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Summary

The impact of random errors on average 8-beating is studied via analytical derivations and simula-
tions. A systematic positive S-beating is expected from random errors quadratic with the sources
or, equivalently, with the rms g-beating. However, random errors do not have a systematic effect
on the tune.

1 Introduction

Optics aberrations are a major concern for modern accelerators [1]. Simulations presented
in [2-5] show that the ring-average [-function tends to increase with the rms [-beating.
Analytical estimates in [6-11] show the appearance of constant terms in the -beating due
to second order contributions from quadrupolar errors.

Section 2 follows the derivation presented in [11] to compute the average [-beating in
a transfer line from a single error. Section 3 uses the resonance driving term theory pre-
sented in [6,7] to correlate the average and the rms -beatings in presence of random errors.
Section 4 computes the expected tune shift from random errors. A possible experimental
application is briefly discussed in Section 5.

2 Average (-beating in a transfer line

Deviations from the design S-function occur due to focusing errors. The perturbed transfer
matrix M), due to a quadrupole error Ak at position sy can be derived by multiplying the
unperturbed transfer matrix Mwith a matrix that describes the quadrupole gradient error

(G S\ _(C S\ (1 0\_(C-=AkS S
My (5, 50) = (C; s;,) - (C’ S’) <—Ak 1) - (0/ — AkS s'> - W
The perturbed S-function can be derived as

By(s) = Bls0)C2 — a(50)25,Cyp + Y(s0) S2. (2)
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Expressing the transfer matrix elements as function of the unperturbed optics parameters,
the perturbed S-function can be written as

2

Bp(s) =5(s0) { % [cos ¢ 4 a(sg) sin @] — Ak\/ﬁ B(so) sin gb}
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+1(s0) [V sing] Q

=0(s) [COS ¢* + 2a(s sin ¢ +W]
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+ AK?B(s)B(s0)? sin ¢ — 20(s0)B{s)simcos ¢
— 2a(se)*Bs)sin ¢” + 2AkB(s)B(so)a(so) sin ¢
s)sin @” + a(se)2B(s)sin ¢ (4)
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+ AK?B(5)B(s0)? sin ¢°. (5)
With AB(s) = 5,(s) — B(s) follows

Ap(s)
B(s)

= —B(s0)Aksin(2¢) + B(so)*Ak*(sin ¢)?

1
= —fB(so)Aksin(2¢) + 55(80)2Ak2(1 —cos(2¢)) . (6)
The average [S-beating along the tranfer line after the focusing error is approximately given

by
<Af> Lo an?, (7)

which represents a net positive contribution to the average [-beating, quadratic with the
focusing error.
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3 Average (-beating in a ring

In [6] the perturbed S function in a ring is expressed as a function of the amplitude and
phase of the generating driving term fo090 and the unperturbed f,,,4¢; function, as

Be = Bumoder (1 + 32| fa000|* + 8| f2000] sin g2000) + O (| f2000/*) (8)
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Figure 1: Relative average [ deviation versus rms [-beating for LHC injection optics with
random errors together with prediction from Eq. (12).

where | faoo0| and gageo are the amplitude and phase of the generating function term. With
many small random errors | faoo| and sin gagep would tend to be uncorrelated giving a ring-

average [3-beating of
<%> = 32| f2000|*) - 9)

Note that we neglect all terms of order above |fso|?>. The standard deviation, o, of the
[-beating around the ring is given by

C
g (%) = \/é/o 64|f2000’2 sin2 42000 ds . (10)

Using that sin?z = (1 — cos2x)/2 and, again, the assumption that |foo| and gagoo are
uncorrelated, the standard deviation takes the form

o () = VTl ()

From Egs. (9) and (11) the following identity is obtained

()= (3).

which implies that the ring-average 8 function increases with the square of the standard
deviation of the [-beating, also known as rms [-beating. This seems to be a universal
property of all lattices that have a sufficient number of elements for the assumption on error
randomness to hold. Figure 1 shows the LHC injection simulations presented in [3] including
the prediction from Eq. (12). Figures 2, 3, 4 and 5 illustrate this correlation for the ALBA
and ESRF synchrotron light sources and for LHC ballistic [12, 13] and standard collision
optics (f*=40cm), respectively.
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Figure 2: Relative ring-average 5 deviation versus rms [-beating for the ALBA lattice with
random errors.
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Figure 3: Relative horizontal (top) and vertical (bottom) ring-average § deviation versus

rms (-beating for the ESRF lattice with random errors.
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Figure 4: Relative horizontal (top) and vertical (bottom) ring-average 8 deviation versus
rms (-beating for the LHC ballistic optics with random errors.
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Figure 5: Relative ring-average 3 deviation versus rms (-beating for the LHC [*=40cm
optics with random errors.
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Figure 6: Expected tune shift versus rms §-beating for the LHC injection optics with random
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Figure 7: Expected tune shift
random errors.
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versus rms [-beating for the LHC f*=40cm optics with

4 Expected tune shift

Expanding the tune formula, 27Q = [ds/f3, up to second order in the generating term
| f2000| and assuming similar absence of correlations as in Section 3 the tune is expected to

remain unchanged up to order O(| fanoo|?),

1 (¢ ds .
Qe = = [1 — 32 fa000|> — 8| f2000] $in g2000 + 32| f2000|*(1 — €0 22000)]
2m 0 ﬁa:,model
4 ¢ ds .
= Qumodel — = [|f 2000] S0 ga000 + 4] f: 2000|2 COS 26]2000]
™ Jo ﬁx,model

Qz,model .

Figures 6, 7 and 8 illustrate

(13)

the lack of correlation between expected tune shift and rms

beta-beating for different machines. In general for all the plot the available statistics is
poorer for the larger values of rms Ag/f.
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Figure 8: Expected tune shift versus rms f-beating for the ALBA lattice with random errors.

5 Summary and outlook

A universal relation for all lattices has been found between the expected increase in the ring
average [-function and the rms (-beating generated by random errors,

)= (%)
g B)
The assumption on the randomness of the errors might not be applicable for lattices with
very few elements. Contrary to intuition this increase in average S-function is not translated
into a decrease in the expected tune. The expected tune has no correlation with the rms
[-beating for random errors. Simulations with LHC, ALBA and ESRF lattices have been
used to confirm the findings.

When measuring 8 functions from the amplitude of betatron oscillations a BPM wrong
global calibration factor of a affects 5 by a factor a?. Measured 3 functions in this way
would feature a modified behaviour as

)= (%)

which would allow to actually measure a provided enough statistics can be acquired.
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