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Abstract. Having information such as an estimation of the processing time or possibility
of system outage (abnormal behaviour) helps to assist to monitor system performance and to
predict its next state. The current cyber-infrastructure of the ATLAS Production System
presents computing conditions in which contention for resources among high-priority data
analyses happens routinely, that might lead to significant workload and data handling
interruptions. The lack of the possibility to monitor and to predict the behaviour of the analysis
process (its duration) and system’s state itself provides motivation for a focus on design of the
built-in situational awareness analytic tools.

1. Introduction
The ATLAS [1] Production System (ProdSys) [2] is an automated scheduling system that is
responsible for central production of Monte-Carlo data, highly specialized production for physics
groups, as well as data pre-processing and analysis using such facilities as grid infrastructures,
clouds and supercomputers. Its current processing rate is around 2M tasks per year (that
corresponds to 365M jobs per year). ProdSys evolves to accommodate a growing number of
users and new requirements from the ATLAS Collaboration (the ATLAS experiment at the Large
Hadron Collider, CERN), physics groups and individual users. ATLAS Distributed Computing
in its current state is the aggregation of large and heterogeneous facilities, running on the WLCG
(Worldwide LHC Computing Grid) [3], academic and commercial clouds, and supercomputers.

There are two key components of ProdSys that represent the core of the system: i) Database
Engine for Tasks (DEfT) is used to formulate the tasks, chains of tasks and task groups (i.e.,
production request), complete with all necessary parameters; ii) Job Execution and Definition
Interface (JEDI) is a subsystem (also part of the workload management system PanDA [4])
that performs task-level workload management (i.e., brokerage and execution), dynamic job
definition and execution (for resource usage optimization) [5].
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Having information such as an estimation of the processing time or possibility of system
outage (abnormal behavior) helps to monitor system performance and to predict its next state.
The current cyber-infrastructure of ProdSys presents computing conditions in which contention
for resources among high-priority data analyses happens routinely, that might lead to significant
workload and data handling interruptions. The lack of the possibility to monitor and to predict
the behavior of the analysis process (its duration) and system’s state itself caused us to focus
on design of the built-in situational awareness analytic tools.

The proposed suite of tools aims to estimate completion time (so-called ”Time To Complete”,
TTC) for every (production) task, completion time for a chain of tasks, and to predict the failure
state of the system based on ”abnormal” task processing times. Its implementation is based on
Machine Learning methods and techniques, and besides the historical information about finished
tasks it uses ProdSys job execution information and the state of resource utilization (real-time
parameters and metrics). The next planned step after task duration prediction is task profiling,
detecting anomalous task behavior, and predicting task chain execution duration.

2. Approaches to estimating completion time for tasks
Several approaches were considered for predicting task execution times (i.e., task execution
durations) on the basis of simulation modeling, and on the basis of machine learning.

Within the simulation modeling approach, tools for modeling distributed computing systems
such as SimGrid, CloudSim, SPECI, CDOSIM and DCSim were considered for use. [6, 7] Based
on the provided functionality, the SimGrid (a toolkit that provides core functionalities for the
simulation of distributed applications in heterogeneous distributed environments) was chosen
for further consideration.

Within the framework of the machine learning approach, modeling based on deep neural
networks and ensemble methods, such as random forests and gradient-boosted trees, were
considered. After performing the preliminary analysis of the approaches, we decided to
implement the methods in the following order: apply gradient-boosted trees and random
forest regression methods for task duration prediction (use minimal set of parameters), refine
predictions by developing a framework allowing to concurrently use several different predictive
models (that are built with different ”extended” sets of parameters of used methods) and
compare their precision, adding the deep learning-based model to the set of models, and choosing
the ones that give better precision while keeping acceptable performance. [8]

The decisive factor in choosing the machine learning-based approach over the simulation-
based approach was the rate of growth and change of the WLCG and rapid increase of its
computation load, making simulations impractical, as the scale and complexity of ProdSys
exceeds the capabilities of the best grid modeling systems currently available. [2, 9]

A machine learning-based approach, unlike a simulation-based one, uses historical data to
describe functioning of the system instead of its exact structure description for model training,
and therefore allows for gradual increase of prediction precision with increase of the size of data
sample, in turn allowing the researcher to choose a desired trade-off between model scale and
precision, while a simulation-based approach features sharp precision drop when the used model
is incomplete or outdated, necessitating using a full scale model of the system.

3. Framework for prediction of the task execution duration
The imprecise nature of models used to predict task durations, as well as the need to provide users
with task duration estimates for all steps of the task lifecycle, preferably starting before the task
is completely defined, to simplify the planning of data processing, necessitated creating a task
duration prediction framework that allows using several models simultaneously, monitoring their
precision and performance, adding and removing new models without impact on the framework
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Figure 1. Task duration predic-
tion framework structure

functionality, updating models according to a predefined schedule, and gathering statistics to
be used in further improving of the framework.

3.1. Task duration prediction framework components
The structure of the task duration prediction framework is displayed on Figure 1.

The prediction framework core component provides the system’s core functionality. It
maintains a connection to a set of prediction models (by the following blocks: collector and
predictor) and allows to operate with new models (e.g., extend the set with newcomers) and
control their status in the system, serves as a source of prediction data for PanDA monitor, as
well as generates and sends logs of its functioning to the prediction framework monitor. Input
data for model creation is collected from ProdSys components (i.e., DEfT/JEDI).

Prediction framework monitor accumulates the logs provided by the prediction framework
core, and allows operators to review logs, as well as to configure conditional alerts to be sent
out in case of certain conditions being met.

Prediction analysis tool implements several metrics that can be used to control the stability,
performance and precision of various models based on the logs gathered by the prediction
framework monitor, predictions made by the models, and factual task durations.

Generating a prediction involves the following steps: the framework core component collects
data with task parameters from the DEfT/JEDI database, converts them into a format accepted
by the models, and then sends it to the prediction models using the task duration predictor
API. After receiving predictions, the prediction framework core sends the results to the PanDA
monitor to be displayed. Every step of the process (e.g., receiving a request for prediction
generation, polling the models, the model response times and predicted values) is stored using
the prediction framework monitor.

Results of the prediction process conducted by the framework are displayed by the PanDA
Monitor [10] (that shows the profile of the corresponding task with produced predictions).

3.2. Prediction models
The requirement of providing users with an estimate of task execution duration for every step
of task lifecycle forces use of a tiered approach to task duration prediction that means using a
certain type of the model for the particular stage of the task lifecycle.

3.2.1. Preliminary prediction. It is often useful for the data processing planning to have a
rough estimation of data processing duration even during the preliminary planning stage, when
the user does not yet know how much resources can be allocated to the task, when the task will
be scheduled for for execution, and the exact size of the input data. Initial ”rough” estimation
of the task execution duration is produced by the classifier component, that returns an average
duration of tasks of the same class as the requested one (based on historical data). The class of
the task is defined by the following properties: project name, production step, and provenance.
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3.2.2. ”Cold” model. Models of the ”cold” category use numerous task parameters for their
creation. Those parameters are known at the stage of task definition, such as type of the input
data, size of the input data (expressed as the number of processing jobs), type of processing to
be performed on the input data, and type of the processing queue that will be used by the task.
Limiting the model to the parameters that are known at the time of task definition allows the
model to give prediction at the early stage of task lifecycle, but it also means that its prediction
will lack the precision, as the model does not account for the state of processing environment.

3.2.3. ”Warm” model. After the execution of the task begins, it launches up to 10 ”scout”
jobs to measure several important performance metrics, such as amount of RAM an average job
uses, and an average job duration, that allows to better gauge the load that the task will affect
on the WLCG, as well as the state of WLCG itself. The knowledge of these metrics allows for
significant improvement of task duration prediction precision. ”Warm” model category is based
on utilization of these metrics. Models of this category make use of all parameters available to
the previously defined category, as well as metrics provided by running scout jobs.

3.2.4. ”Hot” model. Models of the ”hot” category are aimed aimed at making predictions of
the remaining runtime for a task that is being processed. These models are created on (and
can make use of) every metric available to models of ”cold” and ”warm” categories, as well as
parameters of task jobs, such as average job duration, trends in job duration, and occurrence of
failed jobs, to predict task duration with the highest precision.

3.3. Implemented and planned model types
The current implementation of the preliminary prediction model is based on a simple classifier.
It is planned to switch over to a machine learning based model if the classifier’s precision proves
insufficient for practical use. The ”cold”, ”warm” and ”hot” models currently in use are based on
the Gradient-Boosted Trees regression method from Spark MLlib machine learning library. [11]

During the next step of the framework development, random forest and deep learning-based
models will be added to the models pool for performance and precision evaluation, followed
by selecting the most precise models with acceptable performance for use in predicting task
durations.

3.4. Planned extensions of task duration prediction framework
The preliminary research has been performed to gauge feasibility of detecting anomalous
behaviour of running tasks. We have found that tasks of the same type tend to have similar
patterns of job execution. The execution profile of a typical task is shown in Figure 2. The red
line shows when the jobs comprising the task finish, the green dots show the start times of the
corresponding jobs. By viewing the task profile it is often possible to notice anomalies visually
long before a task becomes overdue.

Another promising direction of the framework development is task chain duration prediction.
Due to the way tasks are implemented in ProdSys, the next task in the chain can often starts
execution before the previous task finishes. This leads to the fact that duration of the task
chain is shorter than the sum of tasks’ durations, and preliminary tests with Gradient-Boosted
Trees-based models showed that predicting task chain duration with high precision is possible,
conditional upon knowing task durations with high precision. As currently task duration
prediction has low precision for tasks that are not currently running, the implementation of
task chain duration prediction was delayed for now.
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Figure 2. Execution profile of a
typical task

4. Conclusion
Adding predictions of the task execution duration to the features of the ProdSys monitoring
will allow users/operators to notice task execution delays as they happen, and take measures
to resolve them. Combined with the anomaly detection framework, this will further improve
efficiency of ProdSys data processing and reduce the data handling interruptions.
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