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Abstract

This thesis describes a data-driven technique for estimating the multijet

background to Supersymmetry (SUSY) searches with no leptons using the

ATLAS detector at the Large Hadron Collider. The technique is used to

estimate multijet distributions in SUSY signal and control regions with

1 fb−1 of
√

s = 7 TeV data collected by ATLAS in 2011. The systematic

uncertainty on the estimates is reduced with the development and use of

novel event shape triggers. Multijet estimates provided from the technique

developed in this thesis are used by the ATLAS collaboration in several

different SUSY searches.
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Chapter 1

Introduction

The search for SUSY is one of the most important tasks for experimental particle

physicists. Searches using the particle detectors at the Large Hadron Collider (LHC)

currently offer the best chance of directly discovering SUSY particles in nature. In

the searches using the ATLAS detector, the measurement of jet response and its use

for multijet background estimation is a vital part of this quest.

This thesis describes a data-driven technique for estimating the multijet back-

ground to fully hadronic searches for Supersymmetry (SUSY) at ATLAS. This in-

cludes the measurement of jet response, including its non-Gaussian tails, and the

development and use of novel event shape triggers to increase the sensitivity of this

measurement. The use of this technique on 1 fb−1 of data collected by the ATLAS

experiment in 2011 is described.

Chapter 2 gives an overview of the Standard Model of particle physics and an

introduction to SUSY. The motivation for SUSY is explained, in that it provides a

solution to the hierarchy problem of the Higgs mechanism of electroweak symmetry

breaking. The current status of SUSY searches is then reviewed including strategies

for controlling and estimating the multijet background to fully hadronic searches

at hadron colliders. Chapter 3 describes the LHC and the ATLAS detector, with

particular emphasis on the calorimetry and trigger systems which are used in this

3



Introduction

thesis. Chapter 4 then describes the analysis tools used in this thesis, such as Monte

Carlo simulation and how physics objects are reconstructed using ATLAS. Chapter 5

gives details on the fully hadronic SUSY search performed at ATLAS, to which the

author contributed. The results from this search using 1 fb−1 are presented.

Chapter 6 gives an overview of the jet smearing method for multijet background

estimation including the assumptions behind the technique and how low-Emiss
T data

seed events are selected. Chapter 7 then describes how jet smearing is used to measure

jet response at ATLAS, including the measurement of non-Gaussian response tails.

Novel event shape ∆φ triggers are then introduced and they are shown to provide

extra statistics for the measurement of non-Gaussian response. Chapter 8 describes

the use of jet smearing to provide the multijet estimation for the fully hadronic SUSY

search and presents the results of this analysis.

Chapter 9 gives a summary of this thesis and concludes. Future work which

could improve the techniques developed in this thesis is discussed.
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Chapter 2

Theoretical and Experimental

Background

This chapter gives an overview of where the work of this thesis fits in the wider picture

of particle physics research and particularly in searches for Supersymmetry (SUSY) at

hadron colliders. §2.1 describes the Standard Model, including details on the strong

interaction and the Higgs mechanism of electroweak symmetry breaking. §2.2 then

introduces SUSY and explains its central ideas. The current progress in the search for

SUSY is briefly reviewed in §2.3. As yet there is no experimental evidence for SUSY,

the work in this thesis contributes to some of the latest and most sensitive searches

performed with ATLAS. Details of jet production and reconstruction in detectors

at hadron colliders are given in §2.4. The strategies for dealing with the multijet

background to SUSY searches with no leptons at hadron collider experiments are

discussed in §2.5, this is very relevant to the work in this thesis.

2.1 The Standard Model

The Standard Model (SM) (see e.g. [11]) is our most accurate mathematical descrip-

tion of the fundamental constituents of the universe and how they interact. It was

5



2.1. The Standard Model Theoretical and Experimental Background

formulated in the 1970’s and succeeded in bringing together the electroweak and

quantum chromodynamic theories into an internally consistent framework. All of the

particles associated with the SM, with the exception of the Higgs boson, have been

experimentally observed. The SM cannot be a complete description of the universe as

it does not include gravity; furthermore, issues such as the gauge hierarchy problem

(see §2.1.3) and no dark matter candidate motivate extensions to the SM.

2.1.1 Particle Content

The SM is a quantum field theory and the excitations of the fields described by the SM

are the point-like fundamental particles which we observe in nature. The Lagrangian

of the theory is required to be “gauge invariant”; this means that the theory does

not depend on the space-time positions of the fields. To maintain this invariance,

additional gauge fields are included in the theory which provide the forces between

the particles. Particles in the SM possess internal angular momentum known as spin,

s . Matter particles (fermions) have half-integer spin s = 1/2 and the forces between

them are mediated by particles with integer spin (bosons). There are three forces in

the SM: the strong interaction, the weak interaction and electromagnetism. Fermions

which feel the strong interaction are known as quarks, otherwise they are known as

leptons. Table 2.1 shows the matter particles of the SM in the three generations which

have been observed, each generation containing a quark and lepton doublet. Table 2.2

shows the vector gauge bosons (excitations of the gauge fields) which mediate the

forces between the particles.

2.1.2 The Strong Interaction

The theory which governs the interactions of quarks and gluons is known as the strong

interaction, or Quantum Chromodynamics (QCD). The theory introduces a new type

of charge, known as “colour charge”, which is respected by the strong interaction in

the same way that electric charge is respected by electromagnetism. The strong in-

teraction is the strongest of the three forces and is mediated by the gluon which itself

6



2.1. The Standard Model Theoretical and Experimental Background

Quarks Leptons

Particle Mass (MeV) Charge (e) Particle Mass (MeV) Charge (e)

up (u) 1.7-3.1 2
3

electron (e) 0.511 -1

down (d) 4.1-5.7 −1
3

e neutrino (νe) < 2× 10−6 0

charm (c) 1290+50
−110

2
3

muon (µ) 105.7 -1

strange (s) 100+30
−20 −1

3
µ neutrino (νµ) < 2× 10−6 0

top (t) 1.73× 105 2
3

tau (τ) 1777 -1

bottom (b) 4190+180
−60 −1

3
τ neutrino (ντ ) < 2× 10−6 0

Table 2.1: Fermions in the Standard Model. These particles have spin s = 1/2. Inter-
actions between these particles are mediated by the gauge bosons shown in Table 2.2.

Force Vector Boson Mass (GeV) Electric Charge (e)

Strong gluon (g) 0 0

Weak
W± 80.4 ±1
Z 91.2 0

Electromagnetism photon (γ) 0 0

Table 2.2: Vector gauge bosons in the Standard Model. These particles possess integer
spin and mediate interactions between the fermions shown in Table 2.1. They are
excitations of the gauge fields.

carries colour charge. The strong interaction increases in strength with increasing dis-

tance; this property, coupled with the strength of the force, leads to the phenomenon

of confinement. Confinement dictates that particles carrying colour charge (quarks

and gluons, collectively known as partons) can only exist in bound states (hadrons).

Note that hadrons can be further subdivided into two groups: baryons, which contain

three quarks and mesons, which contain quark-antiquark pairs. Partons can only ex-

ist in bound states because the energy required to separate two partons is sufficient

to produce a quark-antiquark pair which can then bind to the original partons. If

a parton is given sufficient energy then it can produce many new pairs of particles

due to confinement, this is known as hadronisation. Hadronisation is observed in a

7



2.1. The Standard Model Theoretical and Experimental Background

particle detector as a group particles including baryons and mesons travelling approx-

imately co-linearly; this is usually referred to as a jet. Jet formation is described in

more detail in §2.4.

2.1.3 Electroweak Theory, the Higgs Mechanism and the Hierarchy

Problem

Electromagnetism and the weak force unify at ∼ 100 GeV and are described by the

electroweak theory. The four vector bosons which carry the electroweak interaction

are the photon, W+ , W− and the Z . As shown in Table 2.2, the W± and Z bosons

are observed to be massive. The mechanism for generating these masses in the SM,

without violating gauge invariance, is the Higgs mechanism [12]. A self-interacting

complex doublet scalar field is added to the theory which causes spontaneous sym-

metry breaking giving mass to the gauge bosons and fermions. The fermion masses

originate due to interactions between the Higgs scalar field and the fermionic fields

(interactions of this type are known as Yukawa couplings). The particle associated

with the Higgs field is the undiscovered Higgs boson. Although the mass of the Higgs

Boson is not predicted by the SM, other observables in the SM are sensitive to its

mass and these indicate a Higgs mass of less than 161 GeV [13]. Recent results from

the ATLAS experiment at the LHC indicate that Higgs mass lies between 115.5 GeV

and 131 GeV [14]. The probable low mass of the Higgs Boson conflicts with the fact

that radiative corrections to the Higgs mass (through such loop diagrams as shown

in 2.1) diverge quadratically up to a cut-off scale, Λ, where the SM is no longer valid.

If the SM is valid up to high energies then extreme amounts of fine-tuning to the bare

Higgs are required to keep the observed mass at ∼ 100 GeV. This unfeasible amount

of fine-tuning is known as the hierarchy problem.
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h

f

Figure 2.1: Example of a one-loop diagram which contributes to the Higgs mass
squared.

2.2 Supersymmetry

Supersymmetry (SUSY) hypothesises a symmetry between bosons and fermions. For

every SM particle, a partner particle (“sparticle”) is introduced with a spin quantum

number which differs by one half. Furthermore, no particles currently observed can be

partners of other SM particles and therefore a wealth of new undiscovered particles is

predicted. The motivation for the theory is that each sparticle will contribute to the

radiative corrections to the Higgs mass discussed in §2.1.3. Their contributions will be

opposite to the SM particles hence cancelling the divergences and removing the need

for fine-tuning the bare Higgs mass. SUSY, if it exists, must be a broken symmetry as

the sparticle masses must be much higher than their SM particle partners (otherwise

they would have already been observed). Various mechanisms have been proposed

for the breaking of the theory, more details are given later in this section.

In most SUSY models, a multiplicative conservation law is applied on a quantity

known as R-parity:

R = (−1)3(B−L)+2s, (2.1)

where B is baryon number and L is lepton number. SM particles have even R-parity

and sparticles have odd R-parity. The conservation law is imposed otherwise SUSY

models would predict (amongst other things) proton decay. This naturally leads to

the Lightest Supersymmetric Particle (LSP) being stable as there is no kinematically

allowed decay to a sparticle and decays to SM particles would violate R-parity. At

9
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the high energies present shortly after the big bang, sparticles would have been pro-

duced copiously and then would each have decayed into a LSP. If the LSP is weakly

interacting then these stable sparticles naturally provide a dark matter candidate.

R-parity conservation also has important consequences for collider experiments such

as the LHC:

• Sparticles must always be produced in pairs.

• Any sparticle will eventually decay into the LSP which is stable. If the LSP

has no electric charge and is weakly interacting (as is required for SUSY to

provide a dark matter candidate) then the LSP will leave a particle detector

unobserved. Its presence can only be inferred from momentum imbalance of the

observed particles.

As there is yet to be any experimental evidence for SUSY or measurements of

SUSY parameters, the theory is largely unconstrained. Given the large number of

additional particles postulated by the theory, there are a vast number of free param-

eters and therefore possible SUSY models. Assumptions need to be made to group

these models to allow their predictions to be tested with experimental observations.

The simplest possible SUSY model which is consistent with the SM is called the

Minimal Supersymmetric Standard Model (MSSM). It postulates the smallest num-

ber of new particles and does not specify the mechanism for SUSY being a broken

symmetry. Two favoured models which are based on the MSSM, but which do spec-

ify how SUSY breaking occurs, are the constrained MSSM (cMSSM) and minimal

supergravity (mSUGRA) [15, 16, 17, 18, 19]. In both of these models, gravitational

interactions mediate SUSY breaking. These models are closely related and rely on

only five parameters including the common boson mass, m0 and the common fermion

mass, m1/2 . Exclusion limits for these models are often shown in the m0,m1/2 plane.

It should be noted that in the MSSM, the observable mass eigenstates are mixings of

different sparticles. For example, the “neutralino” is the electromagnetically neutral

mass eigenstate and the “chargino” is the charged mass eigenstate of the mixing of

the sparticle partners of gauge and Higgs bosons. In many models, the LSP is the

neutralino (χ̃0
1 ).

10
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Recently, effort has been made to produce a set of simple models (containing

few parameters) which are based on the expected phenomenology of SUSY models

but dispense with much of the complexity associated with them [20]. These are

known as “simplified models” and are intended to provide a framework to describe

any SUSY-like excess which may be observed in LHC data.

2.3 Current Status of SUSY Searches

LEP, the Tevatron and the LHC have performed wide-reaching searches for signs that

SUSY exists in nature. There is yet to be any experimental evidence for sparticle

production. Searches for squarks ( q̃ ) and gluinos ( g̃ ), the super-partners of quarks

and gluons respectively, are most relevant to this thesis and are summarised in this

section.

2.3.1 SUSY Searches at Past Colliders

Before recent results from the LHC, LEP and the Tevatron provided the most strin-

gent limits on searches for squarks and gluinos. Gluino production is forbidden at

LEP as the gluino does not interact electroweakly. In squark searches, exclusion

results from LEP are generally much less stringent than results from the Tevatron.

However, in the stop (the SUSY partner of the top quark) sector, LEP still provides

some useful information. For example, in searches for acoplanar jets with missing

energy, stop masses from 96 to 99 GeV are excluded in the case of mt̃−mχ̃0
1
−mc > 5

GeV [21].

The Tevatron, before its deactivation, ran at a centre-of-mass energy of 1.96

TeV, substantially higher than 209 GeV achieved at LEP. This results in its mass reach

for SUSY particles being much larger than at LEP. However, the search is complicated

by the fact that the momenta of the colliding partons are unknown. Furthermore,

the relative cross-sections between new physics processes and background processes

(such as inelastic scattering and multijet production) is much higher than at LEP.

11
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In the pp̄ collisions at the Tevatron, coloured SUSY particles will have the highest

production cross-section. Both squark and gluino production are possible depending

on the SUSY model, but in both cases the final state consists of a number of jets and

missing transverse energy (Emiss
T ). Backgrounds to these searches are of two types,

those involving real Emiss
T (e.g. W → lν + jets) and those involving fake Emiss

T from

jet mismeasurement. The exclusion results from CDF and DØ are interpreted in the

mSUGRA framework in Figures 2.2 and 2.3.
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Figure 2.2: mSUGRA exclusion limits in the mg̃,mq̃ plane from the search for squarks
and gluinos using CDF. From [22].
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2.3.2 SUSY Searches at the LHC

Direct searches have been performed by the ATLAS and CMS collaborations. SUSY

searches at ATLAS can be broadly split into two types:

• Signatures involving significant Emiss
T and multiple jets. These are the primary

discovery channels for most general SUSY models and include the zero lepton

analysis which is described in more detail in Chapter 5. They are defined by

the number of leptons in the final state and whether b-jets are required. In

these searches, the primary production mechanisms are squark and gluino pair
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production since they couple to the strong interaction.

• Searches for long-lived exotic massive particles and for signatures of R-parity

violating SUSY. There are a number of signatures which can be studied, includ-

ing searching for particles which stop in the detector and decay at a later time,

monojet analyses and searches for highly displayed vertices.

The searches with jets and Emiss
T are most relevant to this thesis and are summarised

in this section.

The analysis involving jets, Emiss
T and no leptons [5] is described in Chapter 5. It

provides the largest discovery reach for squark and gluinos as discussed in Chapter 5.

A related search is for events containing two b-jets, Emiss
T and no leptons [7]. This

search is particularly sensitive to the pair production of scalar bottom quarks (the

sparticle equivalent of b-quarks) decaying to b-quarks and neutralinos. In MSSM

models where this is the exclusive decay mechanism for scalar bottom quarks, the

mass of these squarks is excluded beneath 390 GeV for neutralino masses below 60

GeV. ATLAS has also performed a search for high jet multiplicities (≥ 6 jets) with

no leptons [9]; unlike other searches described in this section there is no direct Emiss
T

cut used. This search is sensitive to SUSY models predicting many-body decays or

large cascade decays to partons. It extends the exclusion reach in mSUGRA/cMSSM

models in certain regions of the m0,m1/2 plane above that found in the main jets,

Emiss
T and no lepton analysis.

Searches involving jets, Emiss
T and leptons are characterised by the lepton mul-

tiplicity. Squarks and gluinos are expected to decay into SM quarks and charginos

or neutralinos. The charginos (χ̃±i ) and neutralinos (χ̃0
i ) can decay into SM leptons

through the following main processes: χ̃0
i → l±νχ̃∓j , χ̃±i → l±νχ̃0

j , χ̃0
i → l±l∓χ̃0

j and

χ̃±i → l±l∓χ̃±j , where i > j and i > 0. It should be noted that l refers to any

SM lepton but the searches described in this section only deal with electrons and

muons due to the short lifetime of the tau lepton. The processes shown above allow

for a variety of final state lepton multiplicities. The one lepton search [24] searches

for an excess of events with one lepton, jets and Emiss
T and produces exclusion lim-

its in mSUGRA/CMSSM models which are not as stringent as those from the no
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lepton search. The two lepton search [25] is split into searches for same-sign lep-

tons and opposite-sign leptons. The opposite-sign search also looks for an excess of

same-flavour over different-flavour lepton pairs. Limits are set in a simplified model

(see §2.2) of weak gaugino (the sparticle partner of a SM gauge boson) production.

Finally, the multi-lepton search [26] uses signatures with four or more leptons to pro-

vide cross-section limits on processes creating four or more leptons (with and without

a veto on Z bosons).

CMS also has a wide programme for SUSY searches including searches involving

leptons, b-jets and Z bosons. The fully hadronic searches (without a b-jet require-

ment) are the most relevant to this thesis. These searches at CMS are split into four

different search strategies:

• Using the αT variable [27]. αT is a kinematic variable which is designed to

distinguish between real and fake Emiss
T .

• Using the MT2 variable [28]. MT2 was originally introduced to measure sparticle

masses but in this search it is used as a discovery variable.

• Using razor variables [29]. This search is designed to distinguish between pair

produced heavy particles (like squarks and gluinos) and pair produced SM par-

ticles.

• Using missing energy [30].

In all cases, no evidence of SUSY is found so exclusion limits are published. Figure 2.4

gives an overview of the exclusions from a variety of different searches at CMS; the

fully hadronic searches mentioned above are the most sensitive.

2.4 Jets at Hadron Colliders

The theory of QCD is briefly outlined in §2.1.2 and it is noted that high energy partons

form jets in a detector. This section will expand on this process as it is extremely
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Figure 2.4: Observed limits from searches for SUSY at CMS plotted in the CMSSM
plane. From [31].

relevant to this thesis. Taking the example of a ‘simple’ qq → qq hard scatter at the

LHC: firstly, two hard quarks are produced in the interaction. Additional partons

are radiated from the incoming quarks (initial state radiation) and from the outgoing

quarks (final state radiation). The other partons in the colliding protons will also

interact (multi-parton interactions). This is generally, with the initial state radiation,

referred to as the “underlying event”. Any outgoing partons from the hard interaction

or radiation will then ‘shower’; this accounts for quark-antiquark pairs produced from

gluons and gluon radiation from gluons and quarks. Each shower of outgoing partons

will then hadronise to form a co-linear collection of colour neutral hadrons. These

collections of hadrons are referred to as jets and will interact in the tracking system

and deposit energy in the calorimetry of a particle detector.

It is impossible to uniquely define what constitutes a jet in a detector. For ex-

ample, a jet may correspond to the group of hadrons produced from a single outgoing

hard parton, but it may also be from a number of co-linear hard partons or even a
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boosted W decaying into a pair of quarks. In these cases, the object reconstructed

in the detector can be indistinguishable. Therefore, experiments must decide their

criteria for a jet and understand that this does not map directly to a parton pro-

duced in the pp interaction. Jets are then defined in experiments from the choice of

jet algorithm. These use input from either theoretical objects (simulated partons or

hadrons) or detector quantities like energy deposits in the calorimetry or tracks. The

following are desirable properties for jet algorithms:

• Collinear safe. This means that a reconstructed jet should not be affected if a

parton in the jet splits into two collinear partons. Non-collinear safe algorithms

produce divergences in theoretical calculations.

• Infra-red safe. The reconstructed jet must be unaffected by the emission of a

small amount of soft radiation. As with collinear safety, if the algorithm is not

infra-red safe then theoretical calculations contain divergences.

• Well-defined area. To allow simple isolation and overlap removal to be applied,

it is desirable that jets have well defined areas, usually in a conical shape.

• Computationally fast.

ATLAS uses the anti-kt algorithm [32] for jet reconstruction. This algorithm sat-

isfies all of the above desirable criteria for a jet algorithm and provides a natural

replacement for “iterative cone” algorithm which is collinear unsafe.

2.5 Multijet Background

At the Tevatron and LHC, the cross section for multijet production is extremely

large. For example, Figure 2.5 shows that, at
√

s = 7 TeV, the cross section for

jet production with Ejet
T > 100 GeV is higher than the cross section for W and

Z boson production. Multijet production refers to any reconstructed events with

multiple jets and no prompt isolated electrons or muons and is dominated by processes
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mediated by the strong force. Multijet events can contain significant missing energy

through jet mismeasurement and due to the presence of neutrinos in heavy flavour

jets. Therefore it is a potentially significant background for fully hadronic SUSY

searches. This section will briefly discuss the various strategies used at the Tevatron

and LHC experiments.
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as a function of centre of mass energy. From [33].
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2.5.1 Multijet Strategy at Tevatron Searches

Full details of the fully hadronic search at CDF are given in [22]. At CDF, high Emiss
T

multijet events are primarily due to significant jet mismeasurement and not from

heavy flavour jets containing neutrinos. In these events the Emiss
T will most likely

align along the direction of one of the jets in the event. For this reason, CDF cut

on the azimuthal angle between the jet and Emiss
T for selected jets in the event. The

remaining multijet background is estimated from Monte Carlo (MC) and the validity

of the MC estimate is checked in multijet dominated control regions. The multijet

background is significant in the signal regions considered, as shown in Table 2.3.

Events in data (2 fb−1)

≥ 2 jets ≥ 3 jets ≥ 4 jets

18 38 45

SM predictions

QCD jets 4.4± 2.0 13.3± 4.6 15.3± 7.1

top 1.3± 1.2 7.6± 4.1 22.1± 7.0

Z → νν̄+ jets 3.9± 0.9 5.4± 1.4 2.7± 0.7

Z/γ∗ → l+l−+ jets 0.1± 0.1 0.2± 0.1 0.1± 0.1

W → lν+ jets 6.1± 2.2 10.7± 3.1 7.7± 2.2

WW , ZW , ZZ 0.2± 0.2 0.3± 0.2 0.5± 0.2

Total SM 16± 5 37± 12 48± 17

Table 2.3: Data and SM expectations in the fully hadronic SUSY search at CDF.
Adapted from [22].

Full details of the fully hadronic search with DØ can be found in [23]. As at CDF,

the multijet background at DØ is primarily due to calorimetric jet mismeasurement

and cuts are applied on the azimuthal angle between the jets and Emiss
T to significantly

reduce the background. DØ estimate the remaining multijet background using a data-

driven method where the Emiss
T spectrum is fitted with an exponential function in the

low-Emiss
T region (after the subtraction of other non-multijet sources of Emiss

T ). The

fit is then extrapolated to the high Emiss
T signal regions providing an estimate of the
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multijet background in those regions. In all of the signal regions considered, the

estimated background is sufficiently small to be ignored in setting limits.

2.5.2 Multijet Strategy at LHC Searches

The multijet estimation in fully hadronic searches at ATLAS is the subject of this

thesis and will be described in detail in Chapters 6 to 8. At CMS, the four searches

introduced in §2.3.2 have differing strategies to the multijet background. The searches

using the αT [27], MT2 [28] and razor [29] variables rely on reducing the background

to a negligible level using a combination (depending on the search) of azimuthal cuts

between the jets and Emiss
T , hard cuts on the discovery variable and b-tagging. The

missing energy search [30] also uses an azimuthal cut between the jets and Emiss
T

to reduce the multijet background and the remaining background is estimated using

a “Rebalance and Smear” method. This method uses similar techniques to those

described in this thesis: jets in a sample of data events with low Emiss
T are scaled (or

smeared) with a data-measured response function to produce events with potentially

high Emiss
T . This sample is used as the multijet estimation in the signal regions.

Table 2.4 shows the data observation and estimated backgrounds for the signal regions

in this search; it can be seen that the multijet background is small compared to the

other SM processes.

Baseline Medium High HT High HT

(HT > 350 GeV) (HT > 500 GeV) (HT > 800 GeV) (HT > 800 GeV)

(Emiss
T > 200 GeV) (Emiss

T > 350 GeV) (Emiss
T > 200 GeV) (Emiss

T > 500 GeV)

Z → νν̄ from γ+jets 376± 12± 79 42.6± 4.4± 8.9 24.9± 3.5± 5.2 2.4± 1.1± 0.5

tt̄/W → e, µ + X 244± 20+30
−31 12.7± 3.3± 1.5 22.5± 6.7+3.0

−3.1 0.8± 0.8± 0.1

tt̄/W → τh + X 263± 8± 7 17± 2± 0.7 18± 2± 0.5 0.73± 0.73± 0.04

QCD 31± 35+17
−6 1.3± 1.3+0.6

−0.4 13.5± 4.1+7.3
−4.3 0.09± 0.31+0.05

−0.04

Total background 928± 103 73.9± 11.9 79.4± 12.2 4.6± 1.5

Observed in data 986 78 70 3

Table 2.4: Data and SM expectations in fully hadronic SUSY search with missing
energy at CMS using 1.1 fb−1 . HT is defined as the scalar sum of the transverse
momenta of the jets in an event. Adapted from [30].
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Chapter 3

The LHC and the ATLAS Detector

This chapter provides a brief introduction to the Large Hadron Collider (LHC) and

the ATLAS detector. §3.1 describes the LHC, notable achievements of the collider

and its future goals. §3.2 describes the ATLAS detector; emphasis is given to the

systems which allow jet and missing transverse momentum (Emiss
T ) reconstruction and

to the trigger system (see §3.2.5). ATLAS provides precision energy measurements

of electromagnetic and hadronic showers and is near-hermetic, making it an ideal

detector for measuring jets and Emiss
T .

3.1 The Large Hadron Collider

The LHC is the highest energy collider experiment ever built. It is a proton-proton

collider running at a centre-of-mass energy of 7 TeV and in the dataset considered

in this thesis, reached a peak luminosity of ∼ 1033 cm−2s−1 . It is housed in the 27

km tunnel which was previously home to the LEP collider at CERN. It also uses

many of the existing accelerator facilities of CERN. Proton beams are collided at

four locations around the ring where the main LHC detector experiments are located:

ALICE, ATLAS, CMS and LHCb. Some of the design parameters of the LHC are

shown in Table 3.1. A schematic of the accelerator complex is shown in Figure 3.1.
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Parameter Value
Beam energy at collision 7 TeV
Beam energy at injection 0.45 TeV
Machine Circumference 26658.833 m
Dipole Field at 7 TeV 8.33 T

Luminosity 1034 cm−1s−1

RAMS Bunch length 7.55 cm
Number of Particles per Bunch 1.15 ×1011

Number of bunches per beam 2808
Time between bunches at nominal luminosity 25 ns

Circulating beam current 0.1582
Dipole magnet temperature 1.9 K
Number of dipole magnets ≈ 1232

Number of quadrupole magnets ≈ 600
Number of corrector magnets ≈ 7000

Table 3.1: Machine design parameters for the LHC. Adapted from [34].

The LHC has a vast physics programme to fully utilise the extremely high energy

and luminosity delivered. Primary goals include the observation of the Higgs boson

(see §2.1.3), the search for physics beyond the SM, including SUSY (see §2.2), and

for precision measurements of SM processes. In order to realise these goals, general

purpose (ATLAS and CMS) and specialised (ALICE and LHCb) particle detectors

are located at collision points on the LHC ring. The work in this thesis is performed

using the ATLAS detector.

During 2010 and 2011, the LHC ran with beam energies of 3.5 TeV per beam

pushing particle physics into a new energy realm. At the time of writing, the LHC

has now delivered over 5 fb−1 of data to the ATLAS and CMS detectors. This has

allowed precision SM physics to be performed and many models for physics beyond

the SM have been tested to extents beyond what was possible using results from the

Tevatron. Particular successes of the LHC are the achievement of the highest peak

luminosity at a hadron collider [36] and limiting the available mass range of the SM

Higgs to a small window between ∼ 115 GeV and ∼ 141 GeV [14, 37]. In 2012, the

LHC will run with an energy of 4 TeV per beam [38] and aims to collect 15 fb−1 in

order to finalise the search for the SM Higgs boson. After 2012, the LHC will undergo
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Figure 3.1: Schematic of the LHC accelerator complex. From [35].

a period of repairs and upgrades to allow it to reach its design energy in 2014-2015.

3.2 The ATLAS Detector

The ATLAS detector, “A Toroidal LHC Apparatus” is amongst the most complex

detectors ever built. It is designed as a general purpose detector and is optimised to

search for the Higgs boson, physics beyond the SM and to perform precision SM mea-

surements. To allow this, it has a near hermetic design with precise particle tracking,

calorimetry and muon detection systems. The sub-detector most important in the

reconstruction of jets and missing energy is the calorimeter (see §3.2.3); however, the

other sub-detectors are also essential. A schematic of the entire detector is shown in

Figure 3.2. Full details of the detector can be found in [39].
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Figure 3.2: Schematic of the ATLAS detector. From [39].

3.2.1 Geometry and Transverse Quantities

The z -axis of the ATLAS detector is aligned along the beam pipe. The x-axis points

towards the centre of the LHC ring and the y -axis points vertically upwards. However,

as a cylindrical detector, cylindrical polar coordinates are commonly used where the

azimuthal angle φ is measured around the z -axis and the polar angle θ is the angle

from the z -axis. Pseudorapidity is defined as η = − ln tan(θ/2). This is widely used

instead of θ as it is invariant under Lorentz boosts. The distance ∆R in η−φ space

is defined as ∆R =
√

(∆η)2 + (∆φ)2 and is often used to define the separation of

physics objects reconstructed in the detector.

At the LHC, the hard scatter in a collision occurs between partons which carry

an unknown proportion of the momenta of the protons. This means that momen-

tum conservation can only be applied transverse to the beam axis. For this reason,

transverse quantities such as pT (transverse momentum) are commonly used.
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3.2.2 Inner Detector

The purpose of the inner detector is to precisely reconstruct the tracks of charged

particles originating from (or near to) the interaction point. To allow this, three sub-

detectors are used: the pixel detector, semiconductor tracker (SCT) and transition

radiation tracker (TRT). The pixel and SCT (the precision trackers) cover a pseudo-

rapidity range of |η| < 2.5. The entire inner detector is immersed in a 2 T magnetic

field created by the central solenoid magnet. This magnetic field results in charged

particles following curved trajectories, allowing their momenta to be measured from

the radius of curvature. A schematic of the inner detector is shown in Figure 3.3.

Figure 3.3: Schematic of the ATLAS inner detector. From [39].

Pixel Detector

The pixel detector is the closest detector to the interaction point and has the highest

granularity of any of the sub-detectors in ATLAS. This is primarily to allow accurate

locating of any secondary vertices in an event. The pixel detector contains three

layers of silicon pixel arrays which have minimum pixel size in R − φ × z space of
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50 × 400 µm2 (R is the perpendicular distance from the z axis). This allows an

accuracy of 10 µm× 115 µm in R− φ× z space.

SCT

The SCT provides further, coarser tracking measurements than the pixel detector. It

uses layers of paired silicon microstrips, with 80 µm pitch, to give three-dimensional

tracking. Particles cross eight silicon layers through the SCT providing four space-

points for track reconstruction. The resolution of the SCT in the barrel is 17 µm ×
580 µm in R− φ× z space.

TRT

The TRT uses straw tubes to provide tracking measurements in R − φ × z space.

The TRT provides a large number of hits (36 per track) which makes a significant

impact to momenta measurements of tracks. It also assists particle identification as

the amount of transition radiation increases with particle velocity; therefore at a given

energy electrons can be identified as the particles which produce the most transition

radiation.

3.2.3 Calorimetry

ATLAS uses two sampling calorimeter systems (electromagnetic and hadronic) to

accurately measure the energy deposited by different particles in the detector. The

calorimeter is the most important component in the measurement of jets and Emiss
T

in ATLAS. It provides precision measurements in the central region of the detector,

|η| < 2.5, and coverage up to |η| < 4.9. This large range is vital in the measurement

of Emiss
T as it ensures that the energies of all particles with significant transverse

momenta can be measured. The calorimeter also has large depth (approximately ten

interaction lengths) to limit punch-through of high momenta particles into the muon
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system and to fully contain hadronic showers. A schematic of the ATLAS calorimeter

is shown in Figure 3.4.

Figure 3.4: Schematic of the ATLAS calorimeter. From [39].

Both calorimeters are made up from a large number of individual cells and

particles traversing the calorimetry will deposit energy in many of these cells. To

provide an input to jet algorithms (see §2.4), the cells are grouped into “clusters”

with a clustering algorithm. Examples of clustering algorithms are the sliding window

and topological cluster algorithms.

Electromagnetic Calorimeter

The electromagnetic calorimeter is divided into a barrel region covering |η| < 1.475

and two end-caps covering 1.375 < |η| < 3.2. The active material is liquid-argon

and the absorber is lead. Accordion-shaped kapton electrodes provide the readout,

which has complete φ coverage. There are three sampling layers in the |η| < 2.5

region and two in the 2.5 < |η| < 3.2 region. As shown in Table 3.2, the first

sampling layer in the central region has very fine η resolution to allow accurate
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estimation of the η coordinate of an electromagnetic shower. The second layer collects

the majority of the energy of a shower and the third collects the tail of the shower

with reduced granularity. There is a presampler present in the region |η| < 1.8 to

allow corrections for energy lost in material upstream of the calorimeter. It should

be noted that the majority of the energy in a typical hadronic shower is absorbed

in the electromagnetic calorimeter so this sub-detector is vital in measuring both

electromagnetic and hadronic objects. For much of the dataset used in this thesis,

an electronics failure resulted in there being a dead region in two layers of the barrel

region of the electromagnetic calorimeter. This is referred to as the “LAr hole”.

It affects the reconstruction of any physics objects which use the electromagnetic

calorimeter including electrons, jets and Emiss
T .

EM calorimeter Barrel End-cap
Coverage |η| < 1.475 1.375 < |η| < 3.2
Longitudinal segmentation 3 samplings 3 samplings 1.5 < |η| < 2.5

2 samplings 1.375 < |η| < 1.5
2.5 < |η| < 3.2

Granularity (∆η ×∆φ)
Sampling 1 0.003× 0.1 0.025× 0.1 1.375 < |η| < 1.5

0.003× 0.1 1.5 < |η| < 1.8
0.004× 0.1 1.8 < |η| < 2.0
0.006× 0.1 2.0 < |η| < 2.5
0.1× 0.1 2.5 < |η| < 3.2

Sampling 2 0.025× 0.025 0.025× 0.025 1.375 < |η| < 2.5
0.1× 0.1 2.5 < |η| < 3.2

Sampling 3 0.05× 0.025 0.05× 0.025 1.5 < |η| < 2.5

Presampler Barrel End-cap
Coverage |η| < 1.52 1.5 < |η| < 1.8
Longitudinal segmentation 1 sampling 1 sampling
Granularity (∆η ×∆φ) 0.025× 0.1 0.025× 0.1

Table 3.2: Parameters of the electromagnetic calorimeter. Adapted from [39].
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Hadronic Calorimeter

The hadronic calorimeter consists of three subsystems: the tile calorimeter, the

hadronic end-cap (HEC) and the forward calorimeter (FCal). The tile calorimeter

covers the range |η| < 1.7. It uses steel absorbers with scintillating tiles as the active

medium and has three layers. The HEC uses LAr as the active medium and copper

as the absorber and is arranged to provide four sampling layers per end-cap. It covers

the pseudorapidity range 1.5 < |η| < 3.2. The FCal (covering 3.1 < |η| < 4.9) also

uses LAr as the active medium and uses copper (in the inner module) and tungsten

(in the outer two modules) as the absorber. The overlap between the tile and FCal

reduces the loss in material density. Table 3.3 shows some key parameters of the

hadronic calorimeter. Coverage is provided up to |η| = 4.9 with at least 3 sampling

layers providing near-hermetic coverage.

3.2.4 Muon System

The muon system of ATLAS forms the outer part of the detector and a significant

fraction of the detector’s volume. Superconducting air-core toroid magnets provide

up to 7.4 Tm of bending power meaning that even the momenta of the highest energy

muons can be determined. There are four detection sub-systems in the muon system:

monitored drift tubes (MDT), cathode strip chambers (CSC), resistive plate chambers

(RPC) and thin gap chambers (TPG). The MDT and CSC provide the precision

tracking measurements whilst the RPC and TPG form the muon trigger system and

give a second coordinate for muon track reconstruction.

3.2.5 Trigger and Data Acquisition

The design luminosity of 1034 cm−2s−1 translates to an event rate of ∼ 109 Hz;

however, computing resources mean that only ∼ 200 Hz can be permanently stored.

This means the trigger system must select roughly 1 in 5 × 106 events. This is

made possible through a three stage trigger system consisting of one hardware trigger
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Barrel Extended barrel
Scintillator tile calorimeter

|η| coverage |η| < 1.0 0.8 < |η| < 1.7
Number of layers 3 3

Granularity ∆η ×∆φ 0.1× 0.1 0.1× 0.1
Last layer 0.2× 0.1 0.2× 0.1

Barrel End-cap
LAr hadronic end-cap

|η| coverage 1.5 < |η| < 3.2
Number of layers 4

Granularity ∆η ×∆φ 0.1× 0.1 1.5 < |η| < 2.5
0.2× 0.2 2.5 < |η| < 3.2

LAr forward calorimeter
|η| coverage 3.1 < |η| < 4.9

Number of layers 3
Granularity ∆x×∆y (cm) FCal1: 3.1× 2.6 3.15 < |η| < 4.30

FCal1: ∼ four times finer 3.10 < |η| < 3.15,
4.30 < |η| < 4.83

FCal2: 3.3× 4.2 3.24 < |η| < 4.50
FCal2: ∼ four times finer 3.20 < |η| < 3.24,

4.50 < |η| < 4.81
FCal3: 5.4× 4.7 3.32 < |η| < 4.60
FCal3: ∼ four times finer 3.29 < |η| < 3.32,

4.60 < |η| < 4.75

Table 3.3: Parameters of the hadronic calorimeter. Adapted from [39].

(level 1) and two software triggers (level 2 and event filter, collectively known as the

High Level Trigger (HLT)). The trigger works at the electromagnetic energy scale (no

corrections are applied for hadrons).

The level 1 (L1) trigger uses calorimeter information (with reduced granularity

of 0.1× 0.1 in ∆η ×∆φ in most regions) and the muon trigger system to trigger on

high momenta leptons, jets and event quantities such as Emiss
T and

∑
ET . The L1

trigger must decide within 2.5 µs whether an event should be passed to L2 for further

analysis. Given this need for extremely fast processing and the lack of full detector

infromation at L1, thresholds applied to physics objects are looser than appiled in

the HLT. There is a maximum L1 output rate ∼ 75 kHz. The L1 trigger also defines

regions of interest (RoIs) in η−φ space for the level 2 trigger to analyse. These RoIs

are located in the regions of the detector where the L1 trigger finds objects satisfying
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Figure 3.5: Schematic of the the ATLAS muon system. From [39].

energy thresholds defined in the L1 trigger menu (see §4.4 for information on trigger

menus).

The level 2 (L2) trigger uses the full detector granularity but only investigates

the RoIs identified by the L1 trigger. Software algorithms are used which are more

sophisticated than the L1 algorithms but not yet at the level of the offline algorithms

due to the requirement for fast processing of ∼ 10 ms. The L2 output rate is ∼ 1

kHz.

The event filter (EF) trigger uses the full event information and some offline

algorithms to analyse the events passed by the L2 trigger to reduce the output rate

to ∼ 200 Hz. The trigger has ∼ 1 s to make its decision and hence there is insufficient

time to perform processing identical to that done offline; for example there is no Jet

Energy Scale correction (see §4.3.3) applied to event filter jets.
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Chapter 4

Analysis Tools

This chapter describes the analysis tools common to much of the work described in

this thesis. §4.1 describes the dataset used throughout. §4.2 gives an overview of the

simulation and reconstruction framework used by ATLAS and details the samples

of Monte Carlo simulated data used. §4.3 describes how physics objects are recon-

structed covering objects relevant to this thesis, overlap removal and event cleaning.

In §4.4 and §4.5, information is given on trigger menus and the single jet triggers used

extensively in the analysis detailed in this thesis. Finally, §4.6 describes the full chain

testing performed at ATLAS to check for problems in the full production chain; the

author performed service work for the experiment in this area.

4.1 Data Samples

The data used in this analysis were recorded by the ATLAS experiment from 22nd

March 2011 to 28th June 2011 corresponding to an integrated luminosity of 1.0 fb−1

after the application of the official SUSY group Good Run List (GRL)1. ATLAS splits

its collected data events into different ‘streams’ depending on which triggers are fired

1A GRL indicates which periods of data taking are appropriate for a particular physics analysis,
with the appropriate sub-detectors active and functioning correctly.
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by an event. This is convenient as events useful for lepton physics are not generally

useful for fully hadronic searches. This thesis uses the ‘JetTauEtMiss’ stream, which

contains events where jet, τ lepton or Emiss
T triggers have fired.

4.2 Simulation and Reconstruction Software

Event simulation consists of three stages: event generation, detector simulation and

digitisation. Event generation produces the idealised, particle level event before de-

tector effects are included. Detector simulation then passes these events through a

model of the full detector using GEANT4 [40]. The digitisation is designed to match

the real detector so that the input to reconstruction is identical for real and simulated

data.

Monte Carlo (MC) samples are produced using the available generator which is

most appropriate for the required final state and the number of events needed. Gen-

erators used at ATLAS compute either the Leading-Order (LO) or Next-to-Leading-

Order (NLO) contributions to a given process. Furthermore, some generators only

compute the matrix elements for the hard interaction process whilst others calculate

the elements for extra radiated hard partons. All generators require the input of Par-

ton Density Functions (PDFs), which describe the probability of a collided parton

having a given momentum fraction of its parent proton. At ATLAS, LO genera-

tors use the MRST2007LO* modified LO PDFs [41] and NLO generators use CTEQ6.6

PDFs [42]. As well as simulating the hard process, generators also need to simulate

the parton showers, hadronisation, decays and the underlying event (see §2.4). The

generators used for MC samples in this thesis are described below:

• Multijet production: PYTHIA [43]. This generator works at LO and only cal-

culates the matrix elements for the hard process. This means that it may not

properly simulate events with more than two hard partons. However, it per-

forms all steps of generation in one package. This makes it an good choice for

producing the large number of simulated multijet events needed at a hadron
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collider experiment.

• Top quark pair production: MC@NLO [44, 45] (with a top quark mass of 172.5

GeV). MC@NLO is a NLO generator which only calculates the matrix elements

for the hard process. It is interfaced with HERWIG [46, 47] for performing parton

showering, hadronisation and decays. JIMMY [48] is used for simulating the

underlying event.

• W and Z production with accompanying jets: ALPGEN [49]. This generator

works at LO but calculates the matrix elements for both the hard process and

radiated hard partons. This makes is ideal for producing electroweak bosons

with accompanying jets. It is also interfaced with HERWIG and JIMMY.

All MC samples are produced using the ATLAS MC10b parameter tune [50, 51] and

a GEANT4 [40] based detector simulation. All simulation and reconstruction software

is integrated into the ATHENA [52] framework used by ATLAS.

For the plots produced throughout this thesis, MC distributions are scaled to

the data luminosity unless specified otherwise; this is often the case for the multijet

MC where the normalisation requires a correction factor as the cross-section from

PYTHIA deviates from that observed in data by ∼ 30%.

4.3 Object Reconstruction

The purpose of object reconstruction in ATLAS is to build analysis objects and

event quantities which match as closely as possible what occurred in the detector

following a collision. Firstly, standalone objects are reconstructed by the various

detector subsystems; for example the ID and muon systems identify tracks and the

calorimetry identifies areas of energy deposition. Combined reconstruction then pools

this information together, removing overlap and constructs the final physics objects

such as jets, muons and Emiss
T .
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4.3.1 Electrons

Events containing electrons isolated from any jets are vetoed throughout the analysis

detailed in this thesis. Electrons are identified using an algorithm which is seeded by

energy deposited in clusters in the EM calorimeter. The clusters are then matched to

tracks in the inner detector. The main aim of electron reconstruction is to maintain

a high reconstruction efficiency whilst providing good rejection against jets faking

electrons. To achieve this, selection is applied on a range of discriminating variables:

• Calorimeter shower shapes.

• Leakage into the hadronic calorimeter.

• Inner detector track quality.

• Track-cluster matching.

Electrons which pass these cuts, are not located in the LAr hole (see §3.2.3) and have

pT > 20 GeV are referred to as candidate electrons and used in the overlap removal

described in §4.3.4. Note that a smearing procedure is applied to the momenta of

electrons in MC to match what is observed in the data.

4.3.2 Muons

Events containing muons isolated from jets are vetoed in the analysis described in this

thesis. Muons are reconstructed with an algorithm (STACO) which uses the track

found in the Muon Spectrometer (MS) as well as the track in the Inner Detector

(ID) [39]. Two types of muons are used: “combined” muons which are made from

tracks that have been independently reconstructed in both systems using the STACO

algorithm and “segment-tagged” muons which use the MS to tag ID tracks as muons,

without requiring a fully reconstructed MS track. Requirements are imposed on the

number of hits in different layers of the ID and track quality is assessed based on

information from the TRT. Finally, muons are required to have pT > 10 GeV; they
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are then referred to as muon candidates and are used in the overlap removal described

in §4.3.4. Note that a smearing procedure is applied to the momenta of muons in MC

to match what is observed in the data.

4.3.3 Jets and Missing Transverse Energy

Jet production and reconstruction are introduced in §2.4. For the analysis described

in this thesis, jets are reconstructed using the anti-kt jet algorithm [32] with distance

parameter R = 0.4 (in y − φ space). This algorithm is both infra-red and collinear

safe and also benefits from being computationally efficient and provides jets with a

fixed size. Inputs to the anti-kt algorithm are topological clusters (see §3.2.3). The

topological cluster algorithm [53] works by first finding seed cells in the calorimeter

above a primary noise threshold level. Neighbouring cells are then added to the

cluster if they have energy greater than a secondary noise threshold. This process

is continued for all cells neighbouring any primary or secondary cells until there are

no more adjacent cells with energy greater than the secondary threshold. Finally,

any cells neighbouring the cluster with energy greater than a third noise threshold

are also included. The clustering and initial jet reconstruction is performed at the

electromagnetic scale. The transverse momenta of the jets are then corrected (as a

function of jet pT and η ) through Jet Numerical Inversion Correction [54] to account

for the difference in response between hadrons and electrons in the detector. This is

known as the Jet Energy Scale (JES) correction. The JES correction increases the

energy of a typical jet by ∼ 40%. Finally, the position of a jet is corrected to point at

the primary vertex of the interaction. Jets arising from b-quarks are identified with

an algorithm which uses impact parameter and secondary vertex information [55].

In this analysis, jets must have pT > 20 GeV and |η| < 2.8. All jets passing

this loose selection are considered when applying the overlap removal described in

§4.3.4. Jet quality cuts are applied to jets after overlap removal, at which point

events containing at least one jet failing these quality cuts are rejected (see §4.3.5).

Missing transverse momentum is calculated with an object-based Emiss
T algo-
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rithm. Clusters are first matched to reconstructed physics objects in the following

order: electrons, jets and muons. Any remaining clusters, not matched to an object,

are included in a Cellout term. The Emiss
T is given by the following formula:

(Emiss
T )RefFinal

x(y) = (Emiss
T )RefEle

x(y) + (Emiss
T )RefJet

x(y) + (Emiss
T )RefMuo

x(y) + (Emiss
T )CellOut

x(y) , (4.1)

where each term is computed from the negative of the sum of calibrated cluster en-

ergies inside the corresponding objects. Contributions from electrons are included

in (Emiss
T )RefEle

x(y) using electrons passing the selection described in §4.3.1 before over-

lap removal with the pT cut lowered to pT > 10 GeV. Contributions from muons are

included in (Emiss
T )RefMuo

x(y) , using the muons passing the criteria described in §4.3.2 be-

fore overlap removal. Contributions from jets are included in (Emiss
T )RefJet

x(y) using jets

passing the selection in §4.3.3 with no η cut applied (so that the Emiss
T accounts for

activity in the forward regions of the detector). (Emiss
T )CellOut

x(y) is computed from topo-

logical clusters at the electromagnetic scale which are not included in reconstructed

objects, in particular, jets with pT <20 GeV are included in this term.

4.3.4 Resolving Overlapping Objects

When candidates passing the object selection overlap with each other, a classification

is required to remove all but one of the overlapping objects. All overlap criteria are

based on the simple geometric ∆R =
√

∆φ2 + ∆η2 variable and based on previous

studies at ATLAS [56]. They are applied in the following order:

1 If an electron and a jet are found within ∆R < 0.2, the object is interpreted as

an electron and the overlapping ‘jet’ is ignored.

2 If a muon and a jet are found within ∆R < 0.4, the object is treated as a jet

and the muon is ignored.

3 If an electron and a jet are found within 0.2 ≤ ∆R < 0.4, the object is in-

terpreted as a jet and the nearby ‘electron’ is ignored. This is an isolation

requirement.
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4.3.5 Event Cleaning

Event cleaning is applied to match the standard SUSY analysis. The cleaning is de-

signed to reject events containing jets originating from non-collision sources. Firstly,

a primary vertex is required with at least five tracks associated with it to ensure the

presence of a hard interaction which jets can originate from. Jets originating from

non-collision sources have the following criteria where the cuts are applied with a

logical OR condition:

• A large fraction of the energy of the jet (> 0.5) is deposited in the HEC with

more than half of the cells flagged as having ‘bad’ quality. These can be dead

or particularly noisy cells.

• A large fraction of energy of the jet (> 0.95) is deposited in the EM calorimeter

where a large proportion of the cells (> 0.8) are flagged as having ‘bad’ quality.

• The jet is measured over an anomalously long time compared to the event time

(> 25 ns).

• A very low proportion of its energy (< 0.05) is deposited in the EM calorimeter

and the sum of the momenta of the tracks of the jet is small compared to the

calorimetric pT measurement (Σ|ptrk
T |/pjet

T < 0.05).

• The fractional amount of energy measured in one layer of the calorimeter is very

high (> 0.99).

Events containing a jet passing any of these criteria are vetoed. Events are also

rejected if the average jet time is very low (< 5 ns) or if a noise spike is observed

in the LAr calorimeter. Finally, events are rejected if one of the leading four jets in

the event (after overlap removal) with pT > 40 GeV points into the LAr hole region

(see §3.2.3).
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4.4 Trigger Menus

The trigger system used by ATLAS, described in §3.2.5, uses a “trigger menu” to

decide what properties of an event should be triggered on. The menu is made up from

a set of individual trigger items. A trigger item might require an electron or jet with

a certain pT threshold. Trigger items also include event-wide properties such as Emiss
T

or angles between physics objects. The naming convention for trigger items is usually

the type of object followed by the pT threshold and then details of the algorithm. For

example the j240 a4tc EFFS trigger item requires a jet with pT > 240 GeV; it uses

the anti-kt algorithm [32] with a distance parameter of 0.4 (a4) and it uses topological

clusters (see §4.3.3) with the event filter in full scan (tc EFFS) mode. Full scan mode

means that the entire event is analysed by the event filter algorithms and not just

items identified by the L1 and L2 triggers. A trigger item will actually correspond

to a chain of decisions with one decision made at each level of the trigger system.

For example the j240 a4tc EFFS trigger corresponds to requiring a jet at L1 with

pT > 75 GeV, a jet at L2 with pT > 95 GeV and an EF jet with pT > 240 GeV.

The thresholds increase with the trigger level as the rate reduction must increase as

described in §3.2.5.

Some trigger items would output too high an event rate to be usable if it were not

for the use of prescaling. A trigger item with a prescale of 10 will only record one in

10 of the events which would pass the normal requirements of the trigger. Prescaling

allows a manageable amount of data to be collected from commonly occurring events;

this is the case for single jet triggers with low pT thresholds such as the j55 a4tc EFFS

trigger item.

The trigger menu and prescaling vary with the instantaneous luminosity deliv-

ered by the LHC to ATLAS. For example, in early runs in 2011, the relatively low

instantaneous luminosity meant the j55 a4tc EFFS trigger could be run unprescaled;

however, in later runs the trigger was given a prescale of more than 2000. Trigger

items can also be deactivated with increasing luminosity or with the availability of

improved algorithms.
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4.5 Single Jet Triggers

The analysis described in this thesis uses single jet triggers extensively. Background

information on the ATLAS trigger system is given in §3.2.5 and the trigger menu

system is described in §4.4. The single jet triggers used are shown in Table 4.1.

Given that the triggers work at the EM scale, the trigger pT threshold will not

directly correspond to the offline, calibrated leading jet pT at which the trigger is

fully efficient (the trigger plateau). In order for trigger inefficiencies to not bias

offline distributions, an offline pT cut is applied at the plateau pT value. To evaluate

this value, trigger efficiencies are studied as a function of offline leading jet pT for

different trigger thresholds as shown in Figure 4.1 (prepared by the ATLAS jet trigger

group [57]). Table 4.1 shows the pT range which each trigger is used for as informed

by Figure 4.1.
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Figure 4.1: Single jet trigger efficiencies as a function of offline leading jet pT .
From [57].

The amount of data collected by prescaled triggers is less than actually occurred
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in the detector. This means that, to reconstruct the ‘true’ leading jet pT distribution,

events from prescaled triggers must be weighted appropriately. The weighting factors

are found by checking the average prescale of each trigger over the dataset considered

in this thesis. Table 4.1 shows these average prescales. Figure 4.2 demonstrates that

this procedure gives a smooth leading jet pT distribution in data.

pT range [GeV] L1 seed L2 chain Data period Trigger chain Average PS

100-130 L1 J30 L2 j45
A→B j55 a4 EFFS 380.0

D→H j55 a4tc EFFS 1480.1

130-160 L1 J55 L2 j70
A→B j75 a4 EFFS 102.6

D→H j75 a4tc EFFS 409.4

160-200 L1 J75 L2 j95
A→B j100 a4 EFFS 28.2

D→H j100 a4tc EFFS 120.2

200-260 L1 J75 L2 j95
A→B j135 a4 EFFS 1.0

D→H j135 a4tc EFFS 8.9

260-7000 L1 J75 L2 j95
A→B j180 a4 EFFS 1.0

D→H j180 a4tc EFFS 1.0

Table 4.1: Single jet triggers used throughout this thesis. Events in data are weighted
by the average prescale (PS) of the appropriate trigger. The periods referred to
correspond to periods of ATLAS running with similar conditions. In periods D→H,
far more data were collected than in A→B.
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4.6 Full Chain Testing

In order to swiftly identify problems in the full production chain used by ATLAS,

every day “full chain testing” is performed. This involves running a number of test

jobs with several different generated samples with a small number of events compared

with a full production. Any problems which are identified can then be rectified

without interrupting full production. The author was involved in maintaining the full

chain testing (FCT) framework as part of his service work in the ATLAS collaboration.

The FCT runs event generation, simulation, digitisation and reconstruction us-

ing batch queues at CERN. The tests are steered using an xml configuration file

which specifies the details of the chains which are run. Each chain typically runs

∼ 10 events to attempt to identify problems in the software. The generated samples

include Higgs, Z boson, and minimum bias production. A slightly larger sample

(1000 events) of top pair production is also run. This range of samples is used so that

all types of different physics objects are created, hence testing as much of the soft-

ware as possible. The author helped to maintain the FCT (checking for failures in the

tests) and worked to improve its automation including writing scripts using Python

to simplify the xml configuration file. The author also ensured that the output of the

tests gave consistent results.
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Chapter 5

SUSY Search with Jets, Emiss
T and

No Leptons at ATLAS

In this chapter, the ATLAS search for squark and gluino production in the jets, Emiss
T

and no lepton channel with 1 fb−1 , to which the author contributed, is described.

Full details can be found in [5]. The analysis is introduced in §5.1, it is noted that

this search has the highest potential reach for discovering SUSY. §5.2 describes the

analysis method including how SM backgrounds are estimated and how systematic

uncertainties are calculated. The results of the analysis are shown in §5.3. No evi-

dence for SUSY is found and limits are set on simplified SUSY and mSUGRA/cMSSM

models. These limits significantly extend on past ATLAS searches and searches per-

formed at previous collider experiments. The multijet background estimation, which

is a vital part of this analysis, is described in Chapters 6 to 8.

5.1 Introduction

In §2.3, the current status of SUSY searches using particle collider experiments is

described. The discovery reach is highest at the Tevatron and LHC due to their high

centre-of-mass energies. At these colliders, squarks and gluinos, which couple to the
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strong interaction, have the highest production cross-sections. They can decay to

quarks and weakly interacting neutralinos through q̃ → qχ̃0
1 and g̃ → qq̄χ̃0

1 leaving

final states of Emiss
T (from the undetected χ̃0

1 ) and jets. These decays have higher

branching ratios than squark and gluino decays involving leptons described in §2.3.2.

This means that the no lepton channel potentially has the largest reach for discovering

SUSY. However, the lack of leptons in the final state makes this a challenging analysis,

not least in how the multijet background is controlled and estimated.

The search presented in this chapter, also documented in [5], uses 1 fb−1 of

data collected by the ATLAS experiment in 2011. This is the same dataset used for

the multijet background estimation described in this thesis in Chapters 6 to 8. The

analysis is optimised for the greatest discovery reach in simplified models (see §2.2)

where particles except for the squarks, gluinos and χ̃0
1 have masses beyond the reach

of the LHC.

5.2 Method

5.2.1 Trigger and Event Selection

The trigger used requires Emiss
T > 45 GeV and a jet with pT > 75 GeV, both at the

electromagnetic scale. The trigger has > 98% efficiency for the offline analysis using

cuts of Emiss
T > 130 GeV and leading jet pT > 130 GeV.

The object reconstruction, overlap removal and event cleaning is identical to that

described in this thesis in §4.3. The event selection is split into five different searches

labelled A to E, shown in Table 5.1. It is based on cuts on Emiss
T (for inferring the

presence of the χ̃0
1 ), the number of jets above particular pT thresholds and on variables

which reduce SM background contamination. The different jet requirements in A to

E optimise the reach of the search for different sparticle production and decay modes.

For example, pair produced squarks may decay to two quarks and two neutralinos

leaving a final state of two jets and Emiss
T , while pair produced gluinos are likely to
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generate four quarks with two neutralinos giving a final state with four jets. Therefore

searching for different jet multiplicities ensures that different production and decay

modes are covered. All of the analyses use meff as a discriminating variable; this is

defined as the sum of the transverse momenta of the leading n jets in the analysis

and the Emiss
T . In signal region E (the high mass channel), all jets with pT > 40 GeV

are used in the meff calculation. The use of the meff variable is motivated by the

fact that squarks and gluinos, if they exist, have higher masses than SM particles.

Therefore the energy available in the transverse plane is higher than for SM events

and consequently the SUSY events have higher meff . The ∆φ(ji, E
miss
T )min cut is

designed to reduce the multijet background to a small level. A similar cut is used in

SUSY searches at the Tevatron and at CMS (see §2.5), as mismeasured jets or jets

containing neutrinos will most likely align with the Emiss
T . Finally, the Emiss

T /meff cut

further enriches the proportion of events from squark and gluino production compared

to SM particle production.

Requirement
Signal Region

A B C D E

Emiss
T [GeV] > 130

Leading selected jet pT [GeV] > 130

Second selected jet pT [GeV] >40 >40 >40 >40 >80

Third selected jet pT [GeV] – >40 >40 >40 >80

Fourth selected jet pT [GeV] – – >40 >40 >80

∆φ(ji, E
miss
T ) (i = 1, 2(, 3)) >0.4

Emiss
T /meff > 0.3 (2j) > 0.25 (3j) > 0.25 (4j) > 0.25 (4j) > 0.2 (4j)

meff [GeV] > 1000 (2j) > 1000 (3j) > 500 (4j) > 1000 (4j) > 1100 (incl.)

Table 5.1: Signal Regions (SRs) used in the analysis. Note that meff constructed from
the leading four jets is used to calculate Emiss

T /meff for SR-E, while meff constructed
from all jets with pT > 40 GeV is used for the final meff selection.

5.2.2 Standard Model Background Determination

The SM backgrounds to this SUSY search are the following:
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• Multijet production. Significant Emiss
T can be produced from heavy flavour

quark decays or through severe jet mismeasurement. In order to pass the

∆φ(ji, E
miss
T )min cut, the Emiss

T produced must not align with the selected jets.

This can occur if a jet fluctuates to such a degree that it is not reconstructed

with pT > 40 GeV or if multiple jets in the event fluctuate.

• W + jets. These events can enter the signal regions due to leptonic W decays

(W → lν ) producing unmeasurable neutrinos. The charged lepton may not be

reconstructed in W → τν when the τ decays hadronically; in W → eν when

the electron is mis-identified as a jet or in W → µν when an isolated muon is

not found.

• Z + jets. This is primarily composed of Z → νν + jets and is irreducible.

• Single or pair produced top quarks. Top quarks decay almost exclusively

through t → Wb . As for the W + jets background, if the W decays lep-

tonically to a hadronic τ lepton or a misidentified/lost e or µ then the event

will contain Emiss
T , jets and no leptons and can pass the signal selection.

For all of these backgrounds, Control Regions (CRs) are defined which have similar

selections to the Signal Regions (SRs), except that the cuts are modified to enrich the

CRs in the background of interest. Five CRs are used for each SR. Transfer Factors

(TFs) are then derived for each of the 25 CRs. These are the estimated ratios of

events expected between each CR and SR. The expected number of events from a

particular background in a SR is then:

N(SR, estimate) = N(CR, observed)× TF(estimate) (5.1)

The advantage of this procedure is that some systematic uncertainties cancel out in

the TF estimation. The TFs are estimated using MC, except for the multijets where

the data-driven technique described in this thesis is used (see Chapters 6 to 8). The

CRs are defined in the following ways:

• Z + jets: CR1. Two independent selections are used: γ + jets (CR1a) and

(Z → ee/µµ) + jets (CR1b). The momenta of the photon or leptons are added
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to the Emiss
T to simulate (Z → νν) + jets events where the neutrino is not

detected.

• Multijet production: CR2. The ∆φ(ji, E
miss
T ) cut is changed to ∆φ(ji, E

miss
T ) <

0.2. This selects multijet events as the Emiss
T in these events is most likely to

point in the direction of one of the jets in the event.

• W + jets: CR3. A lepton is required and the transverse mass of the l + Emiss
T

system is required to be consistent with the W transverse mass (30 GeV →
100 GeV). In events which populate the signal region, the lepton is mis-

identified as a jet and therefore to emulate these events in this CR, the lepton

is treated as a jet for computing variables like meff . Top quark events are re-

moved by requiring a veto on b-jets (identified from the impact parameter and

secondary vertex, see §4.3.3).

• Top quark production: CR4. The selection is the same as CR3 except b-jets

are required instead of vetoed.

5.2.3 Systematic Uncertainties

The sources of systematic uncertainty in the analysis arise from the derivation of

the TFs described above and in the modelling of expected SUSY signals. These

uncertainties are discussed in this section.

The Jet Energy Scale (JES) correction to account for the difference in detector

response to hadrons and electrons discussed in §4.3.3 is not accurately modelled in

the MC. To account for this, the uncertainty on the JES correction in MC is measured

in 2010 data [54]. This uncertainty depends on jet pT , η and the presence of nearby

jets and is on the level of 4% on average. MC samples are then produced with re-

calibrated jet momenta using the upper and lower allowed values of the JES correction

and TF estimates are produced using these samples. The uncertainty on the TFs is

then the difference between the TF estimates in the re-calibrated samples and the

nominal sample. The same procedure is applied for jet energy resolution which is
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also not accurately modelled in MC (with an uncertainty of up to 7%). The effects of

pileup (multiple pp interactions occurring in one bunch crossing) are accounted for

in the JES and jet resolution uncertainties. The JES and jet resolution uncertainties

are also applied to the expected SUSY signal yields.

The modelling of jet radiation is not perfectly described in the MC. For ex-

ample, as is mentioned in §4.2, ALPGEN only calculates leading order processes and

MC@NLO only calculates the matrix elements for the hard interaction. To account for

this, the backgrounds are reproduced using alternative generators or with reduced jet

multiplicity and the difference in these TFs from the nominal ones is taken as the

uncertainty. Differences are . 40%. Parton density function uncertainties (see §4.2)

are also accounted for on the samples used for TF estimation and on SUSY signal

samples.

Differences between the modelling of photons and leptons (and the photon and

lepton triggers) in MC and data form an additional uncertainty. Differences in the

b-tagging efficiency are also accounted for. Finally, CR contamination with other SM

processes and limited MC statistics are considered.

The uncertainties associated with the estimation of the multijet TFs are de-

scribed in detail in this thesis in Chapter 8.

5.3 Results

Figure 5.1 shows the expected and observed meff distributions in the different SRs

shown in Table 5.1. The expectation from a simulated mSUGRA model is also shown

on the plots. Good agreement is observed between the SM expectations and the

data. Table 5.2 shows the expected numbers of events from SM processes compared

to the observations in the data. Again, good agreement is observed. As no evi-

dence for an excess is seen, limits are set on possible SUSY parameters using the CLs

technique [58]. This is a frequentist-motivated technique used for determining ex-

clusion intervals. Exclusion contours are calculated for simplified SUSY models with
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m(χ̃0
1) = 0 (Figure 5.2) and for particular mSUGRA/cMSSM models (Figure 5.3).

The plots show that the limits observed are more stringent than from previous AT-

LAS searches and searches at LEP and the Tevatron. An example of the mass limits

set is that in a simplified model with only squarks of the first two generations, a gluino

octet, a massless χ̃0
1 and requiring squark and gluino masses to be less than 2 TeV,

gluino and squark masses below 700 GeV and 875 GeV respectively are excluded at

the 95% confidence level.

Process

Signal Region

≥ 2-jet ≥ 3-jet
≥ 4-jet, ≥ 4-jet,

High mass
meff > 500 GeV meff > 1000 GeV

z/γ+jets 32.3± 2.6± 6.9 25.5± 2.6± 4.9 209± 9± 38 16.2± 2.2± 3.7 3.3± 1.0± 1.3

W+jets 26.4± 4.0± 6.7 22.6± 3.5± 5.6 349± 30± 122 13.0± 2.2± 4.7 2.1± 0.8± 1.1

tt̄+ single top 3.4± 1.6± 1.6 5.9± 2.0± 2.2 425± 39± 84 4.0± 1.3± 2.0 5.7± 1.8± 1.9

QCD multi-jet 0.22± 0.06± 0.24 0.92± 0.12± 0.46 34± 2± 29 0.73± 0.14± 0.50 2.10± 0.37± 0.82

Total 62.4± 4.4± 9.3 54.9± 3.9± 7.1 1015± 41± 144 33.9± 2.9± 6.2 13.1± 1.9± 2.5

Data 58 59 1118 40 18

Table 5.2: SM background expectations and data observations in the different signal
regions. The first (second) quoted uncertainty is statistical (systematic). Adapted
from [5].
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Figure 5.1: meff distributions in data and estimated with MC in the SRs shown in
Table 5.1. The black dotted lines show the expectation from SM sources and a SUSY
model identified in Figure 5.3. Statistical uncertainties are shown on the data points.
Below the histograms, the ratios of the data to SM expectations are shown with the
data statistical uncertainties displayed as black vertical lines and the MC systematic
uncertainties shown as yellow bands. The red arrows show the meff SR cuts. From [5].
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Figure 5.2: Exclusion limits for simplified SUSY models with m(χ̃0
1) = 0. From [5].
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Chapter 6

Jet Smearing Overview

This chapter gives an overview of the jet smearing technique for estimating the mul-

tijet background to SUSY searches with no leptons. §6.1 introduces the concept of

jet response. §6.2 gives the motivation for the jet smearing method and defines the

process of jet smearing. §6.3 outlines the assumptions of the technique and justifica-

tions. Finally, §6.4 explains the selection of well-measured data “seed” events which

are used throughout the method.

6.1 Jet Response

No particle detector can perfectly reconstruct a physics object and so every type of

object will have an associated resolution or response distribution. pT response is

defined as R = preco
T /ptrue

T where preco
T is the pT of the reconstructed jet and ptrue

T

is measured at the particle level. In the case of jets, the response will be relatively

broad because of a number of effects:

• Fluctuations in the hadronic shower can be large.

• There is a significant amount of dead material in the detector in and leading
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up to the hadronic calorimeter, which affects how precisely the energy of a jet

can be measured.

• Some of the energy of the jet can fall outside of the cone of the jet.

• Jets may not be fully contained in the calorimeter, ‘punching-through’ to the

muon system.

• Heavy flavour jets can contain neutrinos which escape undetected.

These effects lead to the response of a jet being broader than that of an purely electro-

magnetic object such as an electron. Furthermore, these effects can produce extreme

deviations in the reconstructed momentum of a jet compared with the particle-level

momentum. As a result of this, jet response does not follow a purely Gaussian shape

but also contains non-Gaussian tails.

The response of a jet can depend on its kinematics. For example, punch-through

(mentioned above) is clearly pT dependent. Furthermore, as described in §3.2.3, the

ATLAS calorimeter uses different technologies in different regions of η and therefore

the response will depend on the direction of a jet. Jet response can also depend on

the flavour of the jet as heavy flavour jets can contain neutrinos through electroweak

decay. This will be revisited in §7.1. The measurement of jet response, including the

non-Gaussian tails, will be discussed in detail in Chapter 7.

6.2 Motivation and Overview

A data-driven estimation of the multijet background to SUSY searches with no lep-

tons (described in Chapter 5) is vital because the large cross-section for multijet

production at the LHC means that it is impossible to simulate a comparable number

of MC events. For example, at an instantaneous luminosity of 1033 cm−2s−1 , the

LHC produces ∼ 400 events per second containing a jet with Ejet
T > 100 GeV (see

Figure 2.5). A data-driven estimation is also desirable as the multijet estimation

from PYTHIA is not expected to reproduce the data at high jet multiplicities. This
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is because, as mentioned in §4.2, PYTHIA is a leading order generator and matrix

elements are only calculated for the hard interaction, and not for additional hard

radiated partons.

The jet smearing method is a data-driven technique which is used to determine

multijet distributions in SUSY signal and control regions. It works through scaling

(smearing) the momenta of jets in well measured, low-Emiss
T “seed events” with ran-

dom numbers drawn from jet response functions measured using data. This process is

repeated a large number of times for each seed event, hence producing a large number

of smeared events or “pseudo-data”. The pseudo-data sample then contains events

with multiple jets and potentially large Emiss
T and can be used like a MC sample pro-

viding estimated distributions of multijet events. The normalisation of pseudo-data

distributions to the data can be performed in multijet dominated control regions.

Selecting the seed events from data means the kinematics of the pseudo-data

match multijet data events as long as no bias is introduced though the seed selec-

tion. The smearing of the jets in the seed events acts to re-introduce Emiss
T into the

events. The precise measurement of jet response, including the non-Gaussian tails,

as a function of jet angle and momentum, ensures that the Emiss
T distribution in the

pseudo-data reproduces the data. The measurement of jet response is described in

detail in Chapter 7. Figure 6.1 shows a cartoon of the jet smearing method, with two

high-Emiss
T events generated from a well-measured seed event.

A smeared event is generated by multiplying each jet four-vector in a seed event

by a random number drawn from the appropriate jet response function. The smeared

event Emiss
T is then given by

~/E
′

T = ~/E
seed

T −
∑

i

~p ′
T (ji) +

∑
i

~pT(ji), (6.1)

primes are used to distinguish smeared from unsmeared quantities.
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Figure 6.1: Jet smearing cartoon. From [59]

6.3 Assumptions of the Method

The jet smearing technique relies on some basic assumptions:

1 The Emiss
T of multijet events is dominated by jet fluctuation (true or fake).

2 True and fake sources of jet fluctuation can be included in one response function

and this can be applied to all jets.

3 Any dependence of jet response on event-wide properties, such as jet multiplicity

or the fluctuations of other jets in the event, can be neglected. In other words,

jet smearing can justifiably be applied on a jet-by-jet basis.
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The main justification for these assumptions is that the technique is shown to suc-

cessfully reproduce the control distributions discussed in Chapter 7 and the multijet

control and validation distributions for the main SUSY analysis shown in §8.4. As-

sumption (2) can be checked by studying the proportion of b-jets to light-jets in the

seed selection to check for potential bias. This is done in §6.4, see Figure 6.4(d).

6.4 Seed Event Selection

The seed selection is designed to collect events where the momenta of the recon-

structed jets are as close as possible to the ‘true’, particle level jets. In other words

jets in these events should have response values within the Gaussian core of jet re-

sponse. Jet fluctuation can then be introduced through smearing with minimal double

counting.

Events must first pass the trigger selection shown in Table 4.1. To ensure that

only events in which jets have undergone small response fluctuations are selected, a

cut on Emiss
T could potentially be used. However, since Emiss

T resolution varies with

the event scalar sum ET , a cut on Emiss
T would bias the pT scale of the seed events.

This is demonstrated in Figure 6.2. Instead the Emiss
T -significance, S , is used as it

approximately eliminates the
∑

ET dependence.

S =
Emiss

T√∑
ET

(6.2)

The S distribution for events passing the trigger selection is shown in Fig-

ure 6.3. A cut on S at the peak value ensures that the selected events will typically

contain jets undergoing fluctuations in the peak of the Gaussian part of the response

function whilst retaining a relatively high selection efficiency. The value chosen is

S < 0.7 GeV1/2 . Using a higher value would provide more seed event statistics but

increase the chance of having a large fluctuation present in a jet in a seed event.

Given that limited seed statistics is not the dominant uncertainty in the method,
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Figure 6.2: The leading jet pT distribution for events passing trigger selection (see
text) and after Emiss

T < 20 GeV cut. Statistical uncertainties are shown. The Emiss
T

cut clearly biases the pT distribution.

higher values are not considered.

The Emiss
T , Nj and leading jet pT distributions before and after the S cut are

shown in Fig. 6.4. It can be seen that the seed event selection allows for the selection

of low Emiss
T events without introducing any significant bias in jet multiplicity and

pT . Also shown (see Figure 6.4(d)) is the proportion of b-jets before and after the S

cut; no significant bias is introduced by the seed selection.
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Figure 6.4: The (a) Nj , (b) leading jet pT , (c) Emiss
T and (d) b-jet proportion

distributions for events passing the seed selection (S < 0.7 GeV1/2 ). The equivalent
distributions for events passing the trigger selection only are shown for comparison.
The histograms of the seed events are normalised to the same area as the ‘data’
histograms. Statistical uncertainties are shown.
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Chapter 7

Measurement of Jet Response

This chapter describes the measurement of jet response used for the jet smearing

multijet estimation described in Chapter 8. Firstly, jet response is measured from

multijet MC samples as described in §7.1. The MC response is modified to match

data using the techniques described in §7.2. The dijet analysis for constraining the

Gaussian response is described in §7.3. The “Mercedes” analysis for constraining the

non-Gaussian response tails is then described in §7.4. Novel event shape triggers are

used to collect extra statistics for this measurement as described in §7.4.3. They

allow the non-Gaussian response tail to be constrained to a greater extent than if

only standard single jet triggers are used as shown in §7.4.4.

7.1 MC Response

Jet response is initially taken from multijet MC samples. It is then constrained to

match the data in control distributions. To measure the response from MC, the

following is done:

• Multijet samples produced with PYTHIA (see §4.2) and standard object defini-

tions and overlap removal are used (see §4.3). Jet cleaning is applied as in §4.3.5
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7.1. MC Response Measurement of Jet Response

so that jet response is only measured for jets which are used in the main SUSY

analysis.

• Jet response is measured for any reconstructed jet in an event isolated from other

reconstructed jets by ∆R > 1.0 and matched to a truth jet with ∆R < 0.1. The

reconstructed jet is also required to be isolated from other truth jets by ∆R >

1.0. Note that ∆R here refers to the geometric quantity ∆R =
√

∆φ2 + ∆η2 ,

and not jet response.

• The four-momenta of any final state neutrinos in the cone of the truth jet are

added to the jet. This is vital as both true and fake sources of Emiss
T should be

encoded in the jet response function used for jet smearing.

• Finally, the jet response is measured as a function of truth jet pT using RMC =

preco
T /ptrue

T .

Figure 7.1(a) shows RMC with pT bins of width 20 GeV. The response function

for a jet with a particular momentum is a pT slice of this distribution. The response

for jets with 140 GeV< pT < 160 GeV is shown in Figure 7.1(b).
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Figure 7.1: RMC measured from multijet MC events by matching simulated truth
jets to reconstructed jets. The yellow band in (b) shows the uncertainty from limited
MC statistics.
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7.2. Modification of MC Response Measurement of Jet Response

In §6.1, it is noted that the response of heavy flavour jets is expected to be dif-

ferent to the response of light jets. This is particularly relevant to the background es-

timation in SUSY searches with b-jets [6, 7, 8] where reconstructed b-jets are smeared

with different response functions to those used for light jets. This technique is not

used in the analysis described in this thesis since there is no requirement for b-jets

in the SUSY signal or multijet control regions. In the supporting material [60] (in-

ternally approved by the ATLAS collaboration) for the analysis described in [7], the

response functions for true and reconstructed b-jets and for reconstructed light jets

are determined using multijet MC. These are shown in Figure 7.2. It can be seen

that the non-Gaussian tails are much larger for the b-jets than for the light jets. This

indicates that non-Gaussian jet response is dominated by the presence of neutrinos

in heavy flavour jets.

7.2 Modification of MC Response

In order to constrain the response functions so that they match jet response in data,

multijet dominated control distributions are used. Jet smearing on seed events is

used to produce pseudo-data which can then be compared to the data. The response

functions are then modified to gain agreement between the pseudo-data and the

data. Two techniques are used to modify the MC response functions to improve

the agreement between the pseudo-data and data in the control distributions:

(1) Additional Gaussian smearing to widen the jet response. To account for differ-

ences in the Gaussian response width in MC and data, a pT -dependent Gaus-

sian smearing is introduced. For a given jet, the smearing value from the MC

response function is multiplied by a number drawn from a Gaussian with a

mean of one and width σcorrection(pT). The functional form and uncertainty on

σcorrection(pT) is determined using the analysis described in §7.3. This analysis

uses the pT asymmetry of dijet events to constrain σcorrection(pT) so that the

Gaussian response in pseudo-data matches that in data.

(2) Non-Gaussian response shape modification. Understanding the shape of the
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Figure 7.2: Response functions for b-jets and light jets from multijet MC in different
jet pT ranges. From [60].

response tails is vital in estimating distributions in the SUSY signal and control

regions. This is because the high Emiss
T requirement guarantees that at least one

jet in a multijet event has undergone a very significant fluctuation. The “Mer-

cedes”1 analysis described in §7.4 is used to derive the correct tail shapes and

uncertainties in different pT bins. Events are selected with three or more jets

where one of the jets is unambiguously associated with the Emiss
T in the event.

The Emiss
T can then be assumed to be due to the fluctuation of the matched

jet and the response of that jet can be measured. This analysis constrains the

non-Gaussian response to match the data.

1The events passing the selection in this analysis resemble the Mercedes logo, see Fig. 7.4.
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7.3. Dijet Analysis Measurement of Jet Response

7.3 Dijet Analysis

The first control distribution is the pT asymmetry of dijet events. In pure dijet events,

any asymmetry is due to jet fluctuation. Events must first satisfy the trigger selection

shown in Table 4.1. Seed events are selected as described in §6.4 and 1000 smeared

events are produced from each seed event as described in §6.2. The following require-

ments are then imposed on the data (following the trigger selection from Table 4.1)

and smeared data:

• Two jets with pT > 130, 40 GeV. No additional jets with pT > 30 GeV.

• |π −∆φ(j1, j2)| < 0.3.

The pT asymmetry is given by

A(pT,1, pT,2) =
pT,1 − pT,2

pT,1 + pT,2

, (7.1)

where the indices correspond to the jet pT ordering. The width of a Gaussian fitted

to this distribution is given by:

σA =

√
(σ(pT,1))2 + (σ(pT,2))2

〈pT,1 + pT,2〉 . (7.2)

If the jets have approximately the same rapidity then σ(pT,1) = σ(pT,2) = σ(pT).

Furthermore, 〈pT,1 + pT,2〉 = 2〈pT,average〉 . Therefore:

σA ' σ(pT)√
2pT

. (7.3)

A(pT,1, pT,2) is measured in pT bins (see Fig. 7.3(a)) and then the pT slices are

fitted with Gaussians with means fixed at zero in the range 0 < A < 0.15. This

range was found to provide a good fit for all pT . See Figures 7.3(b) and 7.3(c) for

examples. Fig. 7.3(d) shows the Gaussian widths measured in data (σA,data ). Also

shown is σA reproduced using jet smearing with the uncorrected response function
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7.3. Dijet Analysis Measurement of Jet Response

taken from MC (referred to as σA,MC ). The σA,data and σA,MC distributions are then

fitted with the following functional form:

σA =
A

pT

+
B√
pT

+ C. (7.4)

The difference observed between σA,data and σA,MC is used to constrain the

σcorrection(pT) parameter introduced in §7.2. The additional smearing of the MC

response functions with σcorrection(pT) increases σMC(pT) in the same way as in the

convolution of two Gaussians:

(
σtotal(pT)

pT

)2

=

(
σMC(pT)

pT

)2

+ σcorrection(pT)2. (7.5)

σtotal(pT) is the width of the corrected response function. Requiring that this cor-

rected response matches the data response (i.e. σtotal(pT) = σdata(pT)) and using

Eq. 7.3 it follows that:

(
√

2× σA,data)
2 = (

√
2× σA,MC)2 + σcorrection(pT)2. (7.6)

Therefore:

σcorrection(pT) =
√

2×
√

σ2
A,data − σ2

A,MC (7.7)

Using this equation and the parameters in Table 7.1 from the fits to σA,data and σA,MC

(using Eq. 7.4), σcorrection(pT) is now fully described. Table 7.1 shows the parameters

calculated using different fitting ranges, this is important in deriving the systematic

uncertainties on σcorrection(pT) as discussed below.

7.3.1 Uncertainty on σcorrection(pT).

The fits on σA,data and σA,MC are unconstrained below 150 GeV with the triggers

used in this analysis so σcorrection(pT) must be extrapolated to low pT . This results in

the value of σcorrection(pT) at low pT varying to a large extent with the fitting range

used. Examples are:
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7.3. Dijet Analysis Measurement of Jet Response

Parameter
Fit range [GeV]

150 < pT < 400 150 < pT < 600 150 < pT < 1000
Adata [GeV] 6.56 7.56 9.66

Bdata [GeV1/2] 0.0950 -0.0299 -0.301
Cdata 0.0418 0.0456 0.0543

AMC [GeV] 6.65 6.55 4.69

BMC [GeV1/2] 0.0242 0.0364 0.274
CMC 0.0421 0.0417 0.0342

Table 7.1: Parameters for fits to the σA,data and σA,MC distributions. These param-
eters are used to calculate σcorrection(pT) using Eq. 7.7 as described in the text.

• Fitting range 150 GeV < pT < 400 GeV =⇒ σcorrection(50 GeV) = 0.119.

• Fitting range 150 GeV < pT < 600 GeV =⇒ σcorrection(50 GeV) = 0.074.

• Fitting range 150 GeV < pT < 1000 GeV =⇒ σcorrection(50 GeV) = 0.053.

These fits are shown in Figure 7.3(d). Using different fitting ranges therefore provides

a simple method which accounts for the uncertainty on σcorrection(pT) at low pT .

To account for any other differences between σA,total and σA,data , high and low

estimates are performed in the following way:

• High estimate: use parameters from fitting range 150 GeV < pT < 400 GeV.

σhigh
correction(pT) = σcorrection(pT) + 0.05.

• Optimal estimate: use parameters from fitting range 150 GeV < pT < 600 GeV.

σoptimal
correction(pT) = σcorrection(pT).

• Low estimate: use parameters from fitting range 150 GeV < pT < 1000 GeV.

σlow
correction(pT) = σcorrection(pT)− 0.05.

The value 0.05 is an arbitrary choice but is seen to perform well as discussed below.

To obtain a given distribution or quantity, the estimate using σoptimal
correction(pT) is taken

as the optimal estimate. The uncertainty is then taken as half the difference between
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7.3. Dijet Analysis Measurement of Jet Response

the estimates acquired using σhigh
correction(pT) and σlow

correction(pT). This procedure is

used for obtaining the jet smearing estimate of σA shown in Figure 7.3(e). The

chi-squared value between the estimate and data is 24.1 with 34 degrees of freedom

(p− value = 0.90). This indicates that the estimate (with uncertainties accounted

for) reproduces the data well.
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7.3. Dijet Analysis Measurement of Jet Response

) / 2 [GeV]
T,2

 + p
T,1

(p

0 100 200 300 400 500 600 700 800 900 1000

)
T,

2
, p

T,
1

A
(p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

100

200

300

400

500

600

700

×
 ATLAS preliminary

-1
L dt ~ 1000 pb∫  = 7 TeVs 

(a) pT asymmetry (A) as a function of
pT

)
T,2

, p
T,1

A(p

0 0.1 0.2 0.3 0.4 0.5 0.6

E
nt

rie
s 

/ 0
.0

25

0

200

400

600

800

1000

1200

1400

1600

1800

310×

(b) A and Gaussian fit to A for data
events with 150 GeV < pT(average) <
175 GeV

)
T,2

, p
T,1

A(p

0 0.1 0.2 0.3 0.4 0.5 0.6

E
nt

rie
s 

/ 0
.0

25

0

1000

2000

3000

4000

5000

6000

(c) A and Gaussian fit to A for data
events with 400 GeV < pT(average) <
425 GeV

) / 2 [GeV]
T,1

 + p
T,1

(p

200 300 400 500 600 700 800

Aσ

0.04

0.05

0.06

0.07

0.08

0.09

0.1
-1

L dt ~ 1000 pb∫ 
 ATLAS preliminary

A,dataσ 

A,MCσ 

(d) σA,data and σA,MC (solid points)
with fits in different pT ranges (solid and
dashed lines)

) / 2 [GeV]
T,1

 + p
T,1

(p

200 300 400 500 600 700 800

Aσ

0.04

0.05

0.06

0.07

0.08

0.09

0.1
-1

L dt ~ 1000 pb∫ 
 ATLAS preliminary

A,dataσ 

A,totalσ 

(e) σA,data and σA,total

Figure 7.3: Dijet analysis plots. The uncertainties on the points in (d) and on the
data points in (e) are uncertainties from the Gaussian fitting. The uncertainty on
σA,total in (e) is calculated as described in the text. σcorrection(pT) is determined from
the fits to σA,data and σA,MC shown in (d) using Eq. 7.7. (e) demonstrates that the jet
smearing estimate of σA (including uncertainties) successfully reproduces the data.
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7.4. Mercedes Analysis Measurement of Jet Response

7.4 Mercedes Analysis

The measurement of the non-Gaussian jet response tails is vital in attempting to

reproduce high Emiss
T multijet events. The Mercedes analysis, developed in [59, 61],

is designed to probe the response tails of a single jet. Unlike a dijet balance analysis,

the Mercedes analysis can distinguish between high-side and low-side fluctuations of

the candidate jet. The selection described here is based on that presented in [59].

Events are initially selected according to the trigger selection in Table 4.1. Seed

events are selected as described in §6.4 and 1000 smeared events are produced from

each seed event as described in §6.2. The pseudo-data accounts for the Gaussian

corrections and uncertainties found in §7.3. The selection described below is then

imposed on the data (following the trigger selection from Table 4.1) and smeared

data.

The preselection requirements are for three or more jets with pT > 260, 40, 30

GeV and Emiss
T > 30 GeV. Three jets are required to allow the selection of three

pronged Mercedes type events which allow for the unambiguous association of one

jet with the Emiss
T in these events (see Fig. 7.4 for a depiction of Mercedes events).

The cut on the leading jet pT is used to ensure that data events are collected us-

ing non-prescaled triggers to simplify the derivation of the tail shape. Non-multijet

backgrounds are also significantly reduced with this cut.

Large Emiss
T can be generated either by upward or downward fluctuations in

jet response. Therefore it is important to select events with jets either parallel or

anti-parallel to Emiss
T in the transverse plane (see Fig. 7.5). Therefore, in each event

passing the preselection cuts, all N jets with pT > 30 GeV are sorted in increasing

distance in φ from the Emiss
T and the event is selected if it satisfies either :

|∆φ(j1, Emiss
T )| < π − |∆φ(jN , Emiss

T )|
|∆φ(j1, Emiss

T )| < ∆φmatch

|∆φ(j2, Emiss
T )| > ∆φisol

1 , (7.8)
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7.4. Mercedes Analysis Measurement of Jet Response

Figure 7.4: Mercedes event topology. Emiss
T is unambiguously associated with one

jet in the event. Events of this type are those used in the measurement of the non-
Gaussian component of the jet response function.

or

π − |∆φ(jN , Emiss
T )| < |∆φ(j1, Emiss

T )|
π − |∆φ(jN , Emiss

T )| < ∆φmatch

π − |∆φ(jN−1, Emiss
T )| > ∆φisol

1 , (7.9)

where the indices refer to position in the ∆φ ordering. ∆φmatch gives how close in φ

the candidate jet should be to the Emiss
T . ∆φisol

1 gives how isolated the next closest

jet must be. Applying these cuts selects events where the jet most closely associated

with the Emiss
T is sufficiently well associated to be considered a match and is isolated

from any other jets in the transverse plane. The fluctuating jet is then labelled as J

and the jet closest to being back-to-back with J is labelled as K . This corresponds

to J = j1 and K = jN for the parallel selection (Eq. 7.8), and J = jN and K = j1

for the anti-parallel selection (Eq. 7.9).

In order to avoid ambiguity, events containing jets both parallel and anti-parallel

to the Emiss
T are rejected. Figure 7.6 shows the |∆φ(K,Emiss

T )| distribution for both

parallel and anti-parallel selections with ∆φmatch = 0.1 and ∆φisol
1 = 1.0. It is clear

that K tends to be back-to-back with J . To resolve this ambiguity, events passing
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Figure 7.5: ∆φ between Emiss
T and nearest (black) and furthest (red) jet for events

passing preselection cuts. Multijet MC is normalised to the data. Statistical uncer-
tainties are shown.

the cuts in Eq. 7.8 and Eq. 7.9 are kept if they satisfy:

π − |∆φ(K,Emiss
T )| > ∆φisol

2 (7.10)

or

|∆φ(K, Emiss
T )| > ∆φisol

2 (7.11)

respectively.

Finally, in order to reduce the contamination from non-multijet sources (like

Z(→ νν̄) + jets), events are required to have high pT jets other than the candidate

fluctuating jet. In each event, jets other than J are sorted in decreasing pT and the
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Figure 7.6: ∆φ between Emiss
T and K for parallel (black) and anti-parallel (red)

selections. Events pass preselection cut and pass Eq. 7.8 or Eq. 7.9 with ∆φmatch = 0.1
and ∆φisol

1 = 1.0. Multijet MC is normalised to the data. Statistical uncertainties
are shown.

event is selected if

p1
T > pcut1

T

p2
T > pcut2

T

(7.12)

where the indices refer to the position (excluding J ) in the pT ordering. The final

selection is made using the cuts in Eq. 7.8 - Eq. 7.12 with the following values:

74



7.4. Mercedes Analysis Measurement of Jet Response

∆φmatch = 0.1

∆φisol
1 = 1.0

∆φisol
2 = 0.25

pcut1
T = 260 GeV

pcut2
T = 40 GeV

(7.13)

Having selected events with a jet unambiguously associated with the Emiss
T , the

jet response tails can be measured. If it is assumed that the Emiss
T in these events is

dominated by the response fluctuation in J , then:

~pJ
T(true) ' ~pJ

T(reco) + ~Emiss
T . (7.14)

With response defined as:

R =
~pJ

T(reco) · ~pJ
T(true)

|~pJ
T(true)|2 , (7.15)

then by substitution of Eq. 7.14, response measured with Mercedes events, R2 , is

given by:

R2 ' ~pJ
T · (~pJ

T + ~Emiss
T )

|~pJ
T + ~Emiss

T |2
, (7.16)

where ~pJ
T is the reconstructed pT of the jet associated with the Emiss

T .

Figure 7.7 shows the R2 distributions for different ~pJ
T(true) ranges of the fluc-

tuating jet measured with data, MC simulation and estimated using the jet smearing

method with Gaussian corrections and uncertainties accounted for.
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Figure 7.7: R2 in bins of fluctuating jet ~pJ
T(true) measured in data, MC simulation

and estimated using the jet smearing method with Gaussian corrections and uncer-
tainties accounted for. No tail modification is used in these distributions. Multijet
MC and estimates are normalised to the data. Statistical uncertainties are shown on
the data and Gaussian systematic uncertainties are shown on the estimates.
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7.4.1 Modification of Non-Gaussian Response

Figure 7.7 shows that the jet smearing estimate without tail corrections does not

perfectly reconstruct the low-side non-Gaussian tail observed in the data. This is

especially clear in Figure 7.7(b) where the estimate overshoots the data in the region

0.0 < R2 < 0.5. In the high-side region (R2 À 1.0), good agreement is observed

between the estimate and data indicating that no special treatment is needed for the

high-side non-Gaussian tail.

In order to modify the tail, firstly the MC response functions are fitted with

a functional form. The tail can then be modified by changing a parameter in the

functional form. The jet smearing estimates of R2 (like those in Figure 7.7) can

then be reproduced using the modified tail and the agreement between the estimate

and data can be probed. By repeating this procedure (using different values for the

parameter), the optimal form of non-Gaussian tail can be found with an associated

uncertainty.

The functional form found to best describe the MC non-Gaussian jet response

is a Gaussian with a fitting range restricted to the tail region. In order to define

this region, the response is first fitted with a Crystal Ball function [62] (which has a

continuous derivative) in the range 0.0 < R < 1.2. It is important to note that this

function is not expected to provide a perfect fit to the response distribution; it is only

used as a tool to determine the extent of the tail region. The Crystal Ball function

is defined as:

f(x; α, n, x̄, σ,N) = N ·
{

exp
(
− (x−x̄)2

2σ2

)
, for x−x̄

σ
> −α

A · (B − x−x̄
σ

)−n
, for x−x̄

σ
≤ −α

(7.17)

where

A =

(
n

|α|
)n

· exp

(
−|α|

2

2

)

and

B =
n

|α| − |α|.
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The crossing point between the core and tail regions is therefore at x = x̄− ασ . To

ensure the tail dominates, the ‘tail Gaussian’ is fitted in the range 0 < x < x̄−ασ−0.1.

Examples of the Crystal Ball fits and the fitting ranges determined are shown in

Figure 7.8. Also shown are Gaussians fitted to the tail region. The full jet response

is then the Gaussian fit in the tail region and the original MC response histogram

outside of the tail region.
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(a) 40 GeV < pT(true) < 60 GeV
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(b) 140 GeV < pT(true) < 160 GeV
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(c) 540 GeV < pT(true) < 560 GeV

Figure 7.8: Fitting the MC response tail. For every pT slice, a Crystal Ball function
is fitted to the R distribution in the region 0.0 < R < 1.2. The tail region is then
defined as 0 < R < x̄ − ασ − 0.1 (see Eq. 7.17 and text). A Gaussian is then fitted
in this region. Also shown is the Gaussian component of the Crystal Ball fit, this is
used in producing a sample of pseudo-data with only Gaussian smearing as described
in §7.4.2. The yellow band shows the uncertainty from limited MC statistics.
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The response tail can now be modified by changing the shape of the Gaussian fit.

This is achieved by multiplying the width of the Gaussian (σtail ) by a factor ∆σtail .

The mean of the Gaussian is fixed and the normalisation is set such that the value

of the function at x = x̄ − ασ − 0.1 is fixed. Figure 7.9 shows examples of how the

response varies with the choice of ∆σtail for jets with 140 GeV < pT(true) < 160 GeV.
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 = 1.2tailσ∆ 

 = 1.0tailσ∆ 

 = 0.8tailσ∆ 

Figure 7.9: Modifying the response tail using the ∆σtail parameter as described in
the text for jets with 140 GeV < pT(true) < 160 GeV. The yellow band shows the
uncertainty from limited MC statistics.

7.4.2 Determining ∆σtail and its Uncertainty

In order to test the compatibility of the modified tails with the observation in the

data, pseudo-data samples are produced with different ∆σtail values. χ2 tests are

then performed between the Mercedes distributions in the pseudo-data samples and

in the data.

The first task of this analysis is to define the regions in which the χ2 tests are

performed. This is important as only differences in the tail shape should be probed,
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7.4. Mercedes Analysis Measurement of Jet Response

and not differences in the Gaussian region of the Mercedes distributions. To achieve

this, one must define in what region the Mercedes distributions are dominated by tail

fluctuations. This is achieved by creating a sample of pseudo-data only using Gaussian

smearing. The response functions for this sample are taken from the Crystal Ball fits

described in §7.4.1. The fits are used to define the parameters for Gaussians which

are a good match to the core of the response distributions as shown in Figure 7.8. For

a particular Mercedes pT bin, the tail region is then defined as those bins in which

the bin content of the Gaussian smeared pseudo-data distribution is less than half

the bin content of the data. This is demonstrated in Figure 7.10.
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Figure 7.10: R2 in bins of fluctuating jet ~pJ
T(true) measured in data and with

a sample of pseudo-data created with Gaussian-only smearing. Comparing these
distributions defines the tail region (shown in the plots) for performing χ2 tests
between data and pseudo-data (including the non-Gaussian tail) as described in the
text. Statistical uncertainties are shown.
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Having defined the tail regions of the Mercedes distributions, χ2 tests can now

be performed between the pseudo-data and data with different values of ∆σtail . For

these tests, the pseudo-data is compared with the data with the non-multijet MC

subtracted from it. As can be seen in Figure 7.7, in the region 0.0 < R < 0.4

there can be a significant non-multijet contamination and there can be bins with

no data observed. For these reasons, the first bins are merged until the amount of

data observed is greater than the non-multijet MC and furthermore there are no bins

missing data to the right of this first bin. For example in Figure 7.7(b), the first bin

is taken as 0.0 < R < 0.3. Sets of pseudo-data are created with ∆σtail varying from

0.5 to 1.5 in steps of 0.05. The χ2 values are then calculated. For each pT(true) bin

three values of ∆σtail are found:

• ∆σoptimal
tail : the value of ∆σtail which gives the highest p-value2.

• ∆σhigh
tail : the value of ∆σtail above ∆σoptimal

tail at which the hypothesis of a good

fit is rejected at a one sigma level. i.e. The first parameter value above ∆σoptimal
tail

at which the p-value is found to be less than 0.32.

• ∆σlow
tail : the value of ∆σtail below ∆σoptimal

tail at which the hypothesis of a good

fit is rejected at a one sigma level.

The parameter values found are shown in Table 7.2. These values are used to produce

the pseudo-data distributions shown in Figure 7.11.

To obtain a given distribution or quantity, the estimate using ∆σoptimal
tail is taken

as the optimal estimate. The tail uncertainty is then taken as half the difference

between the estimates acquired using ∆σhigh
tail and ∆σlow

tail . This procedure is used

for obtaining the jet smearing estimate of the Mercedes distributions shown in Fig-

ure 7.12. This can be compared to Figure 7.7 where tail corrections have not been

performed. For completeness, there should also be a correction and uncertainty de-

rived for the tail normalisation (compared to the Gaussian component of jet response).

However, the effect of such a correction is small compared with the effect from the

shape change discussed in this section and therefore is not included in this analysis.

2The p-value gives the probability of the two distributions being consistent
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7.4. Mercedes Analysis Measurement of Jet Response

pT (true) range [GeV]
Parameter value, p-value

∆σlow
tail ∆σoptimal

tail ∆σhigh
tail

0 < pT < 200 0.75, 0.24 0.8, 0.56 1.0, 0.06

200 < pT < 300 0.75, 0.04 0.8, 0.42 0.9, 0.02

300 < pT < 400 0.75, 0.10 0.85, 0.76 0.95, 0.23

pT > 400 0.8, 0.13 0.9, 0.79 1.0, 0.18

Table 7.2: Values of ∆σtail calculated using χ2 tests between the Mercedes distribu-
tions in data and pseudo-data.
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Figure 7.11: The tail regions of R2 in bins of fluctuating jet ~pJ
T(true) measured in

data with non-multijet MC subtracted from it and estimated using the jet smearing
method using the values of ∆σtail shown in Table 7.2. Also shown are the estimates
using the uncorrected response tails from multijet MC. Statistical uncertainties are
shown on the data.
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(b) R2 for 200 GeV < pT(true) < 300 GeV
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(d) R2 for 400 GeV < pT(true) < 1000 GeV

Figure 7.12: R2 in bins of fluctuating jet ~pJ
T(true) measured in data, MC simulation

and estimated using the jet smearing method with Gaussian and tail corrections and
associated uncertainties accounted for. Multijet MC and estimates are normalised to
the data. Statistical uncertainties are shown on the data. The yellow bands show the
systematic uncertainties on the estimates.
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7.4.3 Dedicated ∆φ Trigger

The lower-pT single jet triggers which could be used for collecting Mercedes events

in §7.4 have high average prescaling as shown in Table 4.1; this is due to the high

cross-section for multijet production at the LHC. This partly motivates the high

leading jet pT cut (pT > 260 GeV) used in the Mercedes analysis. To allow the use

of a lower pT cut, and hence have more available statistics for the measurement of

non-Gaussian jet response, novel event shape triggers called “∆φ triggers” have been

developed. These triggers are designed to be fully efficient for triggering Mercedes

events whilst rejecting a significant number of other multijet events. This allows the

trigger to collect a greater number of events useful for the Mercedes analysis whilst

running with the same trigger bandwidth as an equivalent single jet trigger.

Figure 7.13 shows the min(∆φ(j1, j2)) distribution of all combinations of pairs

of jets (referred to as ∆φmin henceforth) passing the trigger selection described in

Table 4.1. The majority of events either have jets which are back-to-back (∆φmin ∼ π )
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Figure 7.13: ∆φmin between pairs of jets in data and MC. Multijet MC is normalised
to the data. Statistical uncertainties are shown.
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or are close to each other (∆φmin ∼ 0) in φ . Both of these cases fail the Mercedes

event selection as the candidate jet must be isolated from other jets and not back-to-

back with other jets in the event. For this reason, the quantity ∆φmin is an ideal one

to trigger on.

To inform the choice of the ∆φmin cut, the offline ∆φmin distribution is plotted

for events passing the full Mercedes event selection described in §7.4; this is shown in

Figure 7.14. It is clear that an offline cut of ∆φmin < 2.2 would be fully efficient for

the Mercedes selection.
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Figure 7.14: ∆φmin between pairs of jets for events passing the Mercedes selection
in data and MC. Multijet MC is normalised to the data. Statistical uncertainties are
shown.

The first ∆φ triggers developed are L2 triggers. To aid their development, L2

jet kinematics are studied using ATLAS data recorded in 2010. Some key distribu-

tions are shown in Figure 7.15. Figures 7.15(a) and 7.15(c) show the ∆φ and ∆η

distributions between the two leading momenta jets at L2 (for jets reconstructed at

L2 with ET > 7 GeV). The MC simulation of the L2 jet kinematics is seen to model

87



7.4. Mercedes Analysis Measurement of Jet Response

the data reasonably well. Figures 7.15(b) and 7.15(d) demonstrate that in the ma-

jority of cases, the L2 ∆φ and ∆η values match the offline (events on the diagonal).

There are also a large number of events lying far from the diagonal, in these events

the momentum ordering of the jets is different between L2 and offline. This can occur

due to the simplicity of the L2 jet algorithms compared to offline and the fact that no

JES correction is applied at L2. This partly motivates the use of the ∆φmin variable

in the ∆φ triggers instead of ∆φ between the two highest momenta jets.
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Figure 7.15: L2 jet kinematics. MC estimates are normalised to the data.
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For the dataset considered in the rest of this thesis, there were two ∆φ triggers

active: EF j135 j30 a4tc EFFS dphi04 and EF j180 j30 a4tc EFFS dphi04. These

are EF triggers giving the advantage that the jets considered are a closer match

to the offline jets compared with L2 jets. The ‘dphi04’ notation corresponds to

∆φmin < π − 0.4. The EF j180 j30 a4tc EFFS dphi04 trigger is not needed in the

dataset of this thesis as the equivalent single jet trigger (EF j180 a4tc EFFS) was

unprescaled as shown in Table 4.1. This trigger is used in later data periods be-

yond the scope of this thesis. The EF j135 j30 a4tc EFFS dphi04 trigger is used

as it had an average prescale of 3.4 compared to 8.9 for the corresponding single

jet trigger: EF j135 a4tc EFFS. The Mercedes distribution for pT(true) > 100 GeV

measured using this trigger and with the leading jet pT cut and pcut1
T set to 200 GeV

is shown in Figure 7.16(a). For comparison the same distribution except using the

EF j135 a4tc EFFS trigger is plotted in Figure 7.16(b). To easily compare the shapes,

Figure 7.16(c) shows the two distributions on the same plot, with the data from

EF j135 a4tc EFFS normalised to the ∆φ trigger. The distribution from the ∆φ

trigger matches that from the single jet trigger (within uncertainties) indicating that

the ∆φ trigger does not bias the R2 distribution.
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(b) EF j135 a4tc EFFS
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Figure 7.16: R2 for pT(true) > 100 GeV measured in data and MC simulated data
with the ∆φ trigger: EF j135 j30 a4tc EFFS dphi04, and the corresponding single
jet trigger: EF j135 a4tc EFFS. Multijet MC is normalised to the data. Statistical
uncertainties are shown.
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7.4.4 Using Events from ∆φ Trigger to Constrain ∆σtail

Utilising the events from the EF j135 j30 a4tc EFFS dphi04 trigger may allow the

∆σtail parameter to be further constrained and hence reduce an uncertainty on the

shape of the non-Gaussian response tail. To achieve this, the procedure described

in §7.4.2 is repeated except that the leading jet pT cut and pcut1
T are set to 200 GeV.

For the ‘data’ distribution, the EF j135 j30 a4tc EFFS dphi04 is used for events with

200 GeV < pT(leading) < 260 GeV instead of the EF j135 a4tc EFFS trigger. Note

that pseudo-data is produced in the normal way, following the usual single jet trigger

selection shown in Table 4.1.

The statistical uncertainty for bins in the data R2 histogram is underestimated

in the case of there being zero events observed from the prescaled ∆φ trigger. For

example, take a bin with N events from the unprescaled trigger and 0 events from

the prescaled trigger; the statistical uncertainty would usually be
√

N on this bin.

However, an entry from the prescaled trigger does not just add one event, but an

event with a weight: wPS . Therefore the upper uncertainty on this bin should be√
N ⊕ √

wPS =
√

N2 + w2
PS . Therefore, for any bins whose error is less than 3.4

(this corresponds to wPS for EF j135 j30 a4tc EFFS dphi04), the upper error is set

to
√

N2 + 3.42 . The lower error is not modified. Table 7.3 shows the values of ∆σtail

which are obtained and Figure 7.17 shows the R2 distributions in the tail region used

for the χ2 fits.

Comparing Table 7.3 with Table 7.2, it can be seen that using the ∆φ trig-

ger does further constrain ∆σtail compared to using only single jet triggers. The

consequence of this will be discussed in Chapter 8.
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pT (true) range [GeV]
Parameter value, p-value

∆σlow
tail ∆σoptimal

tail ∆σhigh
tail

0 < pT < 200 0.8, 0.14 0.85, 0.68 0.95, 0.01

200 < pT < 300 0.8, 0.10 0.85, 0.39 0.9, 0.27

300 < pT < 400 0.8, 0.19 0.85, 0.36 0.9, 0.16

pT > 400 0.8, 0.14 0.95, 0.81 1.0, 0.11

Table 7.3: Values of ∆σtail calculated using χ2 tests between the Mercedes distribu-
tions in data and pseudo-data using the ∆φ trigger: EF j135 j30 a4tc EFFS dphi04.
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Figure 7.17: The tail regions of R2 in bins of fluctuating jet ~pJ
T(true) measured

in data, using the ∆φ trigger EF j135 j30 a4tc EFFS dphi04 with non-multijet MC
subtracted from it and estimated using the jet smearing method using the values
of ∆σtail shown in Table 7.3. Also shown are the estimates using the uncorrected
response tails from multijet MC. Statistical uncertainties are shown on the data.
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Chapter 8

Jet Smearing for Multijet

Estimation

This chapter describes the final multijet background estimation for the fully hadronic

SUSY search (see Chapter 5) using the jet smearing method. The response func-

tions used are those measured in Chapter 7. Firstly, in §8.1 the technique is shown

to successfully reproduce the multijet Emiss
T distribution observed in data. In §8.2,

the method used for performing the final multijet estimation is given. §8.3 gives the

uncertainties associated with the jet smearing method with systematic uncertainties

dominating. §8.4 presents the results of the analysis, with estimated multijet distri-

butions compared to the data in the SUSY control, signal and validation regions. The

estimated transfer factors between the control and signal regions are also shown. Fi-

nally, in §8.5, the results are discussed. The multijet distributions estimated with the

jet smearing method display excellent agreement with the data in SUSY control and

validation regions. In the signal regions, the benefit in the extra statistics compared

with multijet MC is evident.
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8.1 Validating the Method

Before obtaining the final multijet estimation for the SUSY signal and control regions,

the method is tested by attempting to reproduce the multijet Emiss
T distribution.

Events must first satisfy the trigger selection shown in Table 4.1. Seed events are

selected as described in §6.4 and 1000 smeared events are produced from each seed

event as described in §6.2. A requirement is then made for the presence of two jets

with pT > 130, 40 GeV in the data and smeared data. The Emiss
T distribution in data,

estimated with jet smearing and with MC simulated data is shown in Figure 8.1. The

smeared data here is produced with response functions using the Gaussian and tail

corrections and associated uncertainties described in Chapter 7.

8.2 Method for Final Multijet Estimation

Having constrained the response functions to successfully model multijet dominated

distributions in the data, jet smearing can now be used to provide multijet distri-

butions in SUSY signal and control regions. For the multijet estimation, only the

signal regions (shown in Table 5.1) and CR2, the multijet control regions, are needed.

For each signal region, CR2 has the same cuts except the ∆φ(ji, E
miss
T ) requirement

changed to ∆φ(ji, E
miss
T ) < 0.2.

Seed events are selected as shown in §6.4 and 10000 smeared events are produced

from each seed as described in §6.2. The response functions used for the smearing are

those constrained with multijet data as discussed in Chapter 7. The extra constraint

on ∆σtail allowed by the ∆φ triggers shown in §7.4.4 is not used to begin with. The

smeared events are then passed through the relevant signal or control region selection.

In comparison, data events are required to pass the signal trigger described in §5.2.1

and then the relevant signal or control region selection. The required inputs from

this method to the full SUSY analysis are Transfer Factors (TFs) from the multijet
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Figure 8.1: Multijet Emiss
T distribution in data, MC simulated data and estimated

using the jet smearing method with Gaussian and tail corrections and associated
uncertainties accounted for. Multijet MC and estimate are normalised to the data.
Statistical uncertainties are shown on the data. The yellow bands show the systematic
uncertainty on the estimate.

control regions (CR2) to the signal regions (see §5.2):

TF =
N(SR, multijet)

N(CR2, multijet)
. (8.1)

This is just the predicted number of multijet events in the signal region divided by

the predicted number in CR2. Therefore no normalisation of the multijet estimate is

required. For the plots in this analysis, the multijet estimates from jet smearing and

from Monte Carlo are normalised to the data using the CR2 cuts but without the final

Emiss
T /meff or meff cuts. As is explained in §5.2, the TF can be used to estimate the

number of events from a particular background in a SR using the following equation:
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8.3. Uncertainties Jet Smearing for Multijet Estimation

N(SR, estimate) = N(CR, observed)× TF(estimate). (8.2)

8.3 Uncertainties

The uncertainty on the final transfer factors is dominated by systematic uncertainties.

The largest contribution is from the uncertainty on the non-Gaussian tail, introduced

via the uncertainty on ∆σtail .

8.3.1 Systematic Uncertainties

The systematic uncertainties accounted for in this analysis arise are from the uncer-

tainties on the response functions used for the smearing process and from any biases

introduced by the seed selection. For each uncertainty, the full estimate is repeated

with the response function modified in the appropriate way; the uncertainty is then

the deviation of this estimate from the original estimate.

Response function uncertainties

The uncertainties on the jet response fall into two types:

• The uncertainty on the Gaussian response width. This is introduced through

the uncertainty on σcorrection(pT) described in §7.3.1 and the validity of the

uncertainty can be observed in Figure 7.3(e).

• The uncertainty on the shape of the non-Gaussian tail. This is introduced via

the uncertainty on the ∆σtail parameter as described in §7.4.2. Figure 7.12

shows the Mercedes distributions produced using the optimised values of ∆σtail

including uncertainties.

98
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Seed selection bias uncertainty

Figure 6.4(b) shows that a small bias is introduced to the leading jet pT by the seed

selection. To account for this, an estimate is performed with a constant factor of 0.1

added to jet response. This will, on average, increase smeared jet pT by 10%. This

is referred to as Rmean−shift = +10%. Figure 8.2 shows leading jet pT in data and

estimated with jet smearing. This extra uncertainty is seen to account for differences

observed between the data and original estimate.
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Figure 8.2: Leading jet pT measured in multijet dominated data and reproduced
using jet smearing. Multijet MC and estimates are normalised to the data.

Dependence of jet response on η

Jet response could be affected by the η coordinate of the fluctuating jet. For example,

a jet in the crack region of the calorimeter would be expected to have a broader

response than a jet in the central region. Binning jet response in pT will partly

account for these differences due to the correlation between pT and η . The largest

99



8.3. Uncertainties Jet Smearing for Multijet Estimation

effect of η dependent response on the results of this analysis would be if the non-

Gaussian tail shape were strongly dependent on η . This is checked by repeating the

Mercedes analysis (see §7.4) in the following η bins:

• Central region ( |η| < 0.8).

• Extended tile barrel (0.8 < |η| < 1.2).

• Crack region (1.2 < |η| < 2.1).

• End-cap region (2.1 < |η| < 2.8).

For the smearing estimates, Gaussian and tail corrections are applied to the response

functions with uncertainties accounted for as described in §7.3 and §7.4. To increase

statistics for this measurement, the pT binning is removed so the only requirement

is pT(true) > 100 GeV. The results are shown in Figure 8.3. It is clear that the

estimate agrees well with the data indicating that non-Gaussian fluctuations are not

strongly η dependent. The χ2 p-values obtained between the tail regions in the

data and estimates, calculated using the method described in §7.4.2 and accounting

for uncertainties on ∆σtail and σcorrection(pT), are 0.98, 0.94, 0.66 and 0.96 for the

central, extended tile barrel, crack and end-cap regions respectively. Given the good

agreement observed between the data and estimates, no uncertainty is associated with

the η dependence of jet response.
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(a) R2 for pT(true) > 100 GeV and |η| < 0.8
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(b) R2 for pT(true) > 100 GeV and 0.8 < |η| <
1.2
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(c) R2 for pT(true) > 100 GeV and 1.2 < |η| <
2.1
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(d) R2 for pT(true) > 100 GeV and 2.1 < |η| <
2.8

Figure 8.3: R2 in bins of fluctuating jet η for pT(true) > 100 GeV measured in data,
MC simulation and estimated using the jet smearing method with Gaussian and tail
corrections and associated uncertainties accounted for. Multijet MC and estimates
are normalised to the data. Statistical uncertainties are shown on the data. The
yellow bands show the systematic uncertainties on the estimates.
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Statistical uncertainties

The uncertainty from limited seed event statistics and pseudo-data statistics is prop-

agated to all distributions and numbers produced using the jet smearing method.

The procedure used is described in [59]. The uncertainty from limited pseudo-data

tends to zero in the limit of infinite Nsmear , the number of smeared events produced

from each seed event. The number of seed events, however, relies on the number of

events collected with the single jet triggers shown in Table 4.1 and the efficiency of

the seed selection described in §6.4; it does not depend on Nsmear . In a simplified

case, if smeared data produced from only one seed event contributes to a signal re-

gion histogram, then the statistical uncertainty on the number of events present in

the signal region should be ∼ 100%.

The derivation described in [59] yields a final overall statistical uncertainty on

the jth bin of an estimated distribution (normalised to 1) of:

σtotal(pj) =
1

NseedNsmear

√∑
i

nij(1 + nij). (8.3)

nij is the number of entries from the ith seed event in the jth bin. In the limit of

infinite Nsmear , Eq. 8.3 simplifies to:

σseed(pj) =
1

NseedNsmear

√∑
i

n2
ij. (8.4)

8.4 Results

Figures 8.4 to 8.8 show key distributions in SUSY signal and control regions in the

data, MC and estimated with the jet smearing method. The definitions of the Signal

Regions (SRs) are shown in Table 5.1. Statistical uncertainties are shown on the data

and MC, and systematic and statistical uncertainties are shown on the jet smearing

estimates (yellow bands).
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Figure 8.9 shows the meff distributions for multijet ‘validation’ regions where

the selection is the same as for CR2 (the multijet control region) except the final

Emiss
T /meff and meff cuts are not applied and the ∆φ(ji, E

miss
T ) requirement is 0.2 <

∆φ(ji, E
miss
T ) < 0.4.
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(a) meff distribution in CR2 without final
Emiss

T /meff or meff cuts
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Figure 8.4: meff and ∆φ(ji, E
miss
T ) distributions in analysis A in data, MC and

estimated with the jet smearing method.
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Figure 8.5: meff and ∆φ(ji, E
miss
T ) distributions in analysis B in data, MC and

estimated with the jet smearing method.
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Figure 8.6: meff and ∆φ(ji, E
miss
T ) distributions in analysis C in data, MC and

estimated with the jet smearing method.
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Figure 8.7: meff and ∆φ(ji, E
miss
T ) distributions in analysis D in data, MC and

estimated with the jet smearing method.
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Figure 8.8: meff and ∆φ(ji, E
miss
T ) distributions in analysis E in data, MC and

estimated with the jet smearing method.
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Figure 8.9: meff distributions in multijet validation regions in data, MC and esti-
mated with the jet smearing method.

109



8.5. Discussion Jet Smearing for Multijet Estimation

Table 8.1 shows the transfer factors determined for the different analyses using

the jet smearing method. The transfer factors are re-evaluated using the extra con-

strained ∆σtail parameter from using the ∆φ triggers as discussed in §7.4.4; this is

shown in Table 8.2.

Signal Region NSR/NCR2 (×10−3)

A 10.3 ± 0.6(stat.) +0.0
−1.7(σcorrection(pT)) +6.7

−5.2(∆σtail)
+0.0
−5.0(Rmean−shift)

B 10.0 ± 0.4(stat.) +0.0
−0.3(σcorrection(pT)) +6.7

−4.5(∆σtail)
+0.0
−4.1(Rmean−shift)

C 62 ± 3(stat.) +24
−0 (σcorrection(pT)) +63

−4 (∆σtail)
+0
−11(Rmean−shift)

D 26 ± 1(stat.) +0
−0(σcorrection(pT)) +17

−13(∆σtail)
+0
−11(Rmean−shift)

E 42 ± 2(stat.) +1
−0(σcorrection(pT)) +22

−13(∆σtail)
+0
−17(Rmean−shift)

Table 8.1: Predicted ratios of events between control and signal region for the five
analysis channels using the jet smearing method.

Signal Region NSR/NCR2 (×10−3)

A 12.6 ± 0.5(stat.) +0.0
−0.3(σcorrection(pT)) +4.1

−7.3(∆σtail)
+0.0
−6.3(Rmean−shift)

B 11.9 ± 0.3(stat.) +0.0
−0.1(σcorrection(pT)) +4.0

−5.3(∆σtail)
+0.0
−5.0(Rmean−shift)

C 71 ± 2(stat.) +15
−0 (σcorrection(pT)) +34

−11(∆σtail)
+0
−18(Rmean−shift)

D 31 ± 1(stat.) +0
−1(σcorrection(pT)) +9

−13(∆σtail)
+0
−13(Rmean−shift)

E 47 ± 2(stat.) +0
−0(σcorrection(pT)) +12

−14(∆σtail)
+0
−19(Rmean−shift)

Table 8.2: Predicted ratios of events between control and signal region for the five
analysis channels using the jet smearing method with the ∆σtail further constrained
through the use of ∆φ triggers.

8.5 Discussion

The CR2 distributions in Figures 8.4 to 8.8 and the validation plots in Figure 8.9 show

good agreement between the data and the smearing estimates (with non-multijet MC
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8.5. Discussion Jet Smearing for Multijet Estimation

accounted for). In the SR distributions in Figures 8.4 to 8.8, the benefit in statistics

from using the jet smearing estimate compared to the multijet MC is clear. The

transfer factors shown in Table 8.2, which are estimated using the extra-constrained

∆σtail parameter (from the use of the ∆φ triggers) are seen to have smaller overall

fractional systematic uncertainties associated with them than those shown in Ta-

ble 8.1. Therefore the use of the ∆φ triggers allows a more accurate estimation of

the multijet background.
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Chapter 9

Conclusions

A data-driven technique to estimate the multijet background to SUSY searches with

no leptons at ATLAS has been described. Versions of this method were used for the

multijet estimations in a number of SUSY searches [3, 4, 5], allowing a greater discov-

ery reach than would have been possible with MC methods. As part of the method,

jet response at ATLAS was measured, including the non-Gaussian tails. Novel event

shape triggers were developed which provided more statistics for the response tail

measurement thus increasing the sensitivity of the final multijet estimation.

Chapter 2 gave an overview of the SM and SUSY. SUSY is seen to provide a

solution to the hierarchy problem. The status of SUSY searches was described with no

evidence yet found for its existence. Finally, techniques for reducing and estimating

the multijet background to SUSY searches with no leptons at hadron colliders were

overviewed.

In Chapter 3, the LHC and ATLAS detector were described. It was seen that

the calorimetry of ATLAS provides the ability to make reliable measurements of jets

and Emiss
T which are key in fully hadronic SUSY searches.

Chapter 4 described the analysis tools used in this thesis including details of

the Monte Carlo simulated multijet samples used for the initial measurement of jet
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response. Object reconstruction, event cleaning and details of triggers used were also

given.

Chapter 5 gave an overview of SUSY searches using ATLAS. The fully hadronic

search was described and it was seen to provide exclusion limits in searches for squarks

and gluinos beyond those found at the Tevatron and previous searches using the

ATLAS detector.

Chapter 6 introduced the jet smearing method for multijet background estima-

tion. An introduction to jet response was given, alongside an overview of jet smearing

and the assumptions which the technique relies on. The selection of well measured

data seed events was also described.

In Chapter 7, the measurement of jet response using the jet smearing method

was described. This included the evaluation of the non-Gaussian jet response tail. The

technique was shown to adequately describe multijet dominated control distributions.

Novel event shape ∆φ triggers were then introduced and they were shown to provide

extra statistics for the measurement of non-Gaussian response.

Chapter 8 described the use of jet smearing, using the data-measured response

functions, to provide the multijet estimation for the fully hadronic SUSY searches.

Multijet distributions were estimated and yielded excellent agreement with the data

observations. Transfer functions were produced between SUSY multijet control dis-

tributions and signal regions. The use of ∆φ triggers was seen to reduce the overall

systematic uncertainty on these transfer functions.

The data-driven jet smearing technique, described in Chapters 6 to 8, is the pri-

mary method used by the ATLAS collaboration to measure the multijet background

to SUSY searches with no leptons. As such it is a key part of these searches, and has

resulted in the collaboration setting exclusion limits beyond that which would have

been possible with MC methods. Any future SUSY discovery will need to demon-

strate that the multijet background is well understood and under control, the analysis

presented in this thesis will allow this.

Future work which could reduce the systematic uncertainties associated with
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the method could include using dijet events to further constrain the non-Gaussian

response measurement and improving the seed selection to limit the bias introduced

to the leading jet pT distribution.
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