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Software trigger and event reconstruction:
Executive Summary

Abstract: Realizing the physics programs of the planned and upgraded high-energy physics
(HEP) experiments over the next 10 years will require the HEP community to address a
number of challenges in the area of software and computing. For this reason, the HEP
software community has engaged in a planning process over the past two years, with the
objective of identifying and prioritizing the research and development required to enable the
next generation of HEP detectors to fulfill their full physics potential. The aim is to produce
a Community White Paper (CWP) [1] which will describe the community strategy and a
roadmap for software and computing research and development in HEP for the 2020s. The
topics of event reconstruction and software triggers were considered by a joint working group
and are summarized together in this document.
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1 Introduction

Realizing the physics programs of the planned and/or upgraded high-energy physics (HEP) exper-
iments over the next 10 years will require the HEP community to address a number of challenges
in the area of software and computing. For this reason, the HEP software community has engaged
in a planning process over the past two years, with the objective of identifying and prioritizing the
research and development required to enable the next generation of HEP detectors to fulfill their
full physics potential. The aim is to produce a Community White Paper (CWP) [1] which will
describe the community strategy and a roadmap for software and computing research and devel-
opment in HEP for the 2020s. This activity is organized under the umbrella of the HEP Software
Foundation (HSF).

The CWP process was carried out by working groups centered on specific topics. The topics of
event reconstruction and software triggers are summarized together in this document and in more
detail elsewhere [2]. The reconstruction of raw detector data and simulated data and its processing
in real time represent a major component of today’s computing requirements in HEP. A recent
projection [Campana2016] of the ATLAS 2016 computing model results in >85% of the HL-LHC
CPU resources being spent on the reconstruction of data or simulated events. We have evaluated the
most important components of next generation algorithms, data structures, and code development
and management paradigms needed to cope with highly complex environments expected in HEP
detector operations in the next decade. New approaches to data processing were also considered,
including the use of novel, or at least, novel to HEP, algorithms, and the movement of data analysis
into real-time environments.

This document will discuss software algorithms essential to the interpretation of raw detector
data into analysis-level objects. Specifically, these algorithms can be broadly grouped:

1. Online: Algorithms, or sequences of algorithms, executed on events read out from the detec-
tor in near-real-time as part of the software trigger, typically on a computing facility located
close to the detector itself.

2. Offline: As distinguished from online, any algorithm or sequence of algorithms executed
on the subset of events preselected by the trigger system, or generated by a Monte Carlo
simulation application, typically in a distributed computing system.

3. Reconstruction: The transformation of raw detector information into higher level objects
used in physics analysis. A defining characteristic of reconstruction which separates it from
analysis is that the quality criteria used in the reconstruction to, for example, minimize the
number of fake tracks, should be general enough to be used in the full range of physics stud-
ies required by the experimental physics program. This usually implies that reconstruction
algorithms use the entirety of the detector information to attempt to create a full picture of
each interaction in the detector. Reconstruction algorithms are also typically run as part of
the processing carried out by centralized computing facilities.

4. Trigger: the part of the online system responsible for classification of events which reduces
either the number of events which are kept for further offline analysis, the size of such events,
or both. In this working group we were only concerned with software triggers, whose defining
characteristic is that they process data without a fixed latency. Software triggers are part of
the real-time processing path and must make decisions quickly enough to keep up with the
incoming data, possibly using substantial disk buffers.

5. Real-time analysis: Data processing that goes beyond object reconstruction, and is per-
formed online within the trigger system. The typical goal of real-time analysis is to combine
the products of the reconstruction algorithms (tracks, clusters, jets...) into complex objects
(hadrons, gauge bosons, new physics candidates...) which can then be used directly in analysis
without an intermediate reconstruction step.
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2 Challenges

Software trigger and event reconstruction techniques in HEP face a number of new challenges in
the next decade. These are broadly categorized into 1) those from new and upgraded accelerator
facilities, 2) from detector upgrades and new detector technologies, 3) increases in anticipated event
rates to be processed by algorithms (both online and offline), and 4) from evolutions in software
development practices.

Advancements in facilities and future experiments bring a dramatic increase in physics reach,
as well as increased event complexity and rates. At the HL-LHC, the central challenge for object
reconstruction is thus to maintain excellent efficiency and resolution in the face of high pileup values,
especially at low transverse momenta. Detector upgrades such as increases in channel density, high
precision timing and improved detector geometric layouts are essential to overcome these problems.
For software, particularly for triggering and event reconstruction algorithms, there is a critical need
not to dramatically increase the processing time per event.

A number of new detector concepts are proposed on the 5-10 year timescale in order to help
in overcoming the challenges identified above. In many cases, these new technologies bring novel
requirements to software trigger and event reconstruction algorithms or require new algorithms to
be developed. Ones of particular importance at the HL-LHC include high-granularity calorimetry,
precision timing detectors, and hardware triggers based on tracking information which may seed
later software trigger and reconstruction algorithms. Longer term projects with sufficiently mature
software infrastructure can include cost implications of the simulation and reconstruction algorithms
into the detector design considerations. This is especially important when the computing cost is
expected to be a substantial part of the total construction and operation cost for an experiment.

Trigger systems for next-generation experiments are evolving to be more capable, both in their
ability to select a wider range of events of interest for the physics program of their experiment,
and their ability to stream a larger rate of events for further processing. ATLAS and CMS both
target systems where the output of the hardware trigger system is increased by 10x over the current
capability, up to 1 MHz [4,5]. In other cases, such as LHCb [6] and ALICE [7], the full collision rate
(between 30 to 40 MHz for typical LHC operations) will be streamed to real-time or quasi-realtime
software trigger systems. The increase in event complexity also brings a problem of overabundance
of signal to the experiments, and specifically the software trigger algorithms. The evolution towards
a genuine real-time analysis of data has been driven by the need to analyze more signal than can
be written out for traditional processing, and technological developments which make it possible
to do this without reducing the analysis sensitivity or introducing biases.

Evolutions in computing technologies are both opportunities to move beyond commodity x86
technologies, which HEP has used very effectively over the past 20 years, and significant chal-
lenges to derive sufficient event processing throughput per cost to reasonably enable our physics
programs [8]. Specific items identified included 1) the increase of SIMD capabilities (processors
capable of running a single instruction set simultaneously over multiple data), 2) the evolution
towards multi- or many-core architectures, 3) the slow increase in memory bandwidth relative to
CPU capabilities, 4) the rise of heterogeneous hardware, and 5) the possible evolution in facilities
available to HEP production systems.

The move towards open source software development and continuous integration systems brings
opportunities to assist developers of software trigger and event reconstruction algorithms. Continu-
ous integration systems have already allowed automated code quality and performance checks, both
for algorithm developers and code integration teams. Scaling these up to allow for sufficiently high
statistics checks is among the still outstanding challenges. As the timescale for experimental data
taking and analysis increases, the issues of legacy code support increase. Code quality demands
increase as traditional offline analysis components migrate into trigger systems, or more generically
into algorithms that can only be run once.
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3 Current approaches

Substantial computing facilities are in use for both online and offline event processing across all
experiments surveyed. Online facilities are dedicated to the operation of the software trigger, while
offline facilities are shared for operational needs including event reconstruction, simulation (often
the dominant component) and analysis. CPU in use by experiments is typically at the scale of
tens or hundreds of thousands of x86 processing cores. Projections to future needs, such as for the
HL-LHC, show the need for a substantial increase in scale of facilities without significant changes
in approach or algorithms.

The CPU needed for event reconstruction tends to be dominated by charged particle reconstruc-
tion (tracking), especially when the need for efficiently reconstructing low transverse momentum
particles is considered. Calorimetric reconstruction, particle flow reconstruction, particle identifica-
tion algorithms also make up significant parts of the CPU budget in some experiments. The CPU
required for event reconstruction and trigger area with challenges and substantial potential risk to
the computing cost of experiments. In this respect, software for future experiments will continue
to evolve, to improve both the physics and technical performance characteristics of algorithms, and
the uncertainty and evolution due to detector performance and operating conditions will continue
throughout the experimental program.

Disk storage is typically 10s to 100s of PB per experiment. It is dominantly used to make the
output of the event reconstruction, both for real data and simulation, available for analysis. Current
generation experiments have moved towards smaller, but still flexible, data tiers for analysis. These
tiers are typically based on the ROOT [9] file format and constructed to facilitate both skimming
of interesting events and the selection of interesting pieces of events by individual analysis groups
or through centralized analysis processing systems. Initial implementations of real-time analysis
systems are in use within several experiments. These approaches remove the detector data that
typically makes up the raw data tier kept for offline reconstruction, and keep only final analysis
objects [10–12].

Detector calibration and alignment requirements were surveyed. Generally a high level of au-
tomation is in place across experiments, both for very frequently updated measurements and more
rarely updated measurements. Often automated procedures are integrated as part of the data
taking and data reconstruction processing chain. Some longer term measurements, requiring sig-
nificant data samples to be analyzed together remain as critical pieces of calibration and alignment
work. These techniques are often most critical for a subset of precision measurements rather than
for the entire physics program of an experiment.

4 Research and development Roadmap and Goals

We identify seven broad areas to be critical for software trigger and event reconstruction work over
the next decade. These are:

1. Enhanced vectorization programming techniques
2. Algorithms and data structures to efficiently exploit many-core architectures
3. Algorithms and data structures for non-x86 architectures (e.g., GPUs, FGAs)
4. Enhanced quality assurance (QA) and quality control (QC) for reconstruction techniques
5. Real-time analysis
6. Precision physics-object reconstruction, identification and measurement techniques
7. Fast software trigger and reconstruction algorithms for high-density environments

Not all roadmap areas are directly applicable to the event reconstruction and triggering approach
taken by all experiments. However, we expect that each area of proposed research and development
will be broadly applicable to future high-energy physics experimental programs.
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Roadmap area 1: Enhanced vectorization programming techniques

HEP developed toolkits and algorithms typically make poor use of vector units on commodity
computing systems. Improving this will bring speedups to applications running on both current
computing systems and most future architectures. The goal for work in this area is to evolve
current toolkit and algorithm implementations, and best programming techniques to better use
SIMD capabilities of current and future computing architectures.

Roadmap area 2: Algorithms and data structures to efficiently exploit many-core
architectures

Computing platforms are generally evolving towards having more cores in order to increase process-
ing capability. This evolution has resulted in multi-threaded frameworks in use, or in development,
across HEP. Algorithm developers can improve throughput by being thread safe and enabling the
use of fine-grained parallelism. The goal is to evolve current event models, toolkits and algorithm
implementations, and best programming techniques to improve the throughput of multithreaded
software trigger and event reconstruction applications.

Roadmap area 3: Algorithms and data structures for non-x86 computing archi-
tectures (e.g., GPUs, FPGAs)

Computing architectures using technologies beyond CPUs offer an interesting alternative for in-
creasing throughput of the most time consuming trigger or reconstruction algorithms. Such ar-
chitectures (e.g., GPUs, FPGAs) could be easily integrated into dedicated trigger or specialized
reconstruction processing facilities (e.g., online computing farms). The goal is to demonstrate
how the throughput of toolkits or algorithms can be improved through the use of new computing
architectures in a production environment.

Roadmap area 4: Enhanced QA/QC for reconstruction techniques

HEP experiments have extensive continuous integration systems, including varying code regression
checks that have enhanced the quality assurance and quality control procedures for software de-
velopment in recent years. These are typically maintained by individual experiments and have not
yet reached the scale where statistical regression, technical, and physics performance checks can
be performed for each proposed software change. The goal is to enable the development, automa-
tion, and deployment of extended QA and QC tools and facilities for software trigger and event
reconstruction algorithms.

Roadmap area 5: Real-time analysis

Real-time analysis techniques are being adopted to enable a wider range of physics signals to be
saved by the trigger for final analysis. As rates increase, these techniques can become more impor-
tant and widespread by enabling only the parts of an event associated with the signal candidates
to be saved, reducing the required disk space. The goal is to evaluate and demonstrate the tools
needed to facilitate real-time analysis techniques. Research topics include compression and custom
data formats; toolkits for real-time detector calibration and validation which will enable full offline
analysis chains to be ported into real-time; and frameworks which will enable non-expert offline
analysts to design and deploy real-time analyses without compromising data taking quality.
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Roadmap area 6: Precision physics-object reconstruction, identification and
measurement techniques

The central challenge for object reconstruction at HL-LHC is to maintain excellent efficiency and
resolution in the face of high pileup values, especially at low transverse momenta. Both trigger
and reconstruction approaches need to exploit new techniques and higher granularity detectors
to maintain or even improve physics measurements in the future. Reconstruction in very high
pileup environments, such as the HL-LHC or FCC-hh, may also greatly benefit from adding tim-
ing information to our detectors, in order to exploit the finite beam crossing time during which
interactions are produced. The goal is to develop and demonstrate efficient techniques for physics
object reconstruction and identification in complex environments.

Roadmap area 7: Fast software trigger and reconstruction algorithms for high-
density environments

Future experimental facilities will bring a large increase in event complexity. The scaling of current-
generation algorithms with this complexity must be improved to avoid a large increase in resource
needs. In addition, it may be desirable or indeed necessary to deploy new algorithms, including
advanced machine learning techniques developed in other fields, in order to solve these problems.
The goal is to evolve or rewrite existing toolkits and algorithms focused on their physics and
technical performance at high event complexity (e.g. high pileup at HL-LHC). Most important
targets are those which limit expected throughput performance at future facilities (e.g., charged-
particle tracking). A number of such efforts are already in progress across the community.

5 Conclusions

The next decade will see the volume and complexity of data being processed by HEP experiments
increase by at least one order of magnitude. While much of this increase is driven by planned
upgrades to the four major LHC detectors, new experiments such as DUNE will also make significant
demands on the HEP data processing infrastructure. It is essential that software triggers and event
reconstruction algorithms continue to evolve so that they are able to efficiently exploit future
computing architectures and deal with this increase in data rates without loss of physics capability.

We have identified seven key areas where R&D is necessary to enable the community to exploit
the full power of the enormous datasets which we will be collecting. Three of these areas concern
the increasingly parallel and heterogeneous computing architectures which we will have to write our
code for. In addition to a general effort to vectorize our codebases, we must understand what kinds
of algorithms are best suited to what kinds of hardware architectures, develop benchmarks that
allow us to compare the physics-per-dollar-per-watt performance of different algorithms across a
range of potential architectures, and find ways to optimally utilise heterogeneous processing centres.
The consequent increase in the complexity and diversity of our codebase will necessitate both a
determined push to educate tomorrows physicists in modern coding practices, and a development of
more sophisticated and automated quality assurance and control for our codebases. The increasing
granularity of our detectors, and the addition of timing information to help cope with the extreme
pileup conditions at the HL-LHC, will require us to both develop new kinds of reconstruction
algorithms and to make them fast enough for use in real-time. Finally, the increased signal rates
will mandate a push towards real-time analysis in many areas of HEP, in particular those with low
transverse momentum signatures.

The success of this R&D program will be intimately linked to challenges confronted in other
areas of HEP computing, most notably the development of software frameworks which are able to
support heterogeneous parallel architectures, including the associated data structures and I/O, the
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development of lightweight detector models which maintain physics precision with minimal timing
and memory consequences for the reconstruction, enabling the use of offline analysis toolkits and
methods within real-time analysis, and the ability to integrarte machine learning reconstruction
algorithms being developed outside HEP into our workflows and apply them to our problems. For
this reason perhaps the most important task ahead of us is to maintain the community which has
coalesced together in this CWP process, so that the work done in these sometimes disparate areas
of HEP fuses coherently together into a solution to the problems facing us over the next decade.
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