
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Test Management Framework for the Data Acquisition of the ATLAS
Experiment
To cite this article: A Kazarov et al 2018 J. Phys.: Conf. Ser. 1085 032054

View the article online for updates and enhancements.

This content was downloaded from IP address 131.169.5.251 on 25/10/2018 at 21:26

https://doi.org/10.1088/1742-6596/1085/3/032054
http://oas.iop.org/5c/iopscience.iop.org/317484579/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032054 doi :10.1088/1742-6596/1085/3/032054

Test Management Framework for the Data

Acquisition of the ATLAS Experiment

A Kazarov1, A Corso Radu2, G Avolio3, G Lehmann Miotto3,
I Soloviev2 and G Unel2

1NRC ”Kurchatov Institute” - PNPI, St. Petersburg, Russian Federation
2University of California, Irvine, USA
3CERN, Geneva, Switzerland

E-mail: Andrei.Kazarov@cern.ch

Abstract. Trigger and Data Acquisition (TDAQ) of the ATLAS experiment is a large
distributed and heterogeneous system: it consists of thousands of interconnected computers
and electronics devices that operate coherently to read out and select relevant physics data.
Advanced testing and diagnostics capabilities of the TDAQ control system are a crucial feature
which contributes significantly to smooth operation and fast recovery in case of problem and,
finally, to the high efficiency of the whole experiment.

The base layer of the verification and diagnostic functionality is a test management
framework. We have developed a flexible test management system that allows experts to define
and configure tests for different components, indicate follow-up actions to test failures and
describe inter-dependencies between TDAQ or detector elements. This development is based
on the experience gained with the previous test system that was used during the first three
years of data taking. We discovered that more emphasis needed to be put on the flexibility and
configurability of the verification and diagnostics functionality by the many people that are,
each, knowledgeable and expert on individual components of the experiment.

In this paper we describe the design and implementation of the test management system
and also some aspects of its exploitation during the ATLAS data taking in the LHC Run 2.

1. Trigger and Data Acquisition of the ATLAS experiment at LHC
ATLAS Experiment
A Toroidal LHC ApparatuS (ATLAS) [1] is a particle physics experiment at the Large Hadron
Collider (LHC) at CERN. The LHC is producing proton-proton head-on collisions with center-
of-mass energy equal to 13 TeV at 40 MHz collision rate. The ATLAS detector comprises more
than 140 million electronic channels which deliver raw event data at the rate of order of TB/s.

Trigger and Data Acquisition system
TDAQ is one of core ATLAS systems [2] which manages filtering and transfer of experiment
data from the ATLAS detectors to large-scale mass-storage. The TDAQ system is composed
of a large number of distributed hardware and software components (about 3000 machines and
more than 40000 concurrent processes) which, in a coordinated manner, provide the data-taking
functionality of the overall system. The system is required to handle data coming in parallel
from the detector readout over some 1800 point-to-point readout links forming a flow of 1.5 MB

http://creativecommons.org/licenses/by/3.0

2

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032054 doi :10.1088/1742-6596/1085/3/032054

events at rate up to 100 kHz. During LHC runs, TDAQ is maintained in non-stop operation
mode by a group of operators and experts on call.

Online Software
Given the complexity of the system and the probability of failures of hardware and software
components, having advanced testing and diagnosing capabilities is an essential requirement for
the TDAQ Online Software framework.

The Online Software [3] encompasses the software to configure, control and monitor the
TDAQ system. It is based on a number of services which provide essentially the glue that holds
the various sub-systems together. The Test Management is one of these services and is devoted
to the verification of the functioning of the TDAQ system by executing tests on request.

2. Test Management Framework
Use Cases
The Test Management (TM) is a framework allowing from one side for experts: to develop
individual tests for system components, to define dependencies between testable components,
and to configure test dependencies and follow-up actions.

Figure 1: Test Management Framework use
cases.

From another side, the testing expertise
stored in TM is used (Figure 1): by the Run
Control (RC) system that periodically veri-
fies the functioning of the components it is
in charge of; by the Central Hint and In-
formation Processor (CHIP) [4] that analyses
tests results to diagnose problems and applies
follow-up actions; by the DAQ Operator or
Expert who can have a view on testable hier-
archy of TDAQ configuration components and
perform testing of a subset of it via a dedi-
cated graphical user interface. The Test Man-
agement utilizes other components of the On-
line Software framework. The most important
ones are: Configuration Database (DB) [5]
which provides the description of the TDAQ
system (and tests) configuration, and Process
Manager (PMG) [6] which offers a service to create, control and monitor the status of all the
processes in the TDAQ system.

New requirements
The Test Management and Diagnostics service [7] was revised after the first data taking period
of ATLAS. A set of new functional requirements were added:

• Experts shall be able to define the order in which tests should be executed for a component;
the sequence may dynamically change based on the result of completed tests.

• Experts shall be able to define the order with which inter-related components shall be
tested; the test sequence may change depending on the result obtained for the components.

• Experts shall be able to define what should be done upon failure of a test or a component
to further diagnose the issue or recover.

All these requirements point towards an increased configurability of the system by ATLAS
experts. The expert knowlege, like description of the testing behaviour listed above, must be

3

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032054 doi :10.1088/1742-6596/1085/3/032054

completely contained in the TDAQ configuration database, which can be populated and modified
by the system experts using standard database editing tools.

An additional constraint was added, based on the evolution of other parts of the TDAQ
system:

• The test management functionality should be provided in Java (in addition to C++), in
order to be available for Java-based TDAQ applications like CHIP

Based on those extension of requirements a complete re-implementation was carried out.

Design and implementation
Typically tests are small programs or scripts which can be executed remotely on a host in
the distributed TDAQ system, depending on configuration of a particular test. A single test
can also be implemented as two or more programs started on different hosts, e.g. to verify
the functionality of a link between source and destination elements in the system. A test
returns a single result from a predefined enumeration {Passed, Failed, Unresolved}. Every
component in the system may have a number of tests defined, where each individual test verifies
a particular functionality of the component. In this case the test result for a component is a
combination of individual tests resuls.

The test management framework is modular and is implemented as client libraries (Java,
C++) and a Qt based application for the graphical user interface. In particular the package
includes:

• a database schema to describe tests, components, dependencies and follow-up actions

• a client library (Java, C++) to perform tests on individual components

• a client library (C++) to handle the testing of components taking into account the other
components they depend on (e.g. before testing an application, test that the computer it
should run on works correctly)

• a GUI to allow the operator to browse a tree of testable TDAQ components and to request
the execution of tests for a subset of it

The C++ and Java implementations address the same requirements and are based on the
same configuration schema but they where developed independendly, as the need in Java
implementation arised in course of the evolution of the TDAQ software. Both implementations
achieve a good, comparable performance and are capable of launching many tests in parallel
without imposing any significant overhead: for example a test for configuration of 1100
components (computer nodes) requires launching of 4500 individual tests on the tested nodes
which is done in 32 parallel threads in total takes about 8 seconds. The Java implementation is,
at the time being, capable of optimally parallelizing execution using less threads than the C++
implementation. Its threading model may thus be ported to the C++ implementation as well
in the future.

The handling of dependencies between components is implemented at present only in the C++
library. A forward chaining inference engine is used to launch the testing of every component
at the appropriate time, based on the tests policies and the test results obtained for other
components.

Test Configuration schema
The Figure 2 represents an object schema for configuring all aspects of the test configuration.
It can be divided into 3 main functional groups:
(1) Classes Test, Test4Object, Test4Class and Test4CORBAServer allow to describe a Test
and to associate it to an object or class of objects in configuration. An ExecutableTest can be

4

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032054 doi :10.1088/1742-6596/1085/3/032054

Figure 2: Test Configuration object schema.

launched on any host described in the system, whereas Test4CORBAServer is a special ping-like
test which is executed locally as a library call in the caller thread, avoiding the overhead of
launching of a process.
(2) Classes TestPolicy, TestPolicy4Object, TestPolicy4Class and TestBehaviour allows
to build a hierarchical tree of testable components, following TDAQ configuration schema and
to define policies (order, synchronicity) for testing the groups of components in the tree.
(3) Classes Failure, RebootFailure, ExecUponFailure and TestUponFailure define the
possible actions which can be executed when test fails with a particular error code.

Figure 3: A schreenshot of the Testing GUI with a testable tree on the left and some tests results
on the right panel.

5

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032054 doi :10.1088/1742-6596/1085/3/032054

GUI
The GUI (Figure 3) allows an operator to browse a testable TDAQ configuration, to select and
to test one or more components, or to run individual tests for one component. The tree-like
representation of a configuration is built according to the schema described before and indicates
their interdependencies (e.g. an application relies on a working computer to run on). The
operator can browse the detailed output of the tests, as well as the diagnosis that has been
created based on the test results and the follow-up suggestions that have been configured by the
experts in the configuration database.

3. Conclusions and outlook
A highly-configurable, modular and performant framework was developed for handling complex
testing and diagnostics scenarios in Online Software for the ATLAS data acquisition system. It
allows to store expert’s knowledge about testing capabilities of the systems and to use it during
TDAQ operations in order to maintain high data taking efficiency of the system in LHC Run
2. Some development is foreseen in C++ implementation in order to maximize utilization of
available resources.

References
[1] ATLAS Collaboration 2008 Journal of Instrumentation, vol. 3 S08003
[2] M. Abolins et al. 2016 JINST 11 06 P06008
[3] Lehmann Miotto G. et al. 2010 Nucl.Instrum.Meth. A623 549-551
[4] Anders G. et al. 2015 J.Phys.Conf.Ser. 608 1, 012007
[5] Lehmann Miotto G. et al. 2008 J.Phys.Conf.Ser. 119 022004
[6] Avolio G. et al. 2008 IEEE Trans.Nucl.Sci. 55 399-404
[7] Kazarov A. et al. 2007 IEEE Trans.Nucl.Sci. 54 604-608

