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ABSTRACT

The general properties of beamstrahlung
and of pair prodgcti‘on are presented,
focusing on the simplifications which
occur in the deep quantum regime. A
Feynman graph approach yields simple
results which are accurate in the low
disruption approximation. Both photon
radiation by electrons and positroms in
the colliding bunches, and pair forma-
tion by a photon traversing a bunch are
considerable. This 1is an introduction

to recently published works.
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l. = INTRODUCTION

This is the second CLIC note written on this question and, like the first
one, 104-87, it reports on work done at CERN in collaboration with T.T. Wu.
The linear colliders under consideration are in the TeV range. Reaching such
energies 1is difficult; it is, however, pointless if one does not also reach a
large enough luminosity. The luminosity should increase as E2, where E is the
beam energy, 1if one wishes to collect a decent enough rate for the bench mark

cross-section ete™ » ptu=. A luminosity of 1033 is a must for E ~ 1 TeV.

The luminosity is practically determined by four parameters:
N2{ H
L. N2#
R:z

Increasing the number of particles per bunch N and the bunch crossing frequency

(1)

f costs power. The possible gain through H, the pinch parameter, is limited.
One has to play on R and one is talking about R at the level of 10-8n!

Wwith large N and small R, the field inside the bunch (~N/R) is very high.
Incident particles radiate as they cross such a high field region. One is
driven into the deep quantum regime where

BuL
= — >/ (2)
N\ec’

where Pe is the radius of curvature.

Two questions are considered in this note, namely radiation by an electron
traversing a positron bunch and pair formation by a photon traversing a positron
(electron) bunch. The kinematics 1is defined in Figs. la and 1b, respectively.
These pictures correspond to a classical approximation and the space location of
the process is defined as the point of the stationary phase. The process is

actually "spread” over a distance xc around that point, where lc will be defined

later.

The quantum mechanical calculation corresponds to the Feynman graphs of
Figs. 2a and 2b respectively. The calculation is done to lowest order in a and
thus corresponds to a distorted wave Born approximation. The amplitude reads in

both cases:
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where by and ¢f are the wave functions of the charged particles in the field of
the bunch and ¢ is the polarization vector of the photon. The crosses on the

graph correspond to interaction with the field in the bunch.

From (3) one calculates the radiation intensity I(x), normalized to unit
incident flux, where x is the fraction of the electron energy taken by the
photon (beamstrahlung) or the fraction of the photon energy taken by the
electr‘on (pair formation). The spectrum found are rather hard, with a rather

flat distribution in x. The fractional energy loss:
| .
d = fo(x)o(x (%)
)
is considerable. Values at the level of 20% can be considered as typical.

The classical regime is well known. We concentrate here on the deep
quantum regime, emphasizing its specific simplicity which this regime also

possesses. It is clear that there is also an interesting intermediate regime

which deserves attention.

2. - MAIN RESULTS

Our interest in this problem started with the remark that the respective
dominance of two important lengths 1is inverted as one goes from the classical

regime to the deep quantum regime. In the classical regime, the coherent

-\
L. /N "[:_4_
< L—e-) R m (5)

is much larger than the quantum mechanical radiative length Le

L, X
e " (6)

radiation length Lc:

In the deep quantum regime, into which one 1is naturally driven with a high

energy, high luminosity machine, it is the converse which is true



Le >> L_ (7)

The radiation process changes 1in nature. We found that simplicity still

prevails when one introduces a new coherent radiation length

€. = (Li La)l/g (8)

In the deep quantum regime lc >> Lc’ and one indeed finds that
2
Y = <_€_"_ 9
Le
In practice the quantity

Le
A —e_c (10)

\

remains large (10 to 100) A ~ NaD, where D is the disruption parameter. To a
first approximation, one can consider that different sections of the bunch, each
one of them xc long, radiate incoherently. One may remark that xc is that
particular combination of Lc and Le which eliminates any explicit reference to

the electron mass. This 1is natural since we are in a regime where the trans-

verse momentum collected by the electron as it crosses the bunch is much larger

than the electron mass
Ar> m (11)
The canonical parameter of the classical approach a/m has to drop out entirely!

More specifically, one has

Z:

‘. _ R2LS E
c = (ﬁJﬂ€>z' (12)

This new regime leads naturally to a calculation based on Feynman graphs. With

it we found two things:

(1) simplicity prevails once one introduces lc;
(1i) there are typical quantum effects, which one may refer to as radiation

"before and after” bunch crossing, since they do not involve the bunch
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length Lb'
This is connected with a Weizsicher-Williams fragmentation.

Their leading contribution 1is proportional to aln Lex .
c

Our approach was first presented and exploited in four papers (M.J. and
T.T.W.):

(1) Quantum approach to beamstrahlung, Phys. Lett. B197 (1987) 253;
(11) Quantum calculation of beamstrahlung: the spinless case, Nucl. Phys.

B303 (1988) 373;
(iii) Quantum calculation of beamstrahlung: the Dirac case, Nucl. Phys. B303

(1988) 389.
(iv) Beamstrahlung in the multi-TeV (a general review), Proceedings of the

Kazimierz Conference (88), WSPC.

The previous CLIC note (87-104) was written in between the completion of papers
(ii) and (iii). )

Our attitude has been to go as far as possible analytically. For that
reason we worked in the low D approximation. Our results are accurate provided
that a linear expansion in D is acceptable. Radiation effects at large D can a

priori only be larger than those found for low D.
To be more specific we start with a high energy approximation of the type

A=A, + AL (13)
for both the modulus and the non-trivial part of the phase of the wave func-
tions. This sounds a priori very accurate as E is very large, but it turns out

to be only a low D (linear in D) approximation.

The leading contributions to § are then particularly simple. For beam-

strahlung they read:

k. X g le k% LE
X‘-keﬂ’ C¢_+ ¢ T e, (14)

where Ke and K1 are both numerical coefficients of order one. Relation (14)
refers to a uniform bunch for which lc is defined by (12). The radiation
spectrum is rather hard. It has also a very simple expression. For the most

important term, proportional to Lb’ one finds
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The first factor results from the intrinsic properties of radiation in the deep

quantum regime. It 1is the one found in the spinless (Klein-Gordon) case. The
second one 1s mere spinology and corresponds to the complications met when

dealing with a Dirac particle.

In the regime considered (AT >> m), only one helicity configuration
matters, once parity conservation has been imposed. The neglected one 1is
proportional to Lb/Le, which is small in practice. For that reason, one can
work in the (simpler) Klein-Gordon case and merely include a Dirac spin factor
in the spectrum, at the end. The same applies for pair formation. In that case

the shape of the spectrum is (Dirac)

I (f) ~ <L_5£)Z+ x%
R

when the production intensity reads

Z
ol L & (l:‘*:) + X
I(x)=KkpZ , (17
T €. Qt(l-x)) A3
thus picking up only the leading tefms proportional to Lb' Here Kp is also a
numerical factor of order omne and 1c is the same as in the case of beamstrahlung

(12). The calculation of pair production, prompted by a remark by W. Schmnell,
is reported in TH.5274/89, to be published in Phys. Lett. B.

(16)

We see that, in all cases, a small factor a/x is to a large extent compen-
sated by a large factor A (10). Radiation losses and pair production are there=
fore both considerable effects. The deep quantum regime is characterized by an

intense radiation with a rather hard spectrum.
This has some drawbacks:
(1) a loss in effective power;

(i1) important background and a hazard to the machine and the detector;

(111i) an erosion of the resonance peaks which one may wish to find.



However:

(1) for heavy Higgs search (WW + H) an important radiation is toierable;

(11) an electron=-positron linear collider is also an intense photon-photon
collider. This 1is also very interesting in heavy Higgs search
(yy * H). Yet, the important hard photon flux turns partly into

hazardous electron-positron pairs in the intense field of the bunch!

One may remark at this stage that £ includes a factor R2/N2, inversely
proportional to the luminosity and a factor s, corresponding to the centre-of-
mass energy square. Since the two factors should compensate each other, lc

varies as L;1/3.

The deep quantum regime calls for compact bunches. As emphasized by
Blankenbecler and Drell, ribbon bunches should help in keeping the luminosity up
while decreasing the field inside the bunch and hence the beamstrahlung losses.

This however raises further complications for the machine.

Our latter work on that topic, in 1988, mainly concentrated on the effect
of varying density in order to go beyond the poorly realistic constant density

bunch considered in our former work. This has been reported in three papers:

(1) Beamstrahlung with fluctuating charge density, to be published in Nucl.
Phys. B; TH.5133/88;
(11) Beamstrahlung for longitudinally non-uniform bunch, to be published in
Nucl. Phys. B; TH.5192/88; -
(111) Beamstrahlung in high energy electron-positron linear colliders with
non-uniform bunches, Phys. Lett. B216 (1989) 442.

The approach now consists of an expansion in A (10) which is a large
parameter (10 to 100 in practice). One takes the Mellin transform of the

I = 2$f *<-(>£’/E:)

E(?) = jjk(y) /\) /{-'-20{ A (18)

and calculates the residues at the poles met at A =1 (leadingbtetm proportional

to Lb)’ A = 0 (which includes the lnLe edge effects) and A = -1 [which is

radiation intensity
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sensitive to rapid density variation within the bunch, proportional to (p')2 and
pp"]. This can be done though a series of successive analytic continuations as
the different pole terms can be isolated one by one. The result 1is a rigorous

treatment of edge effects and varying density for arbitrary bunch shapes.

The edge effects are fully calculated and include the lnLe term previously

focused upon.

The terms corresponding to an integral over the bunch length (roughly

speaking now proportional to Lb) are of two kinds:

(1) a contribution proportional to A (large) which merely multiplies Ki in
(14) by the extra factor

_f évz/‘ (3) 4y
[ ety 4

where 5 is the normalized varying density

(19)

Jé\’[g),l_&__: L& (20)

(ii) A contribution of relative order A2 (hence small) which involves an

integral over z of

~_ 3e()E"R) -4 €%
R(3) = € %0) é”%i; 2 S

A proper analytic continuation has to be made to deal with edge effects, when
E(z) + 0. An actual numerical value (a relatively small contribution) can thus

easily be obtained for realistic bunch shapes.

As the density varies, so does lc(z) which has now to be defined locally.

From (12) one sees that lc(z) ~ 3-2/3(z), hence extra technical complication at

the edges when this quantity becomes large.



3. = CALCULATION

The reader 1s referred to the different papers previously itemized for a

detailed presentation. We here merely stress a few general points.

The

(€9)

(i1)

a)

calculation proceeds as follows:

calculate the wave functions. This is done in the high E (but actually
low D) approximation, as previously said. One solves the Klein-=Gordon
(Dirac) equation in the field of the bunch.

Study the conditions for the stationary phase for the production
amplitude. In practice, most of the radiation originates from a
limited zomne corresponding to a limited stationary variation of the
phase. The location of this zone is determined by the kinematics and

the bunch properties.
points are worth emphasizing:

The phase statiomarity conditions are very different in the beam-
strahlung case and in the pair production case. This is due to the
fact that the main additive effect, associated with the phase of the
electron wave function before and after radiationm, hence throughout the
whole bunch in beamstrahlung, cancels in the production case, where an
electron and a positron propagate with almost collinear paths, after

formation only. To be more specific the transverse co-ordinate for

the stationary phase corresponds to

- > -, —
N KGR R

for beamstrahlung (Fig. la), and to
P

E___,_Gﬁ/_fs)_,__&__ L;x(l-) ’?J-—l'{".L (23)
NN I E

for pair production (Fig. 1lb).

Here 2Na/R is the maximum bending momentum which can be collected

through bunch-crossing. In the second case, we have introduced



b)

(1i1)

(iv)
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s = Na -&
Rz E
~a L‘d-
8= =3 (24)
— — = -
/
Such a difference is understandable. We are however very far from a

mere crossing relation between the two processes.

Once we have fixed ; by (22) or (23), we find that there is no real
point of stationary phase in z. One actually finds that

D _ % m 2 -2 4
27 8(1Ix)E (112 4n2) )

where |M|2 1s the modulus square of the radiation (production) ampli-

tude average or summed over polarizations. This relation turns out to

be very useful!

There are nevertheless two nearly (separation of order A complex
points of stationary phase and,’in between, a real point where.acpz/az2
= 0. It is therefore natural to expand around that point 2z, defined
as the point of the statibnary phase. The phase then varies as an odd
cubic in (z-z(p) around that point. The characteristic length for its
variation defines the proper coherent length. It is xc (12), for both

beamstrahlung and pair production. The deep quantum regime corresponds

to values of lc significantly larger than Lc 9.

The next step is to compute the relevant matrix elements in the neigh-
bourhood of the stationary poinc,ﬂw , the values of which were antici-
pated in writing (25). Because of the different conditions on r (22)
and (23), the radiation matrix elements and the pair production matrix
elements are very different. One 1is again far from a simple crossing

relation. The same relation (25) however holds!
At this stage one can proceed in two different directioms.

One calculates the full amplitude integrating the production amplitude
calculated through steps (i), (i1) and (iii) over all space. The
integral over the radial co-ordinate 1is done through the stationary

phase method. The integral over 2z, with its odd cubic dependence of
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the phase, naturally leads to Airy functions. One then integrates the
modulus square of the amplitude over phase space to reach the produc-

tion rate I(x).

b) One integrates over the radial co-ordinates and over phase space,
reaching I(x) as a double integral over z and z'., This may a priori
seem to be more difficult but one can make great use of (25) to extract
the actual rate from a much simpler integral, through the calculation
of partial derivatives. The proportionality of the derivative of the
phase in (25) to the matrix element square which appears in the rate (m
is in most cases negligible in front of the matrix element which is
proportional to bending momenta) clearly brings much simplification.
One therefore shortcuts entirely Airy function and picks up with
increasing simplicity terms of higher order in A (the leading ones!)

While we followed path (a) in our earlier approach, we switched to path (b)
(it looked like a must) when dealing with varying densities. Insofar as the
complicated z dependence of the production amplitude in pair formation can be
formally compared to a varying density effect, the new method is particularly
efficient in that case. For the leading term, proportional to A, the most
complicated functions encountered are merely I' functions. We thus shortcut the

integration over Bessel functions of fractional orders met along path (a).

In the case of beamstrahlung studied along path (b), one finds an integral
over z-z' with a rapidly changing phase which limits its range in practice to
lc. One is left with a trivial integral over z+z' which simply gives an overall

factor A.

In the case of pair production, the integrand has, as previously stressed,
a rather complicated z, z' dependence. However, the phase space limits are also
z, z' dependent, since bending occurs only after the pair is formed (beyond zj).
It turns out that the z, z' dependence brought by the phase space conditions
magnificently cancels the z, 2z' dependence met with the computation of the
matrix element, once the integral over z-z' has imposed the strong conditionms

associated with the variation of the phase (z-z' < lc).

While crossing simplicity is totally lost in the intermediate steps, both
when dealing with the matrix element and the phase space limits, it beautifully



reappears at the end with the results for beamstrahlung (14) and for pair
production (17) which show a very strong similarity. Only once the rate is
obtained do we find for both terms of order (a/sx)A and, in both cases, rather

hard spectra.

The R.nLe term has a pure quantum origin. It can be considered as resulting
from the quantum dissociation of the electron into a photon and an electrom, or
of the photon into an electron-positron pair before entering the bunch (and
after leaving the bunch in the former case), mass-shell conditions being imposed
over a length lc at the edge of the bunch. It becomes quite sizeable as one

increases the energy, but is still far from leading in the TeV range, where the

term linear in A dominates.

This is where we are. We have still clearly to try to push our method to
larger D and extend it to the intermediate regime (lc ~ Lc) where a good
fraction of its simplicity should of course go away. The question of multi-

photon production and of pair production with incident electrons clearly calls

for further calculatioms.
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