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Abstract

We consider an expression for the supercurrent in the superconformal formulation of N = 1 super-

gravity. A chiral compensator provides the supersymmetric formulation of the Callan-Coleman-

Jackiw (CCJ) improved stress energy tensor, when the conformal gauge is used. Superconformal

and non-superconformal matter give different conservation laws of the supercurrent, when coupled

to the curvature supermultiplets which underlie the local superspace geometry. This approach can

be applied to any set of auxiliary fields and it is useful to classify rigid curved superspace geometries.

Examples with four supersymmetries are briefly described.

Contribution to the Proceedings of the Erice International School of Subnuclear Physics,
55th Course: “Highlights from LHC and the other frontiers of physics”

Erice, 14-23 June 2017

ar
X

iv
:1

70
9.

02
93

6v
1 

 [
he

p-
th

] 
 9

 S
ep

 2
01

7



Contents

1 Introduction: Resurrection of the Energy Momentum Tensor 3

2 The Improved Stress Tensor, Conformal Algebra and its Noether Currents 3

3 CCJ in Curved Space 6

4 CCJ and Supergravity 7

5 Noether Currents for the Superconformal Algebra 7

6 The Supercurrent and Super Conservation Laws 8

7 Superspace Description of Supergravity 9

8 Superconformal Matter and Supercurrents in Curved Superspace 10

9 Rigid Supersymmetry Breaking 11

10 Rigid Curved Supersymmetry, SuperHiggs Effect and the Cosmological
Constant 12

11 No-scale Supergravity 13

12 Summary and Conclusions 14

2



1 Introduction: Resurrection of the Energy Momen-

tum Tensor

In 1970, during the 8th Course of the Erice International School of Subnuclear Physics:
“Elementary Processes at High Energies”, Sidney Coleman gave one of his celebrated lectures
on a “New Energy Momentum Tensor” following a paper by Callan, Coleman, Jackiw (CCJ)
[1] . This paper solved the problem of defining an improved stress tensor Θµν , different from
the canonical one. This tensor is conserved and symmetric.

∂µΘµν = 0 , Θµν = Θνµ , (1.1)

as a consequence of Poincarè invariance in flat Minkowski space, but moreover it is also
traceless

Θ µ
µ = 0 , (1.2)

when the theory is scale and conformal invariant. In this way the non vanishing of the
trace is an operator which measures the departure from scale and conformal symmetry. This
breaking can occur at the classical level due to dimensionful terms in the scalar potential
V (φ)

Θ µ
µ = −4V + V,iφ

i , (1.3)

or it can, be due to quantum effects either perturbative (non-vanishing β(g) function in
perturbation theory) or non-perturbative, such as instanton effects in supersymmetric gauge
theories. It is the aim of these lectures to discuss the energy-momentum tensor [2] in super-
symmetric field theories and its role in the breaking of “superconformal symmetry”. When
considered as a source of the gravitational fields in curved space, the supergravity couplings
to the stress tensor multiplet defines the (Super)-Einstein equations, whose source is the
“Supercurrent”, introduced in [3]. We will use an off-shell formalism based on the supercon-
formal formulation [4–6] of local superspace geometry. The content of this lectures is mainly
based on the results of [2].

2 The Improved Stress Tensor, Conformal Algebra and

its Noether Currents

The Noether currents of the “conformal algebra” can be written in a unified way in terms
of the CCJ tensor

Jξµ = Θµν(x)ξν(x) . (2.1)

The corresponding charges

Qξ =

∫
d3xJξ0 , (2.2)

are conserved when ∂µJξµ = 0. This happens when ∂µΘµν = 0, Θ µ
µ = 0, provided the

displacement δxµ = ξµ(x) satisfies the following equation for d > 2

∂µξν(x) + ∂νξµ(x) =
2

d
ηµν∂

λξλ(x) . (2.3)
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For d > 2, in particular d = 4, the solution of this equation is

ξµ(x) = aµ + ωµνxν + λxµ + 2xµx · c− x2cµ , (2.4)

aµ, ωµν = −ωνµ → Poincarè algebra (translation and Lorentz rotations) , (2.5)

λ, cµ → dilatation and special conformal (boosts) transformation . (2.6)

This algebra has 15 generators Pµ,Mµν , D,Kµ, satisfying the commutation relation of
the Lie algebra SO(4, 2) (or SU(2, 2)).

[Mµν , D] = 0, [Pµ, D] = iPµ, [Kµ, D] = −iKµ, [Kµ, Kν ] = 0 , (2.7)

[Mµν , Kρ] = −i(gρµKν − gρνKµ), [Pµ, Kν ] = 2i(gµνD −Mµν) . (2.8)

Note that for aµ, ωµν ∂(λξµ) = 0 so the differential equation (2.3) is empty. When Θ µ
µ 6= 0

the D,Kµ charges are not conserved.
For finite transformations aµ,Λ

ν
µ , e

λ, cµ we have the action of the conformal group

Poincarè x′µ = aµ + Λ ν
µ xν (Λ ν

µ ηνρΛ
ρ
σ = ηµσ) , (2.9)

Dilatation x′µ = eλxµ , (2.10)

Conf transf x′µ =
xµ + cµx

2

1 + 2c · x+ c2x2

(
x′2 =

x2

1 + 2c · x+ c2x2
, x2 = 0⇒ x′2 = 0

)
, (2.11)

in the infinitesimal δxµ = ξµ(x). Equations (2.9),(2.10),(2.11) reduce to (2.4).
For generic dimension d > 4, the conformal group is SO(d, 2) with the following genera-

tors:

Mµν SO(d− 1, 1) , (2.12)

Pµ, Kµ d vectors , (2.13)

D dilation (1 generator) . (2.14)

For certain systems the canonical and improved energy momentum tensors coincide. This
is the case of electromagnetic field, whose stress tensor obeys Θem µ

µ = 0 because of its
definition:

Θem
µν = FµρF

ρ
ν − 1

4
ηµνFσρF

σρ with Fµν(A) = ∂µAν − ∂νAµ . (2.15)

Moreover, by using the cyclic identity ∂ρFµν + ∂µFνρ + ∂νFρµ = 0, one can show that

∂µΘem
µν = (∂µFµρ)F

ρ
ν = JρF

ρ
ν , (2.16)

where for pure electromagnetism, Jρ = 0. If Jρ 6= 0, this term is cancelled by the matter
part, ∂µΘM

µν , since Θµν = Θem
µν + ΘM

µν .
The simplest theory where an improvement term occurs is the theory of one (or more)

neutral scalar fields ϕi with a potential V (ϕi). With a mostly plus metric the Lagrangian
for this system is given by

L = −1
2
gµν∂µϕ

i∂νϕ
i − V (ϕi) . (2.17)
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The canonical energy momentum tensor for this system is

Tµν = gµνL+ ∂µϕ
i∂νϕ

i . (2.18)

It is conserved using the ϕ equations of motions

∂µTµν = ∂νϕ

(
2ϕi − ∂V

∂ϕi

)
= 0 . (2.19)

However, this tensor is not traceless

T µ
µ = −∂µϕi∂µϕi − 4V (ϕi) 6= 0 , (2.20)

even when the equations of motions are used. Let’s then define a new stress tensor Θµν

Θµν = Tµν − 1
6

(∂µ∂ν − gµν2)ϕi 2 , (2.21)

which is obviously conserved ∂µΘµν = 0. However, the second term now contributes to its
trace

Θ µ
µ = T µ

µ + 1
2
2ϕi 2 = −4V + ϕi

∂V

∂ϕi
. (2.22)

In order to derive eq. (2.22) we used the equations of motions. For a scale invariant theory
Θ µ
µ = 0 since V (ϕ) is homogeneous of degree 4.

Let us now consider a U(1) gauge theory of complex scalar fields ϕi. The scalar part of
the Lagrangian is given by

LM = (∂µ − iAµ)ϕi(∂µ + iAµ)ϕ̄i − V (ϕ, ϕ̄) , (2.23)

with the canonical energy momentum tensor

TMµν = gµνLM +
(
(∂µ − iAµ)ϕi(∂ν + iAν)ϕ̄

i + (µ↔ ν)
)
. (2.24)

To define a traceless energy-momentum tensor ΘM
µν , we add the improvement term −1

3
(∂µ∂ν−

gµν2)ϕiϕ̄i to Tµν . It will be traceless thanks again to the fact that V (ϕ, ϕ̄) is homogeneous
of degree 4 for scale invariant theories

ΘM µ
µ = 4V − Viϕi − Vīϕ̄i = 0 , (2.25)

but its divergence is non vanishing

∂µΘM
µν = −∂µΘem

µν = JµFµν(A) 6= 0 , (2.26)

where

Jµ(ϕ,A) = i (ϕiDµϕ̄
i −Dµϕ

iϕ̄i) , (2.27)

Dµϕ
i = (∂µ − iAµ)ϕi , Dµϕ̄

i = (∂µ + iAµ)ϕ̄i . (2.28)
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In supergravity a U(1) is the R-symmetry of the superconformal algebra (which is a gauge
symmetry in the conformal part of the action.), but a term Θem

µν is missing, since in Einstein
supergravity the Aµ gauge field is non-propagating. It is actually an auxiliary field [7, 8],
which appears quadratically in the pure supergravity part of the action

L =
√
−gκ−2

(
1
2
R + 3A2

µ + ...
)
. (2.29)

However, Aµ contributes to the Einstein equations δL
δgµν

= 0 and indeed it contributes to the

covariant divergence of the Einstein equations (Gµν = Rµν − 1
2
gµνR is the Einstein tensor)

2√
−g

δL
δgµν

= Gµν + 6AµAν − 3gµνAρA
ρ + ... = 0 . (2.30)

So the Aµ term contributes to both the trace and divergence of the Einstein equation since

2√
−g

δL
δgµν

gµν = −R− 6A2
µ + ... = 0 , (2.31)

∇µ
(

2√
−g

δL
δgµν

)
= 6∇µAµ · Aν + 6AµFµν(A) + ... = 0 . (2.32)

For superconformal matter it turns out that R + 6A2
µ = 0, ∇µAµ = 0 by using the matter

field equations.

3 CCJ in Curved Space

To include the improvement term in curved space a modification of the minimal coupling to
gravity is required. This coupling is called a “conformally coupled” scalar field

(
√
−g)−1L = LM − 1

12
ϕi 2R + LG , (3.1)

where

LM = 1
2
∂µϕ

i∂νϕ
igµν − V (ϕ), LG = 1

2
κ−2R , (3.2)

and κ−1 = mP = 2.4 × 1018 GeV is the Planck mass. The Einstein equation derived from
the above Lagrangians are

κ−2

2
Gµν = −1

2
Θµν +

1

12
Gµνϕ

i 2 = −1

2
Θc
µν , (3.3)

with

Θc
µν = Tµν −

1

6

(
∇µ∂ν − gµν∇2

)
ϕi 2 − 1

6
Gµνϕ

i 2 . (3.4)

Θc
µν is covariantly conserved: ∇µΘc

µν = 0 as a consequence of the modified matter field
equations. Note that the term −1

3
Gµν∂

µϕiϕi in ∇µΘc
µν is cancelled by a term coming from

∇µTµν , which cancels the 1
6
R∂νϕ

iϕi and a term coming from −1
6
(∇2∂ν − ∂ν∇2)ϕi 2, which

cancels the −1
3
Rµν∂

µϕiϕi term. If the matter system is conformal , then

Θc µ
µ = 0 , (3.5)

which implies R = 0.
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4 CCJ and Supergravity

A further modification of Θc
µν occurs if the matter fields ϕi are coupled to a U(1) gauge field,

as it occurs in supergravity theory due to the U(1) R-symmetry of the N = 1 superconformal
algebra. In this case the first term in Θc

µν , i.e. the canonical stress tensor Tµν contains the
gauge fields, which, through the equations of motion of the scalar field, give an extra term in
the conservation equation ∇µΘc

µν = Jµ(ϕ,A)Fµν(A). Thanks to its equations of motion, the
auxiliary field Aµ = Jµ(ϕ,A) produces a term which is exactly cancelled by the two terms
obtained by varying the supergravity action

∇µ

(
2√
−g

δLSG
δgµν

)
= 6AµFµν(A) . (4.1)

In other words if we add to Θc
µν a term proportional to AµAν − 1

2
gµνA

2
ρ then ∇µΘ̂c

µν = 0,
which is consistent with the generalized Einstein equations

1

2κ2
Gµν = −1

2
Θ̂c
µν , (4.2)

Θ̂c
µν = Tµν − 1

6
(∇µ∂ν − gµν∇ρ∇ρ)ϕ

iϕ̄i − 1
6
Gµνϕ

iϕ̄i + AµAν − 1
2
gµνA

2
ρ . (4.3)

5 Noether Currents for the Superconformal Algebra

Conformal symmetry in flat space implies Weyl symmetry in curved space. For the vierbein
eaµ(x), the electromagnetic field Fµν , and the scalar field φ, the Weyl transformations are

e′aµ = eλ(x)eaµ , (5.1)

F ′µν = Fµν , (5.2)

φi ′(x) = e−λ(x)φi(x) , (5.3)

R′ = e−2λ(x)R + ∂λ terms . (5.4)

So for zero scalar masses the electromagnetic system and the scalars (coupled to gauge fields)
are Weyl invariant.

The Weyl symmetry of a scalar system actually allows to consider one of them as non-
dynamical, since if φ(x) 6= 0 we can choose the Weyl parameter such that φ(x) = eλ(x) and
set φ′(x) = 1. Then this procedure introduces a scale κ−1 = mP . In the absence of the
Einstein term LG, the scalar Lagrangian (3.1) becomes L(φ′ = κ−1) = −1/12κ−2R using
Weyl symmetry (since LM(φ′) = 0 at ∂φ′ = 0). This gives the Einstein term with a wrong
sign. So, we must introduce a matter field φ0, with the wrong sign of the kinetic term,
Lφ0 = −1

2
∂µφ0∂νφ0g

µν + 1
12
φ2

0R − λφ4
0. Notice that the self-interaction term λφ4

0 introduces
a cosmological constant after gauge fixing.

In analogy with the Einstein action obtained by a gauge fixed Weyl action we can obtain
supergravity by a chiral multiplet action, which is superconformal invariant in flat space and
super Weyl invariant in curved superspace, after gauge fixing X0 = (κ−1, ψ0 = 0, F 0 = u)1.

1Note that the u of [2] is identified with ū of [5].
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The superconformal algebra in flat space is a simple superalgebra (in mathematical terms)
SU(2, 2/1) with (Lie Algebra) part SU(2, 2) × UR(1). Here SU(2, 2) ∼ SO(4, 2) and the
R-symmetry is part of the algebra. The odd supersymmetry generators are Qα, Sα. Their
anticommutators generate the even-part of the superalgebra

{Q, Q̄} → Pµ , {S, S̄} → Kµ , (5.5)

{Q, S̄} = {Q̄, S} = 0 , {Q,S} →Mµν , D,Π , (5.6)

{Q,D} → 1
2
Q , {S,D} → −1

2
S ′ , (5.7)

{Q,Π} → Q , {S,Π} → −S , (5.8)

[Q,P ]→ 0 , [S,K]→ 0 , (5.9)

[Q,Kµ]→ S , [S, P ]→ Q . (5.10)

The Noether currents of the supercharges (Q,S) can be written in a unified way by
introducing an x-dependent (anticommuting) spinor parameter ε(x) = ε0+/xε1 and by writing
the spinor Noether currents for Q and S supersymmetry as ε̄α(x)Jαµ. Its conservation implies

ε0 term→ ∂µJαµ = 0 ε1 term→ ∂µ(/xJµ) = 0→ γµJµα = 0 . (5.11)

The Qα, Sα generators are evaluated from the expression ε̄0Q+ ε̄1S →
∫
d3xε̄α(x)Jα0(x). So,

two superconformal transformations, of parameters ε(x), η(x) generate a space-time confor-
mal transformation of parameter ξµ(x) = 2iε̄(x)γµη(x), which indeed satisfies ∂µξν + ∂νξµ =
1
2
ηµν∂

λξλ as a consequence of ε(x) = ε0 + /xε1, η(x) = η0 + /xη1 [9, 10].

6 The Supercurrent and Super Conservation Laws

The Lagrangian with an improved energy-momentum tensor, in curved space reads as [1]

LMimproved =
√
−g
(

1

2
∂µφ

i∂νφ̄
i − 1

12
Rφiφ̄i

)
−
√
−gV (φ) . (6.1)

Its Einstein equations are

1

2κ2

(
Rµν − 1

2
gµνR

)
=

1

2κ2
Gµν = −1

2
T improvedµν = −1

2
Θc
µν , (6.2)

and TMµν = − 1
2
√
−g

δLM
δgµν

. In supergravity these equations are modified because of the R-
symmetry in the superconformal algebra.

Let us give some examples [3] of supercurrent multiplets which contain the improved
energy-mometnum tensor Θµν (in flat space). The supercurrent for a chiral multiplet is

Jsαα̇ = iSiσµαα̇
←→
∂µ S̄

i + 1
2
DαSDα̇S̄

i . (6.3)

The supercurrent for a vector multiplet is

JVαα̇ = WαW α̇ , (Wα = D
2
DαV ) . (6.4)
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They both obey D
α̇
Jαα̇ = 0 as a consequence of the field equations. In the Maxwell case this

follows from D
α̇
W α̇ = 0. In the non-conformal case the supercurrent for chiral multiplets

with canonical kinetic term and superpotential W satisfies

D
α̇
σµαα̇Jµ(x, θ, θ̄) = DαY (Dα̇Y = 0) , (6.5)

with
Y = (X0)3(W − 1

3
WiS

i) = (X0)3∆W , (6.6)

where Y = 0 for cubic W . Note that in the local superconformal formulation W must
be a function of degree 3 in XI = (X0Si, X0), so that W = (X0)3W (Si). The Y chiral
multiplet satisfying the (partial) conservation equation is made of fields (Y, ΨY , FY ) of
physical dimensions (3, 7/2, 4). Its components are

Y = (X0)3(W − 1
3
WiS

i), ΨY = (γµJµ)α, FY = Θ λ
λ + i∂µJ5

µ . (6.7)

Note that Y = 0 in the superconformal case, where W is of degree 3 in Si. In supergravity
the multiplet which contains the stress tensor, the supercurrent and the R-symmetry current

J5
µ(x),Θµν(x), Jµα(x)→ J5

µ + iθαJµα + iθ̄α̇J
α̇
µ + θσν θ̄

(
Θµν + εµνρσ∂

ρJ5σ
)

+ ... , (6.8)

should couple to the supergravity fields. When Y 6= 0 superconformal symmetry is broken.
In supergravity, non-canonical kinetic terms may also contribute to Y [2]. For some particular
choices Y = 0 as is the case for conformally coupled scalars [1].

7 Superspace Description of Supergravity

The basic fields of the supergravity [7, 8, 11, 12] are the vierbein, the gravitino and the
auxiliary fields

eaµ (vierbein field) , gµν = eaµebνη
ab , (7.1)

ψµα gravitino , (7.2)

Aµ, u : auxiliary fields . (7.3)

In superconformal gravity the gauge fields eaµ, ψµα, Aµ gauge the superconformal algebra
(super Weyl symmetry in superspace). u is the complex scalar residual of the gauge fixed
superconformal compensator. X0 set to (κ−1, 0, u) to gauge fix the super Weyl symmetry.
Aµ is the R-symmetry gauge field, whose gauge invariance is broken in Einstein supergravity,
so that it has four independent components.

The geometry of superspace is encoded in three basic multiplets [13–19] which contain the
superspace curvatures. These multiplets are denoted as R, Eµ, Wαβγ. The chiral curvature
multiplet R contains in the last θ2 component the scalar curvature R through B µ

µ , the real
Einstein multiplet Eµ contains the Einstein tensor Gµν through Bµν in the θθ̄ component.
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The Weyl tensor Cαβγδ (traceless part of the Riemann tensor) is contained in the θ component
of the chiral Weyl multiplet Wαβγ. The relevant formulae are given below.

R = ū+ θαγµRµ + θ2
(
−1

6
B µ
µ − iDµAµ

)
, (7.4)

Eµ = σαα̇µ Eαα̇ = Aµ + θαZµα + θασναα̇Bµν θ̄
α̇ + ... , (7.5)

Wαβγ = ...θδ(Cαβγδ + F(αβεγ)δ) + θ2(fermion) , (7.6)

where
Bµν = 3Rµν − 1

2
gµνR− 6AµAν + 3gµνA

2
ρ + 3gµνuū . (7.7)

The xµ, θα are superspace coordinates satisfying

xµxν = xνxµ, xµθα = θαxµ, θαθβ = −θβθα . (7.8)

8 Superconformal Matter and Supercurrents in Curved

Superspace

The Einstein equations come from a supermultiplet of equations

Eαα̇ + Jαα̇ = 0 , (8.1)

whose first component is δL
δAαα̇

= 0. The trace and conservation of the Einstein tensor come
from the fundamental superspace (off-shell) identity

D
α̇Eαα̇ = (X0)3Dα

(
R
X0

)
, (8.2)

and (on-shell) supercurrent conservation

D
α̇
Jαα̇ = (X0)3Dα

(
Y

(X0)3

)
, (8.3)

which, up to a constant, imply

R+
Y

(X0)2
= 0 . (8.4)

In the superconformal gauge X0 = κ−1 these equations read 2

Eαα̇ = −κ2Jαα̇, D
α̇
Eαα̇ = DαR, D

α̇
Jαα̇ = DαY, R+ κ2Y = 0 . (8.5)

They contain the GR identity
∇µGµν = 0 . (8.6)

2Note that Eαα̇ has conformal weight 3, while Eαα̇ and R have physical dimension 1. Therefore, the
physical dimension of all auxiliary fields is one.
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The first equation is related to the global formulae in [20–25] and for superconformal matter
yields 3

R = Y = 0 . (8.7)

The constant term is related to a term in Y of the form λ(X0)3 so that R+ λX0 = 0. This
corresponds to pure anti de Sitter supergravity [26,27].

In this setup the supergravity Lagrangian is given by the following expression [7, 8]

LSG(e, ψ,A, u) = κ−2
(

1
2
R− 1

2
ψ̄µRµ − 3uū+ 3A2

µ

)
, (8.8)

so that the bosonic contribution to the (super)Einstein tensor is

1√
−g

δL
δgµν

= 1
2
Gµν + 3

2
gµνuū+ 3AµAν − 3

2
gµνA

2
ρ . (8.9)

This means that the matter part will have improvement terms to balance the Gµν term in
∇µGµν = 0, ∇µ(Gµν + ...) = 0.

In pure supergravity Aµ = u = 0, but in matter coupled systems the improved stress
tensor will get supergravity corrections

Θ̂c
µν = Θc

µν +
(
6AµAν − 3gµνA

2
ρ + 3gµνuū

)
κ−2 . (8.10)

These were found in [2]. They are such that

κ−2Gµν + Θ̂c
µν = 0 , (8.11)

will be consistent with the matter conservation laws

∇µΘ̂c
µν = 0 , (8.12)

with the additional property Θ̂c µ
µ = 0 in the superconformal case.

9 Rigid Supersymmetry Breaking

Given a generic “superfield” φ(x, θ) with a given nlast, its component expression is (symbol-
ically)

φ(x, θ) = φ0(x) + θφ1(x) + ...+ θn−1φn−1(x) + θnφn(x) + θn+1φn+1(x) + ...θnlastφlast(x) .
(9.1)

The supersymmetry transformation of the θn component is

δεφn(x) = ε∂xφn−1(x) + εφn+1(x) . (9.2)

3Note that in the superconformal formulation all dimensionfull parameters get their physical dimension
from κ factors coming from X0 = κ−1. The remaining dimensionless parameters correspond to conformal
couplings.
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So if < φn+1 >6= 0 then supersymmetry is broken

< δεφn(x) >=< ε{Q, φn(x)] >6= 0 ⇒ Q|0 >6= 0 . (9.3)

Thus the only field which can have a supersymmetry preserving vacuum expectation value
is φ0(x). This argument, applied to the supercurrent multiplet, implies that supersymmetry
is broken if 〈Θµν〉 6= 0. Indeed, in a Lorentz and translational invariant vacuum, 〈Θµν〉 =
−ηµν 〈V 〉 ≥ 0, where V is the scalar potential. Hence4, V0 > 0 corresponds to broken
supersymmetry. A supersymmetry preserving vacuum has V0 = 0.

This argument is not valid in curved space as we know that AdS (Anti de Sitter) can be
a supersymmetry preserving vacuum.

10 Rigid Curved Supersymmetry, SuperHiggs Effect

and the Cosmological Constant

Rigid vacua in curved geometries have recently been studied in many papers starting with
[28, 29]. For vacua preserving maximal (4 charges) supersymmetry in curved 4d space, an
efficient method to find them is to look for the solution of the curved superspace identity

D
α̇
Eαα̇ = DαR , (10.1)

and ask for vacua for which higher θ components of the geometric superfields R, Eαα̇, Wαβγ

are vanishing, but the lowest components are not. Other than Minkowski space (u = Aµ = 0)

one finds two vacua with four supersymmetries: AdS4 = SO(3,2)
SO(3,1)

and S3 × L. For the first
case

R = (〈ū〉 6= 0, 0, 0) , (10.2)

which hence satisfies
Eαα̇ = 0 Wαβγ = 0 . (10.3)

In this case the Ricci tensor is Rµν = −3gµν |u|2 and it is obtained by B µ
µ = 0. The S3 × L

manifold is given by
σαα̇µ Eαα̇ = (〈Aµ〉 , 0, 0, ..., 0) , (10.4)

where one should choose 〈Aµ〉 = (A0,
−→
0 ). Both solutions satisfy D

α̇
Eαα̇ = DαR = 0. The

Einstein curvature of these two spaces is retrieved by the vanishing of upper components of
R and Eαα̇, respectively given by

1
6
R + A2

µ + 2uū = 1
6
B µ
µ and Bµν . (10.5)

For S3 × L, u = 0 and the Ricci tensor Rµν is computed by the equation Bµν = 0. For the
non trace part we have

R00 = R0i = 0, Rij = 2δijA
2
0 . (10.6)

4V0 = V |∂V/∂φ=0 is an extremum of the potential.
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These spaces also satisfy [28, 29,2]

uAµ = 0, ∇µAν = 0, ∂µu = 0 , (10.7)

Cαβγδ = 0 (conformally flat spaces) . (10.8)

The equations (10.7) and (10.8) define supersymmetric curved backgrounds then satisfying

D
α̇Eαα̇ = (X0)3Dα (R/X0) = 0 and Wαβγ = 0 [2]. In a similar fashion one can prove that the

other maximally symmetric space dS = SO(4,1)
SO(3,1)

is not supersymmetric [30–32]. Indeed for this

space the upper components of the chiral scalar curvature multiplet R = ...θ2
(
−1

6
R− 2uū

)
is not vanishing. If one combines the ansatz for the AdS and dS curvatures, which give a
cosmological constant,

V (µ, λ) = 1
3
κ−4

(
µ2 − 9λ2

)
, (10.9)

one gets for the first and last component of the scalar curvature multiplet R, respectively.

κR|first = λ = κ2F 0, κR|last = −2
9
κ−1µ2 = −2κ3(F 1)2 . (10.10)

These equations show that the µ term breaks supersymmetry. F 0 = κ−1u and F 1 = −1
3
κ−2µ

is the auxiliary field of the goldstino multiplet. Depending on whether µ2 ≤ 9λ2, µ2 > 9λ2

these configurations break SUSY (SuperHiggs effect) in AdS, Minkowski and dS. SUSY is
unbroken whenever µ = 0.

11 No-scale Supergravity

In the conformal setting no-scale supergravity [33] arises as a particular deformation ∆W of
the conformal (cubic) superpotential

W = 1
2
(σ + S)3 , (11.1)

σWS = 3∆W = 3W − SWS . (11.2)

Using the general formula for the potential

V =
κ−4

3

(
(Φ−1

M )ij̄WiW j̄ − |3∆W |2
)

(11.3)

and plugging in (11.2) and (11.1) one finds for the scalar potential

V =
κ−4

3
WSW S̄(1− |σ|2) . (11.4)

For σ = 1, V = 0 with WS 6= 0 and the no-scale structure is obtained [33].
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12 Summary and Conclusions

We obtain the Einstein equations for matter-coupled supergravity in the conformal tensor
calculus formalism. We paid special attention to what we called the conformal case. This
is the supergravity coupling of N = 1 rigid supersymmetric models of chiral multiplets with
conformal symmetry. In this case the Kähler couplings imply that there is a U(1) isometry
group (the R-symmetry).5

In [2] it has been relevant to consider the difference between two gauge choices for super
Weyl symmetry. In the Einstein gauge the scalar fields parametrize a Kähler σ-model with
Kähler potential K(S, S̄) = −3 log(−Φ(S, S̄)/3). The conformal case is characterized by a
function Φ(S, S̄) + 3 of degree 1 both in S and S̄, and of the superpotential W (S) of degree
3.

A conformal gauge preserves the separation between the pure supergravity part, where
the superconformal symmetry is broken in order to get super-Poincaré gravity, and the
matter part with preserved conformal symmetry. This separation is maintained by not
eliminating the auxiliary gauge field Aµ of the U(1) R-symmetry. Then the matter part
has still Kähler couplings, where now the Kähler potential is Φ(S, S̄). These results provide
a supersymmetric generalization of the properties of scalar fields coupled to gravity with
improvement terms in CCJ [1]. Two kind of bosonic improvement terms emerge, one that
couples the scalar fields to the scalar curvature R, the other that couples the scalar fields
to an R-current. Both are part of the superconformal covariant derivatives that covariantize
the (rigid conformal) CCJ improvement terms. Therefore, the improved energy-momentum
tensor that is traceless for superconformal matter contains also U(1) corrections. This also
implies an improvement term in the U(1) current. These are part of the supercurrent,
which becomes γ-traceless in the superconformal case [3] for which the compensator equation
becomes the chiral superfield equationR ≈ 0. We clarify the bosonic aspects, which provides
the improved currents for conformal Kähler couplings [2].

We have given explicit formulae, in the superconformal approach, for the three basic
multiplets that specify the superspace geometry of N = 1 supersymmetry. These multi-
plets play a key role in the construction of higher curvature invariants and they have found
applications to classify counterterms [34–37]. More recently they were also relevant in cos-
mology to provide a generalization of the Starobinsky model [38–43] as well as for nonlinear
realizations for local supersymmetry in the framework of N = 1 supergravity [30, 44–47].
The latter is a particular way for implementing the super-Brout-Englert-Higgs effect and
to find de Sitter vacua in cosmological scenarios. It is likely that our results will find new
applications along this area of research.

Our results can also be relevant in exploring the interplay between different supergravity
backgrounds, in the study of rigid supersymmetry in curved space. The simplest examples,
preserving four supersymmetries were discussed in [2] and correspond to the conformally flat
spaces AdS4 and S3 ×L. Similar arguments show that the dS background is not supersym-
metric. Another related topic is the application of localization techniques in supersymmetric

5In the simplest case of the conformally coupled scalar there is an additional SU(N) symmetry, which is
not present in the other models satisfying the conformal restriction.
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quantum field theories [28,29,48,49].
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