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Summary

The impact of random errors on average β-beating is studied via analytical derivations and simula-
tions. A systematic positive β-beating is expected from random errors quadratic with the sources
or, equivalently, with the rms β-beating. However, random errors do not have a systematic effect
on the tune.

1 Introduction

Optics aberrations are a major concern for modern accelerators [1]. Simulations presented
in [2–5] show that the ring-average β-function tends to increase with the rms β-beating.
Analytical estimates in [6–11] show the appearance of constant terms in the β-beating due
to second order contributions from quadrupolar errors.

Section 2 follows the derivation presented in [11] to compute the average β-beating in
a transfer line from a single error. Section 3 uses the resonance driving term theory pre-
sented in [6,7] to correlate the average and the rms β-beatings in presence of random errors.
Section 4 computes the expected tune shift from random errors. A possible experimental
application is briefly discussed in Section 5.

2 Average β-beating in a transfer line

Deviations from the design β-function occur due to focusing errors. The perturbed transfer
matrix Mp due to a quadrupole error ∆k at position s0 can be derived by multiplying the
unperturbed transfer matrix Mwith a matrix that describes the quadrupole gradient error

Mp(s, s0) =

(
Cp Sp

C ′p S ′p

)
=

(
C S
C ′ S ′

)
·
(

1 0
−∆k 1

)
=

(
C −∆kS S
C ′ −∆kS ′ S ′

)
. (1)

The perturbed β-function can be derived as

βp(s) = β(s0)C
2
p − α(s0)2SpCp + γ(s0)S

2
p . (2)
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Expressing the transfer matrix elements as function of the unperturbed optics parameters,
the perturbed β-function can be written as

βp(s) =β(s0)

{√
β(s)

β(s0)
[cosφ+ α(s0) sinφ]−∆k

√
β(s)β(s0) sinφ

}2

− α(s0)2
√
β(s)β(s0) sinφ

·

{√
β(s)

β(s0)
[cosφ+ α(s0) sinφ]−∆k

√
β(s)β(s0) sinφ

}
+ γ(s0)

[√
β(s)β(s0) sinφ

]2
(3)

=β(s)
[
cosφ2 +((((

(((
((

2α(s0) cosφ sinφ+���
���

�
α(s0)

2 sinφ2
]

− 2∆kβ(s)β(s0) cosφ sinφ−
((((

(((
((((

((

2∆kβ(s)β(s0)α(s0) sinφ2

+ ∆k2β(s)β(s0)
2 sinφ2 −

(((
((((

((((2α(s0)β(s) sinφ cosφ

−(((((
((((

(
2α(s0)

2β(s) sinφ2 +
((((

(((
((((

((

2∆kβ(s)β(s0)α(s0) sinφ2

+ β(s) sinφ2 +((((
((((

(
α(s0)

2β(s) sinφ2 (4)

=β(s)
[
cosφ2 + sinφ2

]︸ ︷︷ ︸
=1

−β(s)β(s0)∆k sin(2φ)

+ ∆k2β(s)β(s0)
2 sinφ2. (5)

With ∆β(s) = βp(s)− β(s) follows

∆β(s)

β(s)
= −β(s0)∆k sin(2φ) + β(s0)

2∆k2(sinφ)2

= −β(s0)∆k sin(2φ) +
1

2
β(s0)

2∆k2(1− cos(2φ)) . (6)

The average β-beating along the tranfer line after the focusing error is approximately given
by 〈

∆β

β

〉
≈ 1

2
β(s0)

2∆k2 , (7)

which represents a net positive contribution to the average β-beating, quadratic with the
focusing error.

3 Average β-beating in a ring

In [6] the perturbed β function in a ring is expressed as a function of the amplitude and
phase of the generating driving term f2000 and the unperturbed βmodel function, as

βx = βx,model

(
1 + 32|f2000|2 + 8|f2000| sin q2000

)
+O

(
|f2000|4

)
, (8)
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Figure 1: Relative average β deviation versus rms β-beating for LHC injection optics with
random errors together with prediction from Eq. (12).

where |f2000| and q2000 are the amplitude and phase of the generating function term. With
many small random errors |f2000| and sin q2000 would tend to be uncorrelated giving a ring-
average β-beating of 〈

∆β

β

〉
= 32

〈
|f2000|2

〉
. (9)

Note that we neglect all terms of order above |f2000|2. The standard deviation, σ, of the
β-beating around the ring is given by

σ

(
∆β

β

)
=

√
1

C

∫ C

0

64|f2000|2 sin2 q2000 ds . (10)

Using that sin2 x = (1 − cos 2x)/2 and, again, the assumption that |f2000| and q2000 are
uncorrelated, the standard deviation takes the form

σ

(
∆β

β

)
=
√

32〈|f2000|2〉 . (11)

From Eqs. (9) and (11) the following identity is obtained〈
∆β

β

〉
= σ2

(
∆β

β

)
, (12)

which implies that the ring-average β function increases with the square of the standard
deviation of the β-beating, also known as rms β-beating. This seems to be a universal
property of all lattices that have a sufficient number of elements for the assumption on error
randomness to hold. Figure 1 shows the LHC injection simulations presented in [3] including
the prediction from Eq. (12). Figures 2, 3, 4 and 5 illustrate this correlation for the ALBA
and ESRF synchrotron light sources and for LHC ballistic [12, 13] and standard collision
optics (β∗=40cm), respectively.
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Figure 2: Relative ring-average β deviation versus rms β-beating for the ALBA lattice with
random errors.
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Figure 3: Relative horizontal (top) and vertical (bottom) ring-average β deviation versus
rms β-beating for the ESRF lattice with random errors.
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Figure 4: Relative horizontal (top) and vertical (bottom) ring-average β deviation versus
rms β-beating for the LHC ballistic optics with random errors.
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Figure 5: Relative ring-average β deviation versus rms β-beating for the LHC β∗=40cm
optics with random errors.
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Figure 6: Expected tune shift versus rms β-beating for the LHC injection optics with random
errors.
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Figure 7: Expected tune shift versus rms β-beating for the LHC β∗=40cm optics with
random errors.

4 Expected tune shift

Expanding the tune formula, 2πQ =
∫

ds/β, up to second order in the generating term
|f2000| and assuming similar absence of correlations as in Section 3 the tune is expected to
remain unchanged up to order O(|f2000|4),

Qx =
1

2π

∫ C

0

ds

βx,model

[
1− 32|f2000|2 − 8|f2000| sin q2000 + 32|f2000|2(1− cos 2q2000)

]
= Qx,model −

4

π

∫ C

0

ds

βx,model

[
|f2000| sin q2000 + 4|f2000|2 cos 2q2000

]
= Qx,model . (13)

Figures 6, 7 and 8 illustrate the lack of correlation between expected tune shift and rms
beta-beating for different machines. In general for all the plot the available statistics is
poorer for the larger values of rms ∆β/β.
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Figure 8: Expected tune shift versus rms β-beating for the ALBA lattice with random errors.

5 Summary and outlook

A universal relation for all lattices has been found between the expected increase in the ring
average β-function and the rms β-beating generated by random errors,〈

∆β

β

〉
= σ2

(
∆β

β

)
.

The assumption on the randomness of the errors might not be applicable for lattices with
very few elements. Contrary to intuition this increase in average β-function is not translated
into a decrease in the expected tune. The expected tune has no correlation with the rms
β-beating for random errors. Simulations with LHC, ALBA and ESRF lattices have been
used to confirm the findings.

When measuring β functions from the amplitude of betatron oscillations a BPM wrong
global calibration factor of α affects β by a factor α2. Measured β functions in this way
would feature a modified behaviour as〈

∆β

β

〉
= α2σ2

(
∆β

β

)
,

which would allow to actually measure α provided enough statistics can be acquired.
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