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despite the quantum nature of the basic equations of motion.
authors expect this kind of formalism to explain why there is an objectively existing macroscopic world
hinder us from assigning definite properties to macroscopic systems (Schr6dinger’s cats and all). Some
ofthe quantum state. This environment-induced decoherence can thus destroy the quantum phases which
Hamiltonian evolution is modified by dissipative terms which will not preserve all the information content
[8—13]. The dynamics of the small system is t.hat of an open quantum system, which means that the
a finite quantum system as a result of a weak interaction of the observed system with the environment

A superficially different but closely related set of ideas concern the emergence of classical properties in
properties.
of external observers. This is then taken to mean that the closed system has certain intrinsically classical
effects, then some probability distributions can be defined as objective quantities without the introduction
certain consistency properties, called "decoherence" as they imply the vanishing of quantum interference
be defined again below). It has been argued that if this quantity, with a suitable choice of arguments, has
these works are based on the so called decoherence functional (or quantum correlation kernel, which will
may involve a description of a closed universe without outside observers. The technical arguments of
of quantum theory adapted to the need of eventually constructing a quantum theory of gravity, as this
with a reversible, Hamiltonian evolution. The motivation comes from the desire to have an interpretation
observers looking at the system from the outside, dealing instead with a single closed quantum system
goal of his approach is to do away with the necessity of introducing measuring instruments or classical
up the ideas of Griffiths [6,7] on the foundations of a quantum-mechanical theory of closed systems. The

Recently Omnes [1] Gell~Mann and Hartle [2-4], Dowker and Halliwell [5] and many others have taken

I. INTRODUCTION
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time.

servables which define nearly deterministic (and hence decoherent) histories over a finite
condition for correlation functions of not too high order. It is also possible to choose oh
tum systems most observables will approximately satisfy a chaotic form of decoherence
them exactly are exceptional. On the other hand it is shown that for large but finite quan
conditions will involve the correlation functions of all orders, and the systems satisfying
conditions are found for the observables to form a classical comrnutative system. These
as the ideal ones defined by orthogonal projectors. Necessary and sufficient decoherence
als in a formalism which is capable of dealing with approximate mea.surements as well
Their information content and decoherence properties are measured by entropy function
investigated using methods from operator algebras and quantum statistical mechanics.
functions for finite quantum systems (with unitary dynamics and discrete spectra) are
of such decoherence conditions. ln this paper some of the properties of the correlation
in this field there seems to be a lack of general mathematical results on the consequences
ficient for a consistent classical interpretation to exist. ln spite of the large volume of work
observer. Instead, the vanishing of certain quantum coherence terms is claimed to be suf
probabilities of sequences of events (histories) without necessarily postulating an outside
to quantum theory. In this scheme a set of correlation functions are used to define

There has recently been a revival of interest in Grifiiths’ consistent histories approach
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interpretation ends this section. OCR Output
definition and most basic properties will be set down here, and a few remarks on their importance and
multitime correlation functions), in recent publications sometimes called decoherence functionals. Their

The fundamental quantities in this paper are the quantum correlation kernels (QCKs for short, or

II. CORRELATION KERNELS

unique.

decoherence is insufficient for the purpose of defining a classical domain, still less capable of making it
In section IX some tentative conclusions are drawn from the mathematical results. It is argued that

which approximate a commutative, classical situation well under a large but finite number of iterations.
In section VIII it is shown under similar conditions that it is always possible to introduce projectors

which depart from this decoherence property.
choices of observables, and estimating the probability measure of the set of elements in the ensemble
order correlations. This demonstration is based on the introduction of certain ensembles of systems or
choices of observables will give histories which show approximate decoherence of the chaotic type for low

In section VII it is shown that for a system where a large number of energy levels are involved most

of information.

ones. Only in the latter case can we conclude anything about the overall decoherence from a limited set.
a deterministic type where the decoherence is due to the predictability of the later events from the earlier
where the decoherence comes from the statistical independence of the successive events in the history, and
context there are two extreme types of correlation functions showing decoherence. There is a chaotic type
there is a problem of finding the decoherence properties from a finite sequence of observations. In this
number of observations, while all following ones show a maximal amount of quantum coherence. Hence

In section VI a simple example shows that it is possible to have complete decoherence for a finite
(section V).
results are proved for the more general and complex case of approximate, nonrepeatable observations
is done first for the case where the observations are given by projectors (section IV), and then analogous
the full set of time translated observations shall correspond to a commutative algebra of observables. This

In sections IV and V some necessary and sufficient conditions are given on the correlations in order that
Appendix together with some of the proofs.
functionals are given in section III, based on a number of mathematical results which are listed in the
nonideal (approximate) measurements of continuous observables. Some useful inequalities for the entropy
also defined a measure of the information obtained in a sequence of observations which applies also to
density operators are used to measure the amount of coherence in the correlation kernels. There is
define density operators in suitably chosen Hilbert spaces. In section III entropy functionals for these
(also called decoherence functionals). Their positivity and normalization properties mean that they

The paper starts in section II with a definition ofthe timeordered (causal) quantum correlation kernels
to give some results which are mathematically accessible and potentially interesting for applications.
ingredients of the model from some physical principles, we start from a suitable level of generality chosen
a microcanonical state for the system. This paper will not go into the problem of actually choosing these
follow the evolution of the system st.arting from an initial state which is assumed stationary, representing
continuous variable. The given set of observations is repeated an arbitrary number of times, allowing us to
a more general partition of unity describing an approximate measurement, perhaps a measurement of a
the histories in the closed system picture. The operations are given by a set of orthogonal projectors or by
fixed set of operations representing observations of the system in an open system approach, or defining

The quantum systems considered here have a fixed unitary (Hamiltonian) dynamics. There is also a
defined by the quantum correlations.
which relate the quantum coherence properties to the information entropy of certain density operators
dimension in most of the paper. The technical tool used to develop the argument are entropy inequalities
discrete. Furthermore, we choose the time parameter to be discrete and the Hilbert spaces to be of finite
the reversible, conservative type represented by unitary maps, the spectra of which are assumed to be
issues. However, in order to have a well-defined mathematical setup we choose the dynamics to be of
other contexts. For our purposes it is inessential which point of view is taken on the philosophical
some mathematical properties of the quantum correlations which are likely to prove useful in this and

This paper will not deal directly with these ambitious projects. Instead the goal is to state and prove



order n is given by OCR Output
Given an initial state p for the whole system, the timeordered (causal) quantum correlation kernel of

E M(nr) : Il
M(<x) 2 0 (2.5)

valued measure (POVM) [19,20]. This means that it satisfies
In order to simplify the typography we also introduce M(cx) : V(cv)lV(u) which is a positive-operator—

0€I"c¤€I'*

(2.4)v,,(a)*vn(a) : ) j V.,(a)v,,(a)* : 11

normalization condition follows from (2.1), for each n
this symbol. In order not to complicate the notation this is subsumed under the notation in (2.3). The
say L referring to a trivial event with P(4.) : 11, and consider sequences including arbitrary numbers of
of arbitrary order n. In order to have a complete notation we should also introduce an extra symbol,
notation cy will be used also for the causal sequences (histories) in (2.3) and V(cx) for the operators (2.3)
Here the index I refers to the first observations in the sequence which takes place at time t : O. The

V,,(0q,c12,...,o»,,) E V,,(a) : P(u,,)UV,,..1(cx1,cr2,. . .,cv,,-1) (2.3)

defined iteratively through V1(cx) : P(o) and
parameter be discrete with a fixed time unit). The timeordered (causal) operator products V,,(c¤) are
the operators (2.1) with a unitary map U representing the dynamics (for simplicity we let the time
(coarsegrained) observation of the system. VVe represent repeated observations ofthe system by combining
will be large, of the same order of magnitude as the total dimension of IC, thus representing an incomplete
these subjects will not appear explicitly in this paper. Typically the rank of the operators (projectors)
for measurements of observables with continuous spectra and measurements continuous in time, though
but it is convenient to deal also with the more general case. This allows the same formalism to work

P(¤)P(»$') = 6¤pP(¤) (22)

projectors, which means that
and so on [16-18]. In most of the papers in this field the operators are restricted to be orthogonal
This construction has been used under various names, like CP instruments, operation—valued measures

r»(<~)x>(¤) = P(<~)x»P(¤)

and the state p(cv) after the observation of this outcome by

1»(¤) = r»(P(<~)”)

symbolically be written as p »—+ p o T. Each term in the sum above defines the probability of an outcome
maps. As p defines a state, denoted by the same symbol, through p(X) : Tr[pX], the dual map can
density operators p which is actually the same map, but this self-duality does not hold for general CP
See e.g. [14,15] for a physical and a mathematical background on CP maps. There is a dual map on the

T ¢ X *·* TIXI = ) lP(¤)XP(¤)

There is an associated completely positive (CP) map on the operators X E B(lC)

(2.1);P(o)2 Z ii
P(a) 2 0

negative (and consequently self-adjoint) operators {P(cv); oz E Z} in IC,
Introduce a Hilbert space K, which we can take to be of large but finite dimension N, a set of non



decoherence conditions when they are satisfied for all orders of the correlation functions. OCR Output
commute for m : O, 1,. . . , n — 1. In section V results will be given on the equivalence of some of these

Pm(v) = U"`P(7)U (213)l"`

for all cy,B,·y, m S 11. This is clearly satisfied if the operators

(212)P(¤¤)Vm(@)lVm(v)P(¤) = Vm(B)'Vm(v)

extended to the offdiagonal elements. An even stronger condition is the operatorvalued counterpart
imposing the analog of (2.9) also for the intermediate events {az, . . .,cv,,-1}, which means that (2.11) is
where in c1' the symbol uk is replaced by L. VVe can use a slightly stronger consistency condition by

P¤(") : Pn((·*/) (211)

k : 1, . . .,11
absent in the probability distributions (2.7) In our notation the consistency condition reads: for any
instant. Griffiths called a set of finite histories {cu, . . . , 0,,} consistent if this quantum coherence effect is
outcomes {org, . . .,0,,-1} will in general not give the same result as leaving out the observation at that
the first index. The characteristic feature of quantum coherence is that summing over one of the other
holds for all operators X in the Hilbert space, then there is a corresponding result when summing over

p(P(u)XP(a)) : p(X) (2.10)

If the initial state is stationary and if the invariance relation

D(a1,cv2, . . .,oz"[B1,B2, . . .,cy,,) : 'D(cv1,or2,...,o»,,-1|B1,B2,...,B,,-1).

(2) Compatibility. Summing over the last index set in Dn gives 1),,-1

l"D»(¤|U)l2 S D~(¤|<¤)D~(6|l?)

This implies (but is stronger than) the Schwarz inequality

(2-8)/\(¤)"»\(!*)@¤(<~|@) 2 0

(C, cx E Z" it holds that
(1) Positivity. Dn is a positive semidefinite matrix for every value of n. This means: for all »\(cv) E

Let us set down a couple of immediate properties of 'D,,(cv|B).

Epn(o) : 1.

(coarse-grained) observable, with the obvious normalization when summing over all indices
give the probability distributions {p,,(cv)}, each associated with sequential n—fold measurements of the

(2.7)p(cx1,oz;, . . . , cx") E p,,(cr) : 'D,,(o4|a)

reflected in the statistics of the full set of histories. The diagonal elements
subensembles with different classical interpretations in such a large ensemble, but this should then be
for all observables X,Y. In any realistic description of a large system there will inevitably exist many
system, and choose p to represent that ensemble. This state is tracial, which means that p(XY) = p(YX)
spanned by a finite number of energy eigenstates corresponding to a microcanonical ensemble for a finite
For the formal development it is convenient to assume p to be stationary. Let the Hilbert space be

(26)
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hz = {¢»<~> e c X ¤¢<¤>12 s OO}

hn; I Ooh;

operator in a Hilbert space
The relations (2.8) and (2.9) mean that for each value of n : 1, 2, . . . we can consider ’D,, as a density

this development is a set of entropy inequalities, where some of the proofs appear in the Appendix.
allow us to define entropy measures of their information content and the coherence properties. Basic to

The positivity and normalization properties of the correlation functions defined in the previous section

III. ENTROPY FUNCTIONALS AND COHERENCE PROPERTIES

consider, in this work, the different possible choices for the initial state.
initial state also makes the mathematical formalism a good deal simpler. For this reason we do not
approximations of them) out of the initial unstructured microcanonical state. The stationarity of the
can be included in the present scheme if we allow instruments (2.1) which create coherent states (or
which evolve in an approximately classical manner over a certain time scale. This type of construction
the motion of a free or bound particle. Using coherent states it is possible to construct initial states
of correlation functions. As an example consider the correspondence limit (large quantum numbers) of

It is common to apply the label "classical" to states of the quantum system rather than the full set
{P(cv)} for all instants.
closed system picture, and it is then convenient to restrict. ourselves to the consideration of the same set
closed system which can given an interesting structure to this problem. In the following we will use the
here is that it is the combination of a restricted set of observations with a fixed intrinsic dynamics of the
this situation is given by the "Schmidt” histories discussed in recent papers [11]. The point of view taken
at different instants would make the intrinsic dynamics of the system quite irrelevant. An example of
the theory. In the closed system picture, however, a complete arbitrariness in the choice of observables
system, this possibility of having noncommuting, complementary observables is an essential ingredient in
operations) for the small system at different instants [17]. \Vhen we use a full quantum description for this
general setup where instead of a fixed set {P(u)} we can use a different set of observables (or more general
much faster than the evolution of the open system. In the open system picture it is natural to use a more
processes [17,26]. They represent an idealized limit where the reservoir has an internal relaxation which is
examples of such models are quantum dynamical semigroups, which define a quantum version of Markov
the dynamics of this system interacting with an (infinite) reservoir can be irreversible. The simplest

In the open system approach the P(cv) are operators belonging to the small observed system, and
may be a debatable point.
not just the diagonal ones defining the proba.bilities (2.7). In a formalism without external observers this
measurements it is also appears that the offdiagonal elements in (2.6) must be considered to be observable,
of the system with an outside measuring apparatus. From a consideration of the most general types of
relevant one is plain already from an application of timedependent perturbation theory to an interaction
importance we have to attach to the causal time order in (2.6). The fact that this time order is the
processes (see [17,25] and many references given there). The quantum case is distinguished by the
correlations have the central role of defining the intrinsic dynamics in analogy with the theory of stochastic

In a general scheme where we observe the evolution of the system from the outside the multitime
counters, and the probability distributions give the photocount statistics.
the observables are replaced by creation and annihilation operators in order to model the action of photon
functions makes the time order less relevant. Similar constructs are used in quantum optics [23,24] where
field operators in a spacetime point rather than projectors, and the analyticity properties of the Wightman
of relativistic QFT [21,22] where the stationary state is the physical vacuum. Here the observables are

The correlation kernel (2.6) is of a form ubiquitous in quantum physics. Recall the Wightman functions
the conditions (2.11).
for Ic S n. This property is often referred to as deco/zcrcnce in the literature. It is easier to apply than

’D;,(0r|B) : 6c,pD;,(u|cx) (2.14)

of the correlations up to order nz
When (2.2) holds the consistency condition (2.11) is implied by the vanishing of the offdiagonal elements
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H»{<~} $ H-·+¤{¤}

The stationarity of the state and some well known relations for the functional (3.9) implies that [30]
out that In (cv) is the most useful of the entropy functions (see Theorem 4).
be offdiagonal elements in (2.6) if we use operators (2.1) which are not projectors. In this case it turns
case the observations have a perfect classical structure. However, even in the commutative case there will
condition (2.14) holds, hence in particular when the operators (2.13) are commuting-projectors, in which
holds, this is Proposition 4 in the Appendix. The second equality holds precisely when the decoherence

I-»{¤} S $~{¤} i Hn{¤}

We now come to the interrelations between these different entropy functions. The relation

(3-10)Hn{1»|<1}5 H{p¤(¤)l<1~(¤)} = ) jz»n(¤)(1¤r>¤(¤) — q¤(¤~))

and a corresponding relative entropy for two distributions

(3.9)H,-,{cv] E H{p,,(0z)} : —> ;p,,(u)lnp,,(c1).

the probability distribution {pn}
while Ozawa [18] treats the quantum case. Finally there is a classical (Shannon) entropy associated with
posite order. For commuting observables In gives the information gain according to conventional wisdom
is zero if and only if p : ,u [27-29]. Note that in [28] and many other places the arguments have the op

(3-3)$(p|1») = Tflplw - MH ul 2 0

The relative entropy functional

(3-7)= ) QP»(¤)$(¤¤(¤)Ir») 2 0

I-·{¤} = $(10 — ) jp~(¤)$(<M(<~))

measure

but the corresponding relation does not hold for the p,.(u) in general. VVe will use the following information

(36)P-»(¤)¤¤(¤~) = p

The latter set satisfy

(3-5)¤~(¤)¤~(¤) = (/5 V»(¤~)*V»(¤)~/F

and the related density operators a,,(a)

(3*4)P¤(CY)P¤(“) : Rn (ala)

Introduce the diagonal elements of 72,, as density operators pn (cv) through
which is again a positive semidefinite operator of trace 1, now acting in the Hilbert space hn; ® IC.

(3-3)R~(¤lU) = V~(@)PV¤(¤)l

If we leave out the trace implicit in (2.6) there is a density operator

(3.2)S,,{&} = S('D,1) = —Tr['D,, ln’D,,].

each n
and Du-] is obtained from 'D,, by taking a partial trace. VVe can define a (dimensionless) entropy for



the commutative but nonprojective case. OCR Output
(2.13) are commuting projectors and commute with t.he density operator p. Again the equality fails in
holds precisely when the offdiagonal elements of 72,,, vanish. Of course, this holds when the operators
the Proposition 7 that $(0*,, (0/)) : S(p,, Vn, 0/. Together with (3.6) this shows that I,,{o/} = S,,{or}
a stronger inequality than that coming from the vanishing of the offdiagonal elements of 'Dn. It is shown in

R/r(¤I6) = 0 Vu ¢ B => Hn{¤} S $(/0

This then means that

7%/»(¤I6) = 0 Va af /3 <=> $(/0 = ) Q/»~(¤)$(/>~(¤0) + Hnfel

where the second equality holds precisely when the ofidiagonal elements of 7l,, are zero

r»¤(¤)$(/¤~(¤)) S $(/0 S ) ;Pn(°')S(/’¤(")) + H/·{¤}

we project out the diagonal of 72,, we obtain (3.4), and it is shown in Proposition 7 that
For the density operator (3.3) it holds that $(72,,) : S(p) for all n, using the proof of Proposition 6. If

I¤{¤(} —> Lew} S $(/0

and a monotone convergence

In-1{“}S Inf"} S Sip)

as the number of ]lI(o/) is bounded by N. Using the same type of arguments we find for (3.7)

SOO{u} $ lnN (3.13)

VVhen the operators (2.5) are projectors for all n it holds that.

(3.12)S,.{cr} ——-> SOO{cx} S 2lnN

there must then be a monotone convergence to a finite value
It is clear that when IC is of finite dimension N it holds that S(p), S(p,,) are no larger than ln N, hence

pn = > ;7Z,,(o/[oz)

$/.~r{¤} S $¤{¤} S $(/0+ $(/M)

The entropy (3.2) satisfies, by Propositions 5, 6
a measure of coherence in this particular case.
below that h : O, k < oo only in the case of commuting projections. Hence we can use a value h > O as
U which represents a rotation of the z-axis into the :4:-axis. Here H,,{o/} : nln 2. In fact, we will see
2 is given by the projectors corresponding to a measurement of the spin in the z—direction and a unitary
even though the Hilbert space is of finite dimension. A simple example in the Hilbert space of dimension

Y\*•X

HOO{cx} E lim H,,{o/] : oo

where h, k 2 O. Typically

H,,{or} ~ n · h + k

and from this follows that there is an asymptotic form as n -—+ oo
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A have orthogonal eigenspaces and hence they are projectors. This means that all the time translates of
nonorthogonal then it is easy to construct vectors ¢ with ||A¢|[ > This shows that all the operators
All the operators AlA have a norm not larger than one. On the other hand, if the eigenspaces of A are
on, for higher order timeordered products. The vectors are all right eigenvectors of eigenvalue 0 or 1.
that the same holds when the vectors VH (u)|Q) are acted on by operators A : UlP(7)UP(B) and so
or it is zero. This means that P(B)V,,(cr)]Q) = V,,(cv)[Q) or O. We can iterate this argument to find

r»(V~(¤)'P(l’)V~(¤)) = p(V¤(<~)'V»(¤~))

either

p(V,,(a)1P(B)V,,(cv)) has the same entropy as p(o) : p(V,,(o)lV,,(or)) then it follows that for any fixed B
be approximated with arbitrary accuracy by increasing n). If the probability distribution p(cv,B) =
Proof. For simplicity admit that the limit is achieved for a finite value of n (the general case can

projectors commute, hence H,,{ot} = S,,{rx} and the limiting value is no larger than ln N.
Theorem 2 If the increasing sequence {H,,(u)} converges to a finite value, then the time-translated

i.e. it is excluded that H,,{oz} converges to a finite limit H,,O{u} > S,X,{u}.
YVhen H,, > S,. from some n on, then there will be a constant h > 0 such that asymptotically H,, ~ n·h,

the projectors then leads to the equation above.
In fact., the decoherence condition (2.12) for all orders m is sufficient, multiplication left and right with

P(0)M(¤)P(v) = 6¤iP(B)M(¤)P(B)

relations hold for the operators, not just the expectation values, for instance
show that if (2.14) holds to all orders, then, from the completeness of the basis in K1, corresponding

This result can be reformulated in the following way. The argument of the theorem a.bove serves to
From this and (3.13) follows that SOO S ln N.
the same basis, hence commuting, and this implies that all the operators l\{(u) : (2.5) are projectors.
except in trivial cases. The time translates (2.13) are then orthogonal projectors in K1, all diagonal in
integer rn. The unitary time translation U is again a unitary operator in the subspace IC] but not diagonal
have assumed the spectrum to be discrete the evolution is quasiperiodic and the same will hold for all
that this conclusion must hold for each element P(7) and each time translate (2.13) for rn > O. As we
X¢,t>(cv) : §(cv)¢(o»), and is thus an element in a cornmntative subalgebra of B(IC1). From (4.1) follows
X in IC] which satisfies (1/»(cr)|X|1b(B)) : 0 Vcv yi ,8 will be diagonal in such an orthonormal basis, i.e.
for a finite subset of or such that a.ll ’D(u|u) are nonzero. It is then clear that any bounded operator

¢(¤) = fT’(<>1<~)]"’2¢(¤)

form

events 1,. Vile will be able to choose a finite, complete orthogonal basis set where each vector is of this
Note that this quantity is defined for arbitrary of by the introduction of suitable numbers of trivial

(4-1)(¤l)(¤)|¤l}(U)) = 6¤¤D(¤l¤)

hence
It follows from Proposition 4 that Hn : Sn for all n implies that (2.14) must hold for all orders, and

1/1(a) : V(oz)Q

Q E IC ® IC. There is then a subspace IC1 Q IC ® K spanned by the vectors
Proof. The QCK (2.6) can be represented in the following way, Use the representation (A4) of a vector

implies that there is a commutative system defining the correlation functions and consequently SOO S ln N.
assume that the Hilbert space IC is of finite dimension N. Then the equality H,,{cx} : S,,{o} for all n
Theorem 1 Let the system of operators V(o:) be based on an orthogonal set ofprojectors 1), and

and we can use (2.14) as a dehnition of decoherence.
A couple of results will be proved for the case (2.2) when the observations are orthogonal projections

IV. THE COMMUTATIVE CASE I
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where

5`(r/hi') = H{1¤(¤)I<1(¤)} + L q(¤)$(r>o(..)!x»o(¤))

one. We can then make the decomposition
to find the precise conditions for equality. In general the projectors Q(r1) have‘dimensions larger than
The third one is that. the inequality above holds due to Proposition 1 in the Appendix. The problem is

5(x¤®¤»lx¤®w) = $(pIu)

It is no essential restriction to take to to be a tracial state. The second basic property is that

M(¤) = T¤»[~Q(¤)l

operator w in ICO such that the partial t.race over ICO gives back M(u):
is another Hilbert space 'H : IC ® ICD, a set of orthogonal projectors Q(o) in this space and a density
Proof. Start from the fact that a POVM (2.5) has a projective dilation [31,20]. This means that there

with both, and in addition the operators pM(cr) and ;i]ld(a) are proportional for all or.
with equality if and only if the density operators p and [1 commute, the Il{(cr) are projections commuting

H{r(<*)|<1(<*)} S $(r»|u)

tributions p(a) : p(M(o)), q(a) : ;t(M(or)). With the notations of section H it then holds that
Theorem 3 Let M(cx) satisfy (2.5} and let p,,u be two density operators with associated probability dis

expressed in t.he information content. VVe will start with t.he following theorem.
time translates of the observations do not commute, a quantitative measure of the lack of commutativity
just as in the projective case, and as an additional boon there will be, for the general case where the

It seems desirable to have an expression for this kind of commutativity in terms of entropy functions

M(cx) ; > ;mk(cv)l1k

projectors

by the Hk, consequently there is a decomposition of element of the POVM into a convex combination of
On t.he other hand the time translates of the P(oi) cannot. generate an algebra larger than that detined

HkM(u)H; : 6k;IIkM(o)

nondegenerate this means that k = I, and all .M(cv) and their time translates are diagonal:
This can hold if and only if pk(B) : p;(B) for all B, and if the spectral resolution is defined t.o be

Zpk(B)p;(B)HkU"lM(a)U"11;= HkU"lM(o)U"II;

where E¤pk(¤)2 : 1. The compatibility condition (2.12) then reads: for all (k, I)

P(¤) =} im(<>¤)Hk

assume that the non—negative operators P(cx) all commute, then they have a common spectral resolution
that of Theorem 1 above leads to a compatibility condition which is just (2.12) for all orders m. If we
elements of (2.6). Using the latter condition for all orders of the QCK, then an argument very similar to
must use (2.11) or the stronger relation which demands the corresponding condition for the offdiagonal
longer look to the vanishing of the offdiagonal terms in the QCK as a decoherence condition. Instead we

In dealing with the case where the P(cv) are not projectors but just. non—negative operators we can no
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in cv, and then, by the quasiperiodic property of the dynamics, for all integer n.
U"iP(B)U" must be in the algebra generated by the M(cx), first for all n earlier than the time parameters
For an observation relating to one instant, this means that with P(B)2 : N(B) each time translate

Nw) = > jA<¤.¤>M<¤>

for some non-negative constants Mu, B). This means that for every ,6

M(¤)N(lt)M(¤) = »\(<~.0)M(¤~)

M(a) are orthogonal projectors commuting with N(B) : V(B)V(/3)i and such that
the problem as if the limit was achieved for a finite value of n. Equality then holds if and only if the
Proof. First the necessity. Due to the assumed finite dimension of the Hilbert space we can deal with

algebra 0f observables.
if and only if the measurements at dijjferent times are compatible, in the sense affnrming a commutative

n
ig; H¤{1»(¤|5)|q(¤)} = $(r»(B)|p)

Theorem 4 With the notations intr·a1luce¢] abave it halds that

be earlier than those in the ot. \Ve can now state the following result.
where the index n is left out for simplicity, The time parameters in the observations B are all chosen to
and q(cv) defined as before. The cx again represent n—sequences of observations and M(cx) = V(cv)lV(cv)

r»(¤|/3) = Trial/3)M(<~)l

p = MB) <>< V(B)z»V(!¥)

This result can now be applied to the case where in is the tracial state. In the formulas above put
p and ;1, and satisfying pM(cx) : A,,,uM(u).
It is then seen that each ]l!(cv) is itself a sum of projectors generating the common spectral resolution of

uflt : }r]llcxpiE g()

Then multiply with the density operator ea and take the partial trace over ICU to obtain

pap-sz ® H Z '§i,\gQ(u)

is in the algebra generated by the Qlcv), which means that there are non-negative A., such that
and only if the density operators p and ;1 commute, and in addition, for all real t it holds that p",u'" ® 11
Proposition 2 in the Appendix. In the present case it says that equality holds in the inequality above if
so in order to get equality in the statement of the theorem we need the equality here. Now we can apply

50/la') S $(p®<»»Iu®~)

Q(o) are further subdivided into one-dimensional projectors. From Proposition 1 we know that
dimensional projectors, and conversely if these equalities hold, we will not get more information if the
if and only if pQ(,,) = ,uQ(,,) for all oz such that q(cx) > O. This condition holds if the Q(cx) are one

$(p’lu’) = H{1¤(¤)|q(¤)}

Consequently we find that

ETX] = Q(¤)XQ(¤)

where E denotes the conditional expectation

p' = Ep(¤)r>Q(¤> = (P ® w) 0 E

and
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UM =vM®vM®...®vM.

for any set of vectors {45;, E ’H}. Iteration gives

U(¢1®¢2®"'¢M): V¢2®···V¢>M®V¢1

the unitary U acting in IC through
A stationary discrete time dynamics is introduced by picking a unitary map V acting in 'H and defining

ic Z ® 71,..

We introduce a two—dimensional Hilbert space 'H in M copies and the tensor product
display coherence terms which are maximal in a well-defined sense.
correlation vanishes for all correlation functions of order n $ 2]ll, while the higher order correlations
projective type, a stationary dynamics and a stationary reference state. The coherence terms in the
for each integer M > 1 a simple model with the following properties. There is a measurement of the
functions a finite order will not tell us much about the overall decoherence properties. VVe will give

First it will be shown from a simple example that the vanishing of the coherence terms for correlation
Planck’s constant [32].
quantum systems this is no longer so, there are characteristic time scales for the evolution, containing
have a well defined qualitative meaning based on the asymptotic properties of the evolution. For finite
the concepts of regularity and chaos. In the theory of classical dynamical systems these two notions
decoherent or not. Here there are quantitatively different types of behavior which can be associated with
the results do not tell us how many observations we really need to decide if the set of histories is nearly

In both the previous sections the arguments depend on having an infinite sequence of observations, but

VI. CHAOTIC AND DETERMINISTIC HISTORIES

existence of quantum coherence in the histories.
By Theorem 4 it is zero precisely when the system is commutative, and a positive value is a sign of the

(52)Mp) = ) JMB) [$(r»(»9)lr») — Hm{1·(<·i)l<1(<~)}l 2 0

by the the tracial state p, the dynamics U and the observation {P(u)}
From these results we also obtain measure of the coherence associated with the set of histories defined

is achieved in the limit n —·> oo.

satisfied. The final conclusion is then that in the commutative case the equality in the present theorem
some k. Vi/hen y is the tracial state and p oc P(,8);z we find the conditions for equality in Theorem 3 are
so we can conclude that for an extreme decomposition we must have, for each cv that M(oz) o< Hy, for

P(B)2]l{(o) : /\p(u)]ll(a)

in a nontrivial way. This means that for all :1,5 and n large enough
process of decomposition must terminate in an extreme decomposition which can no more be decomposed
defines a convex decomposition of the POVM. Because of the finite dimension of the Hilbert space the

MW) = } ;P(@)M(<¤)P(B)

which means that

P(B)M(¤)P(B) = P(B)”M(¤) S M(¤)

we have for all a, B
operators with a natural partial order, and the }\{(cx) form the positive cone. Because of the commutativity
be proportional to one of the projectors Hi,. The sesquilinear forms V(a)ll/(B) create a convex set of
obtain the situation described in (5.1), and have to prove t.hat for sufiiciently large n each M(a) will

Now for the sufficiency: if the observations all commute, then the equality will be achieved. VVe
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In the following section we will see that most observables will decompose approximately according to (6.2)
higher orders, and it does not help us in distinguishing between classical and quantum dynamical systems.
follows that the factorization for all orders up to a certain n does not tell us anything at all about the
independent because of an effective diffusion of the information throughout the system. From the example
the system. It is just a reflection ofthe fact that the outcomes of successive observations are statistically
scales longer than the relaxation time, and this independently ofthe classical and quantum character of
(6.2) holds. This strong form of decoherence holds for the thermal fiuctuations in equilibrium for time

It is a matter of interpretation if we want to accord any classical properties to therset of histories when
(N = 2M in the example above). This bound corresponds to the time scale (4.1) in [32].

n S 2lnN/S1(cr)

states which are Dm and D,,-,,,. It is clear from (3.12) that (6.3), and hence (6.2), can hold at most for
conditions (2.9) and (2.10) can be used to define from D", for any m < 11, two complementary partial
The proof is a direct consequence of Proposition 3 in the Appendix if we note that the compatibility

S,,(cx) : n.S1 ((1) (6.3)

that

factorization property is satisfied for a given n (hence for all Iower orders) precisely when it holds
Theorern 5 When the stationary state p and {P(cx)} satisfy the iTl'U(I7'i(ITtC€ condition {2.10) then the

characterization of the factorization in terms of the entropy functions.
infinite heat bath (to be more precise, a heat bath at infinite temperature [25]). We have the following
the quantum context only for the description of the relaxation of a finite system in contact with an
continuous with infinite multiplicity (as for the commutative case), so this type can be appropriate in
lives in an infinite dimensional Hilbert space. In addition the spectrum of the dynamics is then absolutely
characteristic of Bernoulli processes For a quantum system it cannot hold for all n unless the system
This decomposition of the QCK int.o a product is well known from classical ergodic theory as being

k:1

(6-2)D¤(<~I/3) = I I Z’1(¤·1l6k)

depending on the choice of V)
The QCK for the model has the following simple structure for n S M (and it can hold up to n S 2M

limiting case where H,, : S,. = Nln2 for all 71 2 III.
Tl > 2M. For other choices of V there is a slower increase of H,, and Sn with n, of course, down to the
Consequently, in this case the coherence terms Hu — Sn are of the maximal magnitude (n —— 2M) ln2 for

2]iIln2 for n >2M
{ }°S_ 11ln2 fo1·nS2M Q _

H,,{u} : 11ln2 for all n

of the measurement into an orthogonal direction, then we obtain
but the higher orders depends on the properties of V. If VM is a rotation which maps the direction vector

H,,{o} : S,. {cr} for n S 2M (6.1)

The offdiagonal elements of (2.6) vanishes for n S 2M, hence

I"{u} _I Mln2 for n > M
n ln2 for TI. S M

S,.{o1}: 111112 for 11 S M

find

projection in a fixed direction. The entropy quantities defined in section III can be calculated, and we
The stationary st.ate p is picked to be the tracial state on IC a.nd the measurement that of the spin
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(D2) = <r»(PU'QUP)) = /»(P)r»(Q)

and hence when p is the tracial state

<U'QU>=r»(Q)11

relation that
It is not difficult to show, using the invariance properties of the measure, thahit holds as an operator
group which defines U(N) as an ensemble of matrices. We denote by ( ) the average over this ensemble.
group of unitary operators in the N dimensional Hilbert space. There is an invariant measure on the
of systems. In order to get an overview of this problem we first consider the case where U E U(N), the
for the correlation function can be dealt with as random variables if we introduce a suitable ensemble

The second important point is that matrix elements (w|P|w') which will occur in the explicit expression
processes in a macroscopic system.
be meaningless to assert the equality of the time steps on a microscopic scale resolving all the relaxation
In the present context this should be interpreted as equality on a macroscopic time scale, but it would
particular context. For the higher order correlations we used a discretized (unit) time step in section II.
that needed to observe the discreteness of t.he spectrum, but this restriction is not pertinent in this
Poisson process on the circumference. On the other hand the time scale should be much smaller than
essentially randomly on the unit circle. To be more precise, in the limit N —-> oo they will look like a
the unit circle a very large number of times. This assumption implies that the points are distributed
eigenvalues w of the Hamiltonian (in the range which is relevant for a microcanonical ensemble) covers
time parameter t represents a "macroscopic" t.ime scale, which means that the function exp[—iwt] of the
There are two essential ingredients in understanding the behavior of this quantity. The first is that the

(7.1)U = U, : > lw) (wlexpl-·iwt]

Start from the lowest order correlation function.

of n.

decoherence will be of the chaotic type, i.e. the structure (6.2), holds approximately for this range
correlation functions which are approximately decoherent for orders 11 < ln N, where N : dimK. The
is nondegenerate and without higher order regularities, then most choices of the projectors will give
that when the dimension of the Hilbert space is large enough and the discret.e spectrum of the dynamics
the stationary state to be tracial. It will be shown, by an argument that is not completely rigorous,

In this section the observations are defined by orthogonal projectors for simplicity, and we again take

VII. EXISTENCE OF APPROXIMATELY CHAOTIC HISTORIES

from enough to single out a unique classical or macroscopic description.
is a much more stringent decoherence condition. All the same it will be seen in section VIII that it is far
large system you can think of provided all observables are equally relevant. The deterministic property

We will see in section VII that decoherence from statistical independence is holds true for almost any
section VIII. In the general, nonprojective case it is necessary to use the measure (5.2) for the coherence.
up slowly in the probability distributions of the histories. This property will be applied to the example in
are given by projectors and Sm z Hm this is enough to conclude that the quantum coherence will show
so if h is "small" in some sense, then H,, will continue to grow slowly for n > m. When the observations

Hm+1 — Hm S h => Hm+,, — Hm S mh (6.4)

From (3.11) above it follows that
a certain lack of determinism for the lowest order correlations.
The determinism holds in an asymptotic sense, as the initial state as chosen here will in general impart
observations can be accurately predicted from a sufficient information of the past history of the system.

There can be decoherence from a completely different cause, namely that the outcomes of successive

unless there other restrictions which we have not treated in this context.
for the lowest order correlations, so this condition will introduce practically no restriction on the model
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D : p(VUMUV)*l

of the form

In order to deal with the higher order correlations start. by considering a general correlation function
the factorization must begin to break down.
can be found by the argument sketched below, where the essential point is t.o find an estimat.e of where
give manageable exact results for the lowest order products. In a nonrigorous way the general structure
very cumbersome as the technique for performing averages over the unitary group is complex and only
ensemble U(N) [34]. However, in dealing with higher order correlations such an approach would become
above, in this particular case it is possible top make a more explicit calculation using averages over the
holds with the order of magnitude estimate (7.4) of the rest term as N -—> oo. As already indicated
when the evolution operator is drawn at random from (7.6). Again t.he approximate factorization (7.3)
without extra structure or regularities. The results for ensemble averages and variances are then same as
to a fixed choice of evolution operator (7.1) with a macroscopic time t which gives a spectrum for U
and obtain statements valid for a generic choice of observables. The previous argument is now applied

(7.7){VlP(cr)V;V€ U(N)}

ensemble of observables
Instead of the ensemble of evolution operators we can equivalently take U to be fixed and consider the

is O(N‘2) if the spectrum of U is uniform enough and consequently negligible compared to R2.
average of ’D; over (7.6) differs from (D2) by a term of relative magnitude no larger than |p(U)|2 which
A tedious calculation using the results of Mello [34] on averages over U(N) shows that an ensemble
Actually it is not important that the spectrum has the full rigidity of U(N) with a strong level repulsion.
single operator) then the average over the ensemble (7.6) will be essentially the same as that over U(N).
spectrum of the chosen operator U conforms to this picture (making a statistics over the spectrum of this
of GUE(N) [33]. The eigenvalues are distribut.ed over the unit circle in a highly uniform way. If the
The eigenvalue statistics of the ensemble U(N) for large N is well known and locally similar to that

(7.6){VlUV;V 6 U(N)}

subensemble

Now let U be fixed and consider the subset of U(N) of elements with the spectrum of U, that is the

Prob 7.5 ( ){D2 · (D2)l } (lR2l2) 1 (-;->e <-—-<-;-—- (P2) ‘‘ (92)%* ‘ z>(P)n(Q)<2N2
probability of a relative error c
for 'D2 close to the ensemble average without averaging. There is thus a Chebychev inequality for the
The O(N‘1) asymptotic behavior of the remainder term means that most elements in U(N) give a value

(T4)(IRA?) = N`°'.~(P)r»(Q)(1 —1»(P))(1— /»(Q))

order in N "

and consequently (R2) = O. Using the ensemble averages displayed above we find t.he variance in leading

R2 = p(P§(Q)P)

D2 = P(P)P(Q) + R2 (73)

For the QCK we find

(£(Q)kk€(Q)n) = —N`2p(Q)[1 — P(Q)l (k #1)
(T2)(l€(Q)k»|2) = N`1x>(Q)[1 — #(0)]

(€(Q)kr) = 0

The matrix elements of §(Q) are random variables (functions on the ensemble U(N)) satisfying

UlQU = MQ)! +£(Q)

small under some useful conditions. In a fixed basis for the Hilbert space we write an operator relation
This result is only interesting in the present. context if the fluctuations around the ensemble average is
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itself, hence it is a permutation of the minimal projectors (and of the corresponding subspaces). Only
is a basis of minimal, but not necessarily 1—dimensional projectors. The dynamics maps this basis set into
form a lattice of subspaces. In fact, in the commutative algebra generated by the projectors (2.13) there

{’€~(¤)s ¤ G I"}3°:i

which implies the commutativity P(·y)P,,, (B) : P,,,([?)P(·y). It is immediately clear that

P(‘r)Pm(6)P(¤) = 6..7Pm(B)P(¤)

that
0, . , . , n- 1. The sufficiency is clear. For necessity we find from the ort.hogonality of the Hilbert subspaces
We will show that }C,,(cv) .L }C,,(/3) for cx gi B if and only if the operators (2.13) commute for m :

/€»(¤) = [V~(<¤)’€l`

stationary state. Introduce the Hilbert spaces indexed by sequences of symbols in I
Again consider a. set of observations defined by orthogonal projectors and choose the tracial state as

VIII. EXISTENCE OF APPROXIMATELY DETERMINISTIC HISTORIES

by a product form (6.2) is close to 1 as long as nh < ln N.
final result is that given the ensemble of observables (7.7), the probability that Du can be approximated
widely different as operators but where the tk are nevertheless equal on a macroscopic time scale. The

Finally this is applied to a sequence of unitary operators U(t1), U(t2), . . . , U(t,,-1) which are generally
estimated by adding the terms coming from the n -— 1 unitary operators.
corresponding n — 1 ensembles. Furthermore, there is a generalization of (7.5), where the RHS can be
there is then an (rr — 1)-tuple of elements in U(N), and (Du) is of the form (6.2) if we average over the
function provided that all the operators can be chosen independently. For the correlation function 'D,,

We can now repeat the same type of estimate for each evolution operator in a multi-time correlation
and the condition for the smallness of the error term reads (m + n)h < ln N.

N1 : exp(—mh)N, N2 : exp(—nh)N

form is obtained by putting
that H1(a) : h. lf V : Vm(u), JM : V,,(<x)l V,,(cx) then an explicit bound on the deviation from product
(2.1) of orthogonal projectors satisfy p(u) : p(P(cv)) : exp(—h) for all or and some h > 0. This means
and a corresponding estimate of the probability in (7.5) which is (N1 Nyc?). For simplicity let the partition

_ (D) V N1 N2
y/(R2) 1

order of magnitude estimate
the operators VlV and M are projectors, say of dimension N1 and N2, respectively. We then obtain the
The factorization property clearly breaks down when this quantity is of order 1. The worst case is where

p VivN ( ) p( )p(M)
(78)y/ R2 0 0 l2: i 2

from the product form
where of = p(VlVVlV) —-p(VIV)2, ag = p(M2) - p(M)2, and for the relative magnitude of the deviation

2"2(R) = JV0¥ag
(R) = O

'D : p(VlV)p(M) + R

ensemble for U we find again the ensemble average and variance
where V : V(a), M = M(B) are operators of the type (2.3) and (2.5) respectively. Using the U(N)



16 OCR Output

(X3M> .. <){pM>2 : (MN+ 1) (MN+2)
[M M N -— +1

( PM) MN +1

III.3)
The random variable XPM has a beta distribution with first and second moment ( [35], sections I.7 and

1*.4

(8-2)= N`° L¢><1>{2¤ri(X(p-q>M — (P —<1)/N)}

p,q.¤

P(P(¤)UlP(¤ + i)UP(¤)) = (MN)`1 l('!’m,¤+1lUl¢m.¤)

Averaging over the tracial state we obtain

(1[¤m,,,+1|U|1/4,,,0) : % exp(2rriX,,,) >;exp{2vri(X,,,+,,M — Xm — p/N)}

expression

and corresponding subspaces }C(cv) : P(cv)}C. In order to find the action of U on }C(o¤) consider the

m:]

(8-1)P(¤) = ) i |¢m.~)(*/¤m.¤|

follows that the set is complete. A set of orthogonal projectors are introduced

¢m+pJl! = W <->x1>(—2vri<~1»/N)¤/tm.

and from the inverse relation

("!’m,u l¢m’,cr’) Z 6mm' '% > ;€XP(27l'i((Y _ (Y/)P/AT) : 6mm’6<¤u’

for rn : 1,.. . , M, cv : 1,.. .,N. These vectors form an orthonormal set

\I¢,,,_,, : —/-V g exp(2rrirrp/iV)<1>m+,,M
1 N—1

Define another basis set in the Hilbert space as follows:

U¢k = exp(2rriXk)¢k

Introduce the notation {bk for the eigenvectors:

USX1 SXz~-SXMNSI

exp(21riXk), where the Xk are ordered
independent and uniformly distributed random variables. They are renumbered and written in the form
eigenvalues on the unit circle. For the reasons given in the previous section they can be assumed to be
make the computations easier. The unitary map U representing the unit step dynamics then has M · N

Let the Hilbert space IC have dimension M - N. This restriction is not essential, it is just there to
choice of projectors can be made in many, mutually noncommuting ways.
corresponding subspaces which approximate the dynamics during a finite number of iterations. The
independent random variables, we can construct orthogonal projectors and cyclic permutations of the
a discrete time dynamics with a sufficiently dense point spectrum on the unit circle represented by
different instants and no exact periodicity of the kind described above. It will be shown that given

We now turn to a more general situation where there is no exact commutativity for observations at
Such a setup clearly defines a deterministic process in an asymptotic sense.
tation can be decomposed into cycles, and it is no real restriction to consider only cyclic permutations.
projectors of the same rank can belong to the same orbit. under the action of the dynamics. The permu
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observables with no obvious classical property. lt seems to be more promising to look for significant
Decoherence is generic (section VII) and is clearly present in equilibrium thermal fluctuations, also for
certainly that decoherence in itself is quite insufficient to select a set of observables as a "classical" domain.

The conclusions to be drawn from the abstract results above are rather negative. One of them is

IX. DISCUSSION

N are large.
t.his interval contains a number (M N )1/ 2 of levels, there is a very large number of choices when M and
change significantly in the aspects which we consider here. Thus we can choose 6 z (MN)"1/2, and as
is much smaller than the variance of the random variables Xk the properties of the evolution will not
transformation mixing the eigenstates corresponding to a small interval 6 of the phase. As long as 62
above to a good approximation. Instead of choosing eigenstates of U as in (8.1), first make a unitary
do not commute with the choice made above, but still have the properties under the evolution shown

There are many ways of choosing the set of orthogonal projectors in a different way, such that they
slow when A < 1.
and this means that the increase in the coherence terms H,,(oz) — S,,(cv) with n., for arbitrarily large n., is

H,,{cv} S H1{u} + (n -1)6H

By the inequalities (3.11) we then know t.hat

6H S —A ln(A/N) - (1 — A)ln(1 —— A)

Hg{u} : H1{u} + 6H : lnN + 6H

B gé or + 1. Consequently it holds that
The largest value for H{p2} is obtained when there is a uniform distribution over the N — 1 values

B¢¤+l

pz(¤, B) S m(¤)A

Using the ensemble averaged probability distributions (2.7) we then find that

NMNMN
.2 (8 )1 lp — q|(N — Lv — cl) 2112 A E 2 2- é---- z —- 1 (W) 2§ 3 <

the following condition is obtained
The right hand side should be much smaller than p1(cv), so using the leading term for large M, N > 1

mq

(r»(P(¤)) — p(P(¤)UlP(<~ +1)UP(¤))) S jg Z(2¤)2<|X(p-qw — (P —<1)/N|2)

and from (8.2) follows for the ensemble average of the difference

»¤(P(<>¤)U'P(¤ +1)UP(¤)) S p(P(¢~))

Clearly
The leading correction to the asymptotic behavior can be bounded by a more direct estimate as follows.

¤<1>((1·— q)M> MN + 1;?¤i)¢><p(-?1fi(P —<1)/N) = # = r·(P(¤)) = m(¤),,}§w $ Z

(6.13.2(17) in [36]) show that
where <I>(a,b;:c) is the confluent hypergeometric (Kummer’s) function. Standard asymptotic formulas

M

<r>(P(¤)U’P(¤ +1)UP(¤))> = N`3 } j <1>((p —<1)M. MN +1;2¤i)<»<r(—2ri(p —<1)/N)

We can then calculate the expectation over the ensemble defined by the random variables XPM
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Proposition 1 Let T satisfy ihc Schwarz inequality

has the following property, which can be interpreted as a general H-theorem.
an associated map on the density operators: p •—-> p o T. For a subclass of such maps the relative entropy

Let T be a positive linear map of B(lC) into itself which maps the unit operator on itself. There is then

APPENDIX: ENTROPY INEQUALITIES

finite-system counterpart of the local structure used in the algebraic theory of infinite systems.
that this cannot be true without additional assumptions. A likely candidat.e for such an extra input is a
property to a good approximation. It should be clear from the kind of calculation done in section VIII
a sufficiently complex quantum system which is stable over a very long time scale has this “classical"
under some conditions yet to be specified, that all the information contained in the quantum state of
implying that this piece of information has an objective reality. One desirable result would be a proof,
means that there is a possibility of several observers making observations and comparing the results,
The information stored is stable and can be observed and copied without destroying it. This property
classicality of these observables lies in an information—theoretical aspect rather than a dynamical one.
well-defined classical limit it will be given, e.g. by equations of t.he Fokker-Planck type. The essential
there is no reason to expect any obvious similarity with classical Hamiltonian dynamics. If there is a

There is also the slow evolution of metastable observables like the geometric shape of molecules, where
VIII the problem here is that there will be many nonequivalent choices of observations.
Introducing a heat bath here to destroy some quantum phases seems superfluous. As shown in section
and we can use a relatively small value of (5.2) as a sign of decoherence for the chosen set of observations.
eventually with a continuous rather than a discrete variable cv. The relevant information measure is (3.7),
it is convenient to use observations which are not described by projectors but the more general form (2.1),
observables are very coarse quantum measurements simultaneously of coordinate and momentum. Here
moment of inertia) we have a classical situation of a kind we understand rather well. The nearly classical
simple quantum system, like a quantum harmonic oscillator or quantum rotator. For a large mass (or

There is the classical dynamics of the "correspondeuce limit" (limit of large quantum numbers) of a
or states which are "nearly" classical. Two different types of situations can be distinguished here.
in models which are not strictly infinite and which have the potential for nontrivial dynamics for variables
quasilocal way. In the context of explaining the emergence of classical properties we should be interested
the motion. There can be no dynamics for the global observables when the dynamics is generated in a
e.g. the total charge. The drawback of this formalism is that these observables always are constants of
infinite system which can be observed by local observables but also outside any finite part of the system,
the relative phases between different eigenspaces are unobservable. They describe global properties of an
at infinity which is commutative [41]. These observables can be said to define superselection rules, as
rigorous way some classical properties. In the quasilocal approach there is defined an algebra of observables

Note that in equilibrium quantum statistical mechanics ofinfinite systems it is possible to introduce in a
and a large class of interactions (where some form of locality will be essential).
those of a definite shape, in environments satisfying certain conditions (like a bound on the temperature)
is that the remarkable fact to be explained is the long term stability of certain nonstationary states, like
preferred to those of a definite symmetry. An alternative, but not necessarily contradictory, point of view
environment and the resulting decoherence defines the quantum states with a definite shape as a basis
as the intrinsic properties of the Hamiltonian. There is one point of view that the interaction with the
then the initial conditions and the method of observing the system decides what you will see just as much
symmetry group of the system. There is no real mystery here, when the density of levels is high enough,
of eigenstates of the Hamiltonian which on the contrary belong to irreducible representations of the
in relatively small quantum systems is that of molecular shape [37,8,38-40]. The shape is not a property
earlier work and ideas on the subject. One of the basic examples of the emergence of classical properties

In order to gain some physical insight and moderate the formal arguments, it is useful to recall some
than decoherence in defining a macroscopic, classical domain.
case of determinism. Thus we should consider the deterministic property of section VI to be more relevant
equilibrium but are metastable over a long time scale. This metastability can be interpreted as a particular
classical aspects of the macroworld in the exist.ence of structures which are departures from complete
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$~{¤} = $@2) = ) j1»»(¤)$(¤»~(¤)|~Z.)

We then have the equality

Vr»(‘·')°·’V¤(O’Il E > ;Pn(°)‘-*’¤("I Z wiz

partial states are 7),, and
complementary partial traces, the first by tracing over IC ® IC, the other by summing over I. The two
wg, = V,,(B)wV,,(a)l in a still larger space IC ® IC ® hm; where h,,_; = (3.1). From wl we define two
Proof. From p we construct w in IC ® IC space according to (A4). From this we obtain a pure state

and the second equality holds if and only if the QCK is diagonal.

Iviai S Said} S Hniai

Proposition 4 With the notation of section II it holds that

(A4)im = > jr an e In

p = Ek pk]k)(k| then we can choose w : |Q)(Q[ where
The proof of this result is given in [28], section II.F. One simple representation of w is as follows: if

Equality holds in the second relation if and only if,u :;i1 ® pg.

SOM) — $(az)| S $04) S $(1n)+ $(1iz) (A3)

relations obtained by permutation of the three density operators}:
For a general mixed state gi on the tensor product the following triangle inequality holds {and all similar
of nonzero eigenvalues with multiplicity, and consequently the same entropy: wl 2 wg, S(w1) = 5`(wg).
pure state on such a tensor product, the two partial states are isometric, i.e. they h.ave the same spectrum
w in the tensor product space K1 ® K2, where IC; 2 ICQ, such that wl E Try cu = p. Furthermore, for any
Proposition 3 Let p be a density operator in the Hilbert space K1. There is then a pure (vector] state

contribute to the entropy.
operators certainly commute, they must be in Nt and the part of p outside the support of ;i does not
the RHS in the equality is finite only if the support projection of ;i is contained in that of p, so these
but the result is extended in a straightforward way to states which are not necessarily faithful. Note that
The statement by Petz assumes that the density operators are nondegenerate (the states are faithful),

holds if and only if the density operators p,;i commute and the unitary operators plfifif are in M for all

5'(r¤¤ Blu <> E) = $(pIu)

Proposition 2 For two density operators p,p the equality

has the following form.
subalgebra M generated by the projectors Q),. Petz [45,46] proved a theorem which in the present context
map E : X •—> Ek rk(X)Q;, satisfies (A1), in fact it is a completely positive idempotent map into the
of orthogonal projectors Qk, Ek Qi, : 11 and denote by rk the tracial state in the subspace QkIC. The

We are also interested in a particular situation when the equality holds in (A2). Let there be a set
entropy [43,44,28].
For completely positive maps T the result is closely related to the strong subadditivity of the quantum
The proof follows most easily from the variational formula for the relative entropy proved by Kosaki [42].

(A2)S(p ¤ Tlu ¤ T) S $(r»|a)

that
and T[]1] : Il. Then, for any two density operators p,;i such that their relative entropy is defined, it holds
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(A6) OCR Output1¤(¤)$(p(<~)) S $(p) S ) ;1»(¤)$(p(¤)) + H{¤}

It follows that, with the definition and suppressing the index n,

(A5)Zpk$(nr) S $(r») S 2r»rS(r»r) + Hlpk}

Proposition 7 For any convex decomposition of a state p : Epkpk it holds that

and pn as partial states, and from the triangle inequality (A3) the statement. follows.
density operators in a Hilbert space IC ® h,,,;, so it preserves the entropy. Partial traces then gives D,.
Proof. We first note that the map p •-—> V(or)pl/(H) is an isometric map from density operators in IC to

5`»{¤} S 5`(r») + $(r·»)

Proposition 6 With the notation of section II

which is t.he first result.

$(x>) — ) Qz»(¤)$(¤(¤)) S $(n) — ) jv(¤»0)$(¤(<n B)|¤(¤))

and consequently

p(¤)$(¤(¤)) — ) Q1»(¤~,¤)S(¤(¤»B)) = ) j1»(¤,B)$(¤(¤,6)I¤(¤)) 2 0

It is then found that

¤(¤, f?)¤(¤. 6) = t/Z?V(¤)' V(<~)\/Z = p(¤)<7(<~)

and sum over the later outcomes

r·(<~»U)¤(¤» B) = »/FV(<~)*V(5)*V(6)V(¤)~/F

density operators of the form
consequently that $(,0) Q S(p 0 T), which proves the first statement. For the second, consider a set of
From (A2) follows that S(p 0 T[;i) S S(p[,a). But a simple calculation gives S(p[;i) = $(,0) -— S(;1) and
where {P(cr)} satisfy (2.1). This map satisfies (A1) and leaves the tracial state ;r invariant: it o T : p.

p o T : > P(or)pP(cr)

transformation, which leaves the entropy invariant, with the map
Proof. In the proof of Proposition 4 the stat.e @1+1 is obtained from wl}, through composing a unitary

Irfla} $ I¤+1`i“l

Sofa} S S¤+1‘lO’l

Proposition 5 Sn and In are nondecreasing in n:

where the equality holds precisely when p o E : p.

5(# <> EI/J) = -504) — '¤[#l¤(# O E)] = $04 ¤ E) — $(/J) 2 0

map and one finds that ln(p 0 E) = E[ln(;1 0 and hence that
matrix elements cannot decrease the entropy. In fact, such a deletion y i-» y o E is an idempotent CP
The second part of the inequality of the statement follows from the fact that a deletion of the offdiagonal

Sofa} Z > ;Pr¤(°)S(”¤(“)lP) Z Infal

and we find from Proposition 1
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