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perturbations is given explicitly. The method is also applicable to theories with Brans

gravitational wave production through amplitude amplification for classical metric

coefficients can alternatively be used, the two results agree. The relation to the result for

between cosmic eras can be treated as sudden, so that the well known discrete Bogoliubov

which is an arbitrary function of time; in those particular cases where the transitions

production is applicable for any wavelengths and for a Friedmann universe scale factor

coefficients, defined as continuous functions of time. The resulting method for graviton

In graviton creation a new derivation is given of a differential equation for Bogoliubov
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The metric perturbation in the period ti to tf is [3,4]Z OCR Output

for the chord under consideration let ot,|3 be Bogoliubov coefficients in the following sense.

Now suppose the physical system to proceed by way of the chord rather than the segment and

B = (avail/<¢f—<r> b =n—¤r/B =rf —ar/B (2)

If the chord and segment start at (ai, ti) and end at (af, tf) then

(1)S(t)=B(t—b)

figure):

curve into segments and approximate each segment by a straight line chord (as shown in the

Q . Q;). We visualize the arbitrary scale factor a(t) as a curve in the a,t plane. We split the

Consider a cosmic period described by a Friedmann—Robertson-Walker metric a(t) (— dt+22

theories with scalars such as Brans-Dicke theory and extended inflation.

amenable in some important cases to analytic solution. The method can be simply extended to

considered for other reasons[6]). The resulting equations take a rather simple form and are

physical reasons W tums out to be of the form W = k. (Such a restriction has previously been

equations, in the case of gravitational waves, by a new and different method in which for

wave number and t the conformal time. In this paper we derive the equivalent differential

equations in the coefficients, involving an essentially arbitrary function W(k,t), where k is the

evolving Bogoliubov coefficients was first investigated by Parker[5], who derived integral

The production of particles in an expanding universe using a formalism of continuously

This is the viewpoint developed in this paper, with implicit use of the Heisenberg picture.

(gravitational waves) at any time are given in terms of the Bogoliubov coefficients at that time.

coefficients are defined and calculated as eentinuous functions of time, and the gravitons

However there is yet another purely quantum mechanical viewpoint in which Bogoliubov

resulting gravitons can be found by using the combined Bogoliubov coefficients [3,4].

found by calculating the discrete Bogoliubov coefficients Q the transitions and then the

matter era. Regarding the transitions from one era to another as sudden, the changes can be

operators as the universe progresses, say, from an inflation era through a radiation era to a

mechanical, viewpoint is to consider the changes in the graviton creation and annihilation

statistical average of an ensemble of classical fields [2]. An alternative, purely quantum

relic gravitational waves has been done by relating the quantum mechanical fluctuation to a
in an expanding universe [l]. Most commonly, following this viewpoint, the calculation of
the Hubble parameter) these fluctuations, regarded as classical gravitational waves, can amplify
the space-time background. When the comoving wavelength is greater than H‘l (where H is

The origin of hypothetical relic gravitons from the early universe is in quantum fluctuations of



Using eqns (1) and (2) where S1 = Bl (1 — bl), S2 = B2(t — b2) and Sl(r|) = S2(11) eqns (7) OCR Output

_ _ s2 2 2 + B2 s2 2 2 (8)E2 5 Q i 5 gg S2S2

= 2 1g - 21+B1lS1 SL{ 1
i §/Q - 1 Si S1

(7)ot—+Bl=ot—+|3i 1 S1 1 S1 2 32 2 S2
iz 5ii 5

from chord l to chord 2 by requiring that hq and its first derivative be continuous at I = 1].

denoted by 1 and 2 with junction at t = 1]. We find the change in the Bogoliubov coefficients

instantaneous transitions at the junctions of the chords. Consider two neighbouring chords

Now consider the system evolving along the chords which approximate the curve with

wave modes in some previous radiation era.

The A(§) could, for example, be the annihilation operators corresponding to the gravitational

(6)¤® = (1 AQ) + V N (·k)

Bogoliubov coefficients ot and [3 by

terms of time fixed annihilation and creation operators, A(g) and A‘(@, through the

where (l) implies S /S = 0. The annihilation and creation operators in (4) are expressed in

(5)"+ (k2··S"/S) C = O

gravitational wave equation [4]

and §(kt) is the mode function for the gravitational waves, obeying the corresponding

where Su (1;,7t) are two polarization tensors, al (K) is the corresponding annihilation operator

= agi) ggg (kn;) + h€I‘lTl,COI]j.{ kij
ilgll

#1 (2m ‘ sm EE
(3)il(""_ Mkx)hii = SRG Z I —7



equations OCR Output

In the limit that the segments tend to zero we thus obtain from (13) and (14) the differential

- 7 (T1 - b2) (T1 - bl) am) (15)= L AI (n) 8
b·b ¤<¤)(B —B) a'-a' ~ 2 1 2 l 2 l

between the midpoints of the adjoining segments. From eqns (2) and (l 1)

the limit of small segments we do this to first order in At, where At is the time interval

In equations (13 and (14) it remains to evaluate p in tenns of the curve a(t); preparing to take

AH in their type of physical scenario.

that our method is to take the appropriate limit and then we reproduce precisely the results of

S1' = S2', QI ¢ @2 whereas we have Sl’¢ S2} and @1 = We shall see below however

sudden change from one expansion mode to another; but they take the physical situation that

Abbott and Harari [4], (hereafter referred to as AH) for finding the Bogoliubov coefficients in a
At this stage we may note that the method of continuity of hij and hiij is that expounded by

(14))p1 - 2`k - B2= B1-E (Bl+¤1¢ "”‘”‘°’

rr
<13>)p%= On +i (¤+b¤2“""‘°’

with to the same arbitrary constant in all chords. Eqns (9) and (10) can then be solved to give

: c—ik(T·TO)

solution

The mode functions Q are solutions of eqn (5) where S1"/S1 = S2),/S2 = O; we take the

_ n—% n—g (1 1)where p =

(10)iii + B1`;1 + D (digi + B15;) :°°2&2'+ B2 gi)

(9)l&l+Bl&l: (x2&2+B2§2

and (8) give at t = 11.
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(22) OCR Output, , , : 1 d + cx(*c) + r GM) BU ) c

2ik<<’—¢ J ] a"(r3 °' i L I [ 2k

yields the integral equations

Then the method of Green’s functions as used by Parker [5], with 0t(10) = l, [5(”CO) = O,

(21)-,, - it +1<¤=0
"

2 a[1;]

If, as proposed in reference 6, we now make the simple ansatz W = k, then

(20)¤<k:c) = ¤<r) At;) + BYU Al<—k)

operators expressed through Bogoliubov coefficients as

where W(k,*c) is essentially arbitrary and where 21) (LI) are time dependent annihilation

(19)= a(k,‘t) a(k, 7t) c; exp ( -i | W(k,r’) d*t’)+herm. conjig`mm) I Z )_n

X;] (21:) i a(r) ,/2W(k,r)
(18)u (kx)

dd khij = ./81cG Z I t

In the era where the scale factor is a(t)

method of Parker [5]; we do this by re-expressing that method in our more simple fomralismz

Before discussing the solution of these equations we should make the connection with the

aw
(17), 1 -'C = ——* + B<> 2k (Btw) Ol tr) <= )2ik (1 — 10) 3//(I)

¤<¢)
(16), ¤¤ tr) = jg (<>¤<r)+B<<)<= O)2ik< - ) " I Ia (T)



then the mode function Q at the end of inflation takes the value {2 and is continuous with the OCR Output
M

continuous at the junctions between inflation and radiation. If we make the choice to = — 2t2

we need to impose the same junction conditions as in AH, to wit that a(t) and a’(t) be

ending at 12 , immediately preceded and followed by radiation eras. For precise comparison

the results in AH by giving the solution for an exponential inflationary era, beginning at tj and

satisfy boundary conditions. We can illustrate the solution, and at the same time compare with

The general solution is a linear superposition of these, the coefficients being chosen so as to

(30)(X, (X) = c0/2x2 5, (X) = (1+ 1/X - 1/2x2)m *)

(29)<11(X) = (1-i/x - I/2x2) [31 (x) = e-0/2x2i(x_X) 2

and the solution of (26) is simple. We find the two independent solutions, with x = kt,

(28)a"/a = 2/I2

For a matter dominated universe or for exponential inflation

(27)Y = 1 X,/k

(26)X" + (k‘— a"/a) X = 0

leading to

(25)
Y = (IU) €—ik(1t—1:O) _ €ik(t-10)

(24)x = (Xu) e`“‘“`”°) + Bu) C ”‘“"¤’

The solution of equations (16) and (17) is simplest through the substitution

methods of AH, but it is certainly the simplest.

at the junctions. This choice of chord is of course not necessary, as can be seen from the

gravitational wave production during the universe’s travel along the chord, but production only

corresponds to a radiation dominated universe where conformal invariance gives zero

leading to the mode functions P; ·>< e‘lkT , was partly motivated by the fact that this
method of derivation through segmentation the choice of straight line chords S = B (t — b)

and the differential form of these equations is just our equations (16) and (17) above. In our

am
(23)1 , , , -2ik(t’—1' ) a"(q’) I:-—— (1 B<r>+¤r ° ; Bt) i r <>c l' (2k j



The total ot and B generated are given by the law of composition of Bogoliubov coefficients as OCR Output

<1= =#— f C XB2r 2Xnz (38)2 2)- 2ix - 1 2l--1--T I$[

X1 2x? I 2x?
(37)2ixl { . 1 c 1 + L Z — B· = - W

beginning and at the end of the inflationary era. We find at the beginning and end respectively

We now apply the method of AH, where the Bogoliubov coefficients are generated only at the

2 1 2 g % 36 ( )2ix1+l _: 3 l X1 2X? 2x2 C + Xzx2)L_L L2ix2L_l 1

1X1 """2 1 2
(35)L 2(x1x2)i1+x—221_X2 _22l_422

L L1 Z L L][

(16) and (17) are then given by (31), (33) and (34) as

The values of ot and [3 generated in the inflationary period through the differential equations

calculation that ot = el2at the beginning of inflation and then (31) and (33) give
2l(X“ X)

era with the multiplying mode function value being e"`1 ; to agree with this we require in our

|3= O implies I ot I = 1. Also, in the method of AH, ot = 1 at the end of the preceding radiation

(33)C, Z C (1 + i/xl Z 1/2x12) C, Z Z ce_2i(X1— ZX?)/2x12.

and choosing [3: O at x = xl, (1: = tl) gives

B = Cl + C2 (X)

(31)ot = cl 0t1(x) + c2 (12 (x)

The general solution of the differential equations (16) (17) is

for the Bogoliubov coefficients at the beginning of that era.

mode function chosen in AH for the final radiation era, ensuring an identical phase convention



A well known result can readily be deduced from eqns (24) — (27): OCR Output

the magnitude of k = 21ca!?t, just as was the transformation (occ, BC).

It should be noted that this last transformation (0tD, BD) also is precisely valid independent of

(40)<¤»F=¤e<>¤D+BeBIg BF=BC¤¤§,+BD<><<;

Bogoliubov coefficients 0tF, BF are

coefficients calculated by continuous time integration up to the junction, then the total final

where ID is a matter era conformal time at the junction. Now let occ, [SC be the Bogoliubov

D 2(ktn)
(39)-2 =(l+L——··Li) [3 =—e /2(kt) M' D D21k TD

to Bogoliubov coefficients (apart from a convention dependent phase factor)

This is a change in the definition of graviton creation and annihilation operators, and gives rise

while after tD we require a matter era type mode function of the type Qm = e‘D“ (1 — i/kt).

succeeding matter curve; but it will have a radiation type mode function (Q <>< e`ik(D ` T<>))

Then just before ID, the final chord of our segmental curve will be continuous in slope with the

production through equations (16) and (17), with latterly a(t) being the matter era scale factor.

*cD in the matter era ( ID at or before the time of interest) we can continue to calculate graviton

of gravitational waves into the matter era the situation is different. Up to any arbitrary time say

chord) have the same slope and mode function as the succeeding radiation era. For production

era: this is because (following our procedure) in the preradiation era the final segment (and

comparison with the paper of AH there is no extra graviton production at the beginning of this

gravitational waves into say the last radiation era, then as we have seen above in the

However the final stage does require some discussion. lf we are interested in the production of

matter era.

of k the calculation can be done continuously right through all eras up to some time in the

gradual transtions and the particular value of k = 21ta/7t is not a limitation. For any given value

for any arbitrary expansion factor a(t). In particular we can calculate through either sudden or

to calculate graviton or gravitational wave production. We can in principle integrate eqn (26)

sudden transitions [3,4] and has no disadvantages with respect to other methods [2, 7-11] used
rather to be regarded as a calculational tool, as such it does offer advantages over the method of
Though the method propounded in this paper does not solve any fundamental problems and is

should give the exact answer.

we should expect, we find agreement between the two methods in a model case where both

oqotf+ [3i[3fT and Bidt"" + Bari. They agree precisely with equations (35) and (36). Thus, as



where the normalized Qi, and the Z obey respectively

<2I¤>

(47) OCR OutputIn on = J Src ik-J I @ rg- (tx) 3/9 a(t) u

we can write classically

classical metric perturbation. Instead of the quantum mechanical expression in eqns (3) - (5)

At this stage we can make explicit the connection with superadiabatic [1] of the

era.

I X I4 is sinusoidally fluctuating so that there is no graviton production from the corresponding

We now see, from eqn (26), that for small enough scale of wavelengths where k‘>> a"/a,

(46)X = I X (k,t) I/ a(t)2 2

been left implicit. We replaced S(t) of eqn (3) by its limiting value a(t) and then from eqn (24)

where Q is the mode function of eqn (12), and the k dependence of ot and [3 has, as usual,

45 ( )I I I 2 * 2 I/ 2 X = ( 0I(T) I +I BU) I ) Ubi) I + 2R€ ( 0¤(T)B (UE, (I;,T)) S (t)2 2

X = l

_ A h (kl) = G (N(7»,k) + N(7»,— Q + I) XU) (44)4 2 k Z

defined by the operators A® of eqn (6):

representation). If then N(7t,l;) is the number of gravitons in a previous era when gravitons are

where lu; > is the state vector and hu is given by eqn (3). (We are working in the Heisenberg

(43)A h~ (M) = dXQ< tp I hu (LI;) hu (ax) I w >
3 LKIL% é I (210

Also, as for example in AH, we characterize fluctuations in hu at time t by

(42)I ot(‘c) I- I B(t) I= constant
22

and on differentiating the last expression and using eqn (26) we get zero; hence

(41)
22 **

'

¤I-IBI4 %(XY+YX) = i (X*X’—X*X)
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46).

and B coefficients then gives directly the production of gravitational waves as in eqns (44)

and these can be integrated through eqn (26) with R(t) instead of a(t). Knowledge of the ot

51) (, _ L - zum - 10) RU), [3 (1) -- 2k [BU) + ot(t) e ) Rm

or E 50 <>l _ i zum- 10) R(t)’ (r) - (cdr) + Bw) c ) ——R(T)

Thus the differential equations (16) and (17) become

subsequent paper.

named co is replaced by c0(<I>), requires more extensive discussion and is postponed to a

reference 13). The case of hyper extended inflation [12], where the Brans—Dicke constant

are chords of the R(t) curve. (Some illustrations of mode solutions have been given in

denominator of the hh integrand [13]. Thus R(t) replaces a(t) in eqn (18) and in eqn (3) S(t)

(Brans-Dicke) scalar field in extended inflation then R 5 a(1:) \/(I)(’E) replaces a(t) in the
gravity, such as Brans—Dicke theory in extended inflation [12]. For example if <I>(t) is the

The method of our paper can be readily extended to theories with a scalar component of

discrete Bogoliubov transformation of eqn (39) in cases where that is important.
the X of eqn (46), since that is given by eqn (24). This correspondence is modified by the
superadiabatic amplification [1] of the gravitational waves, where Z obeys the same equation as

The square of the Fourier amplitude of hh is proportional to Z2/a2, which gives for suitable a(t)

(49)Z+(k— a/ a) Z= 0" 2”

(48)(V2 +k2 ) Cn Z O
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(21,1:) plane, with chords a = Sn E Bn (1 — bn) where Bu, bn are constants.

A particular scale factor, a = f(t), illustrated as a segmented curve in the

8 = S q VC)

6=Sn+1(C)

B Z + 2

8 = f ( C)


