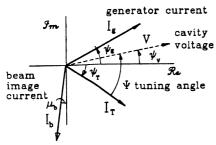
Analytic Criteria for Stability of Beam Loaded R.F. Systems

W433 i

Shane R. Koscielniak, TRIUMF Vancouver B.C. Canada

This paper presents the instability analysis of a beamloaded radio-frequency system with beam phase-loop and cavity tuning-loop for both accelerating and non-accelerating beams. The case of voltage-proportional feedback around the cavity is also included. The symbolic manipulation program SMP [1] was used to expand and simplify the Routh determinantal conditions for a fifth order characteristic polynomial. The paper is a much abridged version of an internal design note [2].

I. BEAM LOADING EQUATIONS



The disposition of steady state phasors is as shown above. We adopt the notation of Reference [2]. The cavity voltage is $\mathbf{V}(t)e^{j\omega t}$ and the total current driving the cavity is $\mathbf{I}_T(t)e^{j\omega t}$, where t indicates time and ω is the drive angular frequency. Bold face indicates complex quantities, and ordinary type denotes scalars. We employ dot notation for time derivatives. The cavity fundamental resonance is modelled as a parallel resonance LCR circuit. Let $\Omega_{res}=1/\sqrt{LC}$ be the resonance frequency and $\alpha=\Omega_{res}/(2Q)=1/(2RC)$ be the half-bandwidth. We write the voltage and current as the sum of steady state parts $\mathbf{V}^0=V^0e^{j\psi v}$ and $\mathbf{I}_T^0=I_T^0e^{j\psi T}$, and small time dependent perturbations. We use ψ to denote steady state phases and ϕ perturbation phases. Let $\Psi=\psi_V-\psi_T$.

A. Steady state

We must specify the steady state generator current $\mathbf{I}_g^0 = I_g^0 e^{j\psi_g}$ and beam image current $\mathbf{I}_b^0 = I_b^0 e^{j\psi_b}$ which sum to form the total current \mathbf{I}_T^0 . The beam current is $\approx 90^\circ$ out of phase with the cavity voltage; depending on the synchronous phase angle μ_b . We set $\mu_b = 0$ for a non-accelerating beam. Hence $\psi_b = \pm (\pi/2 + \mu_b)$ and the – sign applies below transition energy and the + above. We adopt the dimensionless current ratios $Y_g = I_g^0/I_V^0$ and $Y_b = I_b^0/I_V^0$, where $I_V^0 = V^0/R$. The components obey:

$$1 = Y_g \cos \psi_g - Y_b \sin \mu_b$$

$$\tan \Psi = Y_b \cos \mu_b - Y_g \sin \psi_g.$$

From this follows the detuning $\tan \Psi = (\Omega^2 - \omega^2)/2\alpha\omega$. Until we choose a definite value for ψ_g , there is no direct relation between $\tan \Psi$ and (Y_b, μ_b) .

B. Non steady state

Let us assume the "slow approximation" $\ddot{\mathbf{V}} \ll \omega \dot{\mathbf{V}}$ and $\dot{\mathbf{I}}_T \ll \omega \mathbf{I}_T$. We allow for a varying resonance frequency $\Omega(t) = \Omega_0(t) + \Delta \Omega(t)$. We introduce the perturbation vectors \mathbf{e} as follows: $\mathbf{V} = \mathbf{V}^0(1+\mathbf{e}_V)$ and $\mathbf{I}_T^0(1+\mathbf{e}_T) = \mathbf{I}_g^0(1+\mathbf{e}_g) + \mathbf{I}_b^0(1+\mathbf{e}_b)$. The dimensionless components z_r and ϕ_r of the vector $\mathbf{e}_r = (z_r + j\phi_r)$ are amplitude and phase modulations, respectively. The cavity response is modelled by:

$$\begin{split} z_V(1+s\tau_c) \; + \; \phi_V \tan\Psi \; + \; Y_g(\phi_g \sin\psi_g - z_g \cos\psi_g) \; + \\ & \quad + Y_b(z_b \sin\mu_b - \phi_b \cos\mu_b) = 0 \; , \\ \phi_V(1+s\tau_c) \; - \; z_V \tan\Psi \; - \; Y_g(\phi_g \cos\psi_g + z_g \sin\psi_g) \; + \end{split}$$

Here $\tau_c = \alpha^{-1}$ is the cavity time constant, and time derivatives are replaced by the Laplace operator s.

 $+ Y_b(z_b \cos \mu_b + \phi_b \sin \mu_b) = \tau_c \Delta \Omega .$

C. Beam rigid bunch dipole motion

Suppose the ideal drive frequency is synchronous with a particle travelling with the equilibrium. However, as a result of modulations the cavity phase may advance or lag by an amount ϕ_V . Likewise, the beam centroid may differ from the ideal phase by an amount ϕ_b . Suppose the cavity has relative amplitude modulation z_V .

To first order in perturbation amplitudes, the Laplace transform, of the beam energy deviation δE is:

$$s \delta E = K_1[z_V \sin \mu_b + (\phi_V - \phi_b) \cos \mu_b].$$

Because of the energy deviation, the phase error ϕ_b will advance at the rate: $s \phi_b = K_2 \delta E$. The product $\sqrt{K_1 \times K_2} = \Omega_s$, the synchrotron frequency sans the usual $\cos \mu_b$ term.

D. Stability conditions

The system response contains only self-damped oscillations, when all zeros of the characteristic polynomial lie in the left half of the complex plane. Necessary conditions are for the coefficients of s^n and the Routh-Hurwitz criteria [RH(i) for $i=1,2,\ldots n+1]$ for combinations of the coefficients to be greater than zero. We shall omit trivial conditions such as $\tau_c > 0$.

II. CAVITY AND BEAM DIPOLE MODE

This is the case originally treated by Robinson [3]. The model assumes that the generator current is maintained by an ideal feed-forward.

Characteristic polynomial

$$\Omega_{s}^{2}[\cos \mu_{b} \sec^{2} \Psi - Y_{b} \tan \Psi] + 2\Omega_{s}^{2} \cos(\mu_{b}) \tau_{c} s + + [\sec^{2} \Psi + (\Omega_{s} \tau_{c})^{2} \cos \mu_{b}] s^{2} + 2\tau_{c} s^{3} + \tau_{c}^{2} s^{4}.$$

Routh determinants

RH(4): tan $\Psi \geq 0$, hence $\Psi \geq 0$. If RH(4) < 0, then the cavity is detuned in the wrong sense.

RH(5): $\cos \mu_b \sec^2 \Psi - Y_b \tan \Psi > 0$ implies the Robinson limit: $Y_b < 2\cos\mu_b/\sin2\Psi$. If RH(5) < 0, the bunch simply wanders. Substituting the matched generator condition $(\psi_a = 0)$ gives the special case $Y_b < 1/\sin \mu_b$.

CAVITY, BEAM DIPOLE MODE, PHASE-LOOP

The model of section II is supplemented with a beam phase-loop intended to damp bunch dipole oscillations. We assume that the feedback has the response of a pure integrator, and modifies the generator phase ϕ_g , that is $\phi_q = (K_p/s) \times (\phi_b - \phi_V)$. If there is an r.f. feedback around the cavity, this loop modifies the demand phase ϕ_d .

Characteristic polynomial

 $\Omega^2 [\cos \mu_b \sec^2 \Psi + K_p \tau_c \sin \mu_b Y_a \sin \psi_a - Y_b \tan \Psi] +$ $+[K_p \sec^2 \Psi + K_p Y_b (\sin \mu_b - \cos \mu_b \tan \Psi) + 2\Omega_s^2 \cos(\mu_b) \tau_c]s +$ $+[\sec^2\Psi + K_p\tau_c(1+Y_b\sin\mu_b) + (\Omega_s\tau_c)^2\cos\mu_b]s^2 + 2\tau_cs^3 + \tau_c^2s^4$ A necessary condition for stability is that the coefficient of s^1 be > 0. Unless $\tan \Psi \le \tan \mu_b$ and $K_p > 0$, we find a condition for Y_b which resembles the Robinson limit;

$$Y_b < \frac{2}{\sin 2\Psi} + \frac{2\Omega_s^2 \tau_c}{K_p \tan \Psi} \quad \text{if } \mu_b = 0 \; .$$
 In most cases this limit is subordinate to RH(5) below.

Routh determinants

 $\mathrm{RH}(3) \colon 2 + K_p \tau_c [\cos 2\Psi + Y_b \cos \Psi \sin(\Psi + \mu_b)] > 0.$ This condition allows a domain of stability with $\Psi + \mu_b < 0$. The damping provided by the phase-loop can overcome (partially) the instability caused by incorrect detuning.

 $RH(5): \cos \mu_b \sec^2 \Psi + K_p \tau_c \sin \mu_b Y_g \sin \psi_g - Y_b \tan \Psi > 0.$ Unless $\psi_g \times \mu_b > 0$ there is no change to the Robinson limit.

RH(4):
$$0 \le 2K_p \sec^2 \Psi [\sec^2 \Psi + Y_b (\sin \mu_b - \cos \mu_b \tan \Psi) + (\Omega_* \tau_c)^2 \cos \mu_b (\cos 2\Psi + \tan \mu_b \sin 2\Psi)] +$$

$$+2K_{p}(\Omega_{s}\tau_{c})^{2}\cos\mu_{b}Y_{b}(\cos\mu_{b}\tan\Psi-\sin\mu_{b})+4\Omega_{s}^{2}\tau_{c}Y_{b}\tan\Psi+\\+\tau_{c}K_{p}^{2}[(1+Y_{b}\sin\mu_{b})^{2}-(Y_{g}\sin\psi_{g}\tan\Psi)^{2}].$$

A sufficient condition for RH(4) > 0 is $\tan \Psi = \tan \mu_b$. Alternatively, we may substitute $\psi_g = 0$ and so find RH(4) > 0 at all points on the matched generator curve. Finally, we note that $\mu_b = 0$, $\tan \Psi < 1/\tan \psi_g$ and RH(5) > 0 are sufficient conditions for RH(4) > 0.

CAVITY, BEAM DIPOLE MODE, AND TUNING LOOP

A feedforward (or program) accomplishes the bulk of the cavity tuning. The tuning loop endeavours to bring the generator current and gap voltage vectors in-phase by modifying the cavity resonance frequency. The feedback, for small oscillations about the program set-point, is modelled by a pure integrator: $\tau_c \Delta \Omega_{res} = (K_t/s) \times (\phi_g - \phi_V)$. Since there are no other loops present, $\phi_g = 0$ for all time. The loop will tend to reduce the phase error to zero (i.e. $\phi_q = \phi_V$) provided K_t is positive.

Characteristic polynomial

$$\Omega_s^2 \cos \mu_b K_t (1 - Y_b \sin \mu_b) + 2\tau_c s^4 + \tau_c^2 s^5 +$$

 $+ \Omega_s^2 [\cos \mu_b (\sec^2 \Psi + \tau_c K_t) - Y_b \tan \Psi] s +$

 $+[K_t+2\Omega_s^2\cos(\mu_b)\tau_c]s^2+[\sec^2\Psi+\tau_cK_t+(\Omega_s\tau_c)^2\cos\mu_b]s^3.$ A necessary condition for stability is that the coefficients of s^1 be greater than zero, and this implies

$$Y_b < \cos \mu_b \left[\frac{2}{\sin 2\Psi} + \frac{K_t \tau_c}{\tan \Psi} \right] \quad \text{if } \Psi > 0 \ .$$

However, this condition is subordinate to RH(5).

Routh determinants

RH(3): $2\sec^2 \Psi + K_t \tau_c \geq 0$.

RH(4):

 $K_t(2\sec^2\Psi + K_t\tau_c) + Y_b\Omega_s^2\tau_c\left[4\tan\Psi - K_t\tau_c\sin2\mu_b\right] \ge 0.$ This condition is usually unimportant for positive detuning $(\Psi > 0)$, and is subordinate to RH(5) for negative detuning. RH(5): This expression can be solved for the beam current Y_b , and is found to factor:

$$Y_b < [0.5K_t \sin 2\mu_b(\sec^2\Psi + \tau_c K_t) - K_t \tan \Psi +$$

$$+ \Omega_s^2 \cos(\mu_b)\tau_c(2\tan \Psi - 0.5K_t\tau_c \sin 2\mu_b)] \times$$

 $(2\sec^2\Psi + K_t\tau_c)/\Omega_s^2\tau_c(2\tan\Psi - 0.5\tau_cK_t\sin2\mu_b)^2$. Since the beam current (Y_b) is positive, this leads to a

quadratic constraint on the tuning loop gain. We now simplify the expressions to a non-accelerating beam, to make a correspondence with Reference [4]. In the limit $\mu_b \rightarrow 0$ the stability criterion can be written:

$$Y_b < \left[1 - \frac{K_t}{2\Omega_*^2 \tau_c}\right] \left[\frac{2}{\sin 2\Psi} + \frac{K_t \tau_c}{\tan \Psi}\right] .$$

The tuner gain condition, for +ve and -ve tuning angles, can be summarized $(K_t - 2\Omega_s^2 \tau_c) \times \Psi < 0$. The instability regime where $Y_b \ll 1$, $\Psi > 0$ and $K_t > 2\Omega_s^2 \tau_c$ has been experimentally observed in the PSB [4].

TUNING LOOP AND BEAM PHASE-LOOP

We supplement the previous model with the ideal phaseloop; $s\phi_g = K_p(\phi_b - \phi_V)$. Because $s\tau_c \Delta\Omega_{res} = K_t(\phi_g - \phi_V)$ there is the possibility for cross-coupling to the tuning loop through the cavity-voltage phase-perturbation ϕ_g .

Characteristic polynomial

$$\Omega_{s}^{2} \cos \mu_{b} K_{t} (1 - Y_{b} \sin \mu_{b}) + 2\tau_{c} s^{4} + \tau_{c}^{2} s^{5} + + \{\Omega_{s}^{2} [\cos \mu_{b} (\sec^{2} \Psi + \tau_{c} K_{t}) - Y_{b} \tan \Psi] +$$

$$K_p[K_t + \Omega_s^2 \tau_c \sin \mu_b (Y_b \cos \mu_b - \tan \Psi)] s + \{K_t + 2\Omega_s^2 \cos \mu_b \tau_c + (K_t + 2\Omega_s^2 \cos \mu_b + (K_t + 2\Omega_s^2$$

$$+K_{p}[\sec^{2}\Psi + \tau_{c}K_{t} + Y_{b}(\sin\mu_{b} - \cos\mu_{b}\tan\Psi)]\}s^{2} +$$

$$+[\sec^{2}\Psi + \tau_{c}K_{t} + (\Omega_{s}\tau_{c})^{2}\cos\mu_{b} + \tau_{c}K_{p}(1 + Y_{b}\sin\mu_{b})]s^{3}.$$

The coefficients of
$$s^1$$
 and s^2 have the possibility to change

sign when $\Psi > 0$. For brevity we give the limit $\mu_b = 0$.

$$Y_b < rac{2}{\sin 2\Psi} + rac{K_t(au_c + K_p/\Omega_s^2)}{\tan \Psi} \quad {
m when} \;\; \mu_b = 0 \;, \; \Psi > 0 \;.$$

The coefficient of s^2 is automatically positive if $\tan \Psi \leq$ $\tan \mu_b$; alternatively,

$$Y_b < rac{2}{\sin 2\Psi} + rac{2\Omega_s^2 \tau_c + K_t (1 + \tau_c K_p)}{K_p \tan \Psi}$$
 if $\mu_b = 0$, $\Psi > 0$.

Routh determinants

RH(3) factors and simplifies to: $2 + \tau_c K_p \cos 2\Psi + Y_b \tau_c K_p \cos \Psi \sin(\Psi + \mu_b) + \tau_c K_t (1 - K_p \tau_c) \cos^2 \Psi \ge 0$.

This condition is reminiscent of RH(3) in section III and has the effect of allowing some negative detuning. We should also like RH(3) to be satisfied in the limit $Y_b \to 0$; and for $K_p \tau_c \gg 1$ this implies the approximate condition: $K_t \tau_c < 2 - \sec^2 \Psi \le 1$.

RH(4): The Routh determinant has many terms, but simplifies under the substitution $\tan \Psi \Rightarrow Y_b \cos \mu_b$, as occurs when the generator is matched $(\psi_g = 0)$; one finds a cubic condition in Y_b . A sufficient stability condition is that the coefficients of Y_b^0 , Y_b^1 , Y_b^2 , Y_b^3 be greater than zero. Only the coefficients of Y_b^0 and Y_b^1 have the possibility to change sign; and so, by inspection, sufficient conditions for RH(4)>0 are $\tau_c K_t \leq 1$ and $K_p \geq K_t$.

RH(5): The Routh determinant has many decades of monomial terms. Under the condition $\psi_g = 0$, there results a quintic polynomial in Y_b . The condition $\mu_b = 0$ reduces the system to a quadratic in Y_b^2 ; the coefficient of Y_b^4 is unavoidably negative, and so limits the maximum beam current. The allowed domain of Y_b will be maximized when the coefficients of Y_b^0 and Y_b^2 are positive. By inspection, $K_t \tau_c \leq 1$ and $K_p \geq K_t$ is a sufficient condition for both coefficients to be positive.

RH(6): $1 - Y_b \sin \mu_b > 0$ imposes a further constraint on the beam current, which is the same as the no-loop case for a matched generator.

A. R.F. feedback around the cavity

Including a voltage proportional feedback around the cavity modifies the equations. This type of feedback, as discussed in Reference [5], requires a high power summing junction since it is the entire r.f. signal which is fed back. The current \mathbf{I}_g becomes the sum of the demand current \mathbf{I}_d^0 and the feedback current $\mathbf{I}_f = -h\mathbf{I}_V$. It is found that the characteristic polynomials are identical with those of sections II, III, IV, V except with the substitutions: $\tau_c \Rightarrow \tau_c/(1+h)$, $\tan\Psi \Rightarrow \tan\Psi/(1+h)$, $Y_b \Rightarrow Y_b/(1+h)$ made throughout. This being so, we can take over all previous results regarding the polynomial coefficients and Routh-Hurwitz determinants. Generally, the stability limit is enhanced by a factor (1+h).

VI. CAVITY, BEAM DIPOLE AND QUADRUPOLE MODES

Robinson type stability for dipole-quadrupole mode coupling has been investigated in Reference [6], for the case $\mu_b = 0$. We generalize to the case of an accelerating beam.

A. Rigid bunch quadrupole motion

Let bunch half-length be $\Theta = \Theta_0 + \theta$, the sum of a steady state part Θ_0 and a small perturbation $\theta(t)$. The Laplace transform of the envelope oscillation can be derived from:

 $s\,\theta=\Omega_s^2\,\delta W$ and $s\,\delta W=-4\cos\mu_b\times\theta-z_V\,\Theta_0\cos\mu_b$, where the variable δW is conjugate to θ . To complete our description of the beam coupling to the cavity, we give the relation between θ and amplitude modulation of the beam current z_b . To first order $z_b+F_0\times\theta=0$. The form factor F_0 depends on the bunch shape, λ . Let J_n be Bessel functions. For the functions $\lambda=(\Theta_0^2-x^2)^\alpha$ with $\alpha>0$,

 $F_0(\Theta_0) = (2\alpha + 1)/\Theta_0 - J_{\alpha-1/2}(\Theta_0)/J_{\alpha+1/2}(\Theta_0) .$

For example, if $\alpha=1$ then $F_0\approx\Theta_0/5$ when $\Theta_0<1$.

Characteristic polynomial

The polynomial is too lengthy to reproduce here. We consider $\mu_b > 0$, in which case only the coefficient of s^2 has the possibility to change sign when $\Psi > 0$; this implies a beam current limit, but the condition is subordinate to those below.

Routh determinants

RH(3): $2\sec^2\Psi - Y_bF_0\Theta_0(\Omega_s\tau_c)^2\cos\mu_b\sin\mu_b > 0$. This constraint is quite severe for small tuning angles and long bunches, but is subordinate to RH(6).

If RH(3)> 0 then a sufficient condition for RH(4)> 0 is: $\tan \Psi > \sin 2\mu_b F_0 \Theta_0 (1+2\Omega_s^2 \tau_c^2 \cos \mu_b)/2(1+F_0 \Theta_0 \cos^2 \mu_b)$.

RH(5) simplifies very slightly to a condition with 24 monomial terms, and there is no simple interpretation. In the limit of large tuning angle, short bunch length, and $\Omega_s \tau_c$ order of or less than unity, we find the approximation:

 $2 \tan \Psi [2 \cos \mu_b - Y_b \sin 2\Psi] + F_0 \Theta_0 \cos \mu_b [16 \cos^2 \mu_b \tan \Psi + 4 \sin 2\mu_b \sec^2 \Psi + 2Y_b (2 \cos \mu_b - \sin \mu_b \tan \Psi - 4 \sin^2 \Psi)] > 0.$ The leading term in $\tan \Psi$ contains the Robinson limit.

RH(6) factors; if RH(3) > 0 and RH(4) > 0 this leaves the new condition $Y_b < 3 \tan \Psi/[F_0\Theta_0 \cos \mu_b]$ which poses a severe constraint at small tuning angles unless μ_b is large or the bunches are short.

RH(7): $4(\cos \mu_b \sec^2 \Psi - Y_b \tan \Psi) + Y_b F_0 \Theta_0 \cos \mu_b (\sin \mu_b - \cos \mu_b \tan \Psi + Y_b) > 0$. The term in Y_b^2 in this quadratic will favourably modify the stability compared with the Robinson limit. However, for small tuning angles condition RH(6) supersedes RH(7).

VII. REFERENCES

- [1] SMP: A Symbolic Manipulation Program; Inference Corporation, Los Angeles, California.
- [2] S. Koscielniak: Analytic Criteria for Stability of Beam Loaded R.F. Systems; Triumf TRI-DN-92-K204.
- [3] K. Robinson: Stability of beam in radio-frequency system; Internal Report CEAL-1010, Feb. 1964.
- [4] F. Pedersen: Beam loading effects in the CERN PS Booster, IEEE Trans. Nucl. Sci. Vol. NS-22, No. 3, June 1975, p. 1906-1090.
- [5] D. Boussard: Control of cavities with high beam loading; CERN/SPS/85-31 (ARF).
- [6] Tai-Sen Wang: Bunches beam longitudinal mode coupling and Robinson type instabilities, Particle Accelerators Vol.34, p.105, 1990.

CERN LIBRARIES, GENEVA

CM-P00068384