0, G CERN - CN 93 -4

A < CERN/CN /93 /4

£RN Sw93i
EUROPEAN LABORATORY FOR PARTICLE PHYSICS

CERN - CN Division

Executable System Specifications

L. Pregernig

ABSTRACT

With modern computer-aided-engineering tools it has become pos-
sible to model and to simulate specifications of time-dependent sys-
tems, regardless of their application domain. This allows one to
analyze the dynamicbehavior of systems and to evaluate alternatives,
at the specification level, before committing any resources to detailed
design. The paper describes the foundations for these methods and
illustrates results of their application with an example.

Presented at the Schweizer Automatik Pool Forum 21
Zurich, Switzerland, March 9-10, 1993

’ CERN LIBRARIES, GENEVA

ﬁ R A TAAL

CM-P00065733

CERN/CN/93/4

1. Introduction

Looking at the evolution of cars is a good opportunity to see
how systems are becoming more and more complex. For instance,
the original Beetle had a reputation of a simple car which any local
blacksmith could fix. Probably, one of its most complex systems
was the ignition system. Today, engine-management systems
replace traditional ignition systems and, we are likely to find more
systems of similar complexity in a car, controlling features like
cruising speed, (anti-lock) brakes, theft deterrents, etc.. For in-
stance, in a typical American car, the programs which control all
these systems count some 50,000 lines of code.

In the future, one will observe a further increase in complexity
and there are strong reasons to deal with it as early as possible in
the design process. Studies show that a company’s gains are high-
est during the first few months of a successful product introduc-
tion. Yet, studies also show that it costs considerably (up to several
order of magnitudes!) more to fix a problem in a finished product
than to fix it at an earlier design stage.

This article attempts to address this issue. In particular, it will
show how to build and how to simulate models of system specifica-
tions, with the aim to verify that the specifications fully meet the
requirements. The following chapter will concentrate on system
development in general. Then chapter 3 will give details about
modeling and simulating system specifications. In chapter 4, an
application example will illustrate this methodology. Finally, some
conclusions will be drawn, based on the results of the example.

2. System Development

R

Talking about system development, it is important to distin-
guish between (i) development process, (ii) development methods,
and (iii) notations.

First, as development process one understands all those organiza-
tional steps which are undertaken to develop a system. It means
defining (i) stages for system development, (ii) an order to execute
those stages, and (iii) criteria for proceeding from one stage to the
next one.

Executable System Specifications

CERN/CN/93/4

Second, development methods are the ways to design, build, and
test a system.

Third, as notations one understands the specifications for docu-
menting a design; e.g., using circuit diagrams, flow charts, hard-
ware description languages, etc..

Neglecting this differentiation may cause problems. For in-
stance, if an organization just adopts a notation, but assumes that,
in this way, it has adopted a methodology or even a process, ex-
pected “process improvements” are unlikely to occur. Also, if an
organization adopts a standard methodology as their development
process, frequent readjustments may become necessary for differ-
ent system-development efforts. Models for system-development
processes have been around for some time. The following describes
some typical representatives and their implications for system
development.

In the absence of a defined system-development process (“ad-
hoc development process”), one can observe a series of shortcomings.
Most likely, engineers will apply individualized methods which
may differ from one project to the next. Furthermore, it will be
difficult to judge development progress, because no milestones
have been defined. And, on larger projects, significant integration
problems may occur.

The classical model for system development is the Waterfall
Process M (Fig. 1). It differentiates between system specification and
system implementation. It will work, if the requirements are right.
But, specifications may change during the process, for instance, as a
consequence of certain implementation limitations which were not
foreseen during the specification phase. The waterfall process puts
the emphasis on completing a stage, before moving on to the next
stage. All stages have equal weight. Therefore, it is difficult to take
system-development risks into account.

System
Feasibility

Integrate

Operate
Maintain

Executable System Specifications

CERN/CN /93 /4

In an attempt to address system-development risks, the Spiral
Development Process (Fig. 2) has been proposed. It focuses on risk
analysis, and incremental planning and development. At the begin-
ning of each cycle, one identifies the objectives of the relevant
portion of the product, alternative means for implementation, and
potential constraints. The subsequent phase is evaluating the alter-
natives, and identifying and resolving risks. This may include
prototyping, simulation, etc.. Then, the next level is defined, taking
remaining risks into account. Each cycle ends with a review.

Risk Analysis (RA)

After that brief discussion of some typical models for system-
development processes, the following will focus on methods to
describe systems in an implementation-independent way.

Research has been carried out, aiming at describing systems
and analyzing their behavior in the problem domain (as opposed to
the implementation domain). Results from that research, combined
with progress in computer technology, made it possible to come up
with operational specifications. Operational specifications are both
implementation independent and executable. Therefore, they allow
one to analyze and to validate a system early in the development
process, before transforming the system specifications into the
actual system implementation. The next chapter describes in more
detail system modeling and simulation aspects.

Executable System Specifications 3

CERN/CN/93/4

3 System Modehng

A formal approach is necessary to build executable system
models. In particular, one needs to describe a system with a preci-
sion such that a simulator can execute the description. At the origin
of a class of methods and
notations to do so is Struc-
tured Analysis ® (DeMarco).
Its main elements are pro-
cesses, data-flows, data-
stores, sinks, and sources.
With these elements one can
describe a system in a form
which is known as data-flow
diagram (Fig. 3). But, data-
flow diagrams based on
structured analysis do not
contain timing and control 1nformat10n of a system. Therefore, their
main use is for business data systems.

To describe time-dependent systems, further developments
lead to Real-Time Structured Analysis (RTSA) 3. RTSA defines
control or event flows, and control processes, in addition to the
previously mentioned data-
flow description elements.
This allows one to describe
the timing and control be-
havior of a system. In Fig-
ure 4, “Increment” and
“Decrement” belong to the
timing-and-control category,
while the other elements are
data-flow elements. A fur-
ther evolution was to com-
bine characteristics of these
notations and methods into a
graphical language called ESML (Extended Systems Modeling
Language) . Based on these methods, it became feasable to build
executable system models.

4 Executable System Specifications

CERN/CN/93/4

Executable system models include the precision necessary for
simulation and, consequently, one can analyze a system’s dynamic
behavior early in the development process, and independent from
the implementation. Therefore, they play an important role (i) in
understanding the problem which one intends to solve, and (ii) in
communicating this knowledge to others. Furthermore, one can
refine the specifications, as the design process evolves.

The term system simulation covers a broad range of activities.
One can split them into three main areas: (i) performance simula-
tion, (ii) behavioral simulation, and (iii) functional simulation.
Performance simulation mainly deals with timing and throughput
analysis. Behavioral simulation allows one to analyze control and
process sequencing aspects of a system, while functional simulation
refers to the analysis of data and process transformations. After this
discussion about the foundations for generating executable system
specifications, the example below serves to illustrate the concepts.

4. Application Exampl

SRR

This example was built to analyze a queuing problem, as
illustrated in Figure 5. Event data will arrive at a given rate at the
input of a buffer (derandomizer). The event rate is constant over
time, but the intervals between individual events are unequal, they
follow an exponential distribution. The buffer has a fixed size and

control control

can accept a limited amount of event data. Whenever the buffer
contains data, they will be read. This takes a certain (for this ex-
ample fixed) amount of time per registered event (readout delay).
Events which occur while the buffer is full will be lost.

Executable System Specifications 5

CERN/CN/93/4

It is now the designer’s task to find optimal values for the
buffer size and the readout delay, in order to minimize event losses.
Further restrictions are (i) that under realistic conditions the mini-
mum readout time will be in the order of a few microseconds, and
(i) that the buffer has to fit into an integrated circuit.

This system has been successfully modeled and simulated with
Foresight 7. Foresight is a tool-set that consists of (i) editors and
libraries to build a model, (ii) an analyzer to check the model and to
create the simulation structure, and (iii) a simulator to exercise the
model (Fig. 6). The model to analyze the queuing problem is a
hierarchical model. It con-
sists of a series of data-flow
diagrams and state-transi-
tion diagrams. The graphi-
[DATABASE J cal way of building and

debugging the model, and
features like animation
during simulation, facilitate
the designer’s task. This
helps to optimize the use of
creative engineering time
during the model building and validation phase. But, the price to
pay for this interactivity is a reduction in simulation speed.

Editors Analyzer

Library Simulator

The analysis of the system model shows plateaus for both the
buffer size and the readout delay (Fig. 7). Therefore, (i) increasing
the derandomizer size to accommodate data from more than 7
events, and (ii) pushing the
readout delay to values
below 9 ps will only result
in somewhat marginal
improvements. In addition
to these results, the simula-
tion helped to detect a
potential problem with
regard to emptying the
buffer. Under certain cir-
cumstances a race condition
was observed. Event data
could enter the buffer un-
registered and “clog” it.
Losses close to 100% were the consequence. But, with a properly
designed buffer-control electronic, one can eliminate this hazard.

Executable System Specifications

CERN/CN/93/4

The example above demonstrates that (using Foresight) it was
possible to successfully model and simulate a system, independent
of any implementation details. The results of the simulation show
(i) how important system parameters influence the system behavior
and (ii) which parameter values are acceptable choices. Further-
more, the simulation allowed to detect a potential design problem
which may have been difficult to identify at a later design stage.

Work is under way to address issues, like improved simulation
speed, or automating the transformation from the specification to
the implementation phase. It is expected that enhancements which
will automatically convert the system model into compilable code
become available in the near future (early prototypes exist). As
early test results have shown, this will improve simulation speed
by a factor of 40 (for a test example, some 720 events per second
were measured in interpreted mode, and about 30,000 events per
second in compiled mode). Yet, at the time of this writing, no
estimates can be made, if or when tools become available that
convert a system specification into an implementation, at the push

of a button.

Nevertheless, the conclusion of this presentation is that apply-
ing system-modeling and simulation techniques present consider-
able advantages.

Acknowledgements

The author would like to thank C. Eck and D. Jacobs from
CERN for very actively supporting system-level modeling and
simulation. A. Thys and N. Gémez have been very helpful in get-
ting this new activity off the ground, and P. Farthouat helped with
the example. Special thanks to B. Gaiser, B. Robinson, and M. Vertal
from Nu Thena Systems. Their expertise and assistance were im-
portant factors in quickly reaching system-level-modeling profi-
ciency. Furthermore, many useful discussion with them were
fundamental to express the ideas which are presented in this paper.
Thank you to B. Deutsch and G. Goetschmann from Intergraph for
their efforts during the acquisition phase.

Executable System Specifications 7

CERN/CN/93/4

Referen

ces

[1] Royce W. W.: “Managing the Development of Large Software
Systems: Concepts and Technigues,” Proc. Wescon, August 1970.

[2] Boehm, B. W.: “A Spiral Model of Software Development and
Enhancement,” ACM Sigsoft Software Engineering Notes, 1986,
Vol 11, No 4, pp. 14-24.

[31 DeMarco, T.: “Structured Analysis and System Specification,”
Prentice Hall, 1978.

[4] Mellor, S. and Ward, P.: “Structured Development for Real-Time
Systems,” Vols. 1-3, Yourdon Press, 1985.

[5] Hatley, D.]. and Pirbhai, L: “Strategies for Real-Time System
Specification,” Dorset House, 1987.

[6] Bruyn, W., Jensen, R., Keskar, D., Ward, P.: “ESML: An
Extended Systems Modeling Language Based on the Data Flow
Diagram,” ACM Sigsoft, Software Engineering Notes,

Vol 13 No 1, pp 58-67.

[7]1 Nu Thena Systems Inc.: “Foresight,” McLean, Virginia.

8 Executable System Specifications

