write down the Hartree
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|7z|. The remainder, Dm:?...s:.: ,Tz, ), transforms nontrivially under the
spin and/or orbital angular momentum on at least one of the quark lines.

The plan now is to imagine using Hy to determine the Hartree poten-
tial, and then treat the AR™(7,,,---,7,,) as a perturbation. Note that
the Ag for n > 1 contribute in large N, even though they are of order
1/N2~1, because combinatoric factors from the sum in (3) cancel the N,
dependence of the individual graphs. [1] While we cannot determine the
Hartree potential for light quarks explicitly, even in this approximation,
it is clear that resulting ground-state Hartree wave functions will be spin
independent and functions only of r;, so that the matrix functions, ®(7;)

become c-numbers:

®(7z) — 4(rz) - (6)
In this approximation, all the spin states in the ground-state baryon mul-
tiplet are degenerate and have the same space wave function. We can now
put the s-wave, spin independent Hartree wave functions back into the full
expression for the energy and ask what is the effect if the spin dependent
terms. Roughly speaking, we will find that while the terms in Hy involving
two or more quarks add coherently to give a large effect, the spin depen-
dent terms add incoherently for the low spin states. This is why the spin

dependent terms have a small effect.

Splittings

Let us now consider in detail the splittings introduced by AR™ (7, ,- - -, 75, ).

We will need three simple facts:
1. AR™(7y,,---,7%,) is of order ﬂ\za?icw

2. Terms transforming nontrivially under orbital angular momentum

on any quark line vanish when integrated over space in (3);

3. The spin matrix structure on each quark line (labeled by z) can
always be written in the form a + b- 0z, where &, are the Pauli

matrices acting on the quark line.

Using these facts, the integrations in (3) can be formally done, and the
results replaced by unknown constants, so that energy has the following

form (still a matrix in the (2f)Ne x (2f)"e spin-flavor space):

Ne
n=1 ¢

Au—... »Tp} GxpsiGrp
€{1,---,N¢} =0

where we have defined ¢ = I. Note that the tensor, k is completely
symmetric.

The next step is note that all the terms proportional to ¢% on any
quark line, z, are actually irrelevant. For these terms, we can do the sum
over z explicitly, picking up a factor of order N,. The result looks just like
the term in (7) with one less quark line (n — n — 1). Thus if we eliminate
all the ¢Js, it simply changes the values of the unknown parameters in (7),

and we can write the energy as

2mo+MU Y MU Cu gl kOn A (8)
0

{x1,za)} oz 4a.-u-.
€{1,---,N¢c} =1

Note that the n = 1 term in the sum has disappeared because of rotation
invariance. There is no way to build a spin-dependent term with only one
@ in the s-wave ground state.

Finally, consider what happens if instead of summing over the sets
{#1,---,2,}, we sum independently over the individual quark lines. This
introduces combinatoric factors, but for small n, they are of order 1 as
N, — oo and can be absorbed into the unknown coefficients. We also
make errors by including contributions when two or more quarks lines in

the sum are the same, but these are always down by powers of N, compared
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different values of a and b than the operator with I' = Ao?®, even though
both transform like vectors. As noted by Dashen and Manohar [2], the

matrix elements (11) can be of order N, because of the sum over quarks.

Figure 1: General diagram contributing to renormalization of two-quark

operators.

Our result, (11), contains the results of Dashen and Manohar [2] and
Jenkins [3] for the isovector axial vector current, but it is more general. For
example, it predicts similar SU(6) relations for the isoscalar axial vector

current as well.

Four-quark operators

Next consider matrix elements of four-quark operators, such as
Yy Iy (12)
As above, the matrix element in large N, baryons will involve the substi-
tution
e (13)
where the &’s are o/s or identity matrices in spin space depending on
whether IV is a vector or scalar under rotations.
Now by the usual argument, the leading large N, prediction for the

matrix elements in the ground-state baryon states is
Zﬂ
MU An~>w~aw_>wQawu + agod Ay Ky 08 A2 K2,
L (14)

HHQNNa auwnnwwa
+aszhAg k., 00, A7, k5,00, + Eqn.>a_z§Q§an>uuaanQ§v ,

which, because of the double sum, can grow like N2 as N, — oo.
It should be clear to the reader how similar predictions can be obtained

for matrix elements of operators with more quark fields.

Comments

It is worth restating the warning in the introduction about the applica-
tion of these predictions to N, = 3. In our view, the only sensible way
to proceed is to take the result (11) or (14) and apply it for N. = 3,
because real large N, baryons simply do not look anything like N, = 3
baryons. Unfortunately, this is not always done. For example, calculations
in Skyrmion models [4] are not consistent with this view. A particularly
obvious problem with Skyrmion calculation is that they yield non-zero pro-
ton matrix-elements of $s operators. It is clear that these matrix elements
are non-zero for large N, for precisely the same reason that the large N,
baryons and the N, = 3 baryons have very different quantum numbers.
The strange quarks in the large N, baryon are not part of the sea. They
are valence quarks! [5] The §s operators have nonzero matrix elements in
large N, baryons simply because the large N, baryons have the wrong va-
lence structure. Our prediction for matrix elements of 3s operators, based
on (11) or (14) or their generalizations, is zero to leading order in N,, as
you should expect from the absence of quark loops in leading order large
N, calculations.

In this paper, we have set up a formalism that is useful for exploiting the
approximate spin independence of low spin baryon states in a systematic
way. In a future publication, we will give some examples of applications of
(11) and (14) and discuss the effects of SU(f) flavor symmetry breaking.
We will also give explicit examples of 1/N, corrections and show how to

apply these arguments to excited baryon states.
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