CERN-ACC-NOTE-2018-0025

March 8, 2018

Average beta-beating from random errors

R. Tomás, A. García-Tabares, A. Langner, L. Malina, *CERN*, A. Franchi, *ESRF*

Keywords: optics, beta-beating, LHC, ALBA, ESRF

Summary

The impact of random errors on average β -beating is studied via analytical derivations and simulations. A systematic positive β -beating is expected from random errors quadratic with the sources or, equivalently, with the rms β -beating. However, random errors do not have a systematic effect on the tune.

1 Introduction

Optics aberrations are a major concern for modern accelerators [1]. Simulations presented in [2–5] show that the ring-average β -function tends to increase with the rms β -beating. Analytical estimates in [6–11] show the appearance of constant terms in the β -beating due to second order contributions from quadrupolar errors.

Section 2 follows the derivation presented in [11] to compute the average β -beating in a transfer line from a single error. Section 3 uses the resonance driving term theory presented in [6,7] to correlate the average and the rms β -beatings in presence of random errors. Section 4 computes the expected tune shift from random errors. A possible experimental application is briefly discussed in Section 5.

2 Average β -beating in a transfer line

Deviations from the design β -function occur due to focusing errors. The perturbed transfer matrix M_p due to a quadrupole error Δk at position s_0 can be derived by multiplying the unperturbed transfer matrix M with a matrix that describes the quadrupole gradient error

$$\boldsymbol{M}_{p}(s,s_{0}) = \begin{pmatrix} C_{p} & S_{p} \\ C'_{p} & S'_{p} \end{pmatrix} = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -\Delta k & 1 \end{pmatrix} = \begin{pmatrix} C - \Delta kS & S \\ C' - \Delta kS' & S' \end{pmatrix}.$$
 (1)

The perturbed β -function can be derived as

$$\beta_p(s) = \beta(s_0)C_p^2 - \alpha(s_0)2S_pC_p + \gamma(s_0)S_p^2.$$
 (2)

Expressing the transfer matrix elements as function of the unperturbed optics parameters, the perturbed β -function can be written as

$$\beta_{p}(s) = \beta(s_{0}) \left\{ \sqrt{\frac{\beta(s)}{\beta(s_{0})}} \left[\cos \phi + \alpha(s_{0}) \sin \phi \right] - \Delta k \sqrt{\beta(s)\beta(s_{0})} \sin \phi \right\}^{2}$$

$$- \alpha(s_{0}) 2 \sqrt{\beta(s)\beta(s_{0})} \sin \phi$$

$$\cdot \left\{ \sqrt{\frac{\beta(s)}{\beta(s_{0})}} \left[\cos \phi + \alpha(s_{0}) \sin \phi \right] - \Delta k \sqrt{\beta(s)\beta(s_{0})} \sin \phi \right\}$$

$$+ \gamma(s_{0}) \left[\sqrt{\beta(s)\beta(s_{0})} \sin \phi \right]^{2} \qquad (3)$$

$$= \beta(s) \left[\cos \phi^{2} + 2\alpha(s_{0}) \cos \phi \sin \phi + \alpha(s_{0})^{2} \sin \phi^{2} \right]$$

$$- 2\Delta k\beta(s)\beta(s_{0}) \cos \phi \sin \phi - 2\Delta k\beta(s)\beta(s_{0})\alpha(s_{0}) \sin \phi^{2}$$

$$+ \Delta k^{2}\beta(s)\beta(s_{0})^{2} \sin \phi^{2} - 2\alpha(s_{0})\beta(s_{0})\alpha(s_{0}) \sin \phi^{2}$$

$$+ \beta(s) \sin \phi^{2} + \alpha(s_{0})^{2}\beta(s) \sin \phi^{2}$$

$$= \beta(s) \left[\cos \phi^{2} + \sin \phi^{2} \right] - \beta(s)\beta(s_{0})\Delta k \sin(2\phi)$$

$$= \beta(s) \left[\cos \phi^{2} + \sin \phi^{2} \right] - \beta(s)\beta(s_{0})\Delta k \sin(2\phi)$$

$$= \lambda k^{2}\beta(s)\beta(s_{0})^{2} \sin \phi^{2}. \qquad (5)$$

With $\Delta\beta(s) = \beta_p(s) - \beta(s)$ follows

$$\frac{\Delta\beta(s)}{\beta(s)} = -\beta(s_0)\Delta k\sin(2\phi) + \beta(s_0)^2\Delta k^2(\sin\phi)^2$$
$$= -\beta(s_0)\Delta k\sin(2\phi) + \frac{1}{2}\beta(s_0)^2\Delta k^2(1-\cos(2\phi)) . \tag{6}$$

The average β -beating along the transfer line after the focusing error is approximately given by

$$\left\langle \frac{\Delta\beta}{\beta} \right\rangle \approx \frac{1}{2}\beta(s_0)^2 \Delta k^2 ,$$
 (7)

which represents a net positive contribution to the average β -beating, quadratic with the focusing error.

3 Average β -beating in a ring

In [6] the perturbed β function in a ring is expressed as a function of the amplitude and phase of the generating driving term f_{2000} and the unperturbed β_{model} function, as

$$\beta_x = \beta_{x,model} \left(1 + 32 |f_{2000}|^2 + 8 |f_{2000}| \sin q_{2000} \right) + O\left(|f_{2000}|^4 \right), \tag{8}$$

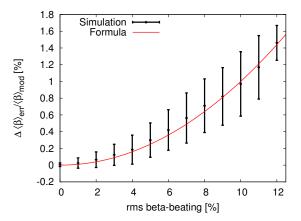


Figure 1: Relative average β deviation versus rms β -beating for LHC injection optics with random errors together with prediction from Eq. (12).

where $|f_{2000}|$ and q_{2000} are the amplitude and phase of the generating function term. With many small random errors $|f_{2000}|$ and $\sin q_{2000}$ would tend to be uncorrelated giving a ringaverage β -beating of

$$\left\langle \frac{\Delta\beta}{\beta} \right\rangle = 32 \left\langle |f_{2000}|^2 \right\rangle$$
 (9)

Note that we neglect all terms of order above $|f_{2000}|^2$. The standard deviation, σ , of the β -beating around the ring is given by

$$\sigma\left(\frac{\Delta\beta}{\beta}\right) = \sqrt{\frac{1}{C} \int_0^C 64 |f_{2000}|^2 \sin^2 q_{2000} \,\mathrm{d}s} \,\,. \tag{10}$$

Using that $\sin^2 x = (1 - \cos 2x)/2$ and, again, the assumption that $|f_{2000}|$ and q_{2000} are uncorrelated, the standard deviation takes the form

$$\sigma\left(\frac{\Delta\beta}{\beta}\right) = \sqrt{32\langle |f_{2000}|^2 \rangle} \ . \tag{11}$$

From Eqs. (9) and (11) the following identity is obtained

$$\left\langle \frac{\Delta\beta}{\beta} \right\rangle = \sigma^2 \left(\frac{\Delta\beta}{\beta} \right) \,, \tag{12}$$

which implies that the ring-average β function increases with the square of the standard deviation of the β -beating, also known as rms β -beating. This seems to be a universal property of all lattices that have a sufficient number of elements for the assumption on error randomness to hold. Figure 1 shows the LHC injection simulations presented in [3] including the prediction from Eq. (12). Figures 2, 3, 4 and 5 illustrate this correlation for the ALBA and ESRF synchrotron light sources and for LHC ballistic [12, 13] and standard collision optics ($\beta^*=40$ cm), respectively.

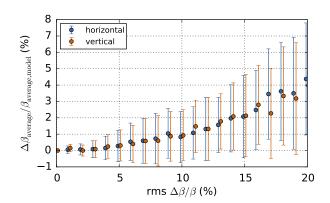


Figure 2: Relative ring-average β deviation versus rms $\beta\text{-beating}$ for the ALBA lattice with random errors.

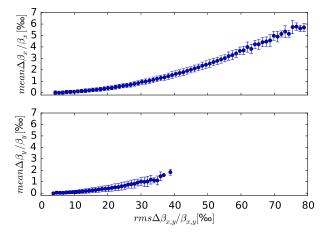


Figure 3: Relative horizontal (top) and vertical (bottom) ring-average β deviation versus rms β -beating for the ESRF lattice with random errors.

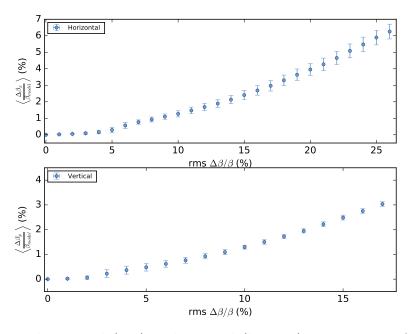


Figure 4: Relative horizontal (top) and vertical (bottom) ring-average β deviation versus rms β -beating for the LHC ballistic optics with random errors.

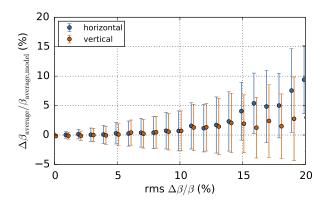


Figure 5: Relative ring-average β deviation versus rms β -beating for the LHC $\beta^*=40$ cm optics with random errors.

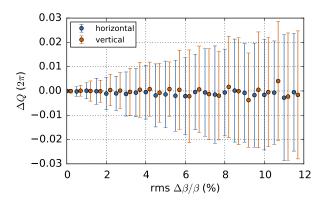


Figure 6: Expected tune shift versus rms β -beating for the LHC injection optics with random errors.

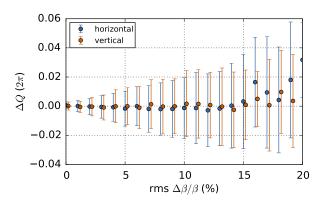


Figure 7: Expected tune shift versus rms β -beating for the LHC $\beta^*=40$ cm optics with random errors.

4 Expected tune shift

Expanding the tune formula, $2\pi Q = \int ds/\beta$, up to second order in the generating term $|f_{2000}|$ and assuming similar absence of correlations as in Section 3 the tune is expected to remain unchanged up to order $O(|f_{2000}|^4)$,

$$Q_{x} = \frac{1}{2\pi} \int_{0}^{C} \frac{\mathrm{d}s}{\beta_{x,model}} \left[1 - 32 |f_{2000}|^{2} - 8 |f_{2000}| \sin q_{2000} + 32 |f_{2000}|^{2} (1 - \cos 2q_{2000}) \right]$$

$$= Q_{x,model} - \frac{4}{\pi} \int_{0}^{C} \frac{\mathrm{d}s}{\beta_{x,model}} \left[|f_{2000}| \sin q_{2000} + 4 |f_{2000}|^{2} \cos 2q_{2000} \right]$$

$$= Q_{x,model} . \qquad (13)$$

Figures 6, 7 and 8 illustrate the lack of correlation between expected tune shift and rms beta-beating for different machines. In general for all the plot the available statistics is poorer for the larger values of rms $\Delta\beta/\beta$.

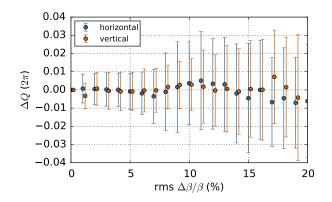


Figure 8: Expected tune shift versus rms β -beating for the ALBA lattice with random errors.

5 Summary and outlook

A universal relation for all lattices has been found between the expected increase in the ring average β -function and the rms β -beating generated by random errors,

$$\left\langle \frac{\Delta\beta}{\beta} \right\rangle = \sigma^2 \left(\frac{\Delta\beta}{\beta} \right)$$

The assumption on the randomness of the errors might not be applicable for lattices with very few elements. Contrary to intuition this increase in average β -function is not translated into a decrease in the expected tune. The expected tune has no correlation with the rms β -beating for random errors. Simulations with LHC, ALBA and ESRF lattices have been used to confirm the findings.

When measuring β functions from the amplitude of betatron oscillations a BPM wrong global calibration factor of α affects β by a factor α^2 . Measured β functions in this way would feature a modified behaviour as

$$\left\langle \frac{\Delta\beta}{\beta} \right\rangle = \alpha^2 \sigma^2 \left(\frac{\Delta\beta}{\beta} \right)$$

which would allow to actually measure α provided enough statistics can be acquired.

Acknowledgments

Warm thanks go to Massimo Giovannozzi for his insightful comments and corrections to the manuscript.

References

 R. Tomás, M. Aiba, A. Franchi, and U. Iriso, "Review of linear optics measurement and correction for charged particle accelerators", Phys. Rev. Accel. Beams, 20, 054801 (2017).

- M. Harrison and S. Peggs, "Global beta measurement from two perturbed closed orbits", PAC 1987. https://accelconf.web.cern.ch/accelconf/p87/PDF/PAC1987_1105.PDF
- [3] R. Calaga, R. Tomás and F. Zimmermann, "BPM calibration independent LHC optics correction", PAC 2007. http://accelconf.web.cern.ch/AccelConf/p07/papers/thpas091.pdf
- [4] L. Malina, J. Coello de Portugal, T. Persson, P.K. Skowronski, R. Tomas, A. Franchi, and S. Liuzzo, "Improving the precision of linear optics measurements based on turnby-turn beam position monitor data after a pulsed excitation in lepton storage rings" Phys. Rev. Accel. Beams 20, 082802 (2017).
- [5] F. Carlier et al., "Optics Measurement and Correction Challenges for the HL-LHC" CERN-ACC-2017-0088 (2017).
- [6] A. Franchi, "Error analysis of linear optics measurements via turn-by-turn beam position data in circular accelerators", arXiv:1603.00281 (2016).
- [7] A. Franchi et al., "Vertical emittance reduction and preservation in electron storage rings via resonance driving terms correction", Phys. Rev. ST Accel. Beams 14, 034002 (2011).
- [8] A. Franchi, E. Métral and R. Tomás, "Emittance sharing and exchange driven by linear betatron coupling in circular accelerators", Phys. Rev. ST Accel. Beams 10, 064003 (2007).
- [9] Chun-xi Wang and Kwang-Je Kim, "Recursive solution for beam dynamics of periodic focusing channels", Physical review E **63**, 056502.
- [10] Chun-xi Wang, "Formulas for tune shift and beat due to perturbations in circular accelerators", Physical review E 71, 036502 (2005).
- [11] A. Langner, "A Novel Method and Error Analysis for Beam Optics Measurements and Corrections at the Large Hadron Collider", PhD, CERN-THESIS-2016-299.
- [12] A. Verdier, "Alignment optics for LHC", LHC Project Note 325 (2003).
- [13] J. Coello, A. Garcia-Tabares, L. Malina, B. Salvachua, P. Skowronski, M. Solfaroli, R. Tomás and J. Wenninger, "MD Test of a Ballistic Optics", CERN-ACC-NOTE-2016-0008.