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This paper presents the instability analysis of a beam-
loaded radio-frequency system with beam phase-loop
and cavity tuning-loop for both accelerating and non-
accelerating beams. The case of voltage-proportional feed-
back around the cavity is also included. The symbolic ma-
nipulation program SMP [1] was used to expand and sim-
plify the Routh determinantal conditions for a fifth order
characteristic polynomial. The paper is a much abridged
version of an internal design note [2].
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- The disposition of steady state phasors is as shown above.
We adopt the notation of Reference [2]. The cavity volt-
age is V(t)e?** and the total current driving the cavity is
I7(t)el“t where t indicates time and w is the drive an-
gular frequency. Bold face indicates complex quantities,
and ordinary type denotes scalars. We employ dot no-
tation for time derivatives. The cavity fundamental res-
onance is modelled as a parallel resonance LCR circuit.
Let Qpes = l/\/_[f be the resonance frequency and a =
Qres/(2Q) = 1/(2RC) be the half-bandwidth. We write
the voltage and current as the sum of steady state parts
VO = V%%V and I3 = [€7¥T, and small time dependent
perturbations. We use 3 to denote steady state phases and
¢ perturbation phases. Let ¥ = ¢y — Y7 .

A, Steady state

We must specify the steady state generator current Ig =
I9e/¥s and beam image current I) = I0e/¥* which sum
to form the total current I7. The beam current is ~ 90°
out of phase with the cavity voltage; depending on the
synchronous phase angle us. We set pp = 0 for a non-
accelerating beam. Hence ¥, = *(m/2 + p») and the —
sign applies below transition energy and the + above. We
adopt the dimensionless current ratios Yy = I3/1) and
Yy = I0/10, where [ = V°/R . The components obey:

1 = Ygcoshg — Yesinpp
tan¥ =
From this follows the detuning tan ¥ = (Q? — w?)/2aw .
Until we choose a definite value for 14, there is no direct
relation between tan ¥ and (Ys , ps).

Yp cos iy — Yg siny .

B. Non steady state

_ Let us assume the “slow approximation” V € wV and
Ir < wlp. We allow for a varying resonance frequency
Q(t) = Qo(t) + AQ(t). We introduce the perturbation vec-
tors e as follows: V = V°(l +ey) and I3(1 +er) =

= Ig(l +ey) + I(1 + e5) . The dimensionless components
z. and ¢, of the vector e, = (z- + jé,) are amplitude
and phase modulations, respectively. The cavity response
is modelled by:

zv(l+s7) + ¢vtan¥ + Yg(@gsinyy — zgcosy) +
+ Yo(zpsin pup — dpcospup) =0,

dv(l+sm) — zv tan ¥ — Yy(¢gcos g+ zgsinvg) +
+ Yi (26 cos py + dusin pp) = . AQ .

Here 7. = a~! is the cavity time constant, and time deriva-
tives are replaced by the Laplace operator s .

C. Beam rigid bunch dipole motion

Suppose the ideal drive frequency is synchronous with
a particle travelling with the equilibrium. However, as a
result of modulations the cavity phase may advance or lag
by an amount @y . Likewise, the beam centroid may differ
from the ideal phase by an amount ¢;. Suppose the cavity
has relative amplitude modulation zy.

To first order in perturbation amplitudes, the Laplace
transform, of the beam energy deviation d E is:

s0E = Ky [zv sin s + (¢v — db) cos pip) -
Because of the energy deviation, the phase error ¢y will ad-

vance at the rate: s ¢ = K2dE . The product VK x Kz =
€, the synchrotron frequency sans the usual cos up term.

D. Stability conditions

The system response contains only self-damped oscilla-
tions, when all zeros of the characteristic polynomial lie
in the left half of the complex plane. Necessary conditions
are for the coefficients of s™ and the Routh-Hurwitz cri-
teria [RH(i) for i = 1, 2,...n+1] for combinations of the
coefficients to be greater than zero. We shall omit trivial
conditions such as 7, > 0.

I[I. CAVITY AND BEAM DIPOLE MODE

This is the case originally treated by Robinson [3]. The
model assumes that the generator current is maintained
by an ideal feed-forward.

Characteristic polynomial

Q%[cos ppsec’ ¥ — Yy tan ¥] + 202 cos(up)Te 5 +
+ [sec® ¥ + (Q,7.)% cos ps)s® + 27 sS4+ rist.



Routh determinants

RH(4): tan ¥ > 0, hence ¥ > 0. If RH(4) < 0, then the
cavity is detuned in the wrong sense.

RH(5): cos tpsec2 ¥ =Y, tan ¥ > 0 implies the Robinson
limit: Yy < 2cos pp/sin2¥ . If RH(5) < 0, the bunch sim-
ply wanders. Substituting the matched generator condition
(g = 0) gives the special case ¥j < 1/ sin py.

III. CAVITY, BEAM DIPOLE MODE, PHASE-LOOP

The model of section II is supplemented with a beam
phase-loop intended to damp bunch dipole oscillations.
We assume that the feedback has the response of a pure
integrator, and modifies the generator phase ¢4, that is
by = (Kp/s)x (¢p—¢v). [f there isanr.f. feedback around
the cavity, this loop modifies the demand phase ¢4.

(Characteristic polynomial

Q2[cos pp sec? ¥ + Kp e sin pp Yy sin g — Yy tan W]+
+[K, sec? W+ K, Y (sin pp—cos pip tan W) +2Q2 cos(up) 7] s+
+[sec2 U+ K, (1+Ypsin 1)+ (s ) *cos ;tb]s2+‘27'c.53+rf st
A necessary condition for stability is that the coefficient of

s be > 0. Unless tan ¥ < tanu, and K, > 0, we find a
condition for Y, which resembles the Robinson limit;

2 + ‘2937'0
sin2¥  Kptan¥
In most cases this limit is subordinate to RH(5) below.

Y, < if,(tb=0.

Routh determinants

RH(3): 2 4+ Kpr[cos2¥ + Y cos ¥sin(¥ + pe)] > 0.

This condition allows a domain of stability with ¥+u, < 0.

The damping provided by the phase-loop can overcome

(partially) the instability caused by incorrect detuning.

RH(5): cos pp sec? ¥ + KpTesinpupYysin g — Yytan ¥ > 0.

Unless gxpp >0 there is no change to the Robinson limit.

RH(4): 0 < 2K,sec? W(sec?W + Yy (sin 1 — cos pp tan W)+
+(Q,7e)? cos pp(cos 2 + tan pp sin 2¥)]+

+2K, (82, rc)zcos wpYs(cos pp tanW —sin /1,,)+4Qf7‘c Y, tan WU+

+rKI(1+ Ys sin ps)? — (Y sin ¢4 tan ¥)?] .
A sufficient condition for RH(4) > 0 is tan ¥ = tan us.
Alternatively, we may substitute 3 = 0 and so find
RH (4) > 0 at all points on the matched generator curve.
Finally, we note that g, = 0, tan¥ < 1/tanyy, and
RH(5) > 0 are sufficient conditions for RH(4) > 0.

[V. C(CAVITY, BEAM DIPOLE MODE, AND TUNING LOOP

A feedforward (or program) accomplishes the bulk of the
cavity tuning. The tuning loop endeavours to bring the
generator current and gap voltage vectors in-phase by
modifying the cavity resonance frequency. The feedback,
for small oscillations about the program set-point, is mod-
elled by a pure integrator: 7c AQpe, = (K:/5) X (g — év).
Since there are no other loops present, ¢4 = 0 for all time.
The loop will tend to reduce the phase error to zero (i.e.
bg = dv) provided K is positive.

Characteristic polynomial
Qf cos pup K (1 — Yysin pp) + 2r.st + rf S+
+Q2[cos pp(sec’ ¥ + 1. K¢) — Yy tan ¥]s+

+[K: 4292 cos(ps) e]s* + [sec®¥ + 7. K; + (R 7c) cos pp)s>.
A necessary condition for stability is that the coefficients
of s! be greater than zero, and this implies

] if¥>0.

K.
sin2¥  tan V¥
However, this condition is subordinate to RH(5).

Y, < cos pp [

Routh determinants

RH(3): 2sec? ¥ + K;7. > 0 .

RH(4):

Ki(2sec?¥ + K m.) + Yy Q27 [4tan ¥ — K7 sin 2] > 0 .
This condition is usually unimportant for positive detuning
(¥ >0), and is subordinate to RH(5) for negative detuning.

RH(5): This expression can be solved for the beam current
Y}, and is found to factor:
Y, < [0.5K;sin 2ub(secz\[l + 1K) — K¢ tan U+
+Qf cos(pp)e(2tan ¥ — 0.5K, 7 sin 2pp)] x
(2sec?W + K,7.)/Q2r.(2tan ¥ — 0.57 K¢ sin 2u)? .
Since the beam current (Y,) is positive, this leads to a
quadratic constraint on the tuning loop gain.

We now simplify the expressions to a non-accelerating
beam, to make a correspondence with Reference [4]. In the
limit up —0 the stability criterion can be written:

K, 2 K7
Y, 1- -
b< [ 2937}] [sm 2¢  tan ¥
The tuner gain condition, for +ve and -ve tuning angles,
can be summarized (K; — 2Q%7;) x ¥ < 0. The instability
regime where ¥, < 1, ¥ > 0 and K. > 2Q%1, has been
experimentally observed in the PSB [4].

V. TUNING LOOP AND BEAM PHASE-LOOP

We supplement the previous model with the ideal phase-
loop; s¢g = Kp(dp—¢v). Because st AQyes = Ke(dg—9ov)
there is the possibility for cross-coupling to the tuning loop
through the cavity-voltage phase-perturbation ¢g.

Characteristic polynomial

Qf cos pp K¢ (1 — Yy sin pp) + 27 s+ rczss+
+{Q%[cos us(sec® ¥ + . K¢) — Y tan¥]+
Kp[K:+Q% 7. sin pp(Ys cos pp—tan¥)]}s+{ K +2Q2 cos pupe+
+K, [secz‘ll + 1. K; + Ys(sin pp — cos pp ta.n\[l)]}s2 +
+[sec? W + 7 K¢ + (Q7c)? cos pp + Te Kp(L + Yo sin )]s
The coefficients of s! and s? have the possibility to change
sign when ¥ > 0. For brevity we give the limit yp = 0.
2 Ki(re + Kp/Q2)
sin 2¥ tan W

Yy, < when up =0, ¥ >0.

The coefficient of s? is automatically positive if tan ¥ <
tan up; alternatively,




2
sin 2¥

2047, + K (1 + 7 Kp)

e if gp=0, ¥>0.
p

Y, <

Routh determinants

RH(3) factors and simplifies to: 2+ 1. K, cos 2W
+Yy7e Kp cos Usin(¥ + po) + 7 Ke(1 - Kpte) cos’¥ > 0.
This condition is reminiscent of RH(3) in section III and
has the effect of allowing some negative detuning. We
should also like RH(3) to be satisfied in the limit Y, — 0;
and for K, >> 1 this implies the approximate condition:
Kire <2—sec’¥ < 1.

RH(4): The Routh determinant has many terms, but sim-
plifies under the substitution tan ¥ = Y} cos us, as occurs
when the generator is matched (¥4 = 0); one finds a cu-
bic condition in Y. A sufficient stability condition is that
the coefficients of Y%, Y;!, ¥;2, Y;? be greater than zero.
Only the coefficients of Y,? and Y,' have the possibility to
change sign; and so, by inspection, sufficient conditions for
RH(4)> 0 are . K; <1 and Kp > K:. :
RH(5): The Routh determinant has many decades of mono-
mial terms. Under the condition ¥y = 0, there results a
quintic polynomial in Ys. The condition pp = 0 reduces
the system to a quadratic in Y;? ; the coefficient of Y}
is unavoidably negative, and so limits the maximum beam
current. The allowed domain of Y, will be maximized when
the coefficients of Y,? and Y,? are positive. By inspection,
K. < | and K, > K; is a sufficient condition for both
coefficients to be positive.

RH(6): | — Yysinp, > 0 imposes a further constraint on
the beam current, which is the same as the no-loop case
for a matched generator.

A.

R.F. feedback around the cavity

Including a voltage proportional feedback around the
cavity modifies the equations. This type of feedback, as
discussed in Reference [5], requires a high power sum-
ming junction since it is the entire r.f. signal which is
fed back. The current Iy becomes the sum of the de-
mand current 13 and the feedback current Iy —hly.
It is found that the characteristic polynomials are identi-
cal with those of sections II, III, IV, V except with the
substitutions: 7. = 7./(1 +h) , tan ¥ = tan ¥ /(1 + h) ,
Y, = Y,/(1 + h) made throughout. This being so, we can
take over all previous results regarding the polynomial co-
efficients and Routh-Hurwitz determinants. Generally, the
stability limit is enhanced by a factor (1 + h).

VI. CAVITY, BEAM DIPOLE AND QUADRUPOLE MODES

Robinson type stability for dipole-quadrupole mode cou-
pling has been investigated in Reference [6], for the case
s = 0. We generalize to the case of an accelerating beam.

A. Rigid bunch quadrupole motion

Let bunch half-length be © = ©9+8, the sum of a steady
state part Oy and a small perturbation 6(t). The Laplace
transform of the envelope oscillation can be derived from:

3

s = QZJW and sO0W = —4cospup x 8 — zy©Ogcos s -
where the variable W is conjugate to 6. To complete our
description of the beam coupling to the cavity, we give
the relation between 8 and amplitude modulation of the
beam current zy. To first order z, + Fo x =0 . The form
factor Fy depends on the bunch shape, A. Let Jn be Bessel
functions. For the functions A = (03 — z2)* with a > 0,
Fo(®0) = (224 1)/00 — Ja—1/2(00)/Jat1/2(O0) -
For example, if @ = 1 then Fy = ©¢/5 when ©o<1 .
Characteristic polynomial
The polynomial is too lengthy to reproduce here. We con-
sider pp > 0, in which case only the coefficient of s? has
the possibility to change sign when ¥ > 0; this implies
a beam current limit, but the condition is subordinate to
those below.
Routh determinants
RH(3): 2sec?¥ — Y, Fo@q(Q,7e)? cos ppsinpp > 0 .
This constraint is quite severe for small tuning angles and
long bunches, but is subordinate to RH(6).

If RH(3)> 0 then a sufficient condition for RH(4)> 0 is:
tan W > sin 2y Fo©o (1429277 cos pp)/2(1+FyO0 cos? pip) -
RH(5) simplifies very slightly to a condition with 24 mono-
mial terms, and there is no simple interpretation. In the
limit of large tuning angle, short bunch length, and Q,7
order of or less than unity, we find the approximation:
2tanW[2 cos up — Yp sin 2¥] + FpOq cos p[16 cos? iy tan ¥+
+4sin 2 sec’ U +2Y, (2 cos pp—sin pup tan ¥ —4 sin2\Il)] > 0.
The leading term in tan ¥ contains the Robinson limit.

RH(6) factors; if RH(3) > 0 and RH(4) > 0 this leaves
the new condition Y, < 3 tan ¥ /[Fy@q cos yp] which poses
a severe constraint at small tuning angles unless y; is large
or the bunches are short.

RH(7): 4(cos s sec2W — Yy tan¥) + Y, FOq cos pip(sin pp —
cos pp tan¥ + Yp) > 0. The term in sz in this quadratic
will favourably modify the stability compared with the
Robinson limit. However, for small tuning angles condition
RH(6) supersedes RH(7).
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