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Abstract

Optics control in the HL-LHC will be challenged by a very small β ∗ of 15 cm
in the two main experiments. HL-LHC physics fills will keep a constant luminosity
during several hours via β ∗ leveling. This will require the commissioning of a large
number of optical configurations, further challenging the efficiency of the optics
measurement and correction tools. We report on the achieved level of optics control
in the LHC with simulations and extrapolations for the HL-LHC.
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1 Introduction

LHC has demonstrated an unprecedented optics control for high energy collid-
ers, down to the 1% level in β -beating [1, 2, 3, 4, 5, 6] and |C−| = 2× 10−4

in coupling [7, 8, 9]. The high luminosity upgrade of the LHC (HL-LHC) [10]
will challenge the efficiency and accuracy of optics measurement and correction
algorithms in many ways:

1. About 50 different optics will need to be finely commissioned for physics
production. A simulated HL-LHC physics fill is shown in Fig. 1 (details
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Figure 1: Simulated evolution of an HL-LHC physics fill with baseline pa-
rameters.

can be found in [11, 12, 13]). The sawtooth pattern in the instantaneous
luminosity reflects the step-wise changes in β ∗ to restore luminosity after a
2% decay.

2. β ∗ measurement accuracy is limited by tune ripple when applying the K-
modulation technique [14]. This triggered the following requests and im-
provements:

– A new powering scheme with one main power converter for the full
triplet.

– A new trim circuit powering only one quadrupole of the Q1 assembly,
Q1A [15].

– Possibly improved current jitter performance for the four main dipole
circuits in the telescopic arcs [16].

– The development of an optics-measurement-based BPM calibration to
boost the accuracy of the β from amplitude tehcnique in the HL-LHC
Interaction Regions (IRs).

3. Local corrections in the IRs will be significantly more constrained in HL-
LHC than in LHC as the β functions at the crab cavities should be controlled
with similar accuracy as the β ∗.
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Figure 2: Inferred contribution from measured triplet tilts to |C−| versus time
in 2012 with β ∗ = 60 cm in the LHC.

4. Sensitivity of transverse coupling to ground motion in the IRs will be highly
increased, requiring frequent adjustments. Figure 2 shows the inferred con-
tribution from measured triplet tilts to |C−| in the 2012 LHC run. We expect
a factor 4 enhancement for the HL-LHC, i.e. ∆|C−| ≈0.012 after 7 months.
In HL-LHC |C−| has to be corrected down to 0.001 to avoid instabilities [17].

5. For HL-LHC the non-linear errors in the IR in combination with the cross-
ing angles give up to 20% peak β -beating. This is well above tolerances for
machine protection and requires a totally new approach to optics commis-
sioning since crossing angles were never applied during LHC optics com-
missioning. In 2016 optics were measured with crossing angles 3 months
after commissioning. The measured shift in the β -beating is about 3%, see
Fig. 3. This might affect luminosity imbalance between the 2 detectors in
the LHC and first steps to address this were taken in the 2017 LHC optics
commissioning [18].

6. In HL-LHC the IR non-linear correction up to dodecapole order is required
to restore about 5σ of dynamic aperture (DA), see Section 9.1. Procedures
to guarantee the successful IR non-linear commissioning are still under de-
velopment [19].
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Figure 3: Difference of the β -beating from two measurements with and with-
out crossing angles in LHC at β ∗ = 40 cm in 2016. Horizontal (top) and
vertical (bottom) β -beating are shown. The two measurements, with and
without crossing angles, were separated by 3 months.

7. Head-on and long-range beam-beam interactions are a source of sizeable
β -beating in HL-LHC [20]. At the start of the fill we expect a 13% peak
β -beating in HL-LHCV1.3 as shown in Fig. 4. This affects luminosity im-
balance between the two main detectors and possibly machine protection.
Possible diagnostics and correction schemes are being investigated [21, 22].

The contents of the report are as follows. Section 2 describes how LHC
achieved the 1% rms β -beating level. Section 3 reports on the limitations of the
current N-BPM method to measure β functions for the HL-LHC optics and its de-
velopment into a more robust and faster algorithm by using analytical equations.
Section 4 studies the performance of optics corrections including only arc erros
in the ATS optics [23]. The expected resolution of the K-modulation technique
with updated power converter performance estimates is given in Section 5. Sec-
tion 6 reports on the achieved performance of the optics-measurement-based BPM
calibration. IR local optics and coupling corrections are studied in Section 7 for
the HL-LHC via realistic simulations. The potential of having effective models
of the machine is highlighted in Section 8. Section 9 studies the impact of IR
non-linearities in dynamic aperture, machine operation, linear optics and beam
dynamics together with potential correction methods.
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Figure 4: β -beating from head-on and long-range beam-beam in HL-
LHCV1.3 baseline configuration at the start of the fill.

2 How LHC achieved below 2% rms β -beating

The 2012 optics commissioning of the LHC reached a new record low β -beating
for hadron colliders [4]. Since then, many new improvements have been made to
equipment, algorithms and analyses to further reduce the errors and uncertainties
of the optics measurements and corrections. Improvements to the reconstruc-
tion of both the β functions and the coupling from turn-by-turn data have been
made [5, 6, 7, 8]. A new online K-modulation application has also been devel-
oped, which enables direct measurement of the β ∗ [24].

In 2015 orbits were subject to fast drift with periodicity of approximately
8 h [25] due to the movements of the triplet quadrupoles in IP8. This signifi-
cantly reduced the accuracy of dispersion measurements and global corrections.
During the 2016 winter shutdown the reason of the movement was traced back
to cryogenics pressure and temperature regulation and an adequate stabilization
system was introduced [25]. These orbit drifts were not observed in 2016.

The AC-dipole was upgraded during the first long shut down to excite the
beam from 2200 to 6600 turns. The performance was further improved in 2016
thanks to the replacement of the Beam 1 amplifier that previously caused a tune
variation in the driven frequency [26, 6].
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In 2015 it was found out that there was a systematic offset towards the focusing
quadrupole of the β ∗ waists in both IP1 and IP5 resulting in an increase of the β ∗,
causing about 5% luminosity loss [27, 28, 29]. This was unexpected for triplet
gradient errors below 0.04% rms (WISE [30, 31]). Nevertheless, triplet gradient
errors up to 0.11% were expected in [32]. A test of the significance was done. The
magnetic uncertainty is set to 0.11% rms and the assumption is that the corrections
are reproducing the errors, giving a p-value of 0.04. This suggests that the optics
errors in the IRs are not well represented by the 0.11% rms uncertainty in the
triplet quadrupole gradients. Already during the ion optics commissioning in 2015
additional corrections were performed to mitigate this issue [29]. The tool for K-
modulation measurements was then further improved and fully automatized to
obtain the result online for corrections [33, 14].

2.1 Improvements in β -function and K-modulation measurements

A new method to calculate the β functions from the phase advances was devel-
oped. The previous method used 3 BPMs [34] while the N-BPM method [5] uses
11 BPMs in the case of the LHC. This significantly reduces the error bars on the
measured β functions and provides a more accurate uncertainty. The optics model
used to reconstruct the β function has been improved by including the settings of
the tune corrector magnets [35, 36].

K-modulation [37, 24] is performed using the two closest quadrupoles to the
IP, providing a measurement of β ∗ and waist [37, 38, 14]. The online imple-
mentation of the K-modulation tool allows for a faster and more accurate mea-
surement of β ∗. K-modulation measurements are done at nominal injection tunes
(Qx = 64.28, Qy = 59.31) which are further away from third order and coupling
resonances than the collision tunes (Qx = 64.31, Qy = 59.32). A cleaning tool has
been developed to clean outliers in the tune data online. The domain of acceptance
is determined by tracing a parallelogram around the desired data, as illustrated in
Fig. 5. This has been a crucial ingredient for online accurate measurements and
corrections.

2.2 Local and global corrections

Local corrections are applied in the IRs using the segment-by-segment technique [4].
These are evaluated for both beams and for several optics in order to constraint
the correction. Furthermore, since 2016 the β functions obtained from the K-
modulation are also included in the segment-by-segment technique. Figure 6
shows how the 2015 and 2016 correction both correct the phase beating but it
is only the 2016 correction that reproduces the β ∗ and waist shift.

The local corrections reduced the β -beating to a peak of about 20%. However,
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Figure 5: Horizontal tune versus triplet strength for Beam 2. The rejected
data is shown in blue. An online tool is used to specify the domain of
acceptance shown in green.
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Year Beam ∆βx/βx ∆βy/βy ∆Dx/
√

βx
[%] [%] [

√
m]

2015 1 3.2 1.7 0.8
2 4.2 2.0 1.2

2016 1 1.4 1.3 0.5
2 1.8 1.4 0.6

Table 1: rms β -beating and normalized dispersion error in 2015 and 2016
for both beams and planes.

to reach a lower β -beating a global correction approach is needed. This is needed
since not all the errors are originating from the IRs. The better corrections also
provide more margin for other errors in the machine and reduce the luminosity
imbalance between the experiments. The global correction is based on a response
matrix approach. The correction method was improved in 2016 by taking the mea-
surement uncertainties into account as weights and including β functions from K-
modulation. Additionally weights are used, e.g. giving a higher weight to the β

functions close to the IP than to the phase advance [39]. To find a good trade-off
among the observables, corrections are evaluated with online simulations before
they are applied to the machine.

After local and global corrections in 2016 an unprecedented rms β -beating
below 2% was achieved in 2016 for both beams, see Table 1. Figure 7 illustrates
the β -beating for Beam 1 at β ∗ of 40 cm. The final results have been filtered from
malfunctioning BPMs [40, 41]. Even more importantly than the reduction of the
overall β -beating is the improved control of β ∗. Table 2 shows the measured β ∗
before and after the different corrections. The final β ∗ accuracy is below 1%.
Figure 8 shows the evolution of the average β ∗ waist for 2015, proton and ion
runs, and 2016.

The LHC optics has been successfully commissioned down to β ∗ = 40 cm at
6.5 TeV, which is lower than the design value of 0.55 m at 7 TeV. An unprece-
dented β -beating in a high energy proton collider has been achieved. In particular
a control about 1% has been demonstrated for the β ∗.

3 N-BPM method for HL-LHC

The original method to determine the beta function from turn-by-turn data uses
three adjacent BPMs [42], but the reliability of this method depends on the phase
advance between the BPMs. If they are close to a multiple of π , measurement
errors are strongly enhanced. To avoid bad combinations and to increase statis-
tics, a new method was developed in [5] which uses several combinations of 3
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Figure 7: Comparison of β -beating after local and global corrections around the
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IP 1 β ∗ [cm]
Beam 1 Beam 2

H V H V
Before Corr 62.3 ± 1.2 73.1 ± 1.0 41.7 ± 1.3 75.4 ± 3.0
After Local 41.2 ± 0.3 40.9 ± 0.1 36.6 ± 0.1 40.4 ± 0.4
After Global 39.8 ± 0.5 40.1 ± 0.1 39.8 ± 0.1 40.1 ± 0.1

IP 5 β ∗ [cm]
Beam 1 Beam 2

H V H V
Before Corr 48.0 ± 0.8 30.9± 0.1 45.8 ± 0.2 45.0 ± 0.8
After Local 35.7 ± 0.2 40.9 ± 0.2 40.4 ± 0.3 40.4 ± 0.1
After Global 39.9± 0.2 40.1± 0.1 39.5 ± 0.1 39.6 ± 0.2

Table 2: The measured β ∗ before correction, after local correction and after
global corrections for the β ∗ = 40 cm optics.
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Figure 8: The average shift of the waist of the β function at IP1 and IP5 for the
β ∗ = 40 cm optics.

BPMs, the N-BPM method. However, since systematic errors accumulate along
the lattice, taking BPMs separated by large distances gives less precise results. To
account for this a weighted average is used that includes lattice uncertainties. In
comparison to the three BPM method, there is a huge gain in precision in the IRs,
where neighbouring BPMs have bad phase advances with respect to each other.

However the N-BPM method relies on lengthy Monte Carlo simulations that
present complications in the pushed HL-LHC optics when lattice errors make the
lattice unstable. Also, ATS arc optics has exactly π phase advance every two cells
making measurements challenging even for the N-BPM method. A new method
is introduced here which uses analytical calculation of the systematic errors and
applies a filter on the BPM combinations. It improves the N-BPM method in terms
of computation speed, accuracy and stability.

3.1 Analytical N-BPM method and a first application to ATS optics

The analytical N-BPM method uses the results of [43] to analytically calculate the
propagation of systematic errors. If one knows the quadrupole field errors of the
lattice elements, the β function can be computed by [43]

β1 =
cotφ12− cotφ13

cotφ m
12− cotφ m

13− (h12 +h13)
β

m
1 , (1)

hi j = sin−2
φ

m
i j ∑

i<w< j
β

m
w sin2

φ
m
w jδK1w . (2)

Parameters with superscript m are model values, φi j = φ j − φi is the mea-
sured phase advance, δK1w is the quadrupolar field error and the sum runs over
all elements w between i and j. Since sextupole transversal misalignments and
quadrupole longitudinal missalignments introduce quadrupolar errors, they can
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Figure 9: The upper plots show the horizontal β -beating at β ∗ = 10cm for
both beams, measured in 2016. The bottom plots show a comparison of
the error bars of the β functions acquired by the 3-BPM method and the
analytical N-BPM method, respectively. Error bars which are larger than
75% were ignored in the calculation of the average. The left plots are for
Beam 1 and the right ones are for Beam 2.

be incorporated into the method. This equation is being extended to also include
BPM longitudinal misalignments [44].

During the ATS optics MD in October 2016 [45, 46] the weighted average
yielded some unphysical β values, originating from BPM combinations with phase
advances φi j ≈ nπ . As a solution, a filter for bad phase advances was introduced
into the analytical N-BPM method. This allowed us to still use several combina-
tions but skipping those which are numerically unstable. With these filters active,
the measurement points could be restored everywhere in the lattice except for IR2
and IR5. Figure 9 shows the measured β -beating for the β ∗ = 10cm optics of
Beam 1. As a side effect, taking less combinations results in a lower computation
time.

The Monte Carlo simulations failed for low β ∗ optics and the original N-BPM
method could not be used during ATS MDs. This represents another advantage of
the analytical N-BPM method, which computes systematic errors without resort-
ing to simulations.

3.2 Preparing for 2017 measurements and HL-LHC

In HL-LHC about 50 optics will be used durig β ∗ leveling. The analytical N-BPM
method will allow us to react quickly during measurements. Since the analytical
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N-BPM method takes as input just the optics parameters, even replacing the model
does not affect calculation times. Since we can now skip the step of producing
statistics with the Monte Carlo simulations, the time consumption of the total
process including both planes, both beams and phase calculations was reduced to
about 2 minutes on the computer that is used during measurement. Furthermore
the code for calculating the β functions has been parallelized which again reduces
the total analysis time to less than 40s. The Monte Carlo simulations took 30 to
60min with low statistics.

Simulations with the HL-LHC lattice demonstrate that the analytical N-BPM
method yields better and more stable results than the 3-BPM method. This is
illustrated in Fig. 10. The analytical N-BPM is being further developed [44].

4 Correcting arc errors in the HL-LHC

The impact of optics perturbations in the arc and their correctability is simulated
for the HL-LHC in comparison to the LHC. For the HL-LHC simulation, the
lattice and optics version HLLHCV1.1 is used [47]. The assumed quadrupole
field errors are listed in Table 3 and furthermore 60 random sets of the b2 un-
certainty of the main dipoles are provided from WISE [31]. At the time of the
study longitudinal alignment accuracy was not well known and a moderately low
uncertainty of 1 mm is assumed for all quadrupole magnets and 1 cm for lattice
sextupole. Additionally, for the sextupole magnets a transverse alignment uncer-
tainty of 1 mm is considered. For the HL-LHC, additionally the following error ta-
bles are used for the b2 uncertainty of IR dipole magnets, D2_errortable_v5_spec,
MBH_errortable_v1 and D1_errortable_v1_spec [48]. Global optics corrections
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Table 3: Assumed rms gradient errors of different quadrupole magnet fam-
ilies.

Quadrupole Error relative to Quadrupole Error relative to
family the main field (10−4) family the main field (10−4)
MQ 18 MQYY 10
MQM 12 MQW 15
MQY 8 MQT 75
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Figure 11: Peak horizontal (top) and vertical (bottom) β -beating distribu-
tions for LHC and HL-LHC before (left) and after (right) global optics cor-
rection neglecting triplet errors.

are tested via simulations. It is assumed that previous local correction would have
successfully corrected errors of the final focusing triplet magnets and their errors
are neglected.

103 lattices are simulated by randomly applying uncertainties , following a
Gaussian distribution, truncated at three standard deviations. BPM measurement
uncertainties are neglected in this study. The distribution of the resulting peak β -
beating is shown in Fig. 11 (left). The peak β -beating distribution for the LHC is
consistent with measurements after local corrections [4]. The resulting β -beating
due to the optics perturbations is about a factor two to three worse for the HL-
LHC. For each case a global optics correction is calculated, assuming no uncer-
tainty of the phase advances. The peak β -beating distributions after the correction
are shown in Fig. 11 (right).

After one iteration of global optics corrections, the HL-LHC peak β -beating is
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a factor two worse than in LHC at about 20%. This is consistent with the observed
25% in the ATS optics measurements with arc β functions increased by a factor 4
as shown in Fig. 9. Note that corrections were computed at β ∗ = 21 cm [45, 46],
leaving margin for improving the experimental result. Summarizing, in HL-LHC
arc errors will contribute between 10% and 20% peak β -beating after local and
global corrections, while in LHC this is closer to 5%. This takes the HL-LHC
expected β -beating very close to the specified tolerances for LHC [49] and further
improvements might be required to keep margins.

5 K-modulation in LHC and HL-LHC

Betatron functions at the Interaction Points (IPs) of the HL-LHC must be accu-
rately controlled to maximize luminosity, but also to avoid significant imbalances
between the experiments. The luminosity imbalance between the two largest
experiments, ATLAS [50] and CMS [51], should not surpass 5% [4, 52] and
thus dictates an accuracy on β ∗ measurements of about 2%. Currently, the pre-
ferred method to calculate β ∗ in the LHC is based on K-modulation of the last
quadrupoles before the IP [14, 53, 54]. With K-modulation, the gradient of a
quadrupole is modulated, and the induced tune shifts are measured to determine
the average betatron function in that quadrupole. The average betatron functions
in the triplets can be interpolated to the IP to calculate β ∗. A more complete
discussion of the theoretical background and methods can be found in [14].

K-modulation simulations were done in MAD-X for the HL-LHC optics at
nominal injection tunes (Qx = 62.28, Qy = 60.31) to study the errors in β ∗ mea-
surements. The results for the different optics were calculated using a version of
the analytical method presented in [14] adapted for the split triplet quadrupoles
closer to the IP and used in the HL-LHC. In Fig. 12 a sketch of the HL-LHC IR
with split quadrupoles is presented. The use of injection tunes provides a larger
tune separation compared to collision tunes thus allowing to use three times larger
modulation amplitudes which significantly improves the accuracy of the β ∗ mea-
surement. The uncertainty is determined by calculating the domain of β ∗ within
the tune measurement uncertainties and determining the spread, 1

2(β ∗max−β ∗min).
Simulations in [16] show that the rms tune ripple coming from quadrupoles and
dipoles power converter jitter in HL-LHC is expected to be δQ = 4.1 × 10−5 at
β ∗=15 cm. This value differs from [55, 56] as takes into account contributions
from the arcs and new improvements in the triplet circuits and the power supply
stability. However δQ = 4.1 × 10−5 gives a too large β ∗ measurement uncer-
tainty of 7.7% and it has been proposed to upgrade the dipole power converters
of the ATS arcs (A12, A45, A56 and A81) to class 0 [16]. With this upgrade the
expected tune ripple is δQ = 2.7 × 10−5. In the following we assume that the
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Figure 12: Schematic representation of the IR configuration. This corre-
sponds to the default horizontal plane as defined in MAD-X models of
the HL-LHC, with a focusing quadrupole on the right and a defocusing
quadrupole on the left.

average tune measurement accuracy in HL-LHC is δQ = 2.5 × 10−5, slightly
below the tune ripple. This requires the power converters upgrade and possibly
the use of noise filters at the tune measurement level. The finite accuracy of the
quadrupole gradient (δK) is considered as well. It was assumed that the two parts
of one Q1 have the same uncertainty of 10 units. On top of that, each one has an
uncertainty of 2 units. Longitudinal misalignment and manufacturing tolerances
(δL∗) are also included in the simulations. Misalignments are assigned using a
flat distribution with maximum deviations of ±2 mm as estimated in [57].

Figure 13a shows the relative errors for β ∗ obtained of uncertainty for differ-
ent HL-LHC IR optics. Presented in blue are the calculated errors for simulations
assuming only an uncertainty in the tune measurement and without fringe fields.
In black are the obtained errors when including fringe fields in the simulations.
The implementation of fringe fields slightly increases the calculated errors on
β ∗. This effect is, however, only limited to 1% for the HL-LHC at the small-
est optics. The data in red shows the errors when including contributions from the
quadrupole powering (δK). In green misalignments of the split quadrupoles (δL∗)
were added. Including all sources of error significantly increases the errors on β ∗
measurements to about 6% for the round β ∗= 15 cm optics with δQ = 2.5×10−5.
The presented simulations show, that the leading sources of error are the tune un-
certainty δQ and the longitudinal misalignment δL∗ highlighting the importance
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(a) Calculated errors when using both parts of the split
Quadrupole

(b) Calculated errors when using only the innermost part
of Q1

Figure 13: Calculated errors using the analytical method for different error
contributions and for a range of HL-LHC optics. In blue are the errors
found for simulations without fringe fields. Results adding fringe fields are
shown in black, while errors found when adding uncertainties in K (0.1%)
are shown in red. Adding longitudinal quadrupole misalignments, δL∗ = 2
mm, results in the green curve.
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of accurate tune measurements and reduction of the mechanical tolerances.
In the new baseline it is possible to only modulate the part of the split quadrupoles

closer to the IP. This comes with a significant improvement in the accuracy of K-
Modulation from 6% to 4% as shown in Fig. 13b.

Further sources of systematic errors such as influence of linear coupling and
quadrupole tilts in the triplet have been studied in [14]. Their effect on β ∗ ac-
curacy is below 1% assuming the coupling is well corrected to |C−| ≤ 6× 10−4.
Simulations with rms tilts in the Q1a and Q1b quadrupoles in the order of 1 mrad
showed a negligible effect of the tilts on the IP optics calculations.

6 BPM calibration limitations

As a result of limitations of β from phase and K-modulation measurement tech-
niques, the betatron amplitude is investigated to provide a measurement of β func-
tion along the IR. An analysis of the β from amplitude method is performed, to
understand the impact of the individual BPM calibration factors and find optics-
measured-based calibrations [63].

The methodology followed consists on the comparison of β from amplitude
to the K-modulation and β from phase. Since the accuracy and precision of the
methods depend on the optics settings, a selection of LHC configurations has been
made for this comparison, namely:

• β ∗ = 40 cm: This is the operational configuration in 2016 and 2017. AC
dipole and K-modulation optics measurement are available [58, 6].

• Van der Meer: With a β ∗ ≈ 23 m this optics is used for luminosity and
emittance calibration purposes. AC dipole and K-modulation optics mea-
surement are available.

• Ballistic: In this configuration the triplets are switched off [59]. There-
fore the β measurements are not affected by the systematic errors of the
quadrupoles. Only AC dipole measurements are available [60].

• β ∗ = 2500 m: High-β ∗ optics are required to minimize the beam-divergence√
ε

β ∗ at the interaction point for measurements at small scattering angles.
For this configuration both AC dipole and K-modulation measurements ex-
ist [61, 62].

From the direct measurement of the amplitude of the transverse oscillations it
is possible to obtain the beta function. The equation describing the turn-by-turn
motion at the ith BPM is given by

xi(N) = Ci

√
βx,i2Jx sin(µx,i +2πQxN +φ) , (3)
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where µx is the phase advance function, 2Jx is the action, φ is the initial phase,
Qx is the tune, N is the turn number and Ci is the individual calibration factor of
each BPM. The main limitation of this method is given by the uncertainty on the
BPM calibration, Ci. The starting point for the β from amplitude calculations is
to quantify the action. In this first step two assumptions are made: the calibration
factors are normally distributed and they are independent of the oscillation am-
plitude. First analyses show a negligible dependence of calibration on oscillation
amplitude.

A large β -beating could lead to a wrong calculation of the action, therefore
affecting the β measurements. The action is computed as

2Jx =
1
M

M

∑
i

(Ax,i)2

β m
x,i

, (4)

where the β m
x,i is the β from the MAD-X model and the sum is restricted to the arc

BPMs to avoid the effects of the different BPM types in the IRs. Simulations have
been performed to evaluate how β from amplitude is affected by β -beating. Sev-
eral MAD-X simulations of the Ballistic optics have been performed including dif-
ferent quadrupolar error sources and computing the average ratio

〈
βmeasured−βmodel

βmodel

〉
around the machine versus the rms β -beating. A positive average implies that
errors in the machine tend to increase the transverse average beam size and an
overestimation of the action according to Eq. (4). Figure 14 shows the former ra-
tio averaged over the seeds having the same binned rms β -beating versus the rms
β -beating.

LHC has about 500 BPMs per plane and per beam. To have a first idea of
the impact of the calibration factors in the final results, the monitors have been
divided in two groups. The division has been done according to their location:
triplets and arcs. In the arcs, the BPMs are button-type monitors and measure the
position of each beam independently. On the other hand, the BPMs placed in the
triplets are stripline-type monitors that measure the position and are also capable
of distinguishing between counter rotating beams in the same beam pipe. Making
a comparison between β from amplitude and β from phase, a different behavior
is observed between arc and IR BPMs. The following β -beating ratio is analyzed,

βamplitude−βphase

βphase
. (5)

Several optics configurations, including Ballistic, High-β ∗, Van der Meer and
β ∗ = 40 cm have been analyzed to quantify this deviation. The difference in
terms of the error bar of β from phase is also computed. Table. 4 displays the
relative differences for Beam 1. Triplet BPMs consistently give a smaller β from
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Figure 14: Average horizontal (top) and vertical (bottom) simulated β -
beating around the machine and over the seeds having the same binned rms
β -beating versus the rms β -beating. Error bars correspond to the standard
deviation within a bin. Ballistic optics is used.

Horizontal Vertical

BPM set
〈

∆β

β

〉
[%]

〈 |βamplitude−βphase|
σphase

〉 〈
∆β

β

〉
[%]

〈 |βamplitude−βphase|
σphase

〉
Arcs 0.83 4 -0.44 11

Inside triplets -6.0 3 -6.9 4

Table 4: Deviation between β from amplitude and β from phase in relative
terms, Eq. (5), and with respect to the error bar.
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Figure 15: Measured horizontal β from amplitude and β from phase in IR5
for Beam 1. A parabolic fit to the β from phase measurement is also shown.

amplitude. Since the difference is significant in number of σ the calibration factor
can be computed using β from phase as reference.

The first calibrations computed for LHC were obtained using the Ballistic con-
figuration [60] from the MDs in November 2015 and March 2016. The proce-
dure used to determine the BPM calibration factors is the following: (1) make a
quadratic regression of the β function in the quadrupole free region, (2) obtain the
values of the β with their error bars at the position of the BPMs and (3) compute
the ratio βphase

βamplitude
. An illustration in Fig. 15 shows β from amplitude being sys-

tematically lower than β from phase. The quality of the parabolic fit to the β from
phase is remarkable.

To assess the effectiveness of the calibration factors computed with Ballistic
optics, these have been applied to the high-β ∗ and nominal optics measurements.
Table 5 illustrates the typical values of β from amplitude before and after the cali-
brations for β ∗= 2.5 km. A general improvement in the measured β -beating from
amplitude after applying the calibration factors can be observed for both optics.
A histogram showing the calibrated β -beating with respect to the K-modulation
data is shown in Fig. 16. The step histogram represents the β -beating after apply-
ing the calibration factors while the continuous line represents the non-calibrated
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Not calibrated Cal. factors Calibrated Reference values
BPM name βamp [m] ∆β

βkmod
[%] Ci βamp [m] ∆β

βkmod
[%] βphase [m] βkmod [m]

1L5.B1 2374 ± 7 -7.3±0.3 1.11 ± 0.02 2644 ± 7 3±0.3 2576 ± 30 2562 ± 3
1R5.B1 2443 ± 5 -4.6±0.2 1.10 ± 0.01 2690 ± 6 5±0.2 2556 ± 30 2563 ± 2
1L1.B1 2171 ± 6 -11.3±0.3 1.03 ± 0.01 2237 ± 7 -8±0.3 2453 ± 50 2443 ± 1
1R1.B1 2254 ± 6 -7.7±0.3 1.03 ± 0.01 2331 ± 7 -5±0.3 2489 ± 60 2442 ± 2

Table 5: Calibrated and not calibrated horizontal β measurements for β ∗ =
2.5 km from Beam 1, using Ballistic calibration factors. β measurements
from phase and K-modulation are shown as reference values.
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Figure 16: Overview of the effect of calibration factors

β -beating. The calibration has helped in centering the distribution and in reducing
the rms deviation between β from amplitude and K-modulation from 7% to 4%.

7 HL-LHC IR local linear optics and coupling correction sim-
ulations

The HL-LHC aims to push β ∗ down to 15 cm in IP1 and IP5. This will increase
the β -function in the triplet quadrupoles above 20 km, enhancing the impact of
the triplet alignment errors and field quality in the machine optics.

The Q1 and Q3 quadrupoles of the HL-LHC are split into two magnets. This
introduces two new sources of optics errors that have to be corrected using the
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Figure 17: Schematic of the HL-LHC triplet and powering scheme [64].
The ktrimA1 is a 35 A circuit for K-modulation, see Section 5, and cannot
be used for optics corrections.

same number of circuits as in the current LHC triplet, thus making the IR correc-
tions more challenging than in the current LHC. Figure 17 sketches the HL-LHC
triplet circuits.

Betatron phase advance is considered to be the most robust observable [2] to
measure optics errors, but in regions with large β -function it becomes very small
and, thus, very hard to measure. In these regions, like the LHC and HL-LHC high
luminosity IRs, we rely on K-modulation which has allowed control of the β ∗
to 1% rms, as described in Section 2. Simulations have been performed for the
HL-LHC to estimate the performance of this approach, assuming:

• Quadrupole gradient errors have an accuracy of 10 units (Gaussian distribu-
tion with sigma of 1o/oo, equal in all quadrupoles in one seed) and a precision
of 2 units, which varies between quadrupoles in the same seed. Quadrupole
sorting is also assumed, i.e., pairing the quadrupole magnets within Q1 and
Q3 with similar transfer function to minimize errors within the same circuit.

• ±2 mm uniformly distributed longitudinal misalignments in each quadrupole
of the triplet.

• phase advance measurement precision of 0.7× 10−32π in the normal arc
BPMs [6] and scaled according to 1/

√
β elsewhere.

• β -function measurement uncertainty of 0.48% in the BPMs closest to the
IPs from K-modulation. This is the corresponding value to 4% precision in
β ∗ from Section 5.

Triplet errors might cause the lattice to become unstable, so firstly just the
segments around the IP1 and IP5 are simulated as individual beam lines (from
the 12th quadrupole on the left side to the 12th quadrupole on the right side). A
correction is computed for these sections only, using the Segment-by-segment
technique as presented in Section 2. After an automatic local correction has been
found, the errors with the corrections are introduced in the full ring to evaluate the
residual β -beating. In Fig. 18 the maximum β -beating for 100 random seeds of
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Figure 18: Simulated maximum β -beating for 100 simulations of the HL-
LHC for 15cm round β ∗. The average is 6.7% with an rms of 8.6%

the HL-LHC V1.2 sequence with 15 cm round optics is shown.
The maximum β -beating is generally located at the IPs along with waist shifts.

The resulting rms β -beating of 8.6% is a factor 2 above the expected accuracy in
the β ∗ measurement from K-modulation of 4%, but it is dominated by few seeds
in the tail of the distribution (maximum 28%). These seeds should be analyzed to
improve the correction algorithms.

Concerning the β functions at the crab cavities the performance of corrections
is considerably better than at the IP. A maximum β -beating of 3.1% is expected
at the crab cavities after correction.

The β -function measurements coming from calibrated β from amplitude could
also be included in the segment-by-segment matching scripts, as it provides β

measurements up to Q4 or Q5. However the current resolution of 4% shown in
Section 6 should be improved before it makes a difference in the local corrections.
Also, global corrections seem to have little effect in the final maximum β -beating.
This should be closely analyzed as it disagrees with experience in the LHC.

Due to the very large β -function in the triplet, small tilts of the quadrupoles
become very strong sources of linear coupling, while the tolerance for HL-LHC
operation is set to |C−|0.001 [17]. The segment-by-segment technique has been
successfully used to correct such localized sources of coupling in the LHC. These
corrections are performed by matching the difference coupling resonance driving
term f1001 with the two available skew quadrupole correctors in the triplets. An
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illustration is shown in Fig. 19a.
In the HL-LHC triplets we have 12 independent coupling sources per IR but

only two local correctors. Local spikes of coupling are unavoidable as shown in
Fig. 19b. As the |C−| depends on the global average of the f1001 driving term [7],
these spikes have little impact on the closest tune approach.

Simulations over 100 machines with 0.5 mrad random Gaussian tilts in IR1
and IR5 triplet quadrupoles, Q4 and Q5 have been performed. The local quadrupole
axes longitudinally have a maximum tilt of±2 mrad. The average tilt is measured
with an accuracy of 0.5 mrad and the positioning accuracy is an order of magni-
tude better. An automatic correction was computed for IR1 and IR5, by fitting
the f1001 driving term. A global correction was applied in the whole machine
afterwards.

Figure 20 shows the expected |C−| after corrections for 100 random seeds,
showing that the C− is well suppressed below the tolerance of 10−3. The MAD-
X improvement in version 5.02.12 concerning the treatment of coupling made
these results considerably better than previous simulations with older versions of
MAD-X.

8 Effective optics modelling

Accurate modelling of a particle accelerator is crucial for its efficient and safe
exploitation. It allows for rapid setup, performance optimization and predictions
upon parameter changes. A beam-based or online model should be built to repro-
duce all available measurements, including the following ingredients:

• Misalignments: The most up-to-date survey data shall be included in the
model. These are crucial for feed-down effects. In the LHC a dedicated ap-
plication was implemented, which retrieves the relevant measurements from
the databases and produces input to the MAD-X model.

• Magnetic fields errors: FiDeL model was developed to calculate the mag-
netic field imperfections for each magnet based on the powering history.
Within the LHC beam-based model the FiDeL model is being implemented
within a dedicated Java application. It calculates the magnetic errors at any
moment on time and produces input for the MAD-X model.
Even though magnets are measured accurately beam-based corrections are
required. Systematic deviations coulbe be identified by combining measure-
ments from different optics, e.g. nominal optics, ATS, the high-beta optics
and the ballistic optics (where the triplet magnets were not powered).

• Orbit: A tool that incorporates the measured orbit into the model was im-
plemented for the LHC. It introduces one virtual orbit corrector at the end
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Figure 19: Segment-by-segment technique applied to the f1001 resonance
driving term in HL-LHC. Figure (a) shows | f1001| before corrections simu-
lating tilt errors in the triplet, Q4 and Q5 in black. The blue lines uses the
two skew quadrupoles to match the f1001. Figure (b) shows the effect of the
correction, both after local (black) and local+global corrections (red).
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Figure 20: Closest tune approach in Beam 2 after local and global correc-
tions for 0.5 mrad rms tilt errors in the IR quadrupoles. All the seeds are
well below the 10−3 tolerance.

of every quadrupole and employs MAD-X orbit correction to reproduce the
measurement. It was successfully verified in the LHC reaching a 0.1 mm
deviation.

• β -beating: In the LHC the β function measurements are done with about
1% precision. The peak β -beating in LHC is about 5% and in the HL-LHC
it may reach 10-20%. For many applications the most precise values of β

function are required, e.g. emittance measurements or calculation of octupo-
lar feed-down and its effect on tune. In the beam-based model a correction to
each quadrupole in the lattice is calculated to reproduce the relevant phase
advance measurement. A dedicated tool was implemented employing the
algorithm of the optics corrections reproducing β functions within 1% accu-
racy.

A large part of the tools required to automatically build MAD-X models us-
ing magnetic measurements, LSA settings and measurements is already available.
The constructed beam-based models and their predictive power need to be verified
in the LHC. Experience on this front will be fundamental to address the HL-LHC
challenges.
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9 IR non-linear correction

As β ∗ is reduced the impact of nonlinear errors in experimental insertions be-
comes more significant. At β ∗ = 40 cm in the LHC, the operational impact of
such nonlinearities was already becoming appreciable. The HL-LHC however,
could potentially move to a regime where the IR nonlinear errors become a se-
rious operational challenge. Ultimately this challenge may be regarded via the
expected impact of the nonlinear errors on dynamic aperture. This problem has
been studied extensively [65, 10], and from DA and lifetime issues alone it is ex-
pected that correction of the nonlinear errors in experimental insertions will be
essential for the HL-LHC. Additionally however, a substantial impact of these
errors may be expected on the accelerator optics. This is set to pose additional
challenges to HL-LHC operation.

9.1 Theoretical use and expected performance of HL-LHC non-linear cor-
rectors

As is the case for the nominal LHC, a dedicated set of non-linear correctors are
planned to be installed in the high-luminosity insertions to cope with the field
quality of the single-aperture magnets. The correction strategy follows that es-
tablished for correcting the field imperfections of the existing triplet and D1 [66].
The basic principles of the method are described below, with its extension to new
multipoles such as a5, b5 and a6 for which no correction is currently available in
the nominal LHC.

On either side of the IP of the low-β insertion, generally in between the inner
triplet and D1 where the β functions are substantially different in both planes,
a dedicated correction coil is installed for each multipole component which is
found to be critical for the DA. For the latest version of the HL-LHC optics and
layout [10], the multipole correctors of the triplet and D1 are combined in a cor-
rector package installed on the non-IP side of Q3, which contains all multipole
magnets, normal and skew, up to order n = 6, except b2 (see Fig. 21).

For a given normal or skew field imperfection B±n (s) (n = 2 for quadrupole),
generally varying from magnet to magnet, the correction consists in canceling
one or more resonance driving terms, as seen by both beams, Beam1 and Beam2,
namely

c±1,2 (n; p,q)def=
∫

IR
B±n β

|p|
2

x1,2 β

|q|
2

y1,2 ei
(

pµx1,2+qµy1,2

)
, (6)

where p and q are integers such that |p|+ |q|= n, q is even (resp. odd) in the case
of normal (resp. skew) multipole. Additional detail on the minimization proposed
is given in Ref. [67].
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Figure 21: Upper: Overall layout of one side of the high luminosity inser-
tion region between the IP and Q4. The non-linear correctors are located in
the region marked CP. The dark blue and red areas represent the 2.4 σ beam
envelope for the nominal round optics. The light regions correspond to a
14.2 σ value of the beam envelope. The vertical, shaded gray areas repre-
sent the locations of the parasitic beam-beam encounters. Lower: Evolution
of the beta function in the insertion region for round optics configuration and
β ∗ = 15 cm.

The specification of the strength requirements for the non-linear correctors
has been performed by means of numerical simulations and depends on the field
quality of the new triplet and D1 and details can be found in Ref. [10].

The performance of the proposed non-linear correctors has been assessed on
the basis of numerical simulations of the dynamic aperture (DA) of the whole ma-
chine. The first results [67] were obtained for the SLHCV3.1b layout [68] and
recently the situation has been re-assessed using the more recent HLLHCV1.0
optics version [10]. The main results are summarized in the Fig. 22, where the
DA for 5 phase space angles, 60 seeds, 105 turns is shown. The field errors are
assigned to all magnets in the arcs and IRs based on the data of the magnetic mea-
surements. The markers represent the average DA (over the seeds and the angles),
while the negative error bars represent the minimum DA (over the seeds and the
angles) and the positive error bars the average DA over the angles of the maximum
over the seeds. In this way the spread introduced by the realizations and the phase
space angles is made visible in a compact form. In the upper plot the impact of
each individual corrector is shown. It is worthwhile noting that for these simula-
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tions the expected error tables are used, i.e., the field quality optimisation based
on DA simulations is not applied. This is obtained by disabling all correctors in
IR1 and 5 of a given multipolar order. The average DA is mainly affected by the
b3 corrector, while the minimum DA is more reduced by a3,b3 and b6 correctors.

Figure 22: Impact of the absence of single corrector on dynamic aperture (upper).
For each case shown, a corrector of a given multipolar order is disabled in both
IRs. The impact of the absence of groups of correctors on dynamic aperture is
also probed (lower). The dynamic aperture values are expressed using the nominal
value of the normalized emittance, i.e., εN = 2.5 µm.

In the lower plot the impact of the non-linear correctors is assessed. The ex-
treme case in which these special correctors are switched off is considered and
together with that a case in which only a5,b5,a6 are switched off is evaluated.
The latter represents a configuration similar to that of the nominal LHC, in which
these tree corrector magnets are not installed. These two special configurations
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are compared against the nominal one and the impact on the dynamic aperture is
clearly seen. It is worth noting that the much larger effect of the correctors on
the HL-LHC dynamic aperture reported in Ref. [67] is due to the choice of the
configuration used for the numerical simulations. In fact, while the original simu-
lations were performed assigning magnetic errors only to the triplet quadrupoles,
the present results are obtained using the most detailed description of the HL-LHC
ring, including all known magnetic errors.

Recently, the possibility of extending the function of the non-linear correctors
to mitigate also for the impact of the field quality of the D2 separation dipole on
DA has been explored. The fact that D2 has two apertures implies that only the
average between the multipoles in the two apertures can be compensated for. This
in turn implies that an effective correction can be expected only in the case of
good correlation between the multipole components in the two apertures of the
separation dipoles. This is indeed the case for the systematic multipoles, namely
b3 and b5. Therefore, the original correction strategy has been extended by simply
including the average b3 from the D2 magnet.

The results are shown in Fig. 23, where the DA versus the systematic compo-
nent of b3 in the D2 is shown, for the case in which no correction is performed,
i.e., the standard approach, or the one in which the functionality of the sextupolar
corrector is extended. The results for both beams are reported.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●○ ○
○

○ ○ ○

○ ○
○

○ ○ ○ ○ ○ ○
○

○ ○

●

●

● ●

●

●

●

●

●

○ ○ ○ ○ ○ ○ ○ ○
○

-10 -8 -6 -4 -2 0 2 4 6 8 10

5

6

7

8

9

10

11

12

13

14

15

Systematic b3 of D2

D
A

(σ
)

Beam 1

nominal

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

○ ○

○ ○
○

○ ○ ○
○

○
○

○
○

○
○ ○ ○ ○

●

●

●

● ●
●

●

●

●

○ ○ ○ ○ ○ ○ ○ ○ ○

-10 -8 -6 -4 -2 0 2 4 6 8 10

5

6

7

8

9

10

11

12

13

14

15

Systematic b3 of D2

Beam 2

nominal

● no correction
○ correction of b3

Figure 23: Dynamic aperture as a function of the systematic b3 component
in the D2 separation dipole without and with correction by the sextupolar
magnet in the IT corrector package. Beam 1 (left) and Beam 2 (right) results
are given. The dynamic aperture values are expressed using the nominal
value of the normalized emittance, i.e., εN = 2.5 µm.
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The value of the nominal b3 systematic component is highlighted for refer-
ence. The curves represent the minimum, average, and maximum over seeds and
phase space angles. Moreover, the light lines represent the DA (averaged over the
phase space angles) of the sixty seeds. The effectiveness of the correction strategy
is clearly visible, and it improves for larger systematic b3 component. This novel
approach would be very useful in case of b3 exceeding the expected value from
electromagnetic simulations. For larger values of the systematic b3 component the
proposed correction strategy fails to be effective. This is probably due to compen-
sation effects between the b3 in the D2 separation dipole and similar components
stemming from other magnet families. Another point worth consideration is the
systematic difference in DA for Beam 1 and Beam 2: dedicated studies will be
carried out to assess whether this is due to difference in phase advance between
the various insertions for the two beams.

The next step is to consider the possibility to correct also the systematic b5
component of D2. Preliminary results seem to indicate that the correction mech-
anism might not be as effective as for b3 and the origin of the behavior is being
investigated in detail.

9.2 LHC experience

Initial studies of IR-nonlinear errors in the LHC were performed during Run 1,
utilizing feed-down to tune and linear coupling as a function of the IR crossing
angle bumps [19]. These studies were used to validate the LHC magnetic model
for several multipole errors, notably the b3 component in IR2 and the b3, b4 and
a4 components of IR1 [19]. Figures 24 and 25 show examples of feed-down
measurements where a good agreement was obtained between the measured data
and predictions of simulations based upon the LHC magnetic model (WISE [69,
70]). Solid lines in the figures represent the predictions of WISE for 60 instances
of the magnetic errors (‘seeds’). In these cases corrections for the nonlinear errors
can be calculated directly from the validated magnetic model.

Unfortunately feed-down studies on the LHC IRs have also revealed several
instances of significant discrepancy between the beam-based measurements and
the behavior predicted by the magnetic model. An example of such a measurement
is shown in Fig. 26, where a discrepancy can be seen in the b3 component of IR5
which feeds-down linearly to tune.

The observation that magnetic measurements during construction cannot be
de facto relied upon to give an accurate description of the LHC behavior has seri-
ous implications for the correction strategy. It had previously been assumed that
optimized corrections for the nonlinear errors could be calculated directly from
magnetic measurements. In practice this is not the case. Beam-based methods for
correction of the nonlinear errors will be essential in the HL-LHC.
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Figure 25: Modelled and measured feed-down to coupling with IR1 cross-
ing angle.

In 2016 studies of the IR b4 errors via feed-down were complemented by mea-
surements of amplitude-detuning. Amplitude detuning provides a direct observ-
able for the b4 content of the machine, however measurement at high-energy only
became viable late in Run 1 due to theoretical advances in understanding the de-
tuning of driven oscillations in an accelerator [71, 72]. Figure 27 shows a com-
parison between the measured detuning and the expectation from the magnetic
model. Cross-term detuning coefficients, which have very small values for this
configuration of the LHC, are not shown. The measured detuning is dominated by
the contribution from IR1 and IR5, and is seen to be ∼ 2/3 of its nominal value.

Amplitude detuning effectively provides a measure of the total b4 content of
the ring weighted by β 2 at the location of the sources. To obtain a local correction
it is necessary to identify the contributions coming from IR1 and IR5. In the case
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Figure 27: Measured amplitude detuning at β ∗ = 40 cm. PTC predictions
based on the WISE model are shown in gray. Effects of driven oscillations
have been accounted for in the comparison. The free amplitude detuning is
obtained by dividing by 2 the plotted tune shift.

of IR1, crossing-angle scans demonstrated a good agreement for the second-order
feed-down to tune generated by b4. An example of this is shown in Fig. 28. The
nominal b4 correction, as determined from magnetic measurements, was therefore
applied to IR1 (this correction had already been observed to minimize second-
order tune feed-down from IR1 during 2012 [19]). The residual amplitude de-
tuning was then minimized using the b4 correctors in IR5. Application of both
the IR1 and IR5 correction was observed to compensate the forced octupolar res-
onance driving term f ′4000 as discussed in the following section. Application of
the combined IR1 and IR5 correction was observed to significantly improve beam
lifetime at β ∗ = 14 cm during an ATS MD in 2016 [45, 46], Fig. 29.

A beam-based correction of b4 in the experimental insertions, calculated via
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Figure 28: Simulated and measured variation of tune as a function of the
vertical crossing angle in IR1. Effective a3 settings were applied in simula-
tion to reproduce the observed linear part of the tune variation, facilitating
a comparison of the second-order feed-down from normal octupole errors.

feed-down and amplitude-detuning measurements, and validated through reso-
nance driving terms and lifetime, has been demonstrated in the LHC. Feed-down
studies have also been able to validate several other components of the magnetic
model. Experimental results are being gathered in [18].

9.3 Effect of IR-nonlinearities on HL-LHC optics

Due to the reduced β ∗, the impact of nonlinear errors in the experimental inser-
tions of the HL-LHC can be expected to increase significantly compared to the
LHC. The effect on the DA has been studied in detail [65, 10], however the im-
pact on the optics may also represent a significant challenge. Simulations have
been performed to examine the expected impact on the optics using the target er-
ror tables for the HL-LHCV1.0 (the same mask used for DA tolerance studies of
the HL-LHC). 60 seeds of the errors are considered.

During operation for luminosity production a crossing scheme will be applied
in the experimental IRs. As a consequence nonlinear errors will feed-down to
generate linear optics perturbations. Figure 30 shows histograms over the target
error table seeds, of the β -beating generated by normal and skew sextupole feed-
down at β ∗ = 15 cm, with a 295 µrad crossing scheme. The peak β -beating is
shown in blue, while the relative β ∗ imbalance is shown in red. With a peak
∆β/β > 20%, Fig. 30 demonstrates that the feed-down from IR sextupoles alone
has the potential to violate machine protection limits in the HL-LHC. While most
seeds examined did not exceed the maximum allowed β -beating on their own,
many provided an insufficient margin of safety to accommodate residuals from
the linear optics correction, and a potentially significant β -beating from beam-
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Figure 29: Surviving fractional intensity versus time, calculated from BCT
data. The fractional intensity is calculated from ∼ 2minutes prior to appli-
cation of the b4 correction (blue), and for 2minutes from the time of MCOX
trim completion. The time period during which the b4 correction is being
applied is ignored, as feed-down to tune causes transient losses.

beam. Furthermore the β ∗ imbalance generated by the IR sextupoles in most
cases is operationally intolerable.

Having the facility to compensate such errors will be essential for the HL-
LHC, but may require a serious revision to the linear optics correction strat-
egy. While application of nominal commissioning methods may be possible, in
the LHC linear optics has always been commissioned with flat-orbit and correc-
tion with crossing scheme applied is entirely untested at low β . Furthermore, if
crossing-angle bumps are to be varied during operation (to provide luminosity or
pile-up leveling or to limit energy deposition in the triplets) changing feed-down
will dynamically alter the β ∗-imbalance during leveling unless local sextupole
corrections are implemented.

Feed-down to coupling also represents a significant challenge. Figure 31
shows a histogram over the target error table seeds, of the linear coupling gen-
erated by sextupole feed-down alone for β ∗ = 15 cm, 295 µrad. Feed-down
from the nonlinear errors in the experimental IRs has the potential to generate
very large shifts to the linear coupling during the squeeze, up to 0.025. In the
LHC |C−| ≈ 0.004 has been observed to cause instabilities and a tolerance of
|C−| ≤ 0.001 is estimated for HL-LHC [17]. Therefore, correction of the IR cou-
pling from feed-down during the squeeze will be essential. Further, allowing for
a residual |C−| at the 10−3 level, the majority of seeds in Fig. 31 would gen-
erate enough coupling to cause HL-LHC beams to become unstable under the
∼ 60 µrad crossing-angle manipulations proposed for leveling during HL-LHC
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Figure 30: Predicted β -beating for 60 seeds of the HL-LHC target error
tables at β ∗ = 15 cm, 295 µrad.

operation [73]. In this case local correction of normal and skew sextupoles in the
IRs will become an operational necessity.

Perturbations to linear optics are not the only operational challenges which
may arise from uncompensated nonlinear errors in experimental insertions. Dis-
tortion of tune footprint is also a significant issue due to the impact it may have
on the Landau damping of instabilities.

To first-order in the multipole strength, normal octupole (b4) fields generate
first-order amplitude detuning: where ‘first-order’ here implies a linear tune shift
with action (Jx,y, where x =

√
2βxJx cosφx). This contributes to the tune spread

within a bunch, and therefore to the Landau damping. Landau octupoles in the
LHC and HL-LHC arcs introduce such a tune-spread explicitly to provide Landau
damping. As β ∗ is reduced however, the contribution to amplitude detuning aris-
ing from b4 errors in the IRs increases. This distorts the intended tune footprint
generated by the Landau octupoles, and leads to a tune spread which changes dur-
ing the squeeze. Figure 32 shows the expected distortion of tune footprint during
a nominal LHC squeeze, extrapolated from amplitude detuning measurements at
β ∗ = 40 cm and 60 cm. Gray regions indicate the desired footprint, as generated
by the Landau octupoles, and red regions indicate the footprint in the presence of
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Figure 31: Histogram over HL-LHC target error table seeds, of the |C−|
generated by sextupole feed-down only at β ∗ = 15 cm with the 295 µrad
crossing scheme.

the measured b4 errors.
At β ∗ = 40 cm in the LHC, the impact of normal octupole errors in exper-

imental IRs has already been observed to impact upon the Landau damping of
instabilities [74]. The impact in the HL-LHC is potentially far greater. Figure 33
shows histograms over the target error table seeds for the expected amplitude de-
tuning in the HL-LHC generated by IR-octupole errors. Values measured in the
LHC at 40 cm are also indicated.

The direct-term detuning coefficients (∂Qx/∂εx and ∂Qy/∂εy) of many seeds
is increased substantially compared to the LHC at 40 cm. Significant cross-term
detuning (∂Qx/∂εy = ∂Qy/∂εx) is also generated in most seeds. In 2016 the Lan-
dau octupole settings in the LHC generated a magnitude of ∼ 110×103 m−1 for
the direct-terms and ∼ 80×103 m−1 for the cross-term. In the HL-LHC, Landau
octupole tune spread can be enhanced by the ATS telescopic squeeze: taking the
maximum allowed current (570A) the magnitude of the Landau octupole detun-
ing at β ∗ = 15 cm is of the order of∼ 300×103 m−1 and∼ 150×103 m−1 for the
direct and cross-terms respectively. By end-of-squeeze in the HL-LHC therefore,
a significant proportion of the target error table seeds show octupole errors in the
experimental insertions generating a tune spread larger than that created by the
Landau octupoles during LHC operation. There is a serious risk therefore that un-
compensated octupole errors in the HL-LHC experimental insertions will cancel
or distort the tune footprint to the extent that Landau damping will be lost dur-
ing the β ∗ squeeze. Furthermore, normal octupole errors are not the only source
of footprint distortion arising from the low-β IRs: the orbit offset in the triplets
and separation dipoles when the crossing scheme is applied during operation will

38



Figure 32: Distortion of tune footprint during a nominal LHC squeeze.
Plotted footprints are defined by first-order detuning coefficients obtained
via simulation with PTC_NORMAL. The model used consists of an effect
model of the normal octupole errors in IR1 and IR5, which reproduces the
observed detuning at β ∗ = 40 cm and 60 cm, together with Landau oc-
tupoles powered as per operation for Luminosity production in late 2016.
Grey regions show the footprint expected in the absence of the IR contribu-
tion, red regions show the expected footprint in the real LHC if IR octupole
errors are left uncompensated.
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Figure 33: Histogram over target error table seeds for amplitude-detuning
generated by IR-octupole errors in the HL-LHC at β ∗ = 15 cm, with a flat-
orbit.

cause high-order errors, and in particular normal and skew decapole and normal
dodecapole errors, to feed-down to normal octupole fields. Figure 34 shows his-
tograms over the target error table seeds, of the change to the ∂Qy/∂εy detuning
coefficient resulting from only normal/skew decapole feed-down at β ∗ = 15 cm,
295 µrad.

On the upper end of the Fig. 34 histogram decapole feed-down can be ex-
pected to generate a tune footprint distortion on an operationally significant level.
The situation becomes even more complicated upon addition of dodecapole feed-
down. Figure 35 shows how the detuning coefficient of the first four target error
table seeds change at β ∗ = 15 cm, as a function of the crossing angle in IR5.

Figure 35 shows that the tune footprint generated only by feed-down in exper-
imental insertions of the HL-LHC can be larger than that generated operationally
by the Landau octupoles in the LHC during 2016, and can be a significant frac-
tion of the maximum tune spread from Landau octupoles in the HL-LHC. The
exact form of the footprint, and hence the Landau damping, will depend on the
interaction between the Landau octupoles, b4, b5, a5 and b6 errors in experimental
insertions, with all having potentially significant contributions. For a given config-
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uration the impact of IR-nonlinearities may be more or less extreme, depending
on crossing scheme, optics, and cancellation or enhancement between different
IRs or multipole orders. However, the potential for significant distortion to tune
footprint and Landau damping as a function of the the squeeze or the crossing
scheme, makes local compensation of high-order IR errors an operational concern
for the HL-LHC.

It will be very important to establish procedures for the linear and non-linear
optics commissioning in the HL-LHC and identify possible limitations coming
from increased non-linearity.
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9.4 Correction methods in the HL-LHC

The HL-LHC will require robust methods for beam-based correction of the non-
linear errors in its experimental insertions. Two methods exist which may apply
generally to a wide range of multipole errors. The measurement of resonance driv-
ing terms has the potential to allow for direct compensation of nonlinear sources
in the IRs [75]. Spectral lines corresponding to normal and skew sextupoles and
octupoles have been observed in the LHC. So far only octupolar resonance driving
terms have been used to validate corrections in the LHC. Further details regarding
driving terms measurements are given in Section 9.5. Some developments con-
cerning the effect of the AC dipole and BPM calibrations are still required to reach
full confidence.

Direct measurement of DA may also be a viable option. Conventional mea-
surements based on single kicks are not possible at top energy due to the high
rigidity of the beams and destructive nature of the measurement. However, the
short term DA of driven oscillations can be studied using an AC-dipole. The short
term DA is a new observable that can be used to benchmark models which also
provides a lower boundary of the free DA, further details are discussed in Sec-
tion 9.6. Long-term DA measurement can also be performed by blowing up the
emittance with a transverse damper, and examining beam losses as a function of
nonlinear corrector settings. This technique has been validated at injection in the
LHC. First tests at top energy were also performed during MDs in 2016. Fig-
ure 36 shows clear changes to beam lifetime upon trims of the normal dodecapole
correctors in the LHC. In the case shown, trims of b6 correctors were applied to
generate a shift to the dodecapolar detuning typical of that expected from the HL-
LHC target error tables. A clear impact on beam-lifetime was observed indicating
direct DA measurement should be viable in the HL-LHC. DA and lifetime are
significant figures of merit for the IR correction quality which makes direct opti-
mization of DA an appealing option for compensation of the IR errors, but given
the global nature of such a measurement the challenge in its application will be
separating contributions from different IRs and multipole orders. To this end DA
must be complemented by methods based on study of the optics.

Regarding the sextupole-order errors, direct beam-based minimization of ob-
served feed-down is a viable option, which should in principle compensate the
operational impact arising from linear optics and coupling perturbations. On the
downside, minimizing feed-down is unlikely to provide an optimal compensation
of sextupole resonances, and may give less gains in dynamic aperture. It will
be necessary to study this option further in simulation to help define correction
priorities in the HL-LHC: it may be that the operational impact of β ∗ imbalance
and coupling induced instabilities outweighs the need for an optimal resonance
driving term correction. Methods based upon feed-down to tune and coupling
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Figure 36: Measured intensity of LHC beams following uniform (left) and
single corrector (right) trims to b6 magnets in IR1 and IR5.

are relatively well established in the LHC for study of low-order nonlinear errors,
and MD studies during 2016 have focused on improving the method further via
better understanding and control of the orbit in the IR and its leakage to other
IPs, improved coupling measurement, as well as through the use of an expanded
repertoire of orbit bumps to probe specific regions of the IR [76].

In addition to these developments, the larger optics perturbations anticipated
in the HL-LHC make additional methods viable. In particular it may be possi-
ble to adapt the segment-by-segment technique [2, 3, 77, 4], normally used for
commissioning of local quadrupole corrections in LHC insertions, to the study
of sextupole feed-down. Figure 6 shows error reconstruction via the segment-
by-segment technique for LHC IR5 during 2016 optics commissioning. Figure 37
shows the phase advance discrepancy due to sextupole feed-down in the HL-LHC,
as a function of the crossing scheme which is indicated in color. The seed con-
sidered corresponded approximately to the median of the β -beating distribution
obtained for the target error tables, shown in Fig. 30. The order of magnitude of
the phase advance discrepancy is comparable with that observed during 2016 LHC
commissioning and, hence, easily measureble. Study of the local phase advance
should better constrain potential sextupole sources than simple study of tune. A
segment-by-segment method for sextupoles does appear to be of interest for the
HL-LHC, however the method at present remains untested.

Compensation of IR-octupole errors has already been demonstrated in the
LHC, with corrections determined via a combination of feed-down and ampli-
tude detuning measurements. Such a combination of methods worked well in this
case, however for b4 errors it will always be possible to unambiguously compen-
sate the detuning contribution from a given IR, by only squeezing one of the IPs.
The challenge of the latter method arises in the overhead required to develop the
single-IP squeeze, which may continue to make correction via a combination of
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Figure 37: Segment-by-segment phase advance discrepancy due to sex-
tupole feed-down in the HL-LHC. Crossing angle is indicated in colour.

techniques preferable. Errors of order greater than octupole can also be studied
via their feed-down to amplitude detuning. First tests of this method were per-
formed in the LHC during 2016 [76] and demonstrated it to be a challenging but
potentially viable option for the study of high-order nonlinear errors.

In addition to feed-down to first-order detuning with amplitude, normal do-
decapole errors directly generate second-order detuning (a quadratic variation of
tune with action). Second-order detuning has been measured in the LHC at in-
jection [78], but never observed at top energy. Second-order detuning from do-
decapole sources in the experimental insertions scales with ∼ (1/β ∗)3, and when
measured via driven oscillations with an AC-dipole, direct second-order detun-
ing coefficients are also enhanced by a factor 3 [71]. Given the small β ∗ in the
HL-LHC it is possible for second-order detuning to become directly measurable.
Figure 38 shows in red an example of a successful amplitude detuning measure-
ment in the LHC at β ∗= 40 cm. The range of actions plotted defines a realistically
achievable measurement scenario, and the measured tune shift is representative of
the scale on which we may be confident a precise measurement can be performed.
Figure 38 also shows in blue, the expected tune variation with amplitude gener-
ated by the b6 component of the 60 HL-LHC target error table seeds, including
the factor 3 enhancement due to measurement with an AC-dipole. Given a real-
istically achievable range of actions, Fig. 38 demonstrates that in many seeds the
predicted tune variation due to b6, as measured by an AC-dipole in the HL-LHC
at β ∗ = 15 cm, is comparable to successful detuning measurements performed
in the LHC. Measurement of b6 via second-order detuning at top energy remains
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untested in a real machine, and may rely on accurate compensation of the lower-
orders, but contrasting to the successful detuning measurements in the LHC it
does seem that a direct measurement of b6 may be viable.
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Figure 38: Red data shows an example of a successful measurement of
amplitude detuning performed in the LHC at β ∗ = 40 cm. Blue lines show
the predicted tune shift as a function of action due to the b6 component of
the 60 HL-LHC target error table seeds, including the factor 3 enhancement
due to measurement with an AC-dipole.

Errors greater than dodecapole order are unlikely to have a significant effect on
lifetime in the HL-LHC, and no correctors for such multipoles are planned. Still,
study of the first-order feed-down to second-order detuning from decatettarapolar
(14-polar) errors in the HL-LHC experimental insertions may be an interesting
topic for an MD.

9.5 Resonance driving terms in LHC and HL-LHC

The measurement of Resonance driving terms (RDTs) is an effective method to
probe machine nonlinearities. Spectral analysis of turn-by-turn data obtained from
large transverse betatron excitations provides accurate measurements of the main
tunes and secondary lines generated by various resonance driving terms. At top
energy we rely on AC dipoles to generate non-destructive forced betatron oscilla-
tions [79]. The amplitudes of secondary lines in the spectra of forced oscillations
are proportional to the sum of two RDTs of the same order [80], and can be used
to identify different nonlinear sources [81].

Figure 39 shows the complex spectra obtained from turn-by-turn data at large
diagonal excitaitons in Beam 2. All observable secondary lines are labeled ac-
cording to (m,n) = mQAC

x + nQAC
y . The natural main tunes are labeled as N(1,0)
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Figure 39: Complex spectrum of turn-by-turn data at large diagonal exci-
tations in Beam 2. The lines observed are labeled according to (m,n) =
mQAC

x +nQAC
y , while the natural tunes are given by N(1,0) and N(0,1).

and N(0,1) for the horizontal and vertical tune respectively. Figure 39 shows sec-
ondary spectral lines generated by normal and skew sextupoles and octupoles.
Secondary lines arising from higher order multipoles have so far not been ob-
served. Local nonlinear sources in the triplets will, however, be amplified in the
HL-LHC due to the increased β functions and may improve measurements of
such higher order sources.

Measurements of the normal octupolar RDT | f ′4000| were used to confirm the
correct implementation of b4 corrections calculated from amplitude detuning mea-
surements. Figure 40 shows a histogram of the measured RDT for all BPMs for
three different measurements. In green the case where no b4 corrections were
applied, in orange only the corrections for IR1 were applied, and in purple correc-
tions for both IR1 and IR5 were applied. A clear decrease in | f ′4000| is observed
after the implementation of each correction. Measurements of RDTs can thus be
used to confirm the effectiveness of specific corrections and will be important to
validate nonlinear correction schemes in the HL-LHC.

Measurements were done in 2016 to enhance specific RDTs by changing both
the working point of the bare machine and the AC dipole to improve the resolu-
tion of RDT measurements. Normal and skew octupolar RDTs were enhanced
successfully by approaching the generating resonances. Furthermore, this scheme
may be envisaged to measure decapolar and dodecapolar RDTs that are currently
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Figure 40: Histogram of the measured value of | f ′4000| at each BPM. Green
shows the measurement without b4 corrections, orange shows the measure-
ment with IP1 corrections, and in purple the measurement with b4 correc-
tions in both IP1 and IP5.

not observed. A scheme for nonlinear corrections can be devised for the HL-LHC
where specific RDTs are probed through changes in the working point.

9.6 Short term DA with AC dipole

A new method to measure the DA under forced motion of an AC dipole, referred
to as forced DA, has been proposed in [82] and envisaged as a complementary
method in the HL-LHC alongside free DA measurements through beam heating.
Measuring the forced DA allows to probe the nonlinear content of the machine by
comparing to simulations.

The AC dipole excitation has the advantage of providing a slow ramp exci-
tation that is considered safe at top energy. This allows to probe the forced DA
at top energy in colliders where the single kick method is unviable. In the LHC
the AC dipole is limited to an excitation of 104 turns while usual free DA studies
consider measurements lasting an order of magnitude longer.

Particle dynamics under the driven motion of an AC dipole are considerably
altered [80, 71, 72]. In general the number of resonances is larger when exciting
the beam with an AC dipole. The choice of working point for the natural tunes
as well as for the AC dipole tunes is therefore crucial to realize a representative
forced DA measurement.

Resonances are approached through detuning with amplitude. As the oscilla-
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Figure 41: Comparison between DA simulations for LHC with single kicks
(left) versus AC dipole (right). The machine tunes are Qx = 0.31 and Qx =
0.32, while the AC dipole tunes are Qx = 0.298 and Qy = 0.335. A clear
reduction of measured DA is observed for the AC dipole simulations.

tion amplitude increases, the natural tunes will detune on to resonances causing
particle losses. Amplitude detuning is in general larger with forced oscillations.
It has been shown that the direct linear amplitude detuning terms generated by
normal octupolar fields double under the influence of an AC dipole driven mo-
tion [71]. As such, resonances are predicted to be reached at lower actions than
under free oscillation, likely reducing DA. The forced DA with AC dipoles could
thus be viewed as a lower bound to free DA. Considerations on the influence of
forced motion on forced DA are discussed in more detail in [83].

Figure 41 compares the free DA from simulations with single kicks with 8×
103 turns to forced DA obtained from AC dipole tracking simulations at collision
tunes (Qx = 0.31, Qy = 0.32), where a typical working point for the AC dipole
is used; QAC

x = Qx− 0.010 and QAC
y = Qy + 0.014. The simulations are done at

top energy at β ∗ = 40 cm m and without Landau octupoles. For single kicks the
free DA is 12σnom, where σnom corresponds to ε = 3.75 µm. A clear reduction is
observed for AC dipole driven oscillations, where the forced DA is 8 σnom. These
results show a reduced forced DA for AC dipole excitations compared to the free
DA, and offer a lower bound estimated of the free DA.

Measurements at injection energy were performed with the Landau octupoles
powered at 40 A to probe this method. The measurements are discussed in greater
detail in [83]. Figure 42 shows the measured beam losses for measurements at 40
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Figure 42: Measured natural vertical tunes versus. vertical excitation am-
plitudes for measurements with AC dipole (blue) and single kicks (red) and
Landau octupoles powered at 40 A.

A with single kick and AC dipole in the vertical plane versus kick amplitude.
The short term forced DA was measured with the AC dipole at 2.3σnom and

was limited by the 3rd order resonance 3Qy = p, as shown in Fig. 42. In the case
of single kicks, the free DA arising from the 3rd order resonance was limited to
4.3σnom.

10 Summary and outlook

HL-LHC represents a challenge for optics measurement and correction in both the
linear and non-linear regimes. Fast and flexible tools will be required to efficiently
commission the large amount of optics foreseen for the β ∗ leveling process. Al-
gorithms are being developed and tested in the LHC to address these challenges.
Table 6 collects the current relevant tolerances or expected values for optics pa-
rameters in LHC and HL-LHC. To reach 4% accuracy in HL-LHC β ∗ we are
assuming the upgrade of the dipole power converters to class 0 in the telescopic
arcs, which is not yet in the baseline [16]. Without this upgrade the tune jitter
goes up to 4.1×10−5 and the β ∗ relative accuracy is 7.7%. Tune measurements in
MDs during 2017 will allow characterizing power converter ripple.

Further developments are still required to guarantee a 2% accuracy in β ∗. The
LHC IR BPMs feature calibration errors in the 4% level. With optics-measurement-
based calibration techniques, see Section 6, we have seen about a factor 2 im-
provement. BPM calibration errors of 1% in HL-LHC combined with optics-
measurement-based calibration could help reaching the target of 2% accuracy in
β ∗.
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LHC HL-LHC
unit β ∗ = 40 cm β ∗ = 15 cm

CMS/ATLAS luminosity imbalance [%] 5 5
tolerance
Tune jitter (rms)

[
10−5] 2-4 4.1

Assumed tune measurement uncertainty
[
10−5] 1.5 2.5

β ∗ accuracy:
rms tolerance for lumi imbalance [%] 2 2
rms achieved or expected [%] 1 4

Peak β -beating after correction [%] 5 10-20
β -beating from crossing angle [%] 2 20
(without non-linear IR correction)
|C−|:

Tolerance for instabilities
[
10−3] 1 1.0

Tolerance for K-modulation
[
10−3] 1 0.6

7 month drift
[
10−3] 3 12

∆|C−| from crossing angle
[
10−3] 2 20

(without non-linear IR correction)
Dynamic aperture:

Before IR correction [σ ] 10 5
After IR correction [σ ] 12 9

Table 6: Tolerances and achieved or expected values for LHC and HL-LHC
optics control related parameters. Tune jitter values come from [16]. The
assumed tune jitter of 2.5×10−5 requires upgraded power supplies for the
telescopic arc dipoles. LHC DA values are taken from [84] and rescaled to
the HL-LHC emittance of 2.5 µm.

Both experiments and simulations suggest that peak β -beating will be about
20% in HL-LHC, specially appearing in the arcs used for the telescopic squeeze.

The non-linear errors will pose severe challenges even for the linear optics
commissioning via their feed-down to β -beating and coupling and by reducing
the available DA for optics measurements with the AC dipole. Iterative correc-
tions alternating the target between linear and non-linear orders will be required.
A broad spectrum of techniques to measure and correct IR non-linear errors are
emerging but a substantial effort is required to demonstrate their feasibility. A
strategy based on these techniques should be defined and verified with simula-
tions of realistic scenarios for optics commissioning in HL-LHC.
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