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Abstract

We present measurements of the tt̄ production cross section obtained using the ATLAS detector at the LHC

with pp collisions at
√
s = 7 TeV in dilepton final states, from a data sample of L=698 pb−1 taken in

2011. For dilepton pair selection we have used a ‘Lepton+Track’ approach, where selection requirements

on one lepton leg are reduced to a requirement of only a high quality Inner Detector track. This proce-

dure, while allowing more background in the selected sample, enhances the sensitivity to τ -leptonic decays

of the W± and increases the tt̄ acceptance by 20% over the conventional dilepton analysis (where each

lepton is identified as an electron or muon). Two modes of the l+track analysis were studied: the inclu-

sive and the exclusive mode. The measured tt̄ cross sections in the inclusive eTL and µTL channels are

182.9±9.3 (stat.)
+21.9
−16.7 (syst.)

+8.2
−7.3 (lum.) pb and 171.0±8.5 (stat.)

+20.6
−17.5 (syst.)

+7.8
−7.0 (lum.) pb, respectively. The

inclusive eTL and µTL combined tt̄ cross section is 177.4± 6.3 (stat.)
+18.4
−15.2 (syst.)± 7.6 (lum.) pb. The mea-

sured tt̄ cross sections in the exclusive eTL and µTL channels are 160.8±22.6 (syst.)
+45.1
−33.1 (syst.)

+8.3
−6.8 (lum.) pb

and 168.3 ± 23.9 (syst.)
+45.8
−39.0 (syst.)

+9.0
−7.5 (lum.) pb, respectively. The exclusive eTL and µTL combined tt̄

cross section is 164.5 ± 16.4 (syst.)
+39.0
−30.5 (syst.)

+8.6
−7.1 (lum.) pb. These tt̄ cross section measurements are

consistent with each other and are in good agreement with the Standard Model prediction of 164.6+11.5
−15.8 pb.
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Chapter 1

Introduction: The Standard Model
and Top Quarks

1.1 Introduction

The main quest of particle physics is to answer the following three questions:

• What are the elementary constituents of matter ?

• What are the laws governing the interactions of the elementary constituents ?

• What is the true nature of the microscopic vacuum?

The answer to these questions has evolved throughout the whole history of mankind. Ancient Greeks

knew that matter was made up of atomos (atoms). The electron was discovered in 1897. Immediately

after the discovery of the neutron in 1932, the elementary constituents of matter were identified as protons,

neutrons and electrons. Point-like protons and neutrons were the building blocks for nuclei, which combined

with electrons, formed the atoms. Atoms bind together to form molecules. Nonetheless, this neat model for

elementary particles failed to describe several new particles that were discovered shortly after the neutron.

In addition, the proton and the neutron were subsequently found to contain internal structure representing

compound states of yet more elementary objects.

The current understanding of particle physics claims that all matter consists of leptons and quarks, which

interact via the strong, electromagnetic, weak and gravitational forces. The characteristics of fundamental

interactions (e.g. relative strength, range, etc.) and masses for leptons and quarks vary in a wide range with

the top quark (t) being the most massive known fundamental particle mt = 172.6 ± 1.4 GeV [1].

This dissertation is dedicated to the measurement of the top anti-top pair production cross section

measurement using experimental data collected with the ATLAS detector [2]. The ATLAS detector is

located at one interaction region of the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland [2].

The dissertation is organized as follows:

• Chapter 1 presents an introduction to the Standard Model of particle physics with an emphasis on the
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top quark sector. A brief description of the role of the top quark in the so-called Beyond the Standard

Model theories is also provided.

• Chapter 2 discusses the general definition of a process cross section, and provides the physics motivation

for the tt̄ cross section measurement. It also lists earlier tt̄ pair production cross section measurements

by Tevatron experiments.

• Chapter 3 describes the LHC and ATLAS detector.

• Chapter 4 discusses the pp instantaneous luminosity measurement at the ATLAS detector and describes

the data sample used in the scope of this dissertation.

• Chapter 5 describes the Monte Carlo simulations we used to model the physics processes under study.

• Chapter 6 describes the analysis objects used in this study: electrons, muons, jets and Emiss
T . It

also provides the definition of the track-lepton object used for dilepton event selection. This includes

the discussion of track-lepton efficiency and Scale Factor measurements performed by UIUC gradu-

ate student Austin Basye and special treatment of the transverse missing energy studies by James

Coggeshall.

• Chapter 7 provides the detailed description of the Lepton+Track approach to dilepton event selection.

It also discusses the methods used to calculate the Standard Model background contamination to

tt̄ production. This chapter presents the data-driven technique for fake track lepton background

estimation done by Arely Cortes.

• Chapter 8 discusses the systematic uncertainties associated with the tt̄ cross section measurements.

• Chapter 9 presents the tt̄ cross section measurement per analysis channel and the combination technique

used to merge information from orthogonal channels.

• Chapter 10 summarizes our conclusions and outlook for future measurements of the tt̄ cross section at

the LHC.

1.2 The Standard Model

The Standard Model (SM) of particle physics is the most successful theory that describes the fundamental

particles and the nature of the interactions between them. According to the SM, the fundamental matter

particles are spin- 1
2 fermions - the leptons and the quarks, and spin-1 bosons which mediate the interactions
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between the fundamental fermions. While most of the particles in the lepton family were discovered long

before the SM was formulated, the experimental evidence for the existence of quarks was achieved later

giving a great deal of credence to the quark model, which subsequently was incorporated into the SM. Recall

the discovery of the J/Ψ particle in 1974 [3–5], the discovery of the τ -lepton in 1975 [6] followed by the

discovery of the heavy bb̄ meson Υ in 1977 [7], the top quark in 1995 by CDF [8] and D0 collaborations [9]

and the tau neutrino in 2000 [10]. Table 1.1 summarizes some of the fundamental properties of leptons

and quarks. For each fermion, the SM predicts the existence of an anti-fermion with the same mass but

opposite charge. The existence of anti-fermions with properties in compliance with the SM predictions is well

tested experimentally, adding to the credence of the theory. Currently, active research efforts are on-going

to investigate the problem of neutrino mass and whether the neutrino and anti-neutrino are indeed different

particles (Dirac scenario) or the same (Majorana scenario). We note that recent measurements of solar,

atmospheric, reactor and accelerator neutrino oscillations provide compelling evidence that the neutrinos

are massive.

The SM is remarkably successful in describing the the strong, electromagnetic and weak interactions1

where the gauge theory for each is derived from a local gauge invariance principle. The field quanta are

the spin-1 gauge bosons that mediate the interaction. Table 1.2 summarizes some of the features of the

fundamental interactions. It is important to note that while leptons participate only in electromagnetic and

weak interactions by virtue of possessing electromagnetic and weak charge, quarks also have color charge2

and hence interact via the strong interaction as well. Similarly, due to the lack of electric charge, neutrinos

do not participate in the electromagnetic interaction. The quoted values for coupling constants are those

measured at low energies (∼ 1 GeV). The following sections provide more details of the SM gauge theories

describing these fundamental interactions.

Table 1.1: The leptons and quarks in the Standard Model.

1st Generation 2nd Generation 3rd Generation
Charge Mass [MeV/c2] Mass [MeV/c2] Mass [MeV/c2]

Quarks
+2
3 u 1.7-3.1 c (1.17 - 1.34)·103 t (172.9 ±1.5)·103

−1
3 d 4.1 - 5.7 s 80 - 130 b (4.13- 4.37)·103

Leptons
−1 e− 0.51 µ− 105.7 τ− 1776.8
0 νe < 3 ·10−6 νµ < 0.19 ντ < 18.2

1One of the shortcomings of the SM is that it does not incorporate gravity as described in the theory of General Relativity.
Nonetheless, gravity is extremely weak compared to the other forces (see Table 1.2) and can be neglected at the energy scales
currently probed by particle physics experiments.

2The color charge was introduced to explain how 3 spin-12 quarks coexist in baryons in otherwise identical quantum states
without violating the Pauli exclusion principle.
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Table 1.2: The gauge bosons in the Standard Model.

Interaction Mediator Coupling Strength (α) Range (fm) Mass [GeV/c2]
Strong gluon (g) ∼ 1 ∼ 1 0

Electromagnetic photon (γ) ∼ 10−2 ∞ 0
Weak W±, Z0 ∼ 10−6 10−2 mW = 80.4, mZ = 91.2

1.3 Quantum Electrodynamics

Quantum Electrodynamics (QED) is the quantum field theory of electromagnetic interactions derived using

gauge or phase invariance of the electromagnetic interactions [11]. In this section, we will take a closer look

at how local gauge invariance necessitates the introduction of a massless gauge field and restricts the possible

interactions of electromagnetic radiation with matter.

Let us start the discussion by looking at the Dirac Lagrangian density describing free spin-12 particles.

Lfree = iψ̄γµ∂µψ −mψ̄ψ (1.1)

Note that Lfree is invariant under a global gauge transformation ψ(x) → eiqαψ(x). Noether’s theorem

then states a conservation law corresponding to global gauge invariance. Using the Euler-Lagrange equations

one can readily show the conservation of the charged current:

jµ = qψ̄γµψ. (1.2)

Under a local gauge transformation3 the matter field will transform as:

ψ(x) = eiqα(x)ψ(x) (1.3)

ψ̄(x) = e−iqα(x)ψ̄(x) (1.4)

The second term in the above Lagrangian density, known as a mass term is apparently invariant under

the local gauge transformation. Let’s examine how the first term behaves under this transformation. Start

by looking at :

∂µψ(x) = eiqα(x)[∂µψ(x) + iq(∂µα)ψ(x)] (1.5)

3Gauge transformations 1.3 and 1.4 define transformations of the U(1) group.
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As expression 1.5 suggests the first term is not invariant under a local phase transformation. Impose the

invariance by substituting the partial derivative with the gauge-covariant derivative

Dµ ≡ ∂µ + iqAµ(x) (1.6)

Provided that the vector field Aµ(x) transforms as:

Aµ(x) → Aµ(x) − ∂µα(x) (1.7)

the covariant derivative then simply undergoes the same phase rotation as the matter field ψ(x):

Dµψ = eiqα(x)Dµψ (1.8)

Expression 1.8 then implies local gauge invariance for the Dirac Lagrangian 1.1. Hence, we see how the

local gauge invariance requirement necessitates the introduction of a massless gauge field − the photon field

Aµ(x) and restricts the possible interactions of radiation with matter.

In order to arrive at the complete Lagrangian for QED one only needs to add a kinetic term for the

photon field. This term describes the propagation of free photons and must respect the local U(1) gauge

invariance of QED. Define:

Fµν = ∂µAν − ∂νAµ ≡ [Dµ, Dν ] (1.9)

One can readily show that the kinetic term of the form FµνF
µν is gauge invariant under transformation

1.7. Hence, one arrives at the following expression for the QED Lagrangian:

LQED = iψ̄γµDµψ −mψ̄ψ − 1

4
FµνF

µν (1.10)

Note that the photon mass term Lγ ∼ AµAµ is not allowed by local U(1) gauge invariance, implying

massless photons.

In classical electrodynamics, a test charge placed in a dielectric substance polarizes the medium which

results in a reduction of the magnitude of the effective charge as seen from a distance greater than the

molecular size of the dielectric. This effect is known as charge screening. A similar effect is present in QED

where the vacuum acts as a polarizable medium in which virtual charged fermion-anti-fermion and W+W−

pairs are polarized by the test charge. The associated lowest-order corrections occur in one-loop corrections

to Coulomb scattering. A convenient way to account for these corrections is to introduce a so-called running
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coupling constant, which is to say an effective coupling strength of the interaction. The Coulomb coupling

constant α = q2

4π will be modified as in expression 1.11 to account for one-loop corrections in QED:

αR(q2) = αR(m2)[1 +
αR(m2)

3π
log(

−q2
m2

) +O(α2
R)] (1.11)

We see that to this approximation, the effective electric charge increases logarithmically with increasing

−q2 or equivalently, decreasing distance.

1.4 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the quantum field theory that describes the strong interactions of

quarks [11]. As for the case of QED, the theory for the strong interactions is derived by imposing local

gauge invariance that both requires the introduction of massless vector gauge bosons and prescribes the form

of the interactions of these gauge bosons with quarks4, hence the theory of QCD shares many structural

similarities with QED. Nonetheless, there are several significant differences. First, consider the quantum

number responsible for the strong interactions of quarks − the color charge. Three types of color charge

(say Red, Blue, Green) are introduced to describe the spectrum of baryons as bound states of three quarks

that coexist inside baryons in otherwise identical quantum states without violating the Pauli exclusion

principle. Other experimental pieces of evidence include the magnitude of the cross section for electron-

positron annihilation into hadrons, the branching ratios for τ−decays, and the π0 lifetime [11]. Hence, for

the strong interactions, the U(1) symmetry group of QED is replaced by the SU(3)C color gauge symmetry

group. Under SU(3)C the matter field transformations will take the form:

ψ → Uψ (1.12)

ψ̄ → U †ψ (1.13)

where

U(x) = exp[iΘA(x)TA] (1.14)

4As will be shown in this section, local gauge invariance also defines the interactions among the gauge bosons that arise due
to the non-Abelian nature of the imposed gauge symmetry group.
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and TA =1
2 λA are the non-commuting, Hermitian Gell-Man matrices with A = 1,. . .,8. Following

the same prescription as for the case of QED, one can construct the SU(3)C local color gauge invariant

Lagrangian density for QCD of the form:

LQCD = iψ̄γµ(∂µ + igsT
AGA

µ )ψ −mψ̄ψ − 1

2
Tr(FµνFµν) (1.15)

Similar to the case of QED, the local SU(3)C gauge invariance requirement necessitates the introduction

of the massless gauge field − the gluon field GA
µ (x), and restricts the possible interactions of gluons with

matter. It also imposes the following transformation rule for the gluon field:

TAGA
µ → UTAGA

µU
† +

i

gs
(∂µU)U † (1.16)

In analogy with the expression 1.9 the gluon field-strength tensor is defined as:

Fµν =
1

igs
[Dµ,Dν ] (1.17)

= TA(∂µG
A
ν − ∂νG

A
µ ) + igs[T

B, TC ]GB
µG

C
ν (1.18)

While the first term of 1.18 is similar to its QED counterpart 1.9, the second term arises due to the

non-Abelian nature of the SU(3)C symmetry group. The important consequence of this is the emergence of

the three-gluon and four-gluon interaction vertices.

The expression for the running coupling constant for QCD takes the form:

αs(q
2) = α(µ2)[1 + 2nf

α(µ2)

12π
log(

−q2
µ2

) − 33
α(µ2)

12π
log(

−q2
µ2

) +O(α2
s)] (1.19)

with nf being the number of quark flavors appearing in the loop and−µ2 being a spacelike renormalization

point.

It is important to note that the second term in 1.19 arises due to gluon-quark interactions and tends to

decrease the effective coupling constant at longer distances (i.e. smaller values of −q2) thus screening the

color charge, while the third term emerges due to the gluon-gluon interaction and has the opposite effect
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i.e. it tends to increase the effective αs(q
2) with increasing distance or equivalently decreasing energy hence

anti-screening the color charge. Thus, as long as 2nf < 33, the anti-screening contribution dominates and

the running strong coupling constant becomes larger at larger distances resulting in the so called effect of

Strong Color Confinement due to which quarks can never be observed in a free state, and can only exist

in colorless bound states − the hadrons. On the other hand, the expression 1.19 implies the existence of a

high energy regime5 when αs(q
2) ≪ 1 allowing the application of QCD perturbation theory. This property

of non-Abelian gauge theories is known as asymptotic freedom. Figure 1.1 shows the measured value of αS

as a function of energy.

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Figure 1.1: Summary of measurements of αS as a function of the respective energy scale Q [12].

1.5 The Weak Interactions

The strong, the electromagnetic and the weak6 interactions are all renormalizable gauge theories and as

such share a number of structural similarities. Nonetheless, there are remarkable differences as well, some

of which are summarized in Table 1.2, indicating that at low energies (∼ 1 GeV), the weak interactions are

much weaker than the other two fundamental types of interactions. A nice illustration of the latter is readily

available from a comparison of the π0 lifetime τπ0 = (8.4± 0.6) · 10−17 sec to that of the much longer living

5The scale of QCD is set by ΛQCD ∼ 200 MeV .
6As we will see below, the latter two interactions are unified in the theory of electroweak interactions.
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π±, τπ± = (2.6033±0.0005) ·10−8 sec. The reason for this substantial difference is that π0 decays into a pair

of photons via the electromagnetic interaction, while the π± cannot undergo a similar decay due to charge

conservation and decays predominantly to a l-ν pair via the weak charged current interaction. Table 1.2 also

indicates that the range of the weak interactions is only ∼ 10−17m due to massive mediators of the weak

force - the W±, Z0 bosons (which were discovered in 1983 at CERN by UA1 and UA2 collaborations [13,14]).

Hence, the theory of the weak interactions should provide a mechanism that endows the gauge bosons of

the weak interactions with non-zero masses. We will discuss this mechanism in more detail in the next

section(s).

Another fundamental difference of the weak interactions from QED and QCD has to do with the fact

that the weak interactions maximally violate parity, and only left handed fermions (i.e. ΨL = (1 − γ5)Ψ)

participate in weak interactions. In other words, the left and right handed components of the fermion fields

have different ‘weak charges’ . Based on this latter fact, as well as several other experimental observa-

tions Marshak and Sudarshan proposed the so-called V−A (vector minus axial vector) form for the weak

interactions [11].

A few important remarks regarding the weak interaction are in order:

• W± bosons only couple to leptons within the same generation e.g. νµe
− → µ−νe

• W± bosons couple to same generation and different generation quarks. However, inter-generational

coupling is suppressed compared to intra-generational decays (see CKM matrix in section 1.5.5). For

example, the decay D0 → K−X occurs 53% of the time, while D0 → K+X occurs only 3% of the

time. The decays D0 → K±π∓ are shown in Figure 1.2. In the case D0 → K−π+ the c quark decays

to an s quark (same generation) while for the case of D0 → K+π− the c quark decays to a d quark

(different generation).

• The neutral Z0 boson couples to all leptons and quarks. The flavor of the leptons and quarks is

conserved, i.e. no evidence of flavor-changing neutral currents has been observed.

1.5.1 Spontaneous Symmetry Breaking

As previously discussed, the local gauge invariance requirement for QED and QCD theories restricts the

possible interactions of radiation with matter and necessitates the introduction of massless gauge boson(s)

in agreement with respective experimental measurements. However, the mediators of the weak interactions

are observed to have mass. Hence, the gauge theory of the weak interactions should answer that fundamental

9



Figure 1.2: The Feynman diagram for the decays D0 → K±π±.

question, i.e. what endows the weak bosons (W±, Z0) with mass? The answer (in the context of the SM) is

the mechanism of spontaneous symmetry breaking.

Before diving into the details of how spontaneous symmetry breaking enables the existence of massive

weak bosons, let us make a detour and discuss various types of symmetries in nature that are associated with

conservation laws and their implications on the construction of interacting field theories. The physical world

manifests a number of apparently exact conservations laws, which reflect the operation of exact symmetries

of Nature. The Lagrangian L is invariant under the symmetry in question if

1. δL = 0 under the appropriate transformation

2. the unique physical vacuum is invariant under the symmetry transformation

While some of the fundamental symmetries of nature are exact and result in fundamental laws, such

as conservation of energy, momentum, angular momentum etc., many symmetries hold only approximately.

This can happen if the Lagrangian is exactly invariant under some symmetry (i.e. δL = 0 holds). However,

the dynamics determined by L implies a degenerate set of vacuum states, which are not invariant under the

symmetry.

Let us now turn to the discussion of the Spontaneous Symmetry Breaking mechanism for a simple example

of a complex scalar field Lagrangian density:

L = ∂µφ
∗∂µφ− V (φ) = ∂µφ

∗∂µφ−m2φ∗φ− λ(φ∗φ)2 (1.20)

which is invariant under a global gauge transformation:
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φ→ eiQθφ (1.21)

In order to identify the vacuum state of the field most easily, let us construct the Hamiltonian for the

field φ and determine its minimum. The Hamiltonian (density) is given by:

H = πφ̇ − L (1.22)

where

φ̇ = ∂0φ (1.23)

and the canonical momentum is

π ≡ ∂L/∂φ̇ = φ̇∗ (1.24)

π∗ ≡ ∂L/∂φ̇∗ = φ̇ (1.25)

We therefore have:

H = πφ̇+ π∗φ̇∗ − L (1.26)

= 2φ̇∗φ̇− [φ̇∗φ∗ − ~∇φ∗ · ~∇φ−m2φ∗φ− λ(φ∗φ)2] (1.27)

= φ̇∗φ̇+ ~∇φ∗ · ~∇φ+m2φ∗φ+ λ(φ∗φ)2] (1.28)

The state of lowest energy (the ground state) would thus be one for which the value of the field φ is

a constant < φ >0, the value of which is determined by requiring that the potential energy V (φ) is at its

minimum. If the parameter m2 > 0 then < φ >0= 0, whereas for the case m2 < 0 the potential V (φ) takes

the form of the ‘Mexican Hat’ potential as depicted in Figure 1.3 and the ground state is described by:
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|φ| = ±
√

−m2

2λ
≡ ± v√

2
(1.29)

which corresponds to degenerate lowest-energy states, either of which may be chosen to be the ground state.

We arbitrarily choose:

Re(φ) =
|m|√
2λ

(1.30)

Im(φ) = 0 (1.31)

Hence, the ground state takes the form:

< φ >0=
|m|√
2λ

(1.32)

Figure 1.3: The Higgs potential. The neutral component of the Higgs field acquires a vacuum-expectation
value 〈φ0〉 = v/

√
2 = 174 GeV on the circle of minima in Higgs-field space.

Consider oscillations about the ground state:

φ =
1√
2
(h(x) + v)eiπ(x)/v (1.33)

where h(x) and π(x) are fields with:
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< h >0 = 0 (1.34)

< π >0 = 0 (1.35)

Substituting the expression 1.33 for φ into 1.20 one obtains:

L =
1

2
(∂µh∂

µh+ (h+ v)2
1

v2
∂µπ∂

µπ) −m2 1

2
(h+ v)2 − λ

1

4
(h+ v)4 (1.36)

=
1

2
(∂µh∂

µh+ ∂µπ∂
µπ) +

1

v2
(h2 + 2hv)∂µπ∂

µπ − 1

2
m2(h2 + 2hv + v2)

− 1

4
λ(h4 + 4h3v + 6h2v2 + 4hv3 + v4) (1.37)

Noting that v2 = |m|/
√
λ, expression 1.37 can be simplified to:

L =
1

2
(∂µh∂

µh+ ∂µπ∂
µπ) +

1

v2
(h2 + 2hv)∂µπ∂

µπ − λv2h2 − 1

4
λ(h4 + 4h3v) +

1

4
λv4

︸ ︷︷ ︸

Vacuum energy

(1.38)

The result 1.38 tells us that due to spontaneous symmetry breaking, there are 2 particle fields in the

spectrum; the h(x)-particle associated with radial oscillations has a mass m2
h = 2λv2 and the massless π(x)

particle. The massive h(x) particle may be viewed as a consequence of the restoring force of the potential

against radial oscillations. In contrast, the masslessness of the π(x) particle may be viewed as a consequence

of the U(1) invariance of the Lagrangian, meaning that there is no restoring force against angular oscillations.

The appearance of the massless particle is known as the Goldstone phenomenon. The massless particles

(called Goldstone bosons) are the zero-energy excitations that connect possible vacua. More generally, The

Goldstone Theorem claims: Every broken generator7 of the original symmetry group has a corresponding

massless spin-zero boson. In this example, the symmetry group is the U(1) transformation eiQθ with the

generator Q. Let us explicitly show that the generator Q is broken, i.e. it does not annihilate the vacuum:

Q < φ >0 6= 0 (1.39)

Indeed, for a small angle θ one would have:

7A broken generator is the one that does not annihilate the vacuum.
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eiQθ < φ >0
∼= (1 + iQθ) < φ >0 6= < φ >0 (1.40)

Q < φ >0 6= 0 (1.41)

Hence, indeed the generator Q does not annihilate the vacuum.

1.5.2 The Higgs Mechanism

The questions to address now is how the Goldstone boson endows gauge bosons with mass. As we will see

the answer to this is provided by the Higgs Mechanism, due to which an unexpected cooperation between

massless gauge fields and the massless Goldstone bosons arises.

Let us promote the Lagrangian 1.20 to possess local gauge invariance:

L = Dµφ
∗Dµφ− V (φ) = Dµφ

∗Dµφ−m2φ∗φ− λ(φ∗φ)2 (1.42)

Since the Lagrangian 1.42 is locally gauge invariant we can set the phase to:

θ(x) = −π(x)

v
(1.43)

due to which the expression 1.33 then takes the form:

φ =
1√
2
(h(x) + v) (1.44)

On the one hand, fixing the gauge eliminates the π(x) particle. On the other hand, the kinetic term for

the h(x) particle takes the following form:
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(Dµφ)∗(Dµφ) =
1

2
(∂µ − ieQAµ)(h(x) + v)(∂µ + ieQAµ)(h(x) + v) (1.45)

=
1

2
(∂µh∂

µh+ e2Q2AµA
µ(h+ v)2) (1.46)

=
1

2
∂µh∂

µh+
1

2
e2Q2v2

︸ ︷︷ ︸

≡M2
A

AµA
µ +

1

2
e2Q2(h2 + 2hv)AµA

µ (1.47)

Thus, the gauge field A(x) has acquired a mass MA = eQv, suggesting that the Goldstone boson π(x) was

‘eaten’ by the gauge field A(x) in order to acquire mass. Also note that the number of degrees of freedom of

the system is preserved. Before the spontaneous symmetry breaking, the system had 2 scalar fields (φ and

φ∗) and the 2 helicity states of the massless gauge field A(x). After the spontaneous symmetry breaking, a

scalar field h(x) and 3 helicity states of the massive gauge boson A(x) exist.

1.5.3 Electroweak Interactions

The theory of electroweak interactions with the simplest scalar sector was developed by Glashow, Weinberg

and Salam. Firstly, let us define the spectrum of fundamental fermions of the theory. In order to account

for the fact that the weak interaction couples only to left-handed fermions, these are grouped into doublets

under the gauge group SU(2)L:

Li =

(
νe

e

)

L

,

(
νµ

µ

)

L

,

(
ντ

τ

)

L

,

(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

(1.48)

While right-handed fermions are represented by SU(2)R singlets:

Ri = νe
R, e, ν

µ
R, µ, ν

τ
R, τ, uR, dR, cR, sR, tR, bR (1.49)

In order to incorporate electromagnetic interactions, we must introduce a U(1)Y symmetry group with

the generator hypercharge Y defined as follows:

Q = T 3 + Y (1.50)

Here, Q is the electric charge, T 3 = 1
2σ

3 is the third generator of the SU(2)L group with σ representing the

15



usual Pauli matrices. Knowing the values of the electric charge of fundamental fermions, one may deduce

their hypercharge assignments.

Table 1.3: First generation fermion representation under SU(2)L and their hypercharge. The same hyper-
charge assignment holds for the second and the third generations.

SU(2)L Representation Hypercharge

(
νe

e

)

L
− 1

2

νR 0

eR -1

(
u
d

)

L
+ 1

6

uR + 2
3

dR − 1
3

The gauge group SU(2)L ⊗ U(1)Y is adopted as the group of transformations for the gauge theory of

electroweak interactions. Introducing gauge bosons as follows:

A1
µ, A2

µ, A3
µ for SU(2)L group

Bµ for U(1)Y group

The Lagrangian of the theory will be:

∑

i

L̄iiγ
µ(∂µ + igT aAa

µ + ig′Y Bµ)Li +
∑

i

R̄iiγ
µ(∂µ + ig′Y Bµ)Ri

︸ ︷︷ ︸

Lfermions

+ −1

4
F l

µνF
lµν − 1

4
fµνf

µν

︸ ︷︷ ︸

Lgauge

(1.51)

Here, g is the coupling constant for the so-called weak isospin group SU(2)L and g′ is the coupling for the

weak hypercharge group U(1)Y . In analogy with the expressions 1.9 and 1.18, the field-strength tensor takes

the form:
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fµν = ∂µBν − ∂νBµ (1.52)

F l
µν = ∂µA

l
ν − ∂νA

l
µ + gǫjklA

j
µA

k
ν (1.53)

So far the theory contains 4 massless gauge bosons whereas Nature has only one massless mediator

for the electroweak interactions − the photon. In addition, the global SU(2)L invariance forbids mass

terms for fermions which again disagrees with the experimental observations. Therefore, the theory needs

a modification that retains only one massless gauge boson associated with the conserved electric charge

(Q = T 3 + Y ), and also endows fermions with mass.

Introducing a complex doublet of scalar fields:

(
φ+

φ0

)

(1.54)

which transforms as a SU(2)L doublet and must therefore have Yφ = + 1
2 .

Add to the Lagrangian 1.51 a term:

Lscalar = [(∂µ + igT aAa
µ + ig′Y Bµ)φ]†[(∂µ + igT aAa

µ + ig′Y Bµ)φ] − V (φ†φ) (1.55)

where the potential energy is defined as in 1.20. Following the procedure of spontaneous symmetry breaking

as described in Section 1.5.1; the continuum of vacuum states is described by 〈φ†φ〉 = −m2

2λ = v2

2 . Choose

as the vacuum state:

〈φ〉0 =

(
0
v√
2

)

(1.56)

The expression 1.56 for the vacuum state readily suggests that the symmetries associated with all 4

generators of the SU(2)L ⊗ U(1)Y group (i.e. T 1, T 2, T 3, Y ) are broken. However, one can see that the

combined generator T 3 +Y is not broken, which according to 1.50 corresponds to conserved electric charge.

Expanding the field φ about the chosen vacuum state, one gets:
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φ =
1√
2
(h+ v) exp

[
iT 1π1 + iT 2π2 + i(T 3 − Y )π3

]
(

0

1

)

(1.57)

Here π1, π2, π3 are the Goldstone bosons corresponding to the broken generators mentioned above. Following

the Higgs mechanism and gauging away the Goldstone bosons, one may readily convince oneself that the

gauge boson spectrum contains A1
µ, A

2
µ fields that have acquired mass mA = 1

4g
2v2 by ‘eating up’ the

Goldstone bosons. The linear combinations:

W±
µ =

1√
2
(A1

µ ∓ iA2
µ) (1.58)

with the mass:

m2
W =

1

4
g2v2 (1.59)

are identified with the W± bosons, the mediators of the weak charged current. Using the weak decay

µ→ νµeν̄e one can determine v = 246 GeV. The third massive gauge boson is:

Z0
µ =

1
√

g2 + g′2
(gA3

µ − g′Bµ) (1.60)

with the mass:

m2
Z0 =

1

4
(g2 + g′2)v2 (1.61)

which is the carrier of the weak neutral current Z0. The massless gauge boson representing the photon field

is orthogonal to Z0:

Aµ =
1

√

g2 + g′2
(gA3

µ + g′Bµ) (1.62)
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Hence, due to spontaneous symmetry breaking, the initial symmetry group SU(2)L ⊗ U(1)Y is reduced

to U(1)EM . The associated Goldstone bosons πi were ‘eaten’ by W±, Z0 fields to acquire mass.

One can alternately express the equations 1.60 and 1.62 in matrix form as:






Z0
µ

Aµ




 =






cos θw − sin θw

sin θw cos θw




 ×






A3
µ

Bµ




 (1.63)

where:

cos2 θw =
g2

g2 + g′2
, sin2 θw =

g′2

g2 + g′2
, (1.64)

The angle θw is known as the weak mixing angle, which at tree level relates the masses of the weak

charged current carrier W± to the neutral one Z0:

M2
W = M2

Z cos2 θw (1.65)

We also note the relation between the weak and electromagnetic coupling strengths:

αw =
αEM

sin2θw
=

e2

4πsin2θw
(1.66)

Experimental measurements of the masses of weak interaction carriers are MW = 80.4 GeV and MZ =

91.2 GeV. The weak mixing angle is measured to be sin2 θw ≃ 0.24. Lastly, the field h(x) is the remnant of

the Higgs doublet field - the radial oscillations about the minimum. The particle associated with it is the

Higgs boson. As we have seen, experimentally the W and Z are massive, hence there must be a field to

which the longitudinal components of W,Z bosons couple. Whether it is the Higgs field or not is currently

under intensive experimental investigation.

1.5.4 Yukawa Interactions

As mentioned earlier, SU(2)L invariance forbids a mass term for the fermions mψ̄ψ = m
(
ψ̄LψR − ψ̄RψL

)
.

In order to overcome this and also generate fermion masses, we introduce the Yukawa Interaction which
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couples the Higgs field to the fermion fields. For simplicity, let us consider the first generation of quarks and

express the Yukawa Lagrangian as follows:

LY ukawa = −yu

(
q̄Lφ

†)uR − yd (qLφ) dR +H.C. (1.67)

where yu, yd are the Yukawa coupling constants for u and d quarks. Appealing to the Higgs mechanism, the

scalar doublet φ will take the form:

φ =

(
0

H(x)+v√
2

)

(1.68)

Upon substitution of 1.68 into 1.67, one deduces that mu = 1√
2
yuv and md = 1√

2
ydv. It is instructive to

estimate the value for yu,d. As we know g ∼ 2
3 , MW ∼ 80 GeV and v = 246 GeV. But mu,d ∼ 1 MeV, so

yu,d ∼ 10−5 and only for the top quark yt ∼ 1 implying that due to its strong coupling to the H(x) field,

the top quark could be a good probe of the Higgs sector of the SM electroweak theory.

1.5.5 The Cabibbo Kobayashi Maskawa (CKM) Matrix

We now generalize the Yukawa Lagrangian 1.67 to include all three generations of quarks. Note that along

with intra-generational terms, this Lagrangian may include inter-generational terms as well. The most

general expression for the Lagrangian would be:

L = −Γu
ij

(
q̄i
Lφ

†)uj
R − Γd

ij

(
q̄i
Lφ

)
dj

R +H.C. (1.69)

where the Yukawa couplings Γu,d,··· are in general complex numbers.

After symmetry breaking the Lagrangian 1.69 takes the form:

L = −Mu
ij ū

i
Lu

j
R −Md

ij d̄
i
Ld

j
R +H.C. (1.70)

where:
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Mu
ij = Γu

ij

v√
2

(1.71)

Md
ij = Γd

ij

v√
2

(1.72)

The mass matrices Mu,Md in the basis of weak flavor eigenstates uL,R, dL,R are not real and are non-

diagonal, suggesting that the quark flavor eigenstates are different from real particle mass eigenstates (we

denote those as u′L,R, d
′
L,R). However, the two bases are related to each other via a unitary transformation.

One may readily show that these transformations do not affect the electromagnetic and weak neutral currents.

The weak charged currents are affected by this change of basis. The ‘strength’ of the change is described by

the Cabibbo Kobayashi Maskawa (CKM) Matrix :









d′

s′

b′









=









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









×









d

s

b









(1.73)

The CKM matrix is a unitary matrix with 4 free parameters. To 90% confidence level, the experimentally

measured values of the magnitudes of the CKM matrix elements Vij are the following:









0.9739 to 0.9751 0.221 to 0.227 0.0029 to 0.0045

0.221 to 0.227 0.9730 to 0.9744 0.039 to 0.044

0.0048 to 0.014 0.037 to 0.043 0.9990 to 0.9992









(1.74)

The quasi-diagonal structure of the CKM matrix explains the dominance of the same generation charged-

current decays over different generation charged-current decays.

1.6 Top Quark Production and Decay

1.6.1 Top Production

In hadron colliders, most of the top quarks are produced in pairs via light quark-antiquark annihilation

- qq̄ → tt̄ and guon-gluon fusion - gg → tt̄ processes. Tree level Feynman diagrams for these processes

are shown in Figure 1.4. At the Tevatron, tt̄ pairs are predominantly produced via light quark-antiquark
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Figure 1.4: Top-quark production via the strong interaction at hadron colliders proceeds through quark-
antiquark annihilation (upper diagram) and gluon fusion (lower diagrams).

annihilation (∼ 85% of the time), while at the LHC the main production mechanism is gluon-gluon fusion

(∼ 90% of the time). In order to understand the reason behind this let us recall the parton8 model of the

proton. Figure 1.5 shows schematically tt̄ production in pp collisions at the LHC via the quark annihilation

sub-process where each of the quarks carries a fraction x of the proton momentum. Interacting partons at

a minimum must have total momentum
√
ŝ such that:

ŝ = (x1P1 + x2P2)
2 ≈ 2x1x2P1P2 = x1x2S ≥ 4m2

t (1.75)

where
√
S is the center-of-mass energy of the collider.

P1

P2

t

t

x1P1

x2P2

Figure 1.5: The parton-model description of top-quark pair production. A quark carrying fraction x1 of the
proton’s momentum P1 annihilates with an antiquark carrying fraction x2 of the antiproton’s momentum
P2.

Assuming for simplicity that the typical value for x1x2 is near the threshold of tt̄ production and that

x1 ≈ x2, one can deduce that the threshold value for the parton momentum fraction is x ≈ 2mt√
S

. This implies

that for the Tevatron (
√
S = 1.96 TeV), typically the momentum fraction is x = 0.18, while for the LHC

8Parton is the collective name for quarks and gluons.
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Figure 1.6: Proton parton distribution functions at the scale µ = mt, relevant for top-quark production.

(
√
S = 7 TeV) typically x = 0.05. The distribution of proton momentum among the constituent partons

inside the proton is given by the parton distribution functions (PDFs), which are shown in Figure 1.6 as

a function of momentum fraction x, for the scale µ = mt. One can clearly see that the u(x)-distribution

function is larger than the g(x)-distribution and that the d(x)-distribution is comparable to u(x) for x = 0.18.

On the other hand, for x = 0.05 where partons are energetic enough for top pair production at the LHC, the

gluon distribution function dominates that of quarks and therefore tt̄ pairs are mostly produced through gg

fusion at the LHC.

Another source for top quark production is the electroweak single-top production mechanism, tree level

Feynman diagrams of which are shown in Figure 1.7. Single-top production suffers both a smaller production

rate (compared to that for tt̄ pair production) and also has significantly larger backgrounds. Because of this,

the experimental observation of this production mechanism was reported only recently by the CDF [15] and

D0 [16] collaborations at the Tevatron and the ATLAS [17] and CMS [18] collaborations at the LHC. Within

this dissertation, I will focus solely on the tt̄ pair production processes.

1.6.2 Top Decay

As discussed earlier, the CKM matrix in Equations 1.73 and 1.74 has a quasi-diagonal structure, hence the

heavy top quark almost exclusively decays via the t→Wb channel. The SM prediction for the decay width

of the top quark at next-to-leading order is:
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Figure 1.7: Single-top-quark production via the weak interaction. The first diagram corresponds to the
s-channel subprocess, the second to the t-channel subprocess, and the third to Wt associated production
(only one of the two contributing diagrams is shown).

Γt =
GFm

3
t

8π
√

2

(

1 − M2
W

m2
t

)2 (

1 + 2
M2

W

m2
t

) [

1 − 2αs

3π

(
2π2

3
− 5

3

)]

(1.76)

where terms of the order m2
b/m

2
t , α

2
s and (αs/π)2M2

W /m2
t have been neglected. Assuming mt = 171 GeV/c2,

the top decay width is Γt = 1.29 GeV/c2 implying that τt = 0.5×10−24 sec. The latter is much shorter than

the minimal time of ∼ 10−22 sec needed for hadron production, which is the reason behind non-observation

of top-flavored bound-state hadrons. On the contrary, due to its very short life time, top is the only quark

that can be measured in a ‘bare’ state.

Following the t → Wb decay, the b quarks then hadronize to B mesons or hadrons inside jets. The W±

boson in turn decays into a quark pair 2/3 of the time and into a charged lepton and its associated neutrino

1/3 of the time. Thus, depending on the W decay mode, the following final state categorization for tt̄ pair

production process emerges:

1. tt̄→W+bW−b̄→ qq̄′b q′′q̄′′′b̄ (all-hadronic 46.2%)

2. tt̄→W+bW−b̄→ qq̄′blν̄lb̄+ l̄νlbqq̄′b̄ (semi-leptonic 43.5%)

3. tt̄→W+bW−b̄→ l̄νlb lν̄lb̄ (dilepton 10.3%)

A detailed description of tt̄ pair decay final states and corresponding branching ratios is shown in Fig-

ure 1.8.

In the scope of this dissertation I will focus on the dilepton final state of the tt̄ pair decays, which

although it suffers from a relatively low branching ratio of 10.3%, represents a rather clean signature due to

two charged lepton identification requirements that experimentally enables keeping backgrounds well under

control. The tt̄ dilepton analyses with stringent lepton identification requirements are most sensitive to e±

and µ± decays of the W± and less so for W → τντ decays. In contrast to a tt̄ dilepton analysis that requires
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2 identified charged leptons (2ID analysis) and in order to enhance analysis sensitivity to τ -leptonic decays

of W± and restore tt̄ signal events lost due to charged lepton identification inefficiencies, I utilized a so-called

lepton+track (l+track analysis) selection in dilepton events, where the selection requirements on one charged

lepton leg are relaxed to require only a high quality inner detector track. I will describe two types of l+track

analysis; the Inclusive analysis, where the l+track selection is applied on the totality of the accumulated

data sample, and the Exclusive analysis, where tt̄ candidate events selected by the conventional dilepton

analysis are explicitly discarded, facilitating the combination of the exclusive l+track and 2ID analysis. It is

also important to note that the analysis using the l+track approach is exposed to a different set of systematic

uncertainties than that using the 2ID analysis.
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Figure 1.8: The tt̄ decay channels (left) and the branching ratios (right).

1.7 The Top quark as a Window to Physics Beyond the

Standard Model

We start with the disclaimer stating that the Standard Model of particle physics is a theory which reflects

our best current theoretical explanation of observed experimental phenomena and as such it continuously

undergoes refinements to account for the ‘new physics’ processes as soon as the underlying theory behind it

is understood.

Let us make a detour on the empirical and philosophical reasons that argue the need for theories beyond

the current SM. In the past few decades, various experiments have obtained results that are not possible to

explain within the scope of the SM [19]. A brief listing of these includes:

• Dark matter
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• Dark energy

• Neutrino masses

• Matter anti-matter asymmetry of the universe

In addition to the above empirical reasons, there are several philosophical aesthetic desires that demand

physics beyond the SM. Some of these include:

• The Hierarchy problem, i.e. the non-applicability of the SM beyond the scale rH ≤ 10−19m.

• Why there are apparently exactly 3 generations of quarks and leptons

• Why the Yukawa coupling for the top quark (and hence the top quark mass) is so much larger than

that of the other fundamental fermions, and the pattern of fermion masses, in general.

• The Higgs sector of the SM Lagrangian does not arise from a first principle theory but rather is

introduced ‘by hand’ to generate the fermion masses.

Another aspect that is presently in the focus of the high energy physics community is the search for

the Higgs boson, where the SM prefers a relatively light mass Higgs boson. In December 2011, the ATLAS

collaboration presented updated results on the Higgs search using up to 4.9 fb−1 of LHC data, where

a statistically insignificant excess of events around mH ∼ 126 GeV was observed [20]. The excess was

characterized by local significance of 3.6σ with contributions from H → γγ, H → ZZ∗ → 4l and H →

WW ∗ → lνlν analyses. The measured global significance, taking into account the Look-Elsewhere-Effect

(LEE) was ∼ 2.3 σ. The updated CMS results using the same final states also claimed an observation of

an event excess around ∼124 GeV with 2.6 σ local significance and 1.9 σ global after correcting for the

LEE in the low mass region [21]. Figure 1.9 (a) and (b) summarize the most recent results on the limits

of σ/σSM obtained by the ATLAS and CMS collaborations. In addition, the new W mass measurement

by CDF and the latest precision determination of the mass of the top quark from Fermilab triangulate

the location of the Higgs particle and restrict its mass to less than 145 GeV. Moreover, as Figure 1.11

illustrates the updated Tevatron result on direct searches for the SM Higgs boson in pp̄ collisions reported

an excess of data events with respect to background estimation in the mass range 115 < mH < 135 GeV. At

mH = 125 GeV, the local significance of the event excess is 2.7σ, while the global significance corrected for

the LEE is 2.2σ [22]. This is in excellent agreement with the latest direct Higgs boson searches at the LHC

as shown in Figure 1.10 [23]. The entire high energy physics community is looking forward to 2012 when a

definitive answer to the existence/non-existence of the SM Higgs boson is expected.
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Let us now discuss the top quark in the context of BSM physics. We showed in section 1.5.4 that the top

quark has the largest Yukawa coupling to the Higgs sector (yt ∼ 1) making it the most massive fundamental

particle. Due to its large mass, top has been exploited in a number of BSM theories. Examples include

the top color model, where top is responsible for triggering electroweak symmetry breaking (EWSB) or the

MSSM model where top allows the Higgs mass to survive the LEP bound [24]. Several models rely on top

as a facilitator for an alternative EWSB mechanism, where the top quark is responsible for the generation

of boson and/or fermion masses. Examples of such theories are Topcolor [25–28], and top see-saw [29–31].

More recent models use the top as means to compensate for the large radiative corrections to the Higgs mass.

In SUSY such a mechanism entails the existence of top scalar partners; the Little Higgs theory introduces

fermion partners instead. Hence, many rich and theoretically motivated BSM theories predict new physics

in connection with the top quark, which motivates in-depth studies of top quark production and decay

properties [32–39].
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(a)

sm

95%CL: obs 127-600, exp:117-543 GeV!

(b)

Figure 1.9: The combined 95% C.L. upper limits on the signal strength parameter µ = σ/σSM , as a function
of the SM Higgs boson mass in the range 110 − 600 GeV/c2 obtained by ATLAS (left) [20] and CMS
(right) [21] collaborations. The observed limits are shown by solid symbols. The dashed line indicates the
median expected 95% CL value for the background-only hypothesis, while the green (yellow) band indicates
the range expected to contain 68% (95%) of all observed limit excursions from the median, respectively.

Figure 1.10: The new CDF result for the W boson mass, combined with the world’s best value for the top
quark mass, restricts the Higgs mass to the green area, requiring it to be less than 145 GeV.
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Figure 1.11: Observed and expected (median, for the background-only hypothesis) 95% C.L. upper limits
on the ratios to the SM cross section, as a function of the Higgs boson mass for the combined CDF and
D0 analyses. The limits are expressed as a multiple of the SM prediction for test masses (every 5 GeV)
for which both experiments have performed dedicated searches in different channels. The points are joined
by straight lines for better readability. The bands indicate the 68% and 95% probability regions where the
limits can fluctuate, in the absence of a signal. The limits displayed in this figure are obtained with Bayesian
calculation.
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Chapter 2

tt̄ Cross Section Measurement

2.1 Introduction

One needs to work with a quantitative measure of tt̄ pair production that both has a sound theoretical

prediction and can be measured experimentally with reasonable precision. Such a quantitative measure is

the tt̄ pair production cross section that, as we will see has an interpretation of the production probability1

for a tt̄ pair in a pp collision event. The tt̄ cross section is measured in barns and has units of a cross sectional

area (1b = 10−24cm2). Hence, the tt̄ cross section can also be intuitively interpreted as the effective cross

sectional area over which two protons interact to produce a tt̄ pair.

The cross section for top pair production is related to the invariant amplitude M of the pp→ tt̄ process

via the expression:

dσtt̄ =
|M|2
F

dQ, (2.1)

where dQ is the Lorentz invariant phase space factor and F is the incident flux, which measures the number

of protons per beam passing through unit area of overlapping beams per unit time (for more details see [41]).

As discussed in Section 1.6.1, in pp collision events most of the top quarks are produced in pairs through

quark annihilation - qq̄ → tt̄ and guon-gluon fusion - gg → tt̄ parton subprocesses. Hence, the total cross

section for the tt̄ pair production cross section can be expressed as the convolution of these sub-processes

with the corresponding parton distribution functions of the proton:

σtt̄ =
∑

ij

∫

dxidxjfi,p(x,Q
2)fj,p(xj , Q

2)σ̂ij(ij → tt̄) (2.2)

1Strictly speaking one needs to normalize the tt̄ cross section by the one for total pp interaction to get the top pair production
probability. For pp LHC collisions at

√
s = 7 TeV the total cross section is σtotal = 98 mb [40]. Hence, the probability for tt̄

pair production at LHC is 1.68 × 10−9.
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(a) (b)

Figure 2.1: The NLO tt̄ production cross section as a function of the top quark mass mt including scale
dependence at the Tevatron (a) and the LHC (b) [42].

where xi(xj) is the momentum fraction carried by the parton i (j) in the proton that belongs to the first

(second) beam, respectively.

One also expects the top pair production cross section to be dependent on the top quark mass, since

the heavier the t-quark, the harder it is to produce it. Figure 2.1 shows the tt̄ production cross section

dependence on the top quark mass. The bottom line is that a 1 GeV increase in mt corresponds to a 0.25

pb (25 pb) decrease in the tt̄ cross section at the Tevatron (LHC), respectively. Note that Figure 2.1(b)

shows the tt̄ cross section dependence on mt for the case of nominal
√
s = 14 TeV center-of-mass energy of

the LHC.

The most recent calculation of the tt̄ pair production cross section at NLO (next-to-leading-log soft

gluon resummation), for the case of
√
s = 1.96 TeV center of mass collision at the Tevatron assuming

mt = 171 GeV/c2 with CTEQ6.5 PDFs, predicts a value of 7.61+0.30
−0.53 (scales) +0.53

−0.36 (PDFs) pb [43–46].

Experimental measurements of this quantity by CDF and D0 collaborations are: σCDF = 7.5±0.31 (stat) ±

0.34 (syst) ± 0.15 (theory) pb [47], and σD0 = 7.56+0.63
−0.56 (stat + syst + lumi) pb [48], both of which are in

good agreement with the SM prediction. Figure 2.2 summarizes the most recent results of tt̄ pair production

cross section measurements from Tevatron experiments.

For the case of the center of mass energy of
√
s = 7 TeV, characteristic for present day LHC pp collisions,

the SM prediction for the tt̄ cross section production at approximate NNLO, using CTEQ6.6 PDFs and

assuming mt = 172.5 GeV is σSM = 164.57+11.45
−15.78 pb [43–46], approximately 20 times larger than that for

the Tevatron collider. In this dissertation, I will present the result of the top pair production cross section

measurement using 7 TeV, L =
∫
Ldt = 698 pb−1 of pp collision data collected with the ATLAS detector.
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(a) (b)

Figure 2.2: The tt̄ production cross section measurement results for Tevatron experiment: CDF (a) [47] and
D0 (b) [48].

One can express the total number of produced tt̄ pairs over some period of time T as:

Ntt̄ = σtt̄ ·
∫

T

Ldt (2.3)

where L =
∫
Ldt is the integrated luminosity associated with the colliding beams and is proportional to the

number of pp collisions over the time period T . Since there are detector geometrical acceptance limitations

and signal selection requirement inefficiencies, some of the tt̄ events are not detected. The fraction of detected

signal events is determined using Monte Carlo simulation and is introduced into the Equation 2.3 as a factor

A. Further, the fraction A is corrected by a factor ǫ to account for the mis-modeling of lepton reconstruction,

finite lepton identification and lepton trigger efficiency in data and Monte Carlo simulation, thus yielding

the following expression that we used to measure the tt̄ pair production cross section:

σtt̄ =
Nobs

tt̄

A · ǫ
∫
Ldt

(2.4)
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2.2 Physics Motivation for tt̄ Pair Production Cross Section

Measurement

In this section, I summarize the reasons that motivate the significance of the measurement of the top quark

pair production cross section in the dilepton channel using the l+track approach, especially noting that

the ATLAS detector as of December 2011 has completed its first year of operation and both the detector

commissioning program and establishing ‘benchmark’ SM signals in the new 7 TeV center-of-mass energy

regime are the primary focus of the ATLAS collaboration. Although some of the incentives to perform this

measurement were already mentioned in this text, I will repeat those in the compilation below:

• Due to its very short lifetime of τt = 0.5× 10−24 sec, the top quark decays before top-flavored hadron

formation, thus enabling direct measurements of the properties of an otherwise strong color confined

quark.

• Uncertainties on the theoretical tt̄ cross section prediction are currently at the 10% level and a com-

parison with experimental measurement is an excellent test for perturbative QCD predictions.

• The top quark has the largest Yukawa coupling yt ∼ 1, hence top is characterized as the strongest

coupling to the Higgs sector, and as such serves as source of inspiration for many alternative BSM

theories.

• A significant excess of the measured tt̄ cross section from the predicted SM value would imply a BSM

top production mechanism, while a significant deficit suggests alternative top decay channels (e.g.

t → H+b), different from t → Wb which according to the CKM matrix must occur very nearly 100%

of the time.

• An abundant tt̄ data sample is well-suited for the use as in-situ calibration tool for jet, lepton, b-tagging

algorithms.

• tt̄ pair production is a major background for many new BSM physics scenarios.

• The tt̄ dilepton final state represents a rather clean signature due to two lepton identification require-

ments that enables backgrounds to be kept well under control.

• The tt̄ cross section measurement in dilepton channel enables performing an explicit check of the lepton

universality principle.
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• The l+track approach to dilepton event selection enhances the analysis sensitivity to τ -leptonic decays

of the W± boson and restores signal events lost due to lepton identification inefficiencies.

All of the above items motivate the importance of an in-depth understanding and thorough research of

the top quark sector, where a precise measurement of the top quark pair production cross section is a key

descriptive quantity.
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Chapter 3

CERN: The Large Hadron Collider
and the ATLAS Detector

3.1 Introduction

The European Organization for Nuclear Research (CERN) is an international laboratory for particle physics

research operating the world’s largest accelerator facility. Founded in September of 1954, CERN was the

cradle for the number of fundamental discoveries that shaped, changed and expanded the knowledge of

mankind about Nature and the Universe. Some of those include: the discovery of neutral weak currents

in 1973, the discovery of W± and Z0 bosons in 1983, the discovery of direct CP-violation in 1999 and the

invention of the World Wide Web in 1990. More than 10,000 scientists and engineers from all over the world

rely on CERN facilities in their quest for an understanding of the fundamental laws of Nature.

3.2 The Large Hadron Collider

The Large Hadron Collider (LHC) is a two-ring-superconducting-hadron accelerator and is the largest and

highest-energy collider in the world. The collider is located ∼ 100 m underground in a 27 km circular tunnel

initially built for the Large Electron-Positron Collider (LEP) [49]. The LHC was designed to provide pp

collisions at a 14 TeV1 center-of-mass energy with an instantaneous luminosity of 1034 cm−2s−2 [2]. The

LHC is part of the CERN accelerator complex system that prepares the protons (or heavy ions) for injection

into the LHC. More specifically:

1. The protons are obtained by stripping off electrons from hydrogen atoms, accelerated to 50 MeV by

the LINAC (linear particle accelerator) and fed to the Proton Synchrotron Booster (PSB).

2. The PSB accelerates protons to 1.4 GeV and injects them into the Proton Synchrotron (PS).

3. The PS further accelerates protons to 26 GeV and injects them into the Super Proton Synchrotron

(SPS).

1At the initial stage (i.e. 2009 - 2012) of the LHC operations it was decided to limit the center-of-mass energy for the pp
collisions to 7 TeV.
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4. The SPS brings the proton energy to 450 GeV and prepares them for the injection into the LHC.

Figure 3.1 gives the schematic view of CERN accelerator facility complex.

Figure 3.1: The schematic view on accelerator facility complex at CERN.

Proton beams at the LHC are organized as a train of 2808 proton bunches, where each bunch contains

1.15 × 1011 protons at nominal proton fill, is a few cm in length and has ∼ 1 mm transverse dimension. At

the collision point, bunches receive an extra squeeze from quadrupole magnet pairs and become ∼ 16 µm

transversely. At the entrance into the LHC, the protons are split into two beams that are brought to collision

at four points around the LHC ring. At each of the collision points large detectors have been constructed to

study various phenomena. The detectors and corresponding collaborations are: ALICE, LHCb, CMS and

ATLAS. Details of the ATLAS detector are provided in the next section.

3.3 The ATLAS Detector

ATLAS is a general-purpose experiment designed to exploit the full extent of the exciting particle physics

opportunities for fundamental discoveries at LHC [2]. A schematic view of the ATLAS detector is shown

in Figure 3.2. Some of the aspects of the rich physics potential of the LHC include:

• Precision measurement of QCD, electroweak and flavour physics processes due to high luminosity and

36



Figure 3.2: Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m in height and
44 m in length. The overall weight of the detector is approximately 7000 tonnes.

large cross section values at the LHC.

• A vast physics program in the top sector (cross section, mass, spin, couplings etc.) due to the remark-

able top production rate at the LHC.

• Searches for the Higgs boson. The ATLAS detector subsystems were designed to maximize the perfor-

mance characteristics of the detector in searches for the Higgs boson, which remains the only undis-

covered mediator of interactions as predicted by the SM. The excellent characteristics of the ATLAS

detector enable successful Higgs searches in a number of decay scenarios.

• Searches for heavy W ′ and Z ′ bosons with masses up to ∼ 6 TeV. In order to study their leptonic

decays, high-resolution lepton PT measurement and charge identification are needed in the pT - range

of a few TeV.

• Quark compositeness, as probed through high pT jet cross section measurements.

• Searches for supersymmetric particles (squarks, gluinos) and low to intermediate scale gravity/higher

dimensions through reliable Emiss
T measurement.

The above mentioned physics research goals define those requirements that the ATLAS detector system

must meet in order to successfully carry out these physics programs. Table 3.1 summarizes the general

performance goals for each of the ATLAS detector subsystems.
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Table 3.1: General performance goals of the ATLAS detector. Note that for high pT muons, the muon
spectrometer performance is independent of the inner-detector system. The units for E and pT are in GeV.

Detector Subsystem Required resolution η coverage
Measurement Trigger

Tracking σpT
/pT = 0.05% pT ⊕ 1 % ±2.5 -

EM Calorimetry σE/E = 10% /
√
E ⊕ 0.7 % ±3.2 ±2.5

Hadronic calorimetry (jets)

barrel and end-cap σE/E = 50% /
√
E ⊕ 3 % ±3.2 ±3.2

forward σE/E = 100% /
√
E ⊕ 10 % 3.1 < |η| < 4.9 3.1 < |η| < 4.9

Muon spectrometer σpT
/pT = 10% at pT = 1 TeV ±2.7 ±2.4

A right-handed coordinate system is used to describe the ATLAS detector and the particles emerging

from pp collisions, and is defined as follows: the nominal interaction point is taken as the origin, the beam

direction defines the z-axis, the positive x-axis is defined as pointing from the interaction point to the

center of the LHC ring, and the positive y-axis is defined as pointing upwards. The azimuthal angle φ is

measured around the beam axis, and the polar angle θ is the angle from the beam axis. The pseudorapidity

η = − ln (tan (θ/2)) is frequently used instead of the polar angle θ. In this thesis I will refer to the transverse

momentum pT ≡
√

p2
x + p2

y, transverse energy ET ≡ E sin θ, and missing transverse energy Emiss
T which are

defined as projections of corresponding variables in the transverse plane.

The magnet configuration of the ATLAS detector consists of a thin superconducting solenoid surrounding

the tracker cavity, and three large superconducting toroids (one barrel and two end-caps) arranged with an

eight-fold azimuthal symmetry around the calorimeters. This fundamental choice has dictated the design of

the rest of the detector.

3.3.1 The Inner Detector

The Inner Detector (ID) is the innermost part of the ATLAS detector. The ID is immersed in a solenoidal

magnetic field of 2.0 T. It consists of independent, yet complementary charged particle tracking sub-detectors.

At the inner-most radii, high-resolution charged track pattern recognition capabilities are available using

discrete space-points from silicon pixel layers (typically three pixel layers are traversed by a charged particle)

and stereo pairs of silicon microstrip (SCT) layers. For the SCT, eight strip layers are traversed by each

track. The precision tracking sub-detectors (Pixel and SCT) cover the pseudorapidity region |η| < 2.5. In the

barrel region, they are arranged in concentric cylinders around the beam axis, while in the end-cap regions

they consist of disks perpendicular to the beam axis. The total number of pixel detector read out channels

is 80.4 million and for the SCT the tracking information has 6.3 million read out channels. At larger radii,
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the transition radiation tracker (TRT) consists of many layers of gaseous straw tube elements interleaved

with transition radiation material. The typical TRT yield per track is approximately 36 hits, which enables

continuous tracking to enhance the pattern recognition and improve charged particle momentum resolution

over |η| < 2.0 and electron identification complementary to that of the calorimeter over a wide range of

energies. In the barrel region, the 144 cm long TRT straws are parallel to the beam axis. In the end-

cap region the TRT straws are arranged radially and are 37 cm long. The total number of TRT readout

channels is ∼ 350, 000. The tracker accounts for 0.5X0 to 2X0 of the material in front of the calorimeters up

to |η| = 2.5. A cut-away view of the ATLAS Inner Detector is shown in Figure 3.3.

Figure 3.3: Cut-away view of the ATLAS Inner Detector.

3.3.2 Calorimetry

Calorimeters cover the range |η| < 4.9, using different techniques suited to the widely varying requirements

of the physics processes of interest. Over the η-region matched to the ID, the fine granularity of the EM

calorimeter is ideally suited for precision measurement of electrons and photons. The coarser granularity of

the rest of the calorimeter is sufficient to satisfy the physics requirements for jet reconstruction and Emiss
T

measurements. It is also important to note that the calorimeter depth is designed and constructed such that

the calorimeter provides good containment of electromagnetic and hadronic showers, ensuring the precision

measurement requirements summarized in Table 3.1. Figure 3.4 depicts ATLAS subdetectors that constitute

the ATLAS calorimetry.
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Figure 3.4: Cut-away view of the ATLAS calorimeter system.

Liquid Argon Electromagnetic Calorimeter

The EM calorimeter is divided into a barrel part (|η| < 1.475) and two end-cap components (1.375 < |η| <

3.2), each located in individual cryostats. The EM calorimeter is lead-LAr detector with accordion-shaped

kapton electrodes and lead absorber plates over its full coverage. The accordion geometry for the absorbers

and electrodes is chosen as such in order to provide full φ-coverage without any cracks and fast extraction of

the EM shower signal at the rear and at the front of the electrodes. This enables a very uniform performance

in terms of linearity and resolution as a function of φ.

Tile Hadronic Calorimeter

The Scintillating Tile Hadronic Calorimeter (TileCal) is composed of a Long Barrel (LB) and two Extended

Barrel (EB) cylindrical structures spanning the pseudorapidity region |η| ≤ 1.7. Azimuthally, the barrel and

extended barrels are divided into 64 modules, each spanning 2π/64 azimuthal angle. In the radial direction,

the TileCal extends from an inner radius of 2280 mm to an outer radius of 4230 mm. Each of the TileCal

modules is composed of a grid of alternating layers of steel plates (absorber) and scintillator tiles (active

material) with period of 18 mm (Fig. 3.5(a)). Tiles are oriented perpendicular to the colliding beams and

are radially staggered in depth. The Tile calorimeter contains 11 different sizes of trapezoidal shaped tiles,

ranging from about 200 mm to 350 mm in length and 97 mm to 187 mm in radial width. All tiles are 3

mm thick. Fig. 3.5(b) and Table 3.2 give details on the tile characteristics. Each tile has two holes 9 mm in
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diameter always placed 13.5 mm away from the tile extremity (Fig. 3.5(b)). Typically, the tile inner radius

hole is used for metal fixing rods and the tile outer radius hole is used for the 137Cs calibration tubes. In

tile row 7 of EB modules both holes serve for Cs137γ-source passage purposes. The scintillating tiles are

read out via wavelength shifting (WLS) fibers on both sides of the tile into two separate PMTs. In the LB

eight WLS fibers of different lengths are used per period per side to achieve the 3 longitudinal (i.e. depth)

samplings, while in the EB six WLS fibers of different lengths are used, as summarized in Table 3.2. The

TileCal is segmented longitudinally into three depth layers, which are about 1.4 (sampling A), 4.0 (sampling

BC) and 1.8 (sampling D) interaction lengths thick at η=0 for Long Barrel modules. In the Extended

Barrel, the second depth layer is thinner, whereas the third depth layer is thicker compared to LB modules

as shown in Fig. 3.6. The quasiprojective read out cells are formed by grouping the WLS fibers into different

PMTs. Cells are organized in pseudo-projective towers oriented towards the interaction point. The cell

division of the 3 samplings of the Tile Calorimeter is shown in Fig. 3.6. The resulting cell granularity is:

∆η × ∆φ = 0.1 × 0.1 (0.2 × 0.1 in the last longitudinal layer). A schematic drawing is given in Fig. 3.6.

Table 3.2: Tile Dimensions and Cell Structure. The labeling of the dimensions corresponds to the drawing
of the tile shown in Fig. 3.5(b)

Tile Size A mm B mm H mm E mm Sampling Fiber
LB EB LB EB

1 231.0 221.3 97 70 A A 1 1
2 240.8 231.3 97 70 A A 2 2
3 250.6 241.0 97 70 A A 1 1
4 262.0 249.5 127 100 B B 3 3
5 274.8 262.3 127 100 B B 4 4
6 287.5 275.0 127 100 B B 3 3
7 302.3 287.8 147 120 C B 5 4
8 317.0 302.6 147 120 C D 6 5
9 331.7 317.3 147 120 C D 5 6
10 350.4 332.0 187 160 D D 7 5
11 369.0 350.7 187 160 D D 8 6

LAr Hadronic End-cap Calorimeter

The Hadronic End-Cap Calorimeter (HEC) consists of two independent wheels per end-cap. Each of the

wheels is located behind the end-cap electromagnetic calorimeter and share the same LAr cryostat. Each

wheel is built from 32 identical wedge-shaped modules, assembled with fixtures at the periphery and at the

central bore. Each wheel is divided into two segments in depth, for a total of four layers per end-cap. Copper

plates are interleaved with 8.5 mm LAr gaps, providing the active medium for this sampling calorimeter.
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Figure 3.5: A blowup of the Tile calorimeter structure (a) and drawing of a scintillating tile with the tile
outer and inner radius holes for the passage of the Cs137 source (b).
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Figure 3.6: Layout of cells (solid lines) and tilerows (dashed lines) in the Barrel and Extended Barrel Tile
calorimeter sections. The lines defining different η regions are also shown.
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LAr Forward Calorimeter

The Forward Calorimeter (FCAL) is integrated into the end-cap cryostats, as this facilitates uniform calori-

metric coverage and reduced radiation background levels in the muon spectrometer. The FCal is ∼ 10

interaction lengths deep, and consists of three modules in each end-cap; the first module is made of copper

and is optimized for electromagnetic measurements, the second and the third are made of tungsten and

measure predominantly the energy of hadronic interactions. Each module consists of a metal matrix, with

regularly spaced longitudinal channels filled with an electrode structure consisting of concentric rods and

tubes parallel to the beam axis. The LAr in the gap between the rod and the tube is the sensitive ionaziation

medium.

3.3.3 Muon Spectrometer

Muons are minimum ionizing particles and will typically pass through the ATLAS detector without deposit-

ing a substantial portion of their kinetic energy in the calorimeter. The muon spectrometer (MS) is used for

muon momentum reconstruction. The muon system identifies tracks in the region |η| < 2.7 with precision

measurements up to |η| = 2.5. Special transition regions in the MS lie in |η| < 0.1 and 1.0 < |η| < 1.3.

The MS comprises four main components: Muon Drift Tubes (MDT), Cathode Strip Chambers (CSC),

Resistive Plate Chambers (RPC), and Thin Gap Chambers (TGC)2. Over most of the η-range, a precision

measurement of the track coordinate in the principal bend direction of the magnetic field is provided by

MDTs. In order to ensure reliable operation of the MDTs, the sense wires are mechanically isolated in each

drift tube. In the larger η-region, track coordinates are measured with the Cathode Strip Chambers (CSCs’

are multi-wire proportional chambers with their cathodes segmented into strips). The MS trigger system

covers the region up to |η| < 2.4. Resistive Plate Chambers (RPC) are used in the barrel region, while

Thin Gap Chambers (TGC) in the end-cap regions. The MS trigger system has three main functions: pp

bunch-crossing identification, provide well-defined muon PT thresholds, and independent measurement the

of muon coordinate in the direction orthogonal to that determined by the ID precision-tracking chambers.

3.3.4 Luminosity Detectors

The Beam Condition Monitor (BCM) detector is used to monitor beam losses and to provide fast feedback

to the accelerator operations team. It is a core component of the detector protection system, in that it

provides a fast accelerator abort signal in the event of substantial beam loss. The BCM consists of two arms

of diamond sensors located at z = ±184 cm and r = 5.5 cm and uses programable front-end electronics to

2Chambers are also used for triggering.
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histogram the single-sided and coincidence rates as a function of Bunch Crossing Identifier (BCID). Thus,

bunch-by-bunch rates are available for luminosity determination and monitoring.

At ±17 m from the interaction point lies the LUCID (LUminosity measurement using Cerenkov Integrat-

ing Detector) is specifically designed for measuring the pp instantaneous luminosity at ATLAS. It consists of

16 optically reflecting aluminum tubes filled with C4F10 (perfluorobutane) gas surrounding the beam pipe

on each side of the interaction point. Cerenkov photons created by charged particles in the gas are reflected

by the tube walls until they reach PMTs situated at the back end of the tubes. The PMT signal further

amplified and digitized with 80 samplings. If the pulse height of the signal is larger than the discriminator

threshold a tube counts a ‘hit’.

3.3.5 Magnet System

The ATLAS magnet system consists of four large superconducting magnets. The schematic view of the

magnet system is shown in Figure 3.7 and includes:

Figure 3.7: Geometry of magnet windings and tile calorimeter steel. The eight barrel toroid coils, with the
end-cap coils interleaved are visible. The solenoid winding lies inside the calorimeter volume. For the sake
of clarity the forward shielding disk is not displayed.

• a solenoid aligned on the beam axis that provides a 2.0 T axial magnetic field for the ID. It also

minimizes the radiation thickness in front of the barrel EM calorimeter

• a barrel and two end-cap toroid magnets, which produce magnetic fields of ∼ 0.5 T and 1 T respectively

for the muon trajectory bending and subsequent momentum measurement.

Due to the above described structure of the ATLAS magnets, charged particle tracks are bent in the

r− φ plane while traversing the ID immersed in the solenoidal magnetic field and bent in the r− z plane in
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the MS. The bend parameters are further used to measure particle descriptive parameters such as charge,

momentum, mass, etc.

3.3.6 Trigger

At the design luminosity of 1034 cm−2 s−1 the pp collision rate at LHC is ∼ 1 GHz, while the overall ATLAS

event data recording rate is limited to 200 Hz, due to technology and resource limitations. Hence, the

ATLAS detector needs a robust trigger system that provides an overall rejection factor of 5 × 106 against

minimum-bias processes and maintains maximum efficiency for the new physics. The ATLAS trigger system

is organized in three levels LEVEL 1 (L1), LEVEL 2 (L2), and Event Filter (EF).

The L1 trigger searches for events with high pT muons, electrons, photons, jets, 3-prong τ decays,

substantial missing and high total transverse energy. The L1 trigger decision is based only on a subset of

detector information, reducing the L1 trigger rate to 75 kHz, limited by the current bandwidth of the readout

system (upgradable to 100 kHz). High pT muons are identified using TGCs and CSCs as described above.

Reduced-granularity information from all calorimeters provides the input for the L1 trigger calorimeter

information. In each event, the L1 trigger also defines one or more Regions-of-Interest (RoI), i.e. the η and

φ coordinates of those regions of the detector where the selection process has identified interesting features.

RoI information provided by the L1 trigger is further used to seed the L2 trigger which uses full granularity

and precision detector data within the RoI in its selection process. The L2 trigger reduces the rate to ∼

3.5 kHz with an event processing time of about 40 ms averaged over all events. The last stage of the event

selection is carried out by the Event Filter, which reduces the trigger rate to 200 Hz. The EF selection

requirements are implemented using a computer farm with offline analysis procedures, with an average event

processing time of the order of a few seconds. Figure 3.8 shows the schematic summary view of the ATLAS

trigger system.
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Figure 3.8: Schematic diagram of ATLAS trigger system.
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Chapter 4

Luminosity Measurement and Data
Sample

4.1 Introduction

As discussed earlier in Section 2.1, we use Equation 2.4 to measure the tt̄ pair production cross section. Hence,

an accurate determination of the integrated luminosity
∫
Ldt is of central importance for the precision of the

measurement. Below, we briefly discuss the ATLAS strategy for measuring and calibrating the instantaneous

luminosity as well as describe the detectors used for instantaneous luminosity determination.

The instantaneous luminosity for pp collisions can be expressed as:

L =
Rinel

σinel
cm−2s−1 (4.1)

where Rinel is the instantaneous rate of inelastic pp collisions and σinel is the pp inelastic cross section.

If the beam revolution frequency is fr, the number of proton bunches per beam (assuming that all bunches

cross at the interaction point) is nb, and the average number of inelastic interactions per bunch crossing

(BC) is µ, then the instantaneous interaction rate can be equivalently expressed as Rinel = µnbfr. Hence:

L =
µnbfr

σinel
(4.2)

In order to determine the average number of interactions per BC µ, ATLAS utilizes the so-called Event

Counting method, where one determines the fraction of bunch crossings that contain events satisfying some

selection requirements. The events are selected with efficiency ǫ < 1, hence what one measures experimentally

is µvis = ǫµ and σvis = ǫσinel. Hence, the instantaneous luminosity expressed in terms of measurable µvis

takes the form:
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L =
µnbfr

σinel
=
ǫµnbfr

ǫσinel
=
µvisnbfr

σvis
(4.3)

4.2 Absolute Luminosity Measurement

As follows from Equation 4.3, the problem of absolute instantaneous luminosity determination boils down

to measurement of µvis and σvis, where the visible cross section σvis is essentially the calibration constant

that relates the measurable quantity µvis to the instantaneous luminosity L. One should also note that the

above mentioned calibration constant σinel is specific to event selection requirements (or equivalently the

event selection algorithm) and the detector system, the information of which is used by the event selection

algorithms.

Determination of Visible Average Number of Inelastic Interactions per BC µvis

In order to determine the quantity µi
vis for a given BC i, ATLAS makes use of two types of event counting

algorithms, where the raw number of selected events Ni and the number of bunch crossingsNB are measured.

1. EventOR algorithm, where an event is counted if the sum of all hits in both the forward (‘A’) and

backward (‘C’) sides is at least one. Assuming that the number of interactions in a BC are described

by a Poisson distribution, the probability of observing an inclusive (EventOR) type of event can be

computed as [50]:

PEvent OR(µOR
vis ) =

NOR

NBC
= 1 − e−µOR

vis (4.4)

Hence, µvis can be expressed in terms of the event-counting rate yields as:

µOR
vis = −ln

(

1 − NOR

NBC

)

(4.5)

2. EventAND algorithm, where an event is selected if there is at least one hit on each side of the detector.

Here, the probability to record a coincidence event is PEvent AND which one minus the probability

PZero OR
0 of there being no hit on at least one side. The latter in turn equals the probability that there

be no hit on at least side A (P0A = e−µǫA

), plus the probability that there is no hit on at least side
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C (P0C = e−µǫC), minus the probability that there be no hit on either side (P0 = 1 − PEvent OR =

e−µǫOR

) [50]. Combining terms, one arrives at:

PEvent AND =
NAND

NBC
= 1 − PZero OR

0 (µ) (4.6)

= 1 −
(

e−µǫA

+ e−µǫB − e−µǫOR
)

(4.7)

= 1 −
(

e−µǫA

+ e−µǫB − e−µ(ǫA+ǫC+ǫAND)
)

(4.8)

Recall that ǫAND ≡ σAND
vis /σinel and ǫOR ≡ σOR

vis /σinel, also the relation between efficiencies: ǫOR =

ǫA + ǫC − ǫAND. For the ATLAS experiment, one can assume ǫAND << ǫA,C and ǫA ≈ ǫB, hence the

final expression for PEvent AND is:

PEvent AND

(
µAND

vis

)
=
NAND

NBC
= 1 − 2e−(1+σOR

vis /σAND
vis )µAND

vis + e−(σOR
vis /σAND

vis )µAND
vis (4.9)

It is not possible to invert this relation analytically to obtain an expression for µAND
vis in terms of the

number of selected coincidence events NAND
vis and the total number of bunch crossings NBC . Typically, the

inversion is performed numerically using a look-up table, or the function is inverted for a specific value of µ

using an iterative technique, such as the Newton-Raphson method [51].

Determination of the calibration constant σvis

Determination of the calibration constant σvis in ATLAS is achieved in two steps. The first step is to infer

the instantaneous luminosity from accelerator parameters, such as nb number of bunches that cross at the

interaction point, collider revolution frequency fr, the number of particles in colliding bunches n1,2 and the

horizontal and vertical beam profile characteristics Σx,y:

L =
nbfrn1n2

2πΣxΣy
[cm−2s−1] (4.10)

Typically, one measures the beam parameters Σx,y using van der Meer (vdM) scans, where the event

rate is recorded while scanning the two beams across each other first in the horizontal (x) and then in the

vertical (y) direction. The beam conditions during the vdM scans are different from those in normal physics
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operations, with fewer bunches colliding, no bunch trains, and lower bunch intensities. These conditions are

chosen in order to reduce various systematic uncertainties in the scan procedure. As a result of the vdM scan

a Gaussian curve is obtained per scan, with the maximum rate at zero separation from which one extracts

the values of Σx and Σy [50].

The number of protons in colliding bunches n1,2 or equivalently the bunch charge currents are measured

with eight Bunch Current Transformers (BCTs). Each beam is monitored by two identical and redundant DC

current transformers (DCCT), which are high accuracy devices but are not capable of separating individual

bunch charges. Each beam is also monitored by two fast beam current transformers (FBCT) which have

the ability to measure individual bunch currents. Combining the total current measured with DCCT with

the relative fraction of the total current in each BCID determined with FBCT provides the needed bunch

charge current values n1,2. Combining expressions 4.3 and 4.10 one arrives at the following expression for

the luminosity calibration constant:

σvis = µvis
2πΣxΣy

n1n2
[cm2] (4.11)

where µvis is the visible average number of inelastic interactions per bunch crossing.

Determining the calibration constant σvis per luminosity detector per luminosity algorithm, allows con-

version of the measured value for µi
vis into the absolute luminosity value for each bunch crossing.

4.3 Instantaneous Luminosity Uncertainty Evaluation

The absolute instantaneous luminosity determination described in the previous section suffers from both

systematic and statistical uncertainties, which in turn arise from the uncertainties on the measured average

number of interactions per bunch crossing µvis and the luminosity calibration constant σvis. Table 4.1

summarizes the main sources of systematic uncertainty for the visible cross section σvis along with the

relative systematic uncertainties δσvis/σvis per uncertainty source [52]. The main uncertainty comes from

‘Bunch charge product’ measurement, where among other sources of systematic uncertainty, the DCCT scale

variation (±2.7%) and bunch-to-bunch fraction measurement (±1.3%) are the dominant contributors.

Table 4.2 lists the main sources of the total uncertainty on the absolute instantaneous luminosity mea-

surement of the data sample used for this analysis [52].
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Table 4.1: Relative systematic uncertainties on the determination of the visible cross section σvis.

Source Systematic Uncertainty [%]
Bunch charge product 3.0
Beam centering 0.1
Emittance growth 0.4
Beam-position jitter 0.3
Bunch-to-bunch σvis consistency 0.4
Length scale calibration 0.3
Absolute ID length scale 0.3
Fit model 0.8
Transverse correlations 0.5
µ dependence 0.5
BCM consistency 0.7
Total 3.4

Table 4.2: Relative uncertainty (in %) on the calibrated instantaneous luminosity broken down by the source.

Uncertainty Source δL/L
vdM Scan Calibration 3.4 %
Afterglow Calibration 0.2 %
Long-term Consistency 1.9 %

µ Dependence 1.0 %
Total 3.7 %
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4.4 Data Sample

In the scope of this dissertation we used pp collision data provided by the LHC accelerator at 7 TeV center-

of-mass energy collected in the first half of 2011. The data taking was separated into data collection periods

within which the trigger conditions and LHC operation mode remained stable. The data used here was

collected in data-taking periods B-G5, during which the LHC provided stable colliding beams and ATLAS

systems critical for the Emiss
T determination, muon, electron, jet identification were producing data of suffi-

cient quality so as to be suitable for physics analysis. Proceeding from the absolute instantaneous luminosity

determination prescription described in Section 4.2, one can then compute the integrated luminosity asso-

ciated with data collection periods B-G5 to be L =
∫
Ldt = 698 pb−1. As discussed in Section 4.3 this

integrated luminosity measurement has an overall uncertainty of 3.7 %.
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Chapter 5

Monte Carlo Simulation for Signal
and Background Processes

5.1 Introduction

In collider experiments, typically interesting physics events are those that contain collisions with hard scat-

tering processes, characterized by large momentum transfer. Along with the hard scattering signal process,

depending on colliding beam parameters, the same event may contain additional hard and/or soft scatter-

ing processes that comprise the so-called underlying event1. All of these processes are governed by strong

interaction physics and, hence by its underlying field theory - QCD. According to QCD, the partons emitted

from collisions radiate additional partons which in turn create more partons in a process similar to an elec-

tromagnetic shower. This process is known as the parton shower. Because of color confinement, quarks and

anti-quarks created in parton showers cannot exit in a free state and must combine to form color-neutral

hadrons. The latter process is known as hadronization. The tight cone of particles created by the hadroniza-

tion of a single high pT quark is called a jet. Hence, realistic Monte Carlo simulations of hard-scattering

collision events must provide an accurate description of the hard scattering signal, underlying events, parton

shower evolution and subsequent hadronization. Figure 5.1 shows a schematic drawing of a typical hadron

collision hard scattering event.

As discussed earlier, we make use of perturbative QCD in order to calculate the probability (or equiva-

lently the matrix element squared) for a given strong interaction processes; the calculation is more precise

the more higher-order perturbative terms are included in that calculation. On the other hand, what one

ultimately observes in the collider experiment is a final state containing some number of leptons and jets. In

order to describe the latter to arbitrary order, typically one makes use of Parton Shower Modeling following

the strategy described below:

1. Knowing the PDFs for the proton, calculate the parton-parton hard scattering subprocess matrix

1The underlying event should be distinguished from the concept of the minimum bias event which is an event that causes
the detector trigger to fire with imposed minimal requirements. Frequently, these are soft pp scattering processes. At high
luminosities, where there are multiple interactions per typical proton bunch crossing event, the hard scattering process would
be overlaid with several minimum bias processes that are called pile-up events.
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Figure 5.1: Schematic drawing of a hadronic collision hard scattering event.

element at the leading log order in QCD.

2. Add additional QCD and QED radiation in a shower approximation and subsequent hadronization.

Parton Shower modeling provides a reasonably good description of collision physics for soft scattering,

collinear partons, whereas it performs poorly for the cases of hard scattering events with widely separated

jets (such as those produced in tt̄ pair decay). However, one can do better by replacing the first step

with a higher-order perturbative calculation of the hard scattering matrix element and interfacing the hard

scattering products to the parton shower simulation. At the interfacing step, one needs to combine different

jet multiplicities from matrix elements without double counting with the parton shower emission. There are

two widely used approaches to accomplish this: the CKKW scheme [53] and the MLM scheme [54].

At the final stage, following hadronization, the stable particles2 are propagated through the full ATLAS

detector simulation by Geant4 [55].

2In ATLAS, a particle is assumed to be stable if cτ ≥ 10 mm.
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5.2 Monte Carlo Simulation for Signal and Background

Processes

The Monte Carlo simulation samples, intended for the determination of signal acceptance and background

contamination, as well as validation of analysis procedures of the ATLAS data collected in the first half of

2011, were produced in the scope of the MC10b production project by the ATLAS production group [56].

Event generation was followed by the propagation of events through the full Geant4 simulation of the

ATLAS detector for all Monte Carlo samples. The reconstruction and digitization in the MC10b project

was performed with the same ATLAS software release as the 2011 data reprocessing. Only one pile-up

configuration corresponding to the LHC running with 50 ns bunch separation was used. The effect of pile-up

was simulated using PYTHIA6 [57] Monte Carlo generated minimum bias events and assuming variable

pile-up rates.

In the scope of the MC10b project, the individual MC sample event statistics generated was such that

the statistical uncertainties associated with the Monte Carlo event samples were considerably smaller than

the statistical uncertainties associated with the actual data sets. Therefore, MC samples with an integrated

luminosity of at least ∼ 10-15 fb−1 were used for the main signal and background processes. For the signal

and each of the main background processes several Monte Carlo models were used. A baseline model was

selected for each of the MC samples; the baseline MC sample was used as the default MC sample by the

ATLAS Top Working Group (TWG) analyses and had been generated with larger statistics than the MC

samples generated using the alternative models. Below we summarize the main features of the MC10b

production campaign MC sample.

Signal tt̄ and single top events generated using the MC@NLO [58] generator v3.41 with the CTEQ66 [59]

parton distribution function were chosen as baseline MC samples. The addition of parton shower and the

underlying event was achieved by using HERWIG v6.510 [60] and JIMMY [61] MC event generators

using the CTEQ66 HERWIG and JIMMY AUET1 PDF’s tuned [62] to the ATLAS data. The MC tt̄

cross section was normalized to the approximate next-to-next-to leading order prediction value of 164.6 pb

obtained using the HATHOR tool [63]. For the single top MC samples, 300000 events were generated

for each of the e, µ and τ t-channel and s-channel leptonic decay channels. For signal MC tt̄ production,

other Monte Carlo generators and generator parameter setups were used to provide simulation samples with

statistics complying with the MC10b production guidelines. Alternative MC tt̄ samples simulated using

POWHEG [64] interfaced with PYTHIA as well as HERWIG [65] and JIMMY enabled the comparisons

of two different parton shower and hadronization models against the baseline and also a comparison of the
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POWHEG and MC@NLO generators. A set of twelve samples generated with AcerMC [66] and PYTHIA

generators was made available for the MC tt̄ initial and final state radiation studies. For these MC samples,

the initial and final state parameters (or their combinations) were set to a range of values not excluded by

the current experimental data.

The MC vector boson production was simulated using ALPGEN interfaced to HERWIG MC event

generators while JIMMY [61] was used for underlying event simulation. The CTEQ6.1 parton distribution

function was used for both the matrix element calculations and the parton shower evolution. The additional

partons produced in the matrix element part of the MC event generation can be either light partons (W+jets

and γ/Z+jets) or heavy quarks (W + c+jets, W + cc+jets, W + bb+jets, Z + cc+jets and Z + bb+jets).

The inclusive W and γ/Z MC samples were produced as a full set of the parton multiplicity sub-samples.

For all of the MC vector boson production process samples requested and used by the Top Group, the

ALPGEN parameters controlling the minimal transverse momentum and angular separation of the light

quarks were set to ptjmin=15 GeV and drjmin=0.7. The clustering parameters used for the MLM match-

ing were set to RCLUS=0.7 and ETCLUS=20 GeV. The MC vector boson production processes had integrated

luminosities of ∼ 10 fb−1, in order for the parton multiplicity sub-samples to have a reasonable probabil-

ity of surviving the tt̄ signal event selection cuts. The production cross sections of all of the ALPGEN

and HERWIG samples were normalized to the corresponding next-to-next-to leading order cross section

predictions [67].

ALPGEN was used for MC di-boson event (WW , WZ and ZZ) simulation. These samples were

produced with up to three additional partons from the matrix element. They were therefore likely to

represent a more credible background simulation than the other (e.g. HERWIG) samples when the event

selection cuts included the multiplicity cuts on high-pt QCD jets. A list of all Monte Carlo simulated data

samples used in this analysis is given in Appendix D.
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Chapter 6

Analysis Object Reconstruction and
Identification

6.1 Electrons

6.1.1 Trigger Chain

As discussed in Section 3.3.6, ATLAS employs a three-level trigger system. The first level trigger (L1) consists

of special purpose hardware, while the second (L2) and third (EF) were software based and collectively

referred to as the High Level Trigger (HLT). Triggers for the electron channel of top events were based

on selecting high transverse momentum electrons. The trigger for the electron sample for the top pair

production cross section measurements is as follows: at the first trigger level, electron candidate events are

selected by requiring an electromagnetic object passing a certain high energy threshold. At the HLT level,

calorimeter clusters are associated with tracks, the full granularity of the calorimeter becomes available and

fast calorimeter and track reconstruction algorithms were deployed. For both the data and MC simulation we

require the EF e20 medium trigger path [68]. The efficiency of the trigger (ǫtrig) and the ratio of efficiencies

(SFtrig) obtained from data and MC were measured using the unbiased leg in Z → ee and W → eν in 18

bins of |η| (cluster position) and were found to plateau for ET > 25 GeV, with ǫtrig ≃ 98% and SFtrig(η)

within 1 ± 0.02 for all except forward (|η| > 2) regions.

6.1.2 Electron Reconstruction, Identification and Kinematical Selection

Electron candidate selection starts with the trigger requirement described above, followed by selection cuts

imposed on the reconstructed offline candidate electrons (we use ElectronAODCollection). A set of quality

requirements was applied in order to ensure that candidates were consistent with the energy deposition of

an electron in the calorimeters and the presence of a well-measured high PT track that spatially matched

to the electromagnetic cluster was also required. Specifically, electron candidates were required to pass the

egamma group definition of a ‘tight’ 1 electron selection [69], with an overall efficiency of ∼75%. Electron

identification cuts also included a requirement to pass ET = Ecluster/ cosh(ηtrack) > 25 GeV, where Ecluster

1This corresponds to ‘egammaPIDs::ElectronTight’ selection.
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is the calorimeter cluster energy and ηtrack is the longitudinal direction of the electron track. Additionally,

we require that |ηcluster| < 2.47, excluding the calorimeter crack region at 1.37 < |ηcluster| < 1.52, where

ηcluster is the pseudorapidity of the calorimeter energy cluster associated with the candidate. The value of

E/p, the ratio of electron cluster energy measured in the calorimeter to momentum in the inner tracker,

was required to be consistent with that expected for an electron2. In addition, the track was required to

have an associated hit in the innermost pixel layer in order to suppress photon conversions, except when

the track passed through modules known to be dead. Information about high-threshold TRT hits was also

used to separate electrons from photons. In addition, a run-dependent quality map (OTX map) was used

to reject electrons from detector regions with known problems, such as non-nominal high voltage or readout

problems.

The efficiencies of the electron track and cluster reconstruction and the electron identification were

measured within the egamma combined performance group using data and MC samples of Z→ ee and

W → eν [70]. MC simulations were reported to agree reasonably well with data, with a few exceptions -

mainly regarding the lateral development of EM showers and the TRT data in the end-caps. Scale factors

were applied to account for differences in efficiency values measured in MC versus data. The electron

reconstruction efficiency, including track quality cuts, was measured in three |η| regions and the scale factor

was found to be consistent with 1 except for |η| > 2.37, where it was ≃ 0.97. The electron ID efficiencies

and scale factors were measured in 18 η bins (plus 2 for the calorimeter gaps) and 6 ET bins [71]. The η-

dependent scale factors were corrected by the ratio of ET -dependent scale factors to the overall scale factors

to form a 2-dimensional matrix. Figure 6.1 shows the ID SF’s as a function of the electron η and ET .

(a) (b)

Figure 6.1: Electron identification SF’s versus η (with ET between 20 and 50 GeV) and versus ET (for all
η) [72] (not public plots).

2The cut is η and ET dependent and ranges from 0.7 − 0.8 < E/p < 2.5 − 5.0.
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Isolation requirements

Electrons emitted due to W -boson leptonic decay are isolated from jet activity, except for cases of accidental

overlap with one of the jets in the event. There are three major sources of contamination for high pT

isolated electrons: hadrons faking an electron signature, electrons from heavy-flavor decays and photon

conversions. In order to suppress these background events, an angular cone of ∆R =
√

∆η2 + ∆φ2 = 0.2

centered around the electron was required to be free of jet activity. In order to achieve this, we required that

EtCone20 < 3.5 GeV, where the electron EM cluster energy is subtracted from the EtCone20 parameter.

Additionally, two corrections to EtCone20 were made:

• A leakage-correction, which accounted for the ET -dependent and η-dependent slope of the average

cone energy versus the electron ET .

• A pileup-correction, which accounted for the effect of underlying events on the electron isolation vari-

able.

6.1.3 Electron energy scale and resolution

In the kinematic range comparable to that of electrons in top events, the electron energy scale and electron

energy resolution was derived from the measurement of the Z → ee invariant mass distribution [73]. A

correction factor was applied to correct the electron energy scale in data as a function of the electron

ηcluster (using 26 central and 6 forward η bins). Systematic uncertainties were within ±1–1.5% for the

|ηcluster| < 2.5 range. The dominant uncertainty sources were the knowledge of detector material thickness

and the presampler energy scale, pile-up effects and hardware modeling.

6.2 Muons

6.2.1 Trigger Chain

The muon trigger was required to obtain a suitable compromise between high trigger efficiency and stability

throughout the dataset (no muon trigger Pre-Scaling). Events in the muon channel were selected at the trig-

ger level requiring the EF mu18 trigger chain to have fired, with the Level 1 trigger requirement L1 MU10. The

level 1 trigger required a muon spectrometer track with at least 10 GeV of estimated transverse momentum

at two layers of the trigger system.
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6.2.2 Muon Reconstruction, Identification and Kinematic Selections

Muon candidates were reconstructed by the MuID algorithm which started with a search for track segments

in different layers of the muon chambers using Hough transforms [74]. These segments were then combined

starting from the outermost layer, fitted to account for material effects, and matched with tracks found in

the inner detector to form a combined muon. The final candidates were refitted using the complete track

information from both detector systems. The reconstruction efficiency for combined muons was studied by

the Muon Combined Performance group (MCP). The MCP group provided the scale factors to correct MC

efficiencies in order to reproduce those obtained in data as a function of the muon η [75]. The reconstruction

scale factors were roughly consistent with unity throughout the η range, with uncertainties at the level of a

few per-mille. The muon reconstruction efficiency and muon momentum distribution width were corrected

using official MCP software packages approved by ATLAS. The nominal acceptance was measured from MC

simulated data after applying all of the muon corrections. The associated uncertainties of these corrections

were then used to derive systematic uncertainties on the muon acceptance estimate.

Muons were further required to satisfy the ‘tight’ muon quality definition made available by the MCP

group3. We required muons that were reconstructed by combining Inner Detector and Muon Spectrometer

information. This requirement enhanced the muon sample purity; this definition of a muon was also con-

sistent with the definition of a muon used in the muon term for calculating the missing ET as used in this

analysis. The following MCP recommendations for muon track quality were also implemented:

• Number of B-Layer hits > 0, if the expectBLayerHit returns true

• Number of pixel hits + number of crossed dead pixel sensors > 1

• Number of SCT hits + number of crossed dead SCT sensors ≥ 6

• Number of pixel holes + number of SCT holes < 3

• for |η| < 1.9: Number of TRT hits + Number of TRT outliers > 5 and (Number of TRT out-

liers)/(Number of TRT hits+outliers) < 0.9

• for |η| > 1.9: if Number of TRT hits + Number of TRT outliers > 5: (Number of TRT out-

liers)/(Number of TRT hits+outliers) < 0.9

Specific additional cuts were applied for the top analyses in order to reject muons coming from heavy

and light flavor decays (such as b and c baryon and meson decays and π and K decays in flight) as opposed

to prompt W decay. The following cuts were optimized based on simulation:

3https://twiki.cern.ch/twiki/bin/view/AtlasProtected/QualityDefinitionMuid
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• pT(µ) > 20 GeV

• |η(µ)| < 2.5 (corresponding to the geometrical acceptance of the Inner Detector in muon combined

tracking)

• ∆R(µ, closest reconstructed jet) > 0.4, where the closest jet was taken among the jets reconstructed

by the anti-kt algorithm, with a cone of 0.4 and calibrated using the EMJES scheme. We considered

only jets with pT(jet) > 20 GeV

• etcone30(µ) < 4 GeV

• ptcone30(µ) < 4 GeV

Each pair of muons passing these cuts was checked against simple cosmic-muon rejection criteria. Cosmic

ray muon candidates were removed if they had two muons with opposite signed transverse impact parameters,

d0 and both muon tracks had |d0| > 0.5 mm and ∆ϕ > 3.10 between their respective muon directions. While

the calorimeter isolation requirement was sufficient to reject electrons from heavy flavor decays, muons were

required to have angular separation distance ∆R greater than 0.4 from any jet with pT > 20 GeV in order

to reject muons from heavy flavor decays.

6.2.3 Efficiencies and scale factors

The trigger efficiency of the muon trigger chain EF mu18 (that used MU10 at level 1) was measured for the

entire data taking period used in this analysis. The efficiency was measured using offline reconstructed muons

that also passed all of the top-specific selections of Section 6.2.2. The selection requirements for so-called

tag and probe muons are summarized in Table 6.1 and described in [76]. The top WG official Good Run

List was used when selecting events from data. Alpgen Z(→ µµ) + N jets MC10b Monte Carlo sets were

used as simulation samples. The muon trigger efficiency in MC and data was studied as a function of the

muon η, φ and pT. Fig.6.2 shows MC and data muon trigger efficiencies as a function of several variables.

Table 6.1: Definition of tag and probe muons for muon trigger efficiency measurement.

Tag Muons Probe Muons

Tight muon passing all offline selections
Combined muon requirement

Matched to a trigger ROI object
within ∆R = 0.2

|Mtag+probe −MZ | ≤ 12 GeV

opposite charge wrt the tag
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Due to an extrapolation bug in MC simulation affecting combined muon triggers at L2 (MuComb algorithm)

in the barrel region [77], a dependence of the SF on muon pT was observed in this region (but not in the

EC).

The misconfiguration problem was only present in the MC10b production, but not in the on-line menu

used for collision data; it primarily affected very high-pT muons. The pT range of muons from Z decays was

limited and therefore the tag-and-probe technique could not be used to measure the behavior of the simulated

efficiency after pT ≈ 150 GeV. Given this limitation, we did not impose a trigger decision requirement for

Monte Carlo events that contained muons with pT>150 GeV. MC events containing at least one muon, that

passed all selection requirements and participated in the muon trigger were weighted by the SF to match

the efficiency to values obtained from data. No data/MC disagreements were found vs. ∆R(µ, closest jet).

These studies delivered muon trigger efficiencies as a function of η and φ and trigger scale factors separated

into three pT bins, [20-60 GeV], [60-120 GeV] and > 120 GeV. Figure 6.3(a) shows the scale factor maps for

the low pT bin and Figure 6.3(b) shows the efficiency maps.

The systematic uncertainty on the muon trigger SF evaluation was traced to the following sources: the

di-muon invariant mass cut around the world average Z mass [78]; the trigger matching cut and the effect

of isolation on the tag muon.

The reconstruction efficiency for Muid combined muons was factorized from the offline muon identification

by normalizing the muon identification efficiency to the number of Muid combined muon probes. As for the

muon trigger efficiency measurement, the tag-and-probe technique and the same MC simulation samples were

used to evaluate the muon reconstruction and identification efficiency. Table 6.2 presents the requirements

for tag and probe muon selection for reconstruction and identification efficiency estimation. The background

contribution in data was estimated from a fit to the invariant mass shape of same-sign dimuon combinations

close to the Z pole, as described in [76]. Figure 6.4 shows the top-specific identification efficiencies as a

function of the most relevant kinematic and pile-up variables after background subtraction in data. No

dependence was observed on the etcone30 and ptcone30 variables either. The following were considered

as sources of systematic uncertainties: the background subtraction procedure; the effect of the Z mass

constraint on the di-muon invariant mass by varying the constraint in both data and MC [76]; the effect of a

mismeasurement of the muon momentum (in the tag/probe selection); the effect of quality cuts such as the

number of Inner Detector hits; and finally, the effect of interaction pile-up at higher luminosities. The overall

scale factor obtained from these muon studies for data-taking periods B to I was: SFId = 1.0008 ± 0.0003

(stat) ±0.0003 (syst).
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Figure 6.2: Comparison of muon EF trigger efficiency for data (black) and MC (red) as a function of the
probe muon η, φ, pT and number of reconstructed primary vertices (on-time pile-up). The dependence on
muon pT in the Barrel and EC was different, as shown. The plots use 490 pb−1 of 2011 collision data (periods
B2 to F3) [72] (not public plots).
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Figure 6.3: (a) Muon trigger scale factor maps as a function of η and φ for periods B-I. The maps use offline
muons with 20 < pT < 60 GeV. (b) Muon trigger efficiency maps as a function of η and φ for periods B-I [72]
(not public plots).

Table 6.2: Definition of tag and probe muons for muon reconstruction and identification efficiency measure-
ment.

Reco Tag

Tight muon passing all offline selections
Combined muon requirement
|d0(µ, PV )| ≤ 0.05 mm
matched to EF muon trig ROI within ∆R =
0.2

Reco Probe ID Tag
Track passing InDet requirements
PT ≥ 22 GeV, to allow for MS-InDet mis-
match due to tracking resolution effects and
avoid boundary effects around PT = 20 GeV
|d0(µ, PV )| ≤ 0.05 mm
|Mtag+probe −MZ | ≤ 10 GeV
∆φ(tag − probe) ≥ 1.5 rad
opposite charge wrt tag

ID Probe
Tight muon passing all offline selections
Combined muon requirement
PT = 20 GeV
|Mtag+probe −MZ | ≤ 10 GeV
∆φ(tag − probe) ≥ 1.5 rad
opposite charge wrt tag
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Figure 6.4: Muon identification efficiency measured with the tag-and-probe method for data (black dots)
and MC (yellow rectangles) as a function of η(µ), pT (µ), ∆R(µ, closest jet) and N(PV) in the event. The
data uses 690 pb−1 of 2011 collision data. The MC includes all background contributions [72] (not public
plots).

6.3 Track Leptons

As described in Section 1.6.2, we relaxed the requirements on one of the lepton legs to require only a high-pT ,

high quality Inner Detector track in order to enhance the analysis sensitivity to τ -leptonic decays of the W±

boson and restore the signal events lost due to lepton identification inefficiencies. Below, I describe in detail

the approach we used to define the minimal set of parameters required for Track Lepton (TL) selection and

to determine the optimal cut thresholds per parameter.

6.3.1 Track Lepton Selection

We categorize the three main requirements on tracking parameters that we used to define the TL object:

1. Requirements on the number of track hits per Inner Detector subsystem. This group of cuts was

mainly used to ensure high efficiency for Inner Detector track reconstruction.

2. Isolation requirements. The main purpose for track isolation requirements was to suppress tracks

originating from parton fragmentation (so-called fakes).

3. Impact parameter requirements. The purpose of this group of cuts was to suppress tracks that were

65



not associated with the highest pT hard scattering vertex or belonged to non-collision backgrounds.

In order to obtain the defining TL parameters along with their optimal cut values, we established the

following prescription: we started off by relaxing all of the TL requirements with the exception of the

pT > 20 GeV cut. Further, for each tracking parameter group, we identified the parameter(s) with highest

signal acceptance and maximal background suppression and associated cut threshold value(s) yielding the

maximal significance in a dedicated optimization procedure. In view of the high TL fake rate, we enhanced

the sensitivity of the TL optimization procedure to fake-TL backgrounds (mainly W+jets) by introducing

into the figure of merit for the optimization an additional fake background term:

α =
S

√

(δNStat)2 + (F ·BFake)2
︸ ︷︷ ︸

fake background systematic term

+
∑

(δBStat
i )2

(6.1)

where the statistical term δNStat =
√

S +
∑
Bi, S, Bi are defined as the signal and background events

respectively, δBStat
i was the statistical uncertainty per background, F was the factor describing the antic-

ipated systematic uncertainty for fake Track-Lepton backgrounds. For this study, we assumed F = 0.25,

which was the target level for the systematic uncertainty associated with fake TL background.

The above definition for the optimization figure of merit enabled identification of threshold values that

allowed minimization of not only the statistical uncertainty on the tt̄ cross section measurement, but also

the systematic uncertainty on fake TL backgrounds.

Let us now return to the above mentioned categories of tracking parameter requirements for TL definition

and focus on the optimization of the parameters that belong to the first category comprising:

• Pixel hits

• SCT hits

• Combined Pixel and SCT hits (often referred to as Silicon Hits (NSi))

• B-layer hits

A cut on the Number of Pixel+SCT hits > 6 was identified as the optimal parameter emerging from the

first category.

For the isolation requirement optimization we considered a 3 × 3 matrix of isolation parameters i.e. 3

types of isolation variables defined in 3 fixed cone sizes (∆R = 0.2, 0.3, 0.4).

1. Combined pT of the tracks with pT > 0.5 GeV around given track in a fixed cone size ∆R = 0.2, 0.3, 0.4.
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2. Combined pT of the tracks with pT > 0.5 GeV and NSi > 0 hits around given track in a fixed cone

size ∆R = 0.2, 0.3, 0.4.

3. The number of tracks with pT > 0.5 GeV and NSi > 0 hits around given track in a fixed cone size

∆R = 0.2, 0.3, 0.4.

The optimal isolation type was identified as the combined pT of tracks with pmin
T > 0.5 GeV and NSi > 6

hits around given track in a fixed cone size ∆R = 0.3. As one can see from Figure 6.5, threshold values for

the inclusive Lepton+Track analysis channels were pT ≤ 2 GeV, whereas optimal cut values for the exclusive

analysis4 were tighter pT ≤ 1 GeV, which was due to the enhanced fake rate for the case of the exclusive

analysis. However, for the sake of simplicity, and in order to make the exclusive Lepton+Track analysis a

subset of the inclusive analysis, a unique track isolation pT cut value was chosen.

Lastly, we considered the transverse d0 and longitudinal z0 sin θ impact parameters in the third group

of parameters where optimal cuts were found to be |d0| < 0.2 mm and no cut on the longitudinal impact

parameter.

The results of the Track-Lepton optimization study are summarized in the Table 6.3.

Table 6.3: Track-Lepton Selection Requirements.

Parameter Cut Value

pT > 25 GeV
Number of Pixel+SCT hits > 6

Isolation(∆R = 0.3) < 2 GeV
|d0| < 0.2 mm

Number of B-layer hits > 0
|η| < 2.4

σ(q/p)/(q/p) < 0.2

Our detailed study of fake Track-Lepton backgrounds indicated the need for 3 additional cuts on Number

of B-layer hits, the track pseudorapidity and relative uncertainty on the ratio of charge per momentum (q/p)

parameter. This optimization study was carried out in the context of the 2010 analysis. Figures 6.6 and 6.7

present the data distribution and Monte Carlo simulation of the tracking parameters used for TL definition

for the case of the inclusive l+track analysis. The corresponding plots for the exclusive analysis can be found

in Figures 6.8 and 6.9.

4The definition of the inclusive and exclusive Lepton+track analysis was provided in Section 7.1.
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Figure 6.5: The significance for the Track Lepton optimization as a function of the threshold value on the
isolation parameter piso30

T determined by combining the pT of the tracks that were within a cone of ∆R = 0.3
around the TL and have pMin

T > 500 MeV, and NSilicon > 0. The upper plots depicts the significance for
the Inclusive flavor of the Lepton+Track Analysis, while the lower ones are for the Exclusive flavor. The
left-hand side ones are for the case of e+track final state, and the right-hand side plots are for µ+track final
state.
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Figure 6.6: The comparison of e+track data and Monte Carlo simulation for the track parameters used for
the TL definition. The distributions were obtained imposing all of the requirements described in Table 6.3.
and the inclusive e+track event selection.
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Figure 6.7: The comparison of µ+track data and Monte Carlo simulation for the track parameters used for
the TL definition. The distributions were obtained imposing all of the requirements described in Table 6.3.
and the inclusive µ+track event selection.
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Figure 6.8: The comparison e+track of data and Monte Carlo simulation for the track parameters used for
the TL definition. The distributions were obtained imposing all of the requirements described in Table 6.3.
and the exclusive e+track event selection.
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Figure 6.9: The comparison of µ+track data and Monte Carlo simulation for the track parameters used for
the TL definition. The distributions were obtained imposing all of the requirements described in Table 6.3.
and the exclusive µ+track event selection.
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6.3.2 Track Lepton Efficiencies and Scale Factors

The tag-and-probe technique was used to measure the data/MC scale factor for TL in Z → µµ and Z → ee

events. The tag leg was defined using an identified electron or muon, while the probe leg was defined using

either only calorimeter information, in the case of Z → ee, or only muon spectrometer information in the

case of Z → µµ. In the case of Z → ee, we used electrons reconstructed by the cluster based algorithms and

satisfying the above described OTX quality check. For Z → µµ we used muons reconstructed by only the

Muon Spectrometer information. For both cases we further required that probe-leg leptons had PT > 25

GeV and |η| ≤ 2.4. The charge for the tag legs was randomly chosen to be positive or negative, so that

the probes had an equal mixture of both. The TL efficiency denominator consisted of all probe legs with

pT >25 GeV and |η| <2.4 . The numerator consisted of denominator probe legs that passed the TL selection

in Table 6.3. The efficiency was measured integrated over the entire 0.7 fb−1 dataset, and MC events were

pile-up reweighted. Figure 6.10 shows the TL efficiency measurement in data (black) and Monte Carlo

(red) for Z → µµ events as a function of pT, the number of vertices, η, and φ. The integrated scale factor

(data/MC) was found to be 0.997±0.002. Similar results for Z → ee events are shown in Figure 6.11. The

integrated scale factor for TLs from electrons was 1.047±0.005. The TL efficiency decreases with the number

of primary vertices, due to the failure of the isolation requirement in events with large numbers of tracks

from pile-up interactions. The Monte Carlo simulations modeled this effect reasonably well and the scale

factor had little or no dependence on the number of primary vertices. Track leptons can be electrons, muons,

or hadrons. In the case of hadrons in the MC, we applied the efficiency scale factor derived from Z → µµ

because hadronic interactions in the material of the Inner Detector are relatively rare, and therefore most

hadrons faking isolated tracks behave like muons in the Inner Detector.

6.3.3 Track-Lepton-Specific Systematic Uncertainties

The above mentioned scale factors are values averaged over the kinematic distributions of muons and electrons

from Z decays, and the uncertainties shown are statistical only. Due to the pT and η dependence of the

scale factor, a systematic uncertainty was associated to it by averaging over the pT and η distributions of

electrons or muons from tt̄ decays. The difference between the Z−averaged and tt̄-averaged scale factors was

taken as a systematic uncertainty. The statistical uncertainty on the scale factor measurement was added

to it in quadrature to obtain the total systematic uncertainty on the scale factor.

A systematic uncertainty associated with the TL momentum scale and resolution was also included. This

was accomplished by selecting Z → µµ and Z → ee using the muon and e-gamma streams and plotting the

invariant mass of OS TLs. We fitted the invariant mass distributions in the data and MC to a Breit-Wigner
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Figure 6.10: The TL efficiency measured from Z → µµ events in data (black) and Monte Carlo (red).
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Figure 6.11: The TL efficiency measured from Z → ee events in data (black) and Monte Carlo (red).
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convoluted with a Gaussian for the case of the muons, and to a pair of Crystal Ball functions [79] in the

case of the electrons. Figure 6.12 shows the data and MC fits. We take half the difference in the peak of

these fits between data and MC as a systematic uncertainty on the pT scale, and the quadrature difference

in the widths divided by
√

2 as a systematic uncertainty on the resolution. The MC modeling was quite

good and the differences in the scale and resolution are small. In the muon channel the MC Z peak was at

90.9 GeV and in data was at 90.8, giving a systematic uncertainty on the pT scale of 0.06% . The resolution

uncertainty in the muon channel was extracted from the quadrature difference in the fit Gaussian width

of 4.54 GeV in the data vs. 3.93 GeV in the MC. Using a mean pT of 40 GeV, measured from the MC,

the systematic uncertainty on the TL resolution in the MC was
√

4.542 − 3.932/(
√

2·40)=4.0%. Fits in the

electron channel were more difficult to interpret because of the double Crystal Ball function fit and the lack

of detailed quantitative knowledge of the radiator material in Inner Detector as a function of η. We used

the Crystal Ball function that determines the approximately Gaussian falling edge in the ee figures on the

left of Figure 6.12 to give a pT scale systematic uncertainty of 0.04% (the data-MC difference in the peak

position was 0.075 GeV) and a resolution uncertainty of 5.4%.

6.4 Jet Selection and Systematics

Jet were reconstructed using the anti-kt algorithm [80, 81] (R=0.4). The anti-kt algorithm takes as input

reconstructed topological clusters in the calorimeter calibrated at the electromagnetic scale, as compatible

with electron and photon energy depositions. In order to restore jet energies to the hadronic energy scale,

one further needs to rescale cluster energies with Monte Carlo based pT and η dependent correction factors.

In order to derive the correction factors for the hadronic scale, we used inclusive QCD jet events simulated

with 75 ns bunch spacing within the bunch train and with a pile-up level averaging 8 interactions per bunch

crossing.

Jet quality criteria were applied in order to reject events that contained jets not associated with in-time

real energy deposits in the calorimeters, caused by various sources ranging from hardware problems in the

calorimeter, the LHC beam conditions and atmospheric muon cosmic ray induced showers.

The calorimeter jet reconstruction efficiency [82,83] was derived relative to jets built from charged tracks

reconstructed in the inner detector system, again using a tag and probe technique. The reconstruction

efficiency was defined as the fraction of probe track-jets matched to a calorimeter jet. The observed difference

between data and MC was applied to MC by computing for each selected jet its probability to be badly

reconstructed and vetoing that jet if its probability was greater than some threshold value.
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Figure 6.12: Opposite-sign TLs invariant mass for collision data (top) and MC (bottom), left-hand-side:
electrons, right-hand-side: muons.
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The jet energy resolution, as measured using the di-jet balance and the bi-sector techniques [84] achieved

good agreement between data and MC simulation to within 2%. The uncertainty was propagated to the

MC by Gaussian smearing the jet transverse momentum.

The jet energy scale uncertainty (JES) was based on the evaluation derived from 2010 data and MC.

However, in-situ measurements showed that the overall estimate of the JES uncertainty from 2010 data was

still valid for jets used in this analysis. Some of the dominant contributors to the JES uncertainty were the

JES calibration method, the calorimeter response and the ATLAS detector simulation. [85]. The uncertainty

associated with the pile-up contribution has been re-evaluated with 2011 data and was binned in three pT

bins for central and forward jets (see Table 6.4). Additional contributions were included in order to account

for the top multi-jet environment: the flavour composition and close-by jet uncertainties.

In order to avoid double counting between electromagnetic and hadronic objects, a jet close to an electron

candidate was removed if the corresponding distance between the jet and the electron track was ∆R < 0.2.

Finally, only jets with pT > 20 GeV and |ηdetector| < 2.5 were considered.

Table 6.4: The jet energy scale uncertainty associated with pile-up derived for central and forward jets in 3
pT bins.

0 < |η| < 2.1 2.1 < |η| < 4.5
20 < pT < 50 GeV 5 % 7 %
50 < pT < 100 GeV 2 % 3 %
pT > 100 GeV 0 % 0 %

6.5 The Missing Transverse Energy

We used the missing transverse energy algorithm MET RefFinal em loose provided by the Top Working

Group [86]. This algorithm takes as input topological clusters with calibration based on the physics object

they are associated with. Muons, which are not primarily measured by the calorimeter, are included using

their momentum as measured by the Inner Detector and Muon Spectrometer systems. Topological clusters

are associated with electrons, high PT jets and low PT jets (SoftJets). The above mentioned order of

the objects is important since it demonstrates the cluster to object association preference. The remaining

clusters that are not associated with high PT objects are included at the EM scale in a CellOut term. The

EMiss
T is calculated using Equations 6.2 and 6.3.

EMiss
x,y = EElectrons

x,y + EJets
x,y + ESoftJets

x,y + EMuon
x,y + ECellOut

x,y (6.2)
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EMiss
T =

√

(EMiss
x )

2
+

(
EMiss

y

)2
(6.3)

The electron term in the EMiss
T uses clusters associated with electrons satisfying the isEM::Loose defini-

tion with PT > 10 GeV [69]. The EMiss
T electron term takes electrons at the energy scale that accounts for all

electron correction factors except the out-of-cluster correction. Both PT > 20 GeV jet and SoftJet jet terms

do not include pile-up corrections to the jet energy scale. The latter term for jets in the 7 GeV< PT < 20 GeV

range enters into the EMiss
T balance calibrated to the EM scale, while the former for jets with PT > 20 GeV

is corrected to the full hadronic energy scale EM+JES. The muon term in the EMiss
T is determined from the

MuidMuonCollection muon momentum for the full acceptance range of the muon spectrometers, |η| < 2.7.

All combined muons within |η| < 2.5 are included in the EMiss
T calculation. The muon term in the EMiss

T

also contains isolated muons (MET MU TRACK) and non-isolated muons (MET MU SPECTRO) [86].

Missing ET in Lepton+Track events

By definition, the TL in exclusive events is not an identified lepton and therefore is typically not handled

correctly in the Emiss
T balance, giving rise to large Emiss

T tails in the exclusive Lepton+Track events. While

unidentified electrons enter the Emiss
T calculation as a jet, unidentified muons are completely neglected from

the Emiss
T calculation.

MET RefFinal em loose was found to have significantly better performance in Drell-Yan plus Z (DY/Z)

events in the eTL channel, compared to other prescriptions for Emiss
T calculations, and was therefore used

for the Emiss
T selection in the lepton+track analysis. In order to suppress backgrounds from DY/Z events

in the µTL channel, the Emiss
T was corrected by the pT of the TL in µTL events if the ∆φ between the

Emiss
T and the TL direction was less than 0.2 and there was no identified lepton within ∆R=0.05 of the TL.

Figure 6.13 explicitly demonstrates the effect of this correction by comparing the ‘No Correction’ scenario

to the ‘With Correction’ scenario for the full data sample. One can observe that the Emiss
T correction helps

to move a significant number of events from the bump around Emiss
T ∼ 40 GeV to the bulk of events near the

origin. This agrees well with what one expects from the Emiss
T correction for DY/Z dilepton events, where

mis-treated muons from Z decays are responsible for the bump around Emiss
T = 40 GeV.

6.5.1 EMiss
T Uncertainties

Some of the most significant sources of uncertainty on the Emiss
T calculation come from the scale and resolution

of the objects energy and PT , the description of the pile-up events and the impact of hardware failures [86].
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Figure 6.13: Measured Emiss
T for exclusive µ+track events selected from the collision data set. Two scenarios

are shown: ‘No Correction’ (red circles) and ‘With Correction’ (green triangles). No requirements on the
event kinematics such as HT , Njets, Mll and Emiss

T were imposed.

Each of the objects in the EMiss
T calculation has an uncertainty related to the scale of resolution of the

energy or PT of the object. For the electrons, high-PT jets and muons, the uncertainties on the scale and res-

olution of the objects energy and PT were propagated into the EMiss
T calculation using the METComposition

code [87], assuming a 100% correlation between the uncertainty on the objects and the EMiss
T .

We note that special care was taken to ensure appropriate jet calibration when, due to an energy scale

or resolution shift, jets transitioning through the PT > 20 GeV boundary and thus being changed from the

SoftJet category calibrated at the EM scale to the high PT jets category calibrated at the EM+JES scale.

For high PT jets, the EMiss
T uncertainty also takes into account the jet efficiency uncertainty by reducing

the jet contribution to EMiss
T to the EM scale, and properly includes the transition between EM and EM+JES

scale at the PT = 20 GeV boundary.

For the SoftJet and CellOut terms, the main uncertainty comes from the topological cluster energy

scale, estimated to be ±10.5% and ±13.2% respectively [88]5. These values were used to scale up and down

the SoftJet and CellOut terms assuming a 100% correlation.

Preliminary studies revealed a discrepancy between some data versus MC simulation in the low energy

EMiss
T attributed to pile-up. These effects were observed in the jet, SoftJet and CellOut terms, while

for the high PT jets, the effect of pile-up was already included in the JES uncertainty. Therefore, for the

SoftJet and CellOut terms, both the x and y components of the EMiss
T were shifted by ±10% to account

5The EMiss
T

definition studied in [88] is MET RefFinal
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for this discrepancy.

In April 2011, six front end boards (FEBs) were lost due to a Controller Board problem. This mainly

caused jet and electron energy mis-measurement due to the dead FEBs. This failure occurred after the

production of the MC10b Monte Carlo was complete, thus the MC simulation was FEB-problem blind. In

order to account for it properly in Monte Carlo simulations, the following prescription was suggested by

the Top Group: events with at least one low quality jet were identified. The jet was considered to be low

quality if it was within ∆R < 0.1 from the FEB hole and PT > PThres. For the case of MC simulation

PThres = 20 GeV, while for data PThres = 20 GeV was adjusted in order to account for the missing energy

in the jet, PT > 20 GeV × 1−BCH CORR JET
1−BCH CORR CELL . BCH CORR CELL is the corrected fraction of jet by Cell

Average Energy Density Correction and BCH CORR JET is the estimated missing energy in the jets

from “bad cells” based on the average jet shape in MC [89]. A ±20% systematic uncertainty was applied on

the modified threshold in data in order to account for possible data/MC discrepancies in the event shape

and differences between b-jets, quark jets, and gluon jets. We used the special software CheckOQ tool to

identify electrons affected by the problematic FEBs and removed them from the Emiss
T balance calculation

both in the data and the MC simulation.
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Chapter 7

tt̄ Cross Section Measurements using
Lepton+Track Selection

7.1 Introduction

We stated in Section 1.6.2 that we focussed on the inclusive and the exclusive l+track selection of dilepton

events for the tt̄ cross section measurement. Most of the events selected by the inclusive l+track analysis are

also selected by the conventional 2ID analysis with two identified leptons. The sub-set of the inclusive l+track

events that do not pass the 2ID analysis selection requirements compose the exclusive l+track events. In

order to obtain the sample of exclusive l+track events we fully implemented the 2ID analysis event selections

(parallel to l+track event selection requirements) and rejected those events that passed all 2ID requirements.

As one expected, the exclusive l+track events most often failed 2ID analysis event selection requirements due

to more stringent requirements on the second lepton leg or the higher cut threshold on missing transverse

energy1. It is also important to note that a fraction of the 2ID events were never selected by the inclusive

l+track analysis. This is primarily due to tighter requirements on isolation and transverse impact parameter

of the TL (see Table 6.3), a shift in the measured Mll of the l+track pair due to non-compensated radiation

losses that a charged particle may undergo in the tracker, and the absence of the Emiss
T cut for eµ events.

We adhered to the robust cut-and-count method in order to perform the tt̄ cross section measurement.

The robustness of the method is in its relative independence of shapes of distributions and its explicit

clarity for the central value measurement. One only needs to define the signal selection requirements and

perform the counting of signal and background events. Being simple, the method makes it relatively easy to

comprehend and explain the causal relations and tendencies between the main processes that significantly

affect the cross section measurement. Nevertheless, note that the estimation of systematic uncertainties

still requires in-depth complex studies. One of the major components in the analyzer’s arsenal to refine the

measurement is establishing the optimal signal event selection requirements. Thus, we devoted special care

to devise an event selection optimization algorithm that yielded the definition of a set of the most effective

requirements for tt̄ candidate event selection.

1The 2ID analysis used Emiss
T

>60 GeV in ee and µµ channels vs. Emiss
T

>45 GeV in l+track analysis.
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7.2 Optimization Algorithm for Event Selection Requirements

The ultimate goal for optimization of tt̄ event selection is to determine a set of requirements that enables

a measurement of the tt̄ pair production cross section with the smallest possible statistical and systematic

uncertainties. In order to ensure minimal statistical uncertainty, the event selection should provide as pure

as possible candidate event sampling while simultaneously suppressing background events. The optimal

balance between background rejection and signal acceptance that yields the minimal statistical uncertainty

is estimated by maximizing S/
√

(S +
∑
Bi), where S is the number of signal events and Bi is the number of

background events of species i. The systematic uncertainty on the tt̄ cross section measurement is directly

traced to the systematic uncertainties on the signal acceptance ∆A and to each of the background contri-

butions ∆Bi. This implies that the optimization should be made sensitive to the systematic uncertainties

on the signal acceptance and the background contributions in order to ensure that the determination of the

event selection requirements minimizes the effect of the uncertainty ∆A and ∆Bi on the tt̄ cross section

measurement.

In order to make the overall approach to optimization as robust as possible, we defined a single figure of

merit which by construction was made sensitive not only to statistical but also to systematic uncertainties,

the maximum of which yielded the optimal event selection for the analysis:

α =
S

√

(δNStat)2 +
∑

(δNSyst
i )2 +

∑
(δBStat

i )2
(7.1)

where the statistical term δNStat =
√

S +
∑
Bi, S and Bi are defined as the number of signal and ith

background type events respectively, and δBStat
i is the statistical uncertainty per ith background component.

The ith systematic term is defined as:

δNSyst
i =

1

2
· (N+1σ

i −N−1σ
i ). (7.2)

The systematic uncertainties that were accounted for included the electron and muon energy scale and

resolution uncertainties as well as the uncertainty on the jet energy scale. These uncertainties were deter-

mined by shifting their energy scales and resolution by ±1σ within their uncertainty bands, recalculating

ET accordingly and measuring the change in the accepted number of signal and background events.

We further decided to take advantage of the fact that the data-driven estimation of the DY/Z opposite

sign dilepton background has a smaller systematic uncertainty than MC simulation of this background, hence

in the course of optimization, this also helped to retain signal acceptance. As described in Section 7.4.1, the
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data-driven DY/Z evaluation uses a data to MC ratio K(Emiss
T ) in a control region around the Z-boson mass,

called the ‘Z-window’ to scale the MC prediction for DY/Z dilepton events in the signal region, outside of

this Z-window. The Emiss
T requirement in the CR can be different from that in the SR, and its value was

included as a parameter to be optimized. The ratio K(Emiss
T ) depends on the Emiss

T threshold, thus one needs

to include in the figure of merit a term to describe the systematic uncertainty due to data-driven approach

itself:

δNSyst
DY =

1

2
NDY

MC · [K(Emiss
T CR) −K(Emiss

T SR)] (7.3)

with K(Emiss
T ) denoting the Emiss

T dependent correction factor for data-driven DY/Z dilepton estimation

(more details on K(Emiss
T ) are available in section 7.4.1).

7.3 tt̄ Candidate Event Selection for the l+Track Analysis

The tt̄ candidate event selection requirements that were found to be effective for the l+track analysis were

the cuts on the invariant mass of the opposite sign lepton-TL pair Mll, the SR missing transverse energy

Emiss
T SR as well as the scalar transverse energy sum HT of the selected leptons and jets. The prime reason

for the Z-mass window cut is the suppression of DY/Z dilepton pair background. The Emiss
T SR cut was

applied to suppress residual DY/Z events outside the Z-mass window. Finally, we made use of the cut on

HT to suppress backgrounds that involve misidentified leptons (fakes), i.e. leptons that did not belong to

t→Wb→ lνb decay chain or were faked by isolated jets that passed the lepton identification requirements.

We found that there were non-negligible correlations between the quantities effective for the l+track event

selection, thus motivating a simultaneous grid optimization in the phase space spanned by the parameters

effective for l+track event selection. Since 4D simultaneous optimization was excessively CPU intensive,

the HT cut was fixed at 150 GeV, and a three dimensional optimization of the Mll, E
miss
T SR and Emiss

T CR was

performed. Skimming through the 3D parameter phase space was performed after imposing several dilepton

event selection requirements such as: the identified leptons were required to be oppositely-charged and the

event had to have at least two identified jets. Events with more than two identified leptons were rejected.

The phase-space cuts on the low invariant mass m(l+l−) for the MC DY/Z dilepton samples also require

a phase space cut on the selected events in data. Due to resolution effects, a cut on the reconstructed

invariant dilepton mass of m(l+l−) > 15 GeV was used for both MC and data events. This cut removed

dilepton contamination from all low mass resonances (e.g. Υ or J/ψ). In order to avoid double counting of

background events with misidentified leptons present both in the MC and the data-driven backgrounds, for
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the Monte Carlo tt̄ samples we required that the reconstructed leptons originated from a leptonic W decay

(or subsequent tau decay). This was achieved using a dedicated software tool developed by the ATLAS

collaboration: MCTruthClassifier. The residual DY/Z dilepton background outside the Z-mass window

was derived using the data-driven method described in Section 7.4.1. The Mll, E
miss
T SR, Emiss

T CR and HT cuts

were simultaneously optimized for e+track and µ+track channels. The optimization was run independently

for the inclusive and exclusive modes of the l+track analysis.

In Figure 7.1, we present the dependence of the significance on the Z-mass window cut only. For this

pair of plots we used the data-driven technique to estimate the expected number of DY/Z dilepton events.

The optimization was performed in 2010 data analysis. One can observe in Figure 7.1 that the significance

curves do not fall steeply from the maxima, allowing for small adjustments in the values of chosen cut

threshold values at the price of losing only a few percent in significance. Therefore, for the sake of simplicity

and consistency across the two analysis channels, we opted for a single set of event selection requirements

for the inclusive l+track analysis: Emiss
T SR >45 GeV, HT > 150 GeV, a Z-mass window half width of

10 GeV (81-101 GeV), although the optimum values found for e+track channel were a Z-window width of

zero and Emiss
T SR >45 GeV. For the case of the µ+track channel, the optimization prefers Emiss

T SR >35 GeV,

Emiss
T CR >15 GeV in the normalization region and a Z-mass window half width of 11 GeV. We opted for a

Z-mass window cut of 10 GeV as found to be optimal in the µ+track channel, so that the DY/Z dilepton

background suppression is not solely dependent on the Emiss
T SR requirement. Inside the Z-mass window,

i.e. in the control region the Emiss
T CR >45 GeV cut was chosen to minimize the data-driven DY/Z dilepton

background systematic uncertainty associated with the Emiss
T dependence of the Mll distribution in the CR.

For the exclusive l+track analysis mode, the optimum cut values were found to be not very different,

although there were significant statistical fluctuations in the significance curves. Therefore, the inclusive

results are used for both analysis modes, hence making the exclusive analysis a subset of the inclusive one.

These event selection requirements for exclusive l+track analysis result in a 20% tt̄ signal acceptance gain

over the conventional 2ID lepton tt̄ analysis. The left histogram Figure 7.2(a) shows the TL η for exclusive

events. In addition to the gain over all η due to efficiency losses from the identified lepton selection, one

notices various detector features such as the η = 0 gap between A and C sides of the Muon Spectrometer

and the transition region in the calorimeter near |η| = 1.4. The right histogram in Figure 7.2(b) shows the

exclusive acceptance by generator channel, demonstrating the increased acceptance for τ lepton channels.

The selection requirements on event kinematics are listed in Table 7.1.
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Figure 7.1: Significance vs. Z-mass window cut for the e+track and µ+track channels with Emiss
T held at its

optimized value, with HT > 150 GeV and DY/Z dilepton background prediction extracted with data-driven
approach.
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Figure 7.2: Exclusive event track-lepton η distribution (left) and generator channel (right).

Cut eTL µTL
Pairs Opp. Sign ID-Lepton+ TL, PT > 25(20) GeVfor e (µ)
Jets ≥ 2 jets, ET > 20 GeV, |η| < 2.5
Mll (l+TL pair) 15 GeV < Mℓℓ < 81 GeV or Mℓℓ > 101 GeV
Emiss

T SR Emiss
T > 45 GeV

HT HT > 150 GeV

Table 7.1: Requirements on Event Kinematics.
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7.4 tt̄ Background Determination

We attempted to minimize the reliance on Monte-Carlo simulations by making maximal use of data-driven

techniques for the evaluation of tt̄ background contributions.

As discussed earlier there are three categories of background sources:

1. The background from DY/Z dilepton processes (Z/γ∗ → ℓ+ℓ−) produced with associated jets and with

large Emiss
T due to resolution effects and/or measurement errors.

2. Processes that contain jets misidentified as electrons, muons or TLs as well as processes where non-

prompt leptons (i.e. leptons that do not originate from the decay of a W or Z boson) are misidentified

as prompt. We refer to both the misidentified jets and the non-prompt leptons as “fakes”. Fakes enter

the sample in events with W bosons produced in association with jets, and QCD multi-jet events. In

the case of W+jets events, one lepton is a real, prompt lepton from the W decay, the second is a fake

lepton produced by one of the jets. In the case of QCD multi-jet events, both identified leptons (i.e.

the electron or muon) and the TL are fakes. The latter contamination is negligible compared to fakes

from W+jets events. Events with a fake TL are one of the most significant backgrounds in the l+track

analysis channels.

3. Other background sources to the tt̄ l+track analysis comprise electroweak processes with two opposite-

sign leptons in the decay such as single top and diboson (WW , ZZ and WZ) production processes.

We make use of the data-driven approach for the DY/Z (Z/γ∗ → ℓ+ℓ−) and fake background evaluation.

These methods and corresponding results are described in following sections. The Z/γ∗ → τ+τ− background

and the smaller backgrounds listed in 3) above are evaluated from Monte Carlo simulations.

7.4.1 DY/Z Background

As discussed above, we veto events close to the Z pole by imposing the Z-mass window requirement: 81 GeV <

Mll < 101 GeV. We further suppress the surviving DY/Z dilepton events in the Z mass sidebands by imposing

the Emiss
T SR > 45 GeV cut. However, there are residual DY/Z dilepton events that pass the event selection

requirements. These events are difficult to model properly in the MC simulation due to uncertainties in the

non-Gaussian nature of the missing transverse energy tails, the lepton energy and momentum resolution and

the Z cross section in higher jet multiplicity bins.

In order to evaluate the DY/Z dilepton background in the l+track channels, we used the following

expression:
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DY/Z dilepton background estimates =
(Data(CR) − MCother(CR))

MCDY/Z(CR)
× MCDY/Z(SR) , (7.4)

DDDY/Z(SR) =
(Data(CR) − MCother(CR))

MCDY/Z(CR)
× MCDY/Z(SR) , (7.5)

where Data(CR) represents the observed number of events in the control region in L=698 pb−1 of collision

data, MCDY/Z(CR) is the number of MC DY/Z dilepton events measured in the control region. The control

region is formed by events with an invariant dilepton mass inside the ‘Z-mass window’, with at least two jets

and with Emiss
T > 45 GeV. Figure 7.3 shows a cartoon picture of the control region, which by construction

is orthogonal to the signal region. MCother(CR) is the contamination from some non-Z physics processes

in the control region as predicted using Monte Carlo. DY/Z(SR) is the number of DY/Z dilepton events

measured in the signal region using MC simulation. Taking the ratio of the measured number of events

in data and MC simulation inside the Control Region, one can define a correction factor K(Emiss
T ) that

was further used to normalize the MC prediction for DY/Z dilepton events to data. Figure 7.4 shows the

dependence of the correction factor K(Emiss
T ) on the Emiss

T CR requirement for the case of inclusive l+track

analysis. For both inclusive channels, the MC simulation reasonably reproduces the data in the low Emiss
T CR

region yielding K(Emiss
T ) ∼ 1. However, in the region of Emiss

T CR > 45 GeV for the e+track channel, the

MC over-predicts the number of DY/Z dilepton events (by ∼ 30 %), while for the µ+track channel there is

slight under-prediction. Similarly, Figure 7.5 shows the dependence of the correction factor K(Emiss
T ) on the

Emiss
T CR requirement for the case of the exclusive l+track analysis. The dependence of the correction factor

K(Emiss
T ) on the Emiss

T CR threshold is essentially the same as that for the inclusive mode. The main difference

is that in the large Emiss
T CR region for the µ+track channel, the mild over-prediction of the DY/Z events by

(a)

Figure 7.3: Cartoon picture of the control region that by construction is orthogonal to the signal region.
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the MC is changed to a slight under-prediction.
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Figure 7.4: The dependence of the correction factor K(Emiss
T ) on the Emiss

T CR threshold requirement for the
inclusive l+track analysis.
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Figure 7.5: The dependence of the correction factor K(Emiss
T ) on the Emiss

T CR threshold requirement for the
exclusive l+track analysis.

The observed and expected numbers in the control and signal regions are summarized in Table 7.2 for the

eTL, and µTL channels for both inclusive and exclusive modes of the analysis. The predictions for DY/Z

dilepton background events using the data-driven method are summarized in Table 7.3. The uncertainties

include both statistical and systematic components, discussed in detail in Section 8.1.

7.4.2 Fake Track-Lepton Backgrounds

The fake TL contamination is evaluated using a fake TL matrix which gives the probability that a jet will be

mis-reconstructed as a TL. The fake TL matrix is parameterized in jet ET and NPV , the number of primary

vertices with four or more tracks. The γ+jet events are used to build the elements of the fake TL matrix.
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DY sources Physics background sources (CR)

Channel Data(CR) MC(CR) MC(SR) tt̄ Zττ W/Z fake Diboson Single top Total

eTL Inclusive 218 134.7 82.1 88.3 0.1 17.8 9.7 4.0 119.9

µTL Inclusive 468 295.8 52.2 107.0 0.8 19.3 14.6 5.7 147.3

eTL Exclusive 74 54.3 40.7 21.2 0.1 16.8 2.6 0.8 41.5

µTL Exclusive 170 110.1 19.4 23.0 0.6 18.2 2.6 0.6 45.1

Table 7.2: The number of observed data events in the control region (Data(CR)), the number of Monte
Carlo events in the signal (MC(SR)) and control (MC(CR)) regions and the number of events from other
physics background sources contaminating the control region for DY background estimation in the inclusive
and exclusive l+track channels.

Inclusive Exclusive
eTL µTL eTL µTL

DD 59.9+15.0
−15.0 56.6+8.4

−8.6 24.3+10.7
−9.4 22.0+5.3

−5.8

MC 82.1+71.0
−48.4 52.2+36.4

−26.5 40.7+23.9
−20.0 19.4+8.8

−8.5

Table 7.3: Estimates of the contamination from DY/Z dilepton processes in the signal region of the tt̄
analysis from both the data-driven method and from Monte-Carlo methods.

Relative to QCD dijet events, photons are easily identifiable, robust trigger objects that make it easier to

avoid potential trigger biases that may occur in the fake probability measurement due to trigger object use.

The EM clusters associated with photons were not used in the calculation of the fake matrix elements. The

elements of the fake TL matrix were defined as:

FakeRate(ET, NPV ) =
Number of all selected track leptons (ET, NPV )

Number of all ID jets & jet − elements (ET, NPV )

where the TLs in the numerator pass all required ID cuts for the analysis. The denominator includes both

jets with ET >25 GeV and ‘jet-elements’, which are track leptons that are not within ∆R <0.4 of a jet. In

case it is not, in the denominator of the equation above, the track lepton is treated as if it were a jet (the

‘jet-element’) that fragmented to a single high PT track, leaving no remnants that are reconstructed as a

jet. The fake rates for track-leptons vs. jet ET and NPV are shown in Figure 7.6. The γ+jet events are

selected using the following requirements:

Photon trigger: EF g20 loose or EF g40 loose

Reconstructed photon, pT > 25 GeV, |η| < 2.37, excluding the crack region 1.37 < |η| < 1.52.

The photon must pass the egamma tight photon identification requirements and have calorimeter
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isolation in a dR = 0.4 cone of less than 2.5 GeV.
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Figure 7.6: Track lepton fake rate measured from γ+jets events vs. jet ET and number of primary vertices.

7.4.3 Determination of the Fake Track-Lepton Background

The prescription that we adopted for evaluation of the fake TL background contribution is as follows:

• From data, select events with exactly one ID lepton (e or µ), exactly zero TLs, at least one jet, and

Emiss
T >45 GeV. In the signal region of ≥2 jets, HT >150 GeV is required.

• Sub-divide this data sample as a function of the number of identified jets.

• Sum the fake probabilities for events with N jets to obtain the predicted number of fake leptons in

events with N − 1 jets (because the model is that one jet is reconstructed as a lepton, as illustrated in

Figure 7.7).

A few comments are in order: this prediction includes the contribution of W+jets, s and t channel single

top, and single-leptonic tt̄ events that enter the signal region, because these are all in the parent sample

defined in the first bullet above. The sum over all jets in all events predicts the total number of fake leptons,

not the number of events with at least one fake lepton in the data sample. We ignore this distinction because

the probability of multiple fakes in a single event is very small.

Finally, the fake prediction must be corrected for fraction of the fake leptons that:

• Have opposite sign (OS) charge to the ID lepton.
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Figure 7.7: Illustration showing a W+3 jet event being reconstructed as a W+2 jet event with a fake lepton.

• Form a l+track pair with invariant mass outside the Z-mass window.

The OS fraction is measured using Monte Carlo simulation and is parametrized as a function of jet

multiplicity. Table 7.4 shows, in each jet multiplicity bin, the total fake prediction, the expected fraction of

opposite-sign fakes and the opposite-sign fake prediction. Similarly, the fraction of events with l+track pair

invariant mass outside the Z-mass window was evaluated using W+jets, single top and semi-leptonic tt̄ MC

simulation. Due to the less stringent requirements on TL selection for the prompt lepton, the fake rate for

the TL is significantly higher than that for identified leptons. Due to the much lower fake rate, we neglect

fakes associated with misidentified electrons and muons and assume that the fakes are entirely from events

with one real electron or muon and a fake TL.

eTL inclusive µTL inclusive
# jets OS fraction OS fake prediction OS fraction OS fake prediction

0 0.97 ± 0.03 5.5 ± 1.3 0.94 ± 0.14 5.2 ± 1.4
1 0.79 ± 0.02 31.4± 6.4 0.80 ± 0.02 35.0± 7.2
2 0.82 ± 0.01 42.8± 8.7 0.79 ± 0.01 48.1± 9.8
3 0.81 ± 0.02 26.2± 5.3 0.78 ± 0.02 30.2 ± 6.2
4 0.71 ± 0.03 10.7± 2.2 0.79 ± 0.03 13.4± 2.8
≥5 0.71 ± 0.03 4.5 ± 0.9 0.73 ± 0.04 4.9± 1.0

eTL exclusive µTL exclusive
# jets OS fraction OS fake prediction OS fraction OS fake prediction

0 0.97 ± 0.03 3.0± 0.7 0.94 ± 0.14 2.9 ± 0.8
1 0.80 ± 0.02 26.2± 5.4 0.80 ± 0.02 28.6± 5.9
2 0.83 ± 0.01 37.9± 7.7 0.79 ± 0.01 42.0± 8.6
3 0.81 ± 0.02 22.9± 4.7 0.79 ± 0.02 26.7± 5.5
4 0.71 ± 0.03 9.4± 2.0 0.78 ± 0.03 11.6± 2.4
≥5 0.68 ± 0.02 3.8± 0.8 0.73 ± 0.03 4.3 ± 0.9

Table 7.4: Opposite-sign fraction and opposite-sign fake prediction for each jet multiplicity. The uncertainty
on the fake predictions is the statistical plus the 20% systematic uncertainty discussed in this Section.
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7.4.4 MC-based backgrounds

The contamination in the signal region due to other small cross section electroweak background processes,

such as single top, DY/Z→ ττ and dibosons was estimated directly from Monte Carlo simulations. By

inverting expression 2.4 one obtains the number of events:

Nobs = (A · ǫ) · σTheory ·
∫

Ldt (7.6)

We considered the effect of all sources of systematic uncertainties on the MC-based background predic-

tion(s), including analysis object related uncertainties (JES, ElES, MuES, etc) as well as the uncertainty due

to the uncertainty on the theoretical cross section productions. Event yields for these background sources

are summarized in Table 8.5 and Table 8.7 for the inclusive analysis. The corresponding information for the

exclusive mode is summarized in Table 8.9 and Table 8.11.

7.5 Observed Event Yields

Control Regions Following the signal selection optimization step that defined the signal region and

control region orthogonal to it, we validated the acceptance and efficiency modeling by comparing Monte

Carlo simulation with data in the background dominated Z-mass window control region where there are

relatively few tt̄ dilepton events. In particular, the Z mass window, defined as |Mll − MZ | ≤ 10 GeV,

Emiss
T CR > 45 GeV and HT > 150 GeV cuts were used. For the case of the inclusive l+track analysis,

Figures 7.8 (a) and (d) show Emiss
T for events in the Z mass region with at least 2 jets, Figures 7.8 (b) and

(e) show the jet multiplicity for events where the dilepton mass lies inside the Z peak, Emiss
T CR > 45 GeV and

HT > 150 GeV. Figure 7.8 (c) and (f) probe the Monte Carlo modeling of the scalar PT sum of leptons and

jets. Figure 7.9 presents the distributions of the corresponding quantities for the case of exclusive l+track

analysis. In general, good agreement between the background model and the data is observed.

Along with the Z mass window region, we use the zero and the one jet bins as additional, background

dominated control regions, due to the at least 2 jet requirement for the signal region. Table 7.5 summarizes

the number of observed data events, predicted background contributions and the tt̄ signal expectation for

cases with zero or 1 jet per analysis channel for the the inclusive l+track analyses. Table 7.6 presents the

same information for the exclusive l+track case. The Emiss
T distributions in the low jet multiplicity control

region are shown in Figures 7.10 (a) and (d). The invariant mass distribution of the lepton-TL pair are shown
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e+track µ+track

Process 0 jets 1 jet 0 jets 1 jet

DY/Z+jets (DD) 310.1+131.9
−128.9 107.9+51.3

−56.4 109.9+41.7
−41.9 82.7+35.2

−33.6

DY/Z(→ ττ)+jets (MC) 15.1+4.0
−6.9 28.5+9.4

−7.5 20.9+14.4
−9.4 55.2+15.3

−14.8

Fake leptons (DD) 221.5 ± 45.4 109.6 ± 22.4 355.2 ± 88.8 159.7 ± 32.9

Single top (MC) 5.8+1.1
−1.0 28.5+3.5

−3.4 7.0+1.3
−1.2 36.2+4.3

−4.1

Dibosons (MC) 47.6+4.4
−4.2 30.7+3.1

−3.0 60.9+5.3
−5.0 35.4+2.6

−2.7

Total background 600.0+140.0
−137.0 305.2+56.9

−61.3 552.8+99.3
−98.8 369.2+50.6

−49.4

tt̄ (σTheory = 164.6 pb−1) 9.72+4.9
−4.5 100.9+34.2

−36.0 100.9+34.2
−36.0 119.8+25.4

−26.2

Total expected events 609.7+139.7
−137.0 406.1+66.4

−70.7 444.2+85.3
−84.7 488.9+56.6

−55.9

Observed events 590 391 584 467

Table 7.5: Summary of background contributions to the inclusive l+track analysis in the 0 and 1 jet control
regions. No HT cut is applied.

in Figures 7.10 (b) and (e). Figures 7.10 (c) and (f) present the HT distributions for the inclusive l+track

channels. A similar set of plots for the exclusive mode of the l+track analysis are shown in Figures 7.11

(a-f). We again have good agreement between MC and the data.

Signal Region In Table 7.7 we summarize the number of observed data events, predicted background

contributions and the tt̄ signal expectation per analysis channel for the the inclusive and the exclusive

l+track analyses. In a data set of L=698 pb−1 a total of 1597 tt̄ candidate events are observed in the

inclusive l+track analysis, with 760 candidates in the eTL channel and 837 in µTL. In the exclusive mode

of the analysis a total of 491 candidate events are observed, with 236 events in eTL and 255 in µTL analysis

channels. Atlantis event display [90] pictures for the first e+track candidate event (run number 150530,

event number 42761229) and µ+track candidate (run number 161379, event number 49866533) observed by

ATLAS are shown in Appendix A.

In Figure 7.12 we present the main kinematic distributions describing the inclusive l+track events.

Corresponding plots for the exclusive l+track channels are shown in Figure 7.13.
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Figure 7.8: Control region plots for inclusive eTL (top row) and inclusive µTL (bottom row): (a),(c) Emiss
T

in events with a lepton-TL mass inside the Z mass window with ≥ 2 jets and HT >150 GeV, (b),(d) the
number of jets in events with a lepton-TL mass inside the Z mass window and Emiss

T > 45 GeV and HT >150
GeV, (c),(f), HT in events with a lepton-TL mass inside the Z mass window, ≥2 jets and Emiss

T 45 GeV.
The error bands reflect the statistical and systematic uncertainties of the MC prediction.
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Figure 7.9: Control region plots for exclusive eTL (top row) and exclusive µTL (bottom row): (a),(c) Emiss
T

in events with a lepton-TL mass inside the Z mass window with ≥ 2 jets and HT >150 GeV, (b),(d) the
number of jets in events with a lepton-TL mass inside the Z mass window and Emiss

T > 45 GeV and HT >150
GeV, (c),(f), HT in events with a lepton-TL mass inside the Z mass window, ≥2 jets and Emiss

T 45 GeV.
The error bands reflect the statistical and systematic uncertainties of the MC prediction.
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Figure 7.10: Control region plots for inclusive eTL (top row) and inclusive µTL (bottom row): (a),(c) Emiss
T

in events with a lepton-TL mass outside the Z mass window with < 2 jets, (b),(d) the lepton-TL in events
with < 2 jets and Emiss

T > 45 GeV (c),(f), HT in events with a lepton-TL mass outside the Z mass window,
<2 jets and Emiss

T 45 GeV. The error bands reflect the statistical and systematic uncertainties of the MC
prediction.
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Figure 7.11: Control region plots for exclusive eTL (top row) and exclusive µTL (bottom row): (a),(c) Emiss
T

in events with a lepton-TL mass outside the Z mass window with < 2 jets, (b),(d) the lepton-TL in events
with < 2 jets and Emiss

T > 45 GeV (c),(f), HT in events with a lepton-TL mass outside the Z mass window,
<2 jets and Emiss

T 45 GeV. The error bands reflect the statistical and systematic uncertainties of the MC
prediction.
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Figure 7.12: Signal region plots for inclusive eTL (top row) and inclusive µTL (bottom row): (a),(c) Emiss
T

in events with a lepton-TL mass outside the Z mass window with ≥ 2 jets and HT >150 GeV, (b),(d) the
number of jets in events with a lepton-TL mass outside the Z mass window and Emiss

T > 45 GeV and HT >150
GeV, (c),(f), HT in events with a lepton-TL mass outside the Z mass window, ≥2 jets and Emiss

T 45 GeV.
The error bands reflect the statistical and systematic uncertainties of the MC prediction.
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Figure 7.13: Signal region plots for exclusive eTL (top row) and exclusive µTL (bottom row): (a),(c) Emiss
T

in events with a lepton-TL mass outside the Z mass window with ≥ 2 jets and HT >150 GeV, (b),(d) the
number of jets in events with a lepton-TL mass outside the Z mass window and Emiss

T > 45 GeV and HT >150
GeV, (c),(f), HT in events with a lepton-TL mass outside the Z mass window, ≥2 jets and Emiss

T 45 GeV.
The error bands reflect the statistical and systematic uncertainties of the MC prediction.
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e+track µ+track

Process 0 jets 1 jet 0 jets 1 jet

DY/Z+jets (DD) 208.9+81.6
−80.8 55.6+22.8

−29.8 90.1+24.6
−24.9 53.9+14.2

−12.8

DY/Z(→ ττ)+jets (MC) 14.1+3.8
−6.9 18.9+6.9

−5.1 17.3+12.9
−8.0 35.5+11.1

−10.6

Fake leptons (DD) 199.1+40.9
−40.9 99.0+20.2

−20.2 322.0+80.6
−80.6 142.7+29.2

−29.2

Single top (MC) 1.5 ± 0.4 7.0 ± 1.0 1.3+0.3
−0.3 6.9+0.9

−0.9

Dibosons (MC) 10.3+0.9
−0.9 6.6+0.7

−0.8 11.7+1.0
−1.0 6.9+0.7

−0.7

Total background 433.7+91.4
−90.8 187.1+31.3

−36.4 442.3+85.3
−84.7 245.9+34.3

−33.6

tt̄ (σTheory = 164.6 pb−1) 2.2+1.6
−1.7 19.6+6.9

−7.9 1.9+1.7
−1.8 25.3+5.0

−5.6

Total expected events 436.0+91.4
−90.9 206.6+32.0

−37.3 444.2+85.3
−84.7 271.1+34.7

−34.1

Observed events 411 201 471 262

Table 7.6: Summary of background contributions to the exclusive l+track analysis in the 0 and 1 jet control
regions. No HT cut is applied.

Inclusive Exclusive

eTL µTL eTL µTL

DY/Z+jets (DD) 59.9+15.0
−15.0 56.6+8.4

−8.6 24.3+10.7
−9.4 22.0+5.3

−5.8

DY/Z(→ ττ)+jets (MC) 29.8+13.4
−13.6 47.5+20.24

−21.0 17.0+8.4
−7.6 24.7+11.4

−11.5

Fake leptons (DD) 84.2 ± 17.0 96.6 ± 19.5 74.0 ± 14.9 84.6 ± 17.1

Single top (MC) 24.5+3.9
−3.9 30.3 +3.9

−4.9 5.7+1.0
−0.9 6.3 +0.8

−1.1

Dibosons (MC) 22.1+3.1
−3.2 22.0 +3.2

−2.9 5.9+0.9
−0.8 4.8 +0.6

−0.7

Total background 220.4+26.7
−26.9 253.0+29.8

−30.4 126.4+20.2
−19.2 142.3+21.2

−21.4

tt̄ (σTheory = 164.6 pb−1) 485.5+51.7
−55.2 562.0+61.5

−61.0 111.7+16.1
−18.0 110.2+16.7

−15.8

Total expected events 705.9+58.2
−61.4 815.0+68.4

−68.2 238.6+25.8
−26.3 252.5+27.0

−26.6

Observed events 760 837 236 255

Table 7.7: The full breakdown of the expected tt̄-signal and background in the signal region compared to
the observed event yields, for each of the dilepton channels (MC is simulation based, DD is data-driven).
All systematic uncertainties are included and the correlations between the different background sources are
taken into account.
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Chapter 8

Estimation of Systematic
Uncertainties

8.1 Introduction

The most significant sources of systematic uncertainty related to analysis object selection were discussed in

detail in Sections 6.3.3, 6.4, 6.5.1. Below, I present a description of the systematic uncertainties associated

with Monte-Carlo modeling, Z/γ∗ background, and the fake TL predictions.

It was reported in [91] that Monte Carlo simulation-based predictions for W/Z+jet events with high jet

multiplicities have uncertainties of O(50%). The use of data-driven methods for the W/Z+jet background

predictions enabled a significant reduction of associated uncertainties. The Z → ττ background expectation

is fully MC-based. For the case of Z → ll (l = e or µ), we take the shapes from MC simulation, and use

the data/MC correction factor estimated in the control region to normalize the MC prediction to the data.

Then, the product of the correction factor and the MC-based residual DY/Z prediction is much less prone to

MC normalization uncertainty. The uncertainty due to the normalization in the Monte Carlo simulation is

taken from the Berends-scaling uncertainty [92] and is a function of parton multiplicity. For Z+0 jet the MC

normalization has an uncertainty of 4%, for Z+1 jet 20%, Z+2 jets 30%, Z+3 jets 40% and 60% for Z+4,5

jets. For the fake TL background, both the prediction and associated uncertainty are fully data-driven.

For the case of the single top and diboson background contributions, no dependence of the Monte

Carlo simulation on jet multiplicity was considered. The overall normalization uncertainty was taken to

be 10% [93,94] and 5% [95] for single top and dibosons, respectively.

In order to evaluate the effect of the tt̄ matrix element generation uncertainty on the signal accep-

tance, we compare the baseline tt̄ sample (MC@NLO interfaced with HERWIG) with tt̄ simulation using

POWHEG [96] interfaced with HERWIG. Similarly, in order to account for the uncertainty due to parton

shower simulation we used the tt̄ MC generated with POWHEG and interfaced to HERWIG and PYTHIA.

The effects of variations in the amount of initial- and final-state radiation (ISR/FSR) were studied using the

AcerMC generator [97] interfaced to PYTHIA, varying the parameters controlling ISR and FSR in a range

consistent with experimental data [98]. Due to the insufficient ISR/FSR sample sizes, it was not feasible
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to determine whether the associated uncertainties on the signal acceptance were asymmetric. Therefore,

these systematic uncertainties were assumed to be symmetric and were calculated as (u−d)
2n , where u(d) is

the number of events accepted from the samples with increased (reduced) ISR or FSR and n is the number

of events accepted from the nominal AcerMC sample. The effect of modeling uncertainties associated with

the parton density functions (PDF) used for signal tt̄ event generation was evaluated using the envelope of

error bands from CTEQ66, MSTW08 [99] and NNPDF 2.0 [100] MC sets, determined using the procedure

described in previous ATLAS studies [98].

8.1.1 Pile-up correction

The mean number of interactions per proton bunch crossing for the 2011 ATLAS
∫
Ldt = 698 pb−1 data

sample is 〈µ〉 ∼ 6 (see Section 4.2 for details on 〈µ〉). In order to properly model the observed multiple

interactions in the Monte Carlo samples, additional minimum bias events were simulated along with the

hard-scattering process. The number of additional minimum bias interactions per tt̄ simulated event obeys

a Poisson distribution, where the mean number of interactions 〈µ〉 in the Monte Carlo varies from 0 to 18, in

order to describe the various conditions of LHC instantaneous luminosity. The mean number of interactions

per bunch crossing can be obtained by inverting expression 4.3 to get 〈µ〉 = L·σvis

nb·fr
. The 〈µ〉 distribution for

data and MC is shown in Figure 8.1. The Monte Carlo samples are weighted such that the 〈µ〉 distribution

for the MC matches the distribution observed in the data.
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Figure 8.1: < µ > distributions in the MC (MC10b, left figures) and in the data (from run 178044 to 183347,
right figure). The MC is weighted to match this 〈µ〉 distribution between data and MC. The mean number
of interactions assumed when the MC was generated is larger than the number seen in the collision data.
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8.1.2 Z pT uncertainties

In the dilepton final state of tt̄ decays, the DY/Z dilepton process represents a major background where the Z

boson can be boosted in the transverse plane if high pT jets are produced in association with the Z. In order

to account for possible differences of the Z pT modeling in the MC versus real data and estimate the effect of

that mis-modeling on the tt̄ cross section measurement, we reweight the Z → ee, Z → µµ, and Z → ττ MC

events with a predefined Z pT dependent set of weights in order to match the dilepton system pT distribution

observed in the data control region, defined with |mll −mZ | < 10 GeV and Emiss
T > 45 GeV. The predicted

MC Z background is then recalculated and the difference is assigned as an uncertainty on the Z → ee,

Z → µµ, and Z → ττ backgrounds. This reweighting factor is evaluated using normalized distributions so

that the reweighting does not change the normalization, only the shape of the Z pT distribution.

8.2 Systematic Uncertainties Associated with the DY/Z

Backgrounds

The uncertainties on the DY/Z dilepton background evaluation are presented in Tables 8.1 and 8.2 for the

inclusive and exclusive lepton+track analyses, respectively. The systematic uncertainty associated with the

data-driven technique for the DY/Z dilepton background prediction of the method is evaluated by varying

the Emiss
T cut in the control region by ±5 GeV. This corresponds to the quadratic sum of the uncertainty

∆(Emiss
T ) ∼ 3.5 GeV at an average

∑
ET ∼ 15 GeV found for the events in the control region, and the

uncertainty on the lepton energy scale [101].

The other uncertainties include:

• Statistical uncertainty of data and MC (Data stat., MC stat.)

• The jet energy scale, resolution and efficiency (JES, JER, JEF),

• The Emiss
T soft-jet term measurement (MET(SoftJet)),

• The Emiss
T from pileup uncertainties (MET(PileUp)),

• The lepton identification and trigger scale factors (ID SF, Trig. SF),

• The lepton energy scale and resolution (ES, ER),

• The theoretical cross section for MC backgrounds (MC x-sec).
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As one would expect, use of the data-driven method decreases the reliance on the MC simulation,

subsequently yielding a reduction in the total uncertainty on the DY/Z dilepton background prediction.

The uncertainties other than the statistical uncertainties for the data-driven method largely cancel in the

ratio between the MC signal and control region in Equation 7.5.

Uncertainty(%) eTL (DD) eTL (MC) µTL (DD) µTL (MC)
Yield(events) 59.6 82.1 56.6 52.2
Lumi ±4.5 ±3.7 ±1.7 ±3.7
Stat(Data)
JES -10.6/+8.7 +71.9/-33.3 -0.6/+3.2 +51.7/-19.4
JER ±1.7 ±31.1 ±4.3 ±30.0
JEF ±0.1 ±0.0 ±0.1 ±0.0
MET(Softjet) -1.5/+6.8 +1.8/+6.5 -1.1/-1.6 -0.3/+1.5
MET(PileUp) -0.3/+4.9 +1.5/+5.9 +1.6/-3.3 -0.2/0.0
LAr(JetCleaning) +1.2/+1.1 +2.6/-1.5 -0.5/-0.3 +0.5/-1.6
SF(El.ID) ±1.8 ±4.3 - -
SF(El.Trig) ±0.2 ±0.7 - -
SF(Mu.ID) - - ±0.2 ±0.5
SF(Mu.Trig) - - -0.1/+0.2 ±0.3
SF(Trk ID) ±0.8 ±0.7 ±0.3 ±0.7
x-sec(Theory) -9.9/+9.2 ±35.1 -3.4/+2.5 ±34.5
Stat(MC) ±11.0 ±4.5 ±8.0 ±5.4
Z pT ±5.5 ±4.3 ±2.3 ±5.4
El.ES -3.3/+1.9 -1.8/+1.0 - -
El.ER +2.9/+1.5 +1.9/-0.7 - -
Trk ES ±1.5 ±0.9 ±0.8 ± 0.8
Trk ER ±0.1 ±3.1 ±5.4 ±5.7
Mu.ES - - -0.9/-0.3 -0.7/-0.5
Mu.ER - - ±1.0 ±1.4
Method ±14.6 - ±8.9 -
total(syst+lumi+stat) +25.0/-25.1 +71.0/-48.4 +14.8/-15.3 +69.8/-50.8

Table 8.1: Uncertainties (in %) on the predicted number of DY/Z events in the signal region for inclusive
lepton+track events. The uncertainties are compared between the data driven (DD) determination and
the determination from Monte Carlo simulations (MC). The uncertainty due to the method was evaluated
from the variation of the prediction when the Emiss

T cut in the control region was varied by ±5 GeV. The
larger difference was applied as a symmetric uncertainty on the background yield. The uncertainties on the
prediction are presented as +1σ/− 1σ variation of the systematic source.

8.3 Systematic uncertainty associated with Fake Track-Lepton

backgrounds

In order to evaluate the systematic uncertainty associated with the fake TL background prediction, we

compared the predicted and observed fakes in W+jets events selected from data samples in a control region,

orthogonal to the signal region by construction. The control region comprised events that included W+0,1
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Uncertainty(%) eTL (DD) eTL (MC) µTL (DD) µTL (MC)
Yield(events) 24.3 40.7 22.0 19.4
Lumi ±4.7 ±3.7 ±1.3 ±3.7
Stat(Data)
JES -19.3/+0.1 +42.0/-26.7 +2.4/-1.3 +25.7/-19.7
JER ±3.4 ±18.5 ±12.1 ±15.4
JEF ±0.0 ±0.0 ±0.0 ±0.0
MET(Softjet) -2.8/+2.7 +1.3/+4.0 +1.2/-7.1 +2.1/-7.8
MET(PileUp) -2.6/+2.3 -0.7/+3.2 +4.0/-9.5 +2.7/-7.8
LAr(JetCleaning) -1.7/+0.7 +2.2/-1.8 -0.6/-0.1 +0.0/-1.3
SF(El.ID) ±1.3 ±3.9 - -
SF(El.Trig) ±0.1 ±1.5 - -
SF(Mu.ID) - - ±0.1 ±0.5
SF(Mu.Trig) - - -0.4/+0.5 ±0.8
SF(Trk ID) ±0.6 ±0.7 ±0.2 ±0.7
x-sec(Theory) -15.4/+14.1 ±35.2 -6.4/+7.0 ±31.7
Stat(MC) ±18.6 ±6.9 ±13.7 ±9.6
Z pT ±6.8 ±3.3 ±1.1 ±6.1
El.ES -2.8/+3.6 -1.4/+0.6 - -
El.ER +5.2/-1.0 +2.7/-0.9 - -
Trk ES ±2.0 ±1.0 ±1.7 ± 1.4
Trk ER ±6.9 ±2.5 ±0.2 ±0.8
Mu.ES - - -1.6/+0.1 -1.4/+0.0
Mu.ER - - ±0.9 ±1.1
Method ±27.9 - ±13.1 -
total(syst+lumi+stat) +43.8/-38.5 +58.8/-49.2 +24.0/-26.9 +45.4/-43.7

Table 8.2: Uncertainties (in %) on the predicted number of DY/Z events in the signal region for exclusive
lepton+track events. The uncertainties are compared between the data driven (DD) determination and
the determination from Monte Carlo simulations (MC). The uncertainty due to the method was evaluated
from the variation of the prediction when the Emiss

T cut in the control region was varied by ±5 GeV. The
larger difference was applied as a symmetric uncertainty on the background yield. The uncertainties of the
prediction are presented as +1σ/− 1σ variation of the systematic source.

jet OS fakes and W+≥2 jets SS fakes with HT > 150 GeV. The number of predicted fakes (P) was estimated

using the same procedure as for the fake prediction in signal region. The observed fakes in W+jets sample

(O) was evaluated by counting the number of selected l+track pairs in control region. Note that the observed

fakes in W+jets events, in particular the OS events, contain l+track pairs associated with DY/Z and diboson

backgrounds. Therefore, these backgrounds must be included when comparing observed (O) and predicted

(P) fakes. This was achieved by adding the number of DY/Z and diboson background events to the prediction

(P) to get the total number of background events (B) in the control region. MC simulation was used to

estimate the DY/Z and diboson background contribution in W+≥2 jet bins, while the data-driven technique

described in Section 7.4.1 was used to estimate the number of DY/Z events in W+0,1 jet bins. The systematic

uncertainty was determined by comparing observed and predicted events.

A few remarks are in order. As a result of including DY/Z and diboson backgrounds in (B), the fractional
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difference between predicted and observed TLs absorbs fluctuations and systematic uncertainties due to these

MC predictions. As discussed in Section 7.4.2, the final fake TL background prediction in the signal region

was obtained after correction by the fraction of fake leptons that had opposite charge to the ID lepton. This

fraction was measured using Monte Carlo simulation and the accuracy of this fraction was included in the

overall systematic uncertainty. This was achieved via the above mentioned explicit OS or SS charge charge

requirement for l+track pairs in control region. The uncertainty on the estimation of the l+track pairs

that were outside the Z-mass window was propagated into the statistical uncertainty of the fake background

prediction. Table 8.3 shows the comparison. The overall agreement is impressive. We conservatively use a

20% systematic uncertainty on the prediction of fake TLs in the signal region, which is roughly one standard

deviation above the measured deviation between the predicted and observed fakes. Finally, the statistical

uncertainty was added in quadrature to the estimated 20% systematic uncertainty in order to obtain the

total uncertainty on the fake background prediction.

eTL µTL

#jets O B P (B-O)/P [%] O B P (B-O)/P [%]

0 (OS) 411 436.3+38.4
−36.8 199.1 ± 9.3 460 441.1+52.9

−52.0 321.9 ± 48.4

1 (OS) 201 207.1+16.9
−27.3 99.0 ± 4.2 247 270.5+17.2

−16.5 142.5 ± 6.0
2 (SS) 10 10.7 ± 0.8 7.6 ± 0.7 14 13.9 ± 1.0 11.1 ± 0.9
3 (SS) 7 6.2 ± 0.5 5.4 ± 0.5 9 8.3 ± 0.7 7.0 ± 0.6
4 (SS) 4 4.1 ± 0.4 3.8 ± 0.4 1 3.2 ± 0.4 3.1 ± 0.4
≥ 5 (SS) 2 1.9 ± 0.1 1.8 ± 0.1 0 1.5 ± 0.2 1.4 ± 0.2

Total 635 666.4+41.9
−45.8 316.6 ± 10.3 9.9+15.6

−16.5 731 738.5+55.6
−54.6 487.0 ± 48.8 1.5+12.7

−12.5

Table 8.3: Comparison of predicted and observed fake exclusive TLs in W+jets events. The columns labeled
‘O’ are the observed TLs, ‘B’ is the total background including the non-fake backgrounds, such as DY/Z,
and ‘P’ is the predicted fake contribution to ‘B’.

Samples of Z+jets events, reconstructed as identified ee or µµ (no TLs) were also used as a cross check

of the predictive power of the TL fake matrix. For this validation test, we adhered to the same procedure as

that for the fake prediction in the signal region. The fake matrix is applied to Z+N jet events to predict the

number of Z+(N-1) jets events with a TL in addition to the ee or µµ from the Z decay. Table 8.4 shows the

predicted and observed TLs in Z → ee and Z → µµ events as function of number of jets. The agreement

between the two is impressive, considerably better than our quoted 20% systematic uncertainty.
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Z → ee+fake
# jets Obs. Pred. (P-O)/P [%]

0 46 42.8±1.6
1 20 17.2±0.6
2 3 5.5 ±0.2
3 2 1.61 ±0.06
4 1 0.53 ±0.02

≥ 5 1 0.17 ±0.00
All 73 67.8 ±1.7 −7.8 ± 0.9

Z → µµ+fake
# jets Obs. Pred. (P-O)/P [%]

0 86 87.0±3.2
1 41 35.2±1.3
2 10 11.6±0.4
3 5 3.0±0.1
4 2 0.79±0.03

≥ 5 1 0.26±0.01
All 151 137.8±3.4 −9.6 ± 0.8

Table 8.4: Observed and predicted fakes in Z → ee and Z → µµ events.
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8.4 Evaluation of the Systematic and Statistical Uncertainties

for the tt̄ Cross-Section Measurement

Below, I summarize the main sources of the systematic uncertainties on the tt̄ cross section measurement and

present detailed results for the systematic and statistical uncertainty estimates for acceptance, background

predictions and subsequently on the tt̄ cross section measurement per analysis channel.

• Statistical uncertainty in data from data-driven estimations (Stat(Data))

• Statistical uncertainty in MC (Stat(MC)) for MC based backgrounds

• Uncertainty from the fake estimations (Fake)

• Uncertainty from the data-driven DY/Z dilepton background estimation (DY Method)

• Uncertainty from the theoretical MC cross sections (MC xsect.)

• Jet energy scale (JES), resolution (JER) and efficiency (JEF) uncertainties which are also propagated

into Emiss
T by rescaling the fractional contribution of the jet to the total Emiss

T

• Lepton identification (SF(Mu./El.ID)) and trigger scale factor uncertainties SF(Mu./El.Trig)

• Track-lepton identification scale factor uncertainties (TrID SF)

• Lepton energy scale and resolution (ES, ER, in the muon case the maximum deviation of the resolution

uncertainties from in the muon spectrometer (MS) and the inner detector (ID) track are considered)

also propagated into Emiss
T

• Track-lepton pT scale and resolution (TrES, TrER)

• Uncertainty due to pile-up (Pile-up)

• Uncertainty using different parton shower programs (P.Shower: HERWIG and PYTHIA) for the signal

MC

• Uncertainty using different generators for the signal MC (Generator: MC@NLO and POWHEG)

• Uncertainties due to ISR/FSR (varied individually)

The uncertainty on the tt̄ cross section measurement due to a given parameter is evaluated by shifting

the parameter up and down by one standard deviation and redoing the full analysis chain. Some of the
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uncertainty sources were expected and observed to have different effects on different analysis channels. For

example, the jet-related uncertainties were propagated to the jet term of Emiss
T and because of longer tails in

the Emiss
T distribution (due to misidentified or missing muons not accounted in Emiss

T balance properly) they

manifest differently in the muon+track channel. Also, electrons and muons are not on equal footing within

the analysis due to different order of overlap removal against jets. Hence, the different channels are affected

differently by scaling the leptons and jets. Limited statistics for some of the background processes may also

cause large fluctuations, especially between ‘up’ and ‘down’ variations of certain systematics.

The results are summarized for the total tt̄ acceptance in Table 8.5, Table 8.7 for the inclusive l+track

analysis and Table 8.9, Table 8.11 for the exclusive case. The systematic uncertainties for the backgrounds

evaluated with Monte Carlo simulations are shown in Table 8.6 and Table 8.8 for inclusive mode, and

Table 8.9 and Table 8.12 for the exclusive l+track analysis. The largest uncertainty is the jet energy

scale uncertainty in almost all channels. Channels with electrons have a large contribution from electron

identification efficiency scale factors. A significant contribution in the overall uncertainty comes from the

fake background estimate. The Monte Carlo modeling of the parton shower, the ISR/FSR and the limited

statistics of the background MC also contribute to the total uncertainty.
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∆ Acceptance (%) ∆ Cross Section %
Luminosity ±3.7
Data Stat ±5.1

MC Stat ± 1.5 +2.9
−2.8

Pile-up −0.1
−0.3

+0.9
−0.2

LAr Hole +0.5
−0.9

+1.0
−0.6

Fake - ± 3.1
DY Method - ±1.6

Z pT - ±0.9
MC xsect. - +2.3

−2.4

JES +5.6
−6.8

+9.1
−7.0

JER ± 0.1 ±0.4
JEF ± 0.0 ±0.04

Mu ID SF - -
Mu Trig SF - -
Ele ID SF ±3.3 +3.7

−3.5

Ele Trig SF ±2.2 ±0.2
TrID SF ±0.7 ±0.9
Mu ES - -

Mu ER (MS) - -
Mu ER (ID) - -

El ES +0.4
−0.4

+0.7
−0.7

El ER −0.2
+0.8

+1.0
−0.5

TrES ± 0.0 ±0.2
TrER ± 0.3 ±0.5

P.Shower ± 0.7 ±0.7
Generator ± 0.3 ±0.3

ISR ±3.2 ±1.1
FSR ±1.1 ±0.1
PDF ± 2.5 +2.6

−2.4

Syst total +8.0
−8.9

+12.2
−10.3

Table 8.5: Uncertainties on the acceptance and tt̄ cross section in the inclusive eTL channel. The uncertain-
ties are presented as +1σ/− 1σ variation of the systematic source.
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Single top Diboson DY/Z → ττ
Yield (events) 24.5 22.1 29.8

Uncertainty(%)
Lumi ± 3.7 ± 3.7 ± 3.7
JES +10.1

−10.6
+12.0
−12.5

+19.9
−20.6

JER ± 1.4 ± 0.4 ± 4.1
JEF ± 0.1 ± 0.1 ± 0.0

El. ID SF ±2.9 ±3.2 ±3.8
El. Trig SF ±0.1 ±0.1 ±0.3
Mu. ID SF - - -

Mu. Trig SF - - -
TrID SF ±0.7 ±0.7 ±0.7

Z pT - - ± 12.5
MC xsect. ±10.0 ±5.0 ±36.6
MC Stat. ± 3.3 ± 2.4 ± 7.4
Pile-up −1.4

+0.9
+0.1
−0.3

+0.9
−4.1

LAr Hole +0.2
−1.4

+0.9
−0.7

+0.0
−0.0

El ES +0.4
−0.3

+0.6
+0.1

+1.4
−0.0

El ER −0.4
+0.2

+0.3
+0.8

−0.9
+1.8

TrES ± 0.0 ± 0.1 ± 0.0
TrER ± 2.4 ± 0.3 ± 3.8
Mu ES - - -

Mu ER (MS) - - -
Mu ER (ID) - - -

total (syst+ lumi) +15.7
+16.1

+15.4
−14.0

+44.9
+45.7

Table 8.6: Uncertainties on the MC background contributions in the inclusive eTL channel. The uncertainties
are presented as +1σ/− 1σ variation of the systematic source.
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∆ Acceptance (%) ∆ Cross Section %
Luminosity ±3.7
Data Stat 5.0

MC Stat ± 1.5 +2.37
−2.30

Pile-up −0.1
+0.3

+0.50
−0.85

LAr Hole −0.14
−0.27

+1.15
−0.65

Fake - ± 3.33
DY Method - ±0.86

Z pT - ±0.79
MC xsect. - +3.12

−3.12

JES +5.63
−6.79

+7.08
−6.23

JER ± 0.05 +2.25
−2.18

JEF ± 0.03 ±0.02
Mu ID SF +0.52

−0.52
+0.58
−0.57

Mu Trig SF +0.24
−0.25

+0.28
−0.28

Ele ID SF ±3.25 -
Ele Trig SF ±0.22 -

TrID SF ±0.73 ±0.8
Mu ES +0.03

−0.11
+0.1
−0.1

Mu ER ± 0.05 +0.16
−0.16

El ES +0.37
−0.44

+0.00
−0.11

El ER −0.15
+0.77

+0.08
−0.13

TrES ± 0.03 ±0.2
TrER ± 0.26 +1.06

−1.05

P.Shower ± 0.69 +2.52
−2.40

Generator ± 0.31 +0.06
−0.06

ISR ±3.16 +2.46
−2.35

FSR ±1.1 +4.60
−4.21

PDF ± 2.5 +2.35
−2.25

Syst total +7.98
+8.91

+11.23
−10.46

Table 8.7: Uncertainties on the acceptance and tt̄ cross section in the inclusive µTL channel. The uncer-
tainties are presented as +1σ/− 1σ variation of the systematic source.
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Single top Diboson DY/Z → ττ
Yield (events) 30.3 22.0 47.5

Uncertainty(%)
Lumi ±3.7 ±3.7 ±3.7
JES +6.62

−9.92
+12.80
−10.96

+15.37
−19.56

JER ± 1.13 ± 0.3 ± 4.1
JEF ± 0.00 ± 0.1 ± 0.0

El. ID SF - - -
El. Trig SF - - -
TrID SF ±0.8 ±0.8 ±0.7

Z pT - - ± 9.2
Mu. ID SF ±0.5 ±0.5 ±0.5

Mu. Trig SF ±0.2 ±0.1 ±0.4
MC x-sec ±10.0 ±5.0 ±37.6
MC Stat. ± 3.0 ± 2.4 ± 6.2
Pile-up −0.10

−0.82
+0.40
−0.74

−1.92
−1.03

LAr Hole +0.19
−1.69

+0.42
−0.79

+1.00
−0.85

El ES - - −0.91
+0.00

El ER - - +0.00
−0.91

TrES - - ± 0.0
TrER ± 0.7 ± 1.3 ± 1.1
Mu ES −0.08

−0.20
−0.00
−0.05 0.0

Mu ER ± 0.1 ± 0.3 ±0.5
total (syst + lumi) +13.00

+15.12
+14.53
+12.99

+42.66
+44.24

Table 8.8: Uncertainties on the MC background contributions in the inclusive µTL channel. The uncertain-
ties are presented as +1σ/− 1σ variation of the systematic source.
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∆ Acceptance (%) ∆ Cross Section %
Luminosity ±3.7
Data Stat 14.0

MC Stat ± 3.2 +7.9
−7.4

Pile-up −0.1
+0.3

+1.2
−0.7

LAr Hole +0.7
−0.8

+1.0
−1.1

Fake - ± 13.7
DY Method - ±6.2

Z pT - ±2.0
MC xsect. - +6.5

−6.6

JES +4.9
−8.9

+13.1
−10.8

JER ± 0.8 +1.8
−1.8

JEF ± 0.1 ±0.2
Mu ID SF - -

Mu Trig SF - -
Ele ID SF ±3.2 +3.9

−3.6

Ele Trig SF ±0.9 ±1.0
TrID SF ±0.7 ±0.9
Mu ES - -

Mu ER (MS) - -
Mu ER (ID) - -

El ES +0.4
−0.1

+0.9
−1.0

El ER +0.9
+0.4

+0.6
−2.1

TrES ± 0.1 ±0.5
TrER ± 2.1 +3.8

−3.6

P.Shower ± 9.2 +10.1
−8.4

Generator ± 1.5 ±1.5
ISR ±3.3 +3.5

−3.2

FSR ±0.1 ±0.1
PDF ± 2.5 +2.6

−2.4

Syst total +12.5
−14.5

+25.9
−24.0

Table 8.9: Uncertainties on the acceptance and tt̄ cross section in the exclusive eTL channel. The uncer-
tainties are presented as +1σ/− 1σ variation of the systematic source.
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Single top Diboson DY/Z → ττ
Yield (events) 5.7 5.7 17. 0

Uncertainty(%)
Lumi ± 3.7 ± 3.7 ± 3.7
JES +9.4

−7.0
+12.5
−10.9

+29.8
−19.5

JER ± 4.1 ± 2.6 ± 4.1
JEF ± 0.0 ± 0.2 ± 0.0

El. ID SF ±2.5 ±2.6 ±2.6
El. Trig SF ±0.5 ±0.5 ±0.5
Mu. ID SF - - -

Mu. Trig SF - - -
TrID SF ±0.7 ±0.7 ±0.7

Z pT - - ± 8.8
MC xsect. ±10.0 ±5.0 ±36.2
MC Stat. ± 7.0 ± 4.8 ± 9.4
Pile-up +1.5

−1.3
+0.3
−0.1

+1.5
−4.7

LAr Hole +0.0
−1.6

+1.9
−0.8

+0.0
−0.0

El ES −0.0
+0.0

+0.3
−0.0

−0.00
−0.01

El ER +0.8
−0.3

+0.5
+0.4

−0.01
+0.05

TrES ± 0.0 ± 0.0 ± 0.0
TrER ± 5.3 ± 0.9 ± 2.2
Mu ES - - -

Mu ER (MS) - - -
Mu ER (ID) - - -

total (syst+ lumi) +17.5
−16.4

+15.4
−14.0

+49.1
−44.4

Table 8.10: Uncertainties on the MC background contributions in the exclusive eTL channel. The uncer-
tainties are presented as +1σ/− 1σ variation of the systematic source.
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∆ Acceptance (%) ∆ Cross Section (%)
Luminosity - ±3.7
Data Stat - ±14.2

MC Stat ± 3.1 +6.7
−6.3

Pile-up ±0.3 +2.2
+1.3

LAr Hole +0.8
−0.5

+0.6
−1.2

Fake - ± 15.1
DY Method - ±2.6

Z pT - ±1.8
MC xsect. - ±8.7

JES +7.1
−4.8

+10.1
−10.6

JER ± 2.8 +5.6
−5.3

JEF ± 0.0 ±0.0
Mu ID SF ±0.5 +0.6

−0.6

Mu Trig SF +1.2
−1.3

+1.5
−1.4

Ele ID SF - -
Ele Trig SF - -

TrID SF ±0.8 ±0.9
Mu ES ±0.2 +0.3

−0.5

Mu ER ± 0.1 ±0.4
El ES - -
El ER - -
TrES ± 0.3 ±0.6
TrER ± 0.8 ±1.3

P.Shower ± 6.9 +7.4
−6.5

Generator ± 1.4 ±1.4
ISR ±6.1 +6.5

−5.8

FSR ±4.1 +4.3
−4.0

PDF ± 2.3 +2.4
−2.3

Syst total +13.5
−12.5

+25.1
−24.5

Table 8.11: Uncertainties on the acceptance and tt̄ cross section in the exclusive µTL channel. The uncer-
tainties are presented as +1σ/− 1σ variation of the systematic source.

117



Single top Diboson DY/Z → ττ
Yield (events) 6.3 4.8 24.7

Uncertainty(%)
Lumi ±3.7 ±3.7 ±3.7
JES +2.9

−11.9
+9.5
−11.1

+19.2
−21.2

JER ± 1.9 ± 1.0 ± 4.8
JEF ± 0.0 ± 0.0 ± 0.0

El. ID SF - - -
El. Trig SF - - -
TrID SF ±0.8 ±0.8 ±0.7

Z pT - - ± 8.3
Mu. ID SF ±0.5 ±0.5 ±0.5

Mu. Trig SF ±1.0 +0.6
−0.7

+0.8
−0.7

MC x-sec ±10.0 ±5.0 ±38.9
MC Stat. ± 6.6 ± 5.1 ± 8.8
Pile-up +0.1

−0.8
+0.9
−1.1

+3.1
−1.9

LAr Hole +0.6
−1.3

+0.5
−0.1

+1.8
−0.5

El ES - - +0.0
−1.7

El ER - - +0.0
−1.7

TrES ± 0.0 ± 0.0 ± 0.0
TrER ± 1.8 ± 2.0 ± 2.2
Mu ES ±0.0 −0.02

+0.00 0.0
Mu ER ± 0.7 ± 0.12 ±0.9

total (syst + lumi) +13.2
−17.9

+12.8
−14.1

+46.0
−46.6

Table 8.12: Uncertainties on the MC background contributions in the exclusive µTL channel. The uncer-
tainties are presented as +1σ/− 1σ variation of the systematic source.
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Chapter 9

Lepton+Track tt̄ Cross Section
Extraction and Combination of
Channels

9.1 Profile Likelihood Technique

The eTL, µTL and combined value of the tt̄ production cross sections were computed using a profile likelihood

technique. The observed event count for each channel Nobs was modeled according to a Poisson distribution

with mean given by the value N exp
tot , which is the sum of the signal and background contributions. The

variation in the expected number of events attributed to signal and background processes associated with

systematic uncertainties was parameterized with a Gaussian distribution and additional terms were included

in a likelihood function that summarized the uncertainty in the corresponding nuisance parameters. Scaling

the number of expected signal events with the integrated luminosity, the parameter of interest (i.e. σsig)

was kept as a free parameter of the fit.

Systematic uncertainty sources were aggregated into groups of uncorrelated and 100% correlated param-

eters. Each of the uncertainty sources (index by j) has a nuisance parameter αj associated to it such that

αj = 0 represents the nominal estimate and αj = ±1 represents a ±1σ variation of that source. Next,

the sources of the systematics were varied (e.g. jet energy scale, trigger efficiencies, etc.) and a piecewise-

linear interpolation was used to parameterize the expected number of events N exp
i (~α) for each signal and

background using the RooFit/RooStats software package [102,103].

Additional terms were added to the likelihood function, enabling incorporation of additional knowledge

of the αj derived from auxiliary measurements or assumptions about the uncertainty in the Monte Carlo

modeling. This led to the following form of the likelihood function [104]:

L(σsig, L, αj) =
∏

i∈ channel

Pois
(
Nobs

i |N exp
i,tot(~α)

)
×G(L0|L, σL) ×

∏

j∈syst

G(0|αj , 1) . (9.1)

The tt̄ cross section was inferred from the profile likelihood ratio λ(σsig) = L(σsig ,
ˆ̂
L, ˆ̂αj)/L(σ̂sig, L̂, α̂j),

where a single circumflex represents the maximum likelihood estimate (MLE) of the parameter and the

double circumflex represents the conditional MLE with σsig fixed. Ensembles of pseudo-data were generated
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for Nobs
i and the resulting estimate of σ̂sig was confirmed to be unbiased.

9.2 Results

Table 9.1 summarizes the tt̄ cross sections extracted from the profile likelihood ratio for the individual

channels and for the combination of the inclusive l+track analysis. Note that the measurements of the tt̄

cross section per analysis channel are consistent with each other, in agreement with the lepton universality

principle. For the exclusive l+track analysis, the tt̄ cross sections measured per analysis channel and for the

combined eTL and µTL tt̄ cross section measurement are summarized in Table 9.2. Similar to the inclusive

case, the tt̄ cross section measurements per exclusive l+track channel are also consistent with each other,

in accordance with the lepton universality principle. Tables 9.3, 9.4 provide the systematic uncertainties for

each systematic contribution for the inclusive and exclusive analysis modes, respectively. The eTL and µTL

combined results agree well with the weighted average of the individual tt̄ cross sections. The combination

results in improved uncertainties. This tt̄ cross section measurement is systematic uncertainty dominated.

The results of the exclusive e, µ+track analysis channels were also combined with those of 3 channels of the

2ID tt̄ analysis to obtain the so-called 5-channel combination result: 176±5 (stat.) ±12(syst.) ±8 (lum.) pb−1.

In addition, exclusive ee and µµ events with at least 1 b-tagged jet were combined with the above 5 channels

to form the so-called 7-channel combination: 176±5 (stat.) +14
−10 (syst.) +9

−8 (lum.) pb−1. A paper summarizing

the analyses and the result of the tt̄ cross section measurements using dilepton final states was submitted to

and accepted for publication by The Journal of High Energy Physics [105].

Channel σtt̄ (pb) (stat., syst., lumi.)

eTL 182.9 ± 9.3 +21.9
−16.7

+8.2
−7.3

µTL 171.0 ± 8.5 +20.6
−17.5

+7.8
−7.0

Combined 177.4 ± 6.3 +18.4
−15.2 ± 7.6

Table 9.1: The measured tt̄ cross sections in each of the individual inclusive l+track channels, and the
combined measurement. The central values and uncertainties are obtained from the likelihood maximization.
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Channel σtt̄ (pb) (stat., syst., lumi.)

eTL 160.8 ± 22.6 +45.1
−33.1

+8.3
−6.8

µTL 168.3 ± 23.9 +45.8
−39.0

+9.0
−7.5

Combined 164.5 ± 16.4 +39.0
−30.5

+8.6
−7.1

Table 9.2: The measured tt̄ cross sections in each of the individual exclusive l+track channels, and the
combined measurement. The central values and uncertainties are obtained from the likelihood maximization.

eTL µTL Combined
Uncertainties (%)

Data Stat -5.0 / 5.2 -4.9 / 5.0 -3.5 / 3.6

Lumi -4.0 / 4.5 -4.1 / 4.6 -4.1 / 4.5

MC Stat -1.9 / 2.0 -1.6 / 1.8 -1.2 / 1.3

El/Mu ES -0.0 / 0.3 -0.0 / 0.0 -0.0 / 0.0

El/Mu ER -0.0 / 0.0 -0.3 / 0.0 -0.0 / 0.3

El/Mu Eff -3.4 / 3.7 -0.6 / 0.7 -1.4 / 1.5

JES -6.0 / 8.7 -6.8 / 7.6 -5.9 / 6.7

JER -0.3 / 0.7 -2.4 / 2.6 -1.5 / 1.6

JEF -0.0 / 0.0 -0.0 / 0.0 -0.0 / 0.0

DY -1.6 / 1.6 -0.8 / 0.9 -0.9 / 0.8

ZpT -0.7 / 1.1 -0.8 / 0.8 -0.6 / 0.5

Fakes -3.1 / 3.1 -3.4 / 3.3 -2.3 / 2.3

Generator -0.0 / 0.5 -0.0 / 0.0 -0.0 / 0.0

P.Shower -0.3 / 0.9 -2.4 / 2.6 -1.6 / 1.7

ISR -3.0 / 3.3 -2.3 / 2.5 -1.8 / 2.0

FSR -1.0 / 1.1 -4.1 / 4.7 -2.1 / 2.3

PDF -2.4 / 2.6 -2.2 / 2.4 -2.3 / 2.5

Met(CellOut & SoftJet) -0.0 / 0.3 -0.3 / 0.0 -0.0 / 0.3

Met(PileUp) -0.0 / 0.0 -0.0 / 0.0 -0.0 / 0.0

LAr -0.5 / 0.9 -0.6 / 1.3 -0.9 / 1.1

Track Eff -0.4 / 1.0 -0.8 / 0.9 -0.7 / 0.9

Track ES -0.0 / 0.4 -0.3 / 0.0 -0.0 / 0.3

Track ER -0.3 / 0.8 -1.2 / 1.2 -0.9 / 0.9

σtheory -2.3 / 2.4 -3.1 / 3.1 -2.7 / 2.7

Syst -9.1 / 12.0 -10.2 / 12.1 -8.6 / 10.4

Syst + Lumi -10.0 / 12.8 -11.0 / 12.9 -9.4 / 11.3

Syst + Lumi + Stat -11.2 / 13.8 -12.0 / 13.9 -10.0 / 11.9

Table 9.3: Summary of the tt̄ cross section uncertainties for each inclusive channel and combined inclusive
eTL+µTL obtained from the likelihood maximization.
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eTL µTL Combined
Uncertainties (%)

Data Stat -13.8 / 14.4 -13.9 / 14.5 -9.8 / 10.1

Lumi -4.2 / 5.1 -4.4 / 5.4 -4.3 / 5.2

MC Stat -5.3 / 5.6 -4.4 / 4.8 -3.5 / 3.7

El/Mu ES -0.9 / 0.5 -0.0 / 0.8 -0.0 / 0.0

El/Mu ER -0.0 / 0.0 -0.5 / 0.8 -0.8 / 0.5

El/Mu Eff -3.4 / 4.1 -1.6 / 1.6 -1.9 / 2.4

JES -5.8 / 14.5 -11.1 / 11.7 -9.3 / 13.1

JER -2.6 / 2.6 -6.0 / 6.7 -4.1 / 4.5

JEF -0.0 / 0.5 -0.0 / 0.0 -0.0 / 0.0

DY -6.3 / 6.1 -2.7 / 2.4 -3.3 / 3.3

ZpT -2.3 / 1.8 -2.0 / 1.7 -1.3 / 1.4

Fakes -13.8 / 13.6 -15.2 / 15.0 -10.2 / 10.1

Generator -1.6 / 1.5 -1.5 / 1.4 -1.3 / 1.6

P.Shower -7.8 / 10.8 -6.0 / 8.0 -7.1 / 9.2

ISR -3.0 / 3.7 -5.3 / 7.0 -2.9 / 3.7

FSR -0.0 / 0.5 -3.7 / 4.7 -1.8 / 2.0

PDF -2.3 / 2.7 -2.1 / 2.6 -2.1 / 2.7

Met(CellOut & SoftJet) -0.0 / 0.5 -0.0 / 0.5 -0.0 / 0.9

Met(PileUp) -0.0 / 0.0 -0.0 / 0.0 -0.0 / 0.0

LAr -1.1 / 0.9 -1.2 / 0.8 -1.3 / 0.5

Track Eff -0.5 / 0.5 -1.0 / 0.0 -0.4 / 0.6

Track ES -0.5 / 0.5 -1.0 / 0.0 -0.4 / 0.6

Track ER -4.1 / 4.5 -1.6 / 1.4 -2.7 / 3.1

σtheory -6.6 / 6.5 -8.8 / 8.6 -7.4 / 7.5

Syst -20.6 / 28.1 -23.2 / 27.2 -18.5 / 23.7

Syst + Lumi -20.9 / 28.6 -23.5 / 27.8 -19.0 / 24.3

Syst + Lumi + Stat -25.0 / 32.0 -27.3 / 31.3 -21.4 / 26.3

Table 9.4: Summary of the tt̄ cross section uncertainties for each exclusive channel and combined exclusive
eTL+µTL obtained from the likelihood maximization.
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Chapter 10

Conclusions and Outlook

We have measured the tt̄ pair production cross section in
√
S = 7 TeV pp collisions using the dilepton decay

final state of the top pair. Within uncertainties, we observe good agreement between the SM prediction and

the measured values of the tt̄ pair production cross section. No statistically significant evidence for anomalous

tt̄ pair production or decay was seen, although we emphasize the limited sensitivity of this measurement to

physics processes beyond Standard Model top pair production and decay. We performed the measurement

by utilizing the l+track approach, where the requirements on one of the lepton legs was relaxed to require

only a high quality Inner Detector track. This approach enables enhancement of the analysis sensitivity to

τ -leptonic decays of W± and restores tt̄ signal events lost due to lepton identification inefficiencies (a ∼ 20%

signal acceptance gain). In order to achieve this, we defined a new analysis object: the track-lepton, and

built a systematic prescription for TL determination optimal for high-pT lepton identification in the scope

of the present analysis.

In general, the MC descriptions of the quantities central for this analyses are in good agreement between

data and MC simulation. The reasonable compatibility between the shapes and scales for the distributions in

the control and signal regions provides confidence in our estimates of background contamination. However,

in order to minimize the dependence on MC simulations, wherever possible we used data-driven techniques

for background evaluation. Specifically, data-driven techniques were developed to predict the number of

DY/Z dilepton events and backgrounds associated with mis-identified TLs.

The dominant systematic uncertainty for both modes of the l+track analysis is the jet energy scale. The

electron identification efficiency scale factor uncertainty affects the analysis in the electron+track channel.

The contribution to the total uncertainty from the MC modeling of the PDFs, parton shower and ISR/FSR

is also sizable in all analyses. For the case of the exclusive l+track analysis, fakes are a major source of

background, and therefore a major source of systematic uncertainty. The statistical uncertainty can be

reduced by combination of the individual eTL and µTL results obtained with individual l+track channels.

The combined results are dominated by the systematic uncertainties.

The measured tt̄ cross section values per individual analysis channel and the combined tt̄ cross sections
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are compatible with each other and with the approximate NNLO prediction of the Standard Model as

shown in Figure 10.1. The results of 3-channel (i.e. the combined result of the three 2ID channels - ee,

eµ and µµ), 5-channel and 7-channel combinations are also presented in Figure 10.1. One may expect

an improvement of the statistical and systematic uncertainties by virtue of using the full 2011 collision

data sample with integrated luminosity of 4.9 fb−1. The statistical uncertainty is expected to decrease as

1/
√
Nobs, where Nobs is the number of observed tt̄ candidate events. The statistical component of systematic

uncertainties (e.g. such as those associated with the energy scale and resolution of jets, electrons and muons)

is also expected to decrease as 1/
√
Nobs, although the full 2011 data sample may have additional systematic

uncertainties due to increased pile-up. Hence, a reasonable assumption is that the systematic uncertainty

would be half way between the current value and the case where the uncertainty is reduced by 1/
√
Nobs.

We do not expect that the integrated luminosity uncertainty would be significantly different from its current

value of 3.7 %. Using the uncertainty measurements summarized in Table 9.3 and Table 9.4 we expect

∼ 8.5% for inclusive l+track analysis and ∼ 17% for the exclusive l+track analysis in the full 2011 data

sample (∼ 5 fb−1). Figure 10.2 summarizes the tt̄ cross section measurement results obtained by CDF and

D0 collaborations using the
√
S = 1.9 TeV pp̄ collision data at Tevatron and measurement results of ATLAS

and CMS collaborations using
√
S = 7 TeV collision data provided by the LHC.

[ pb ]
  t t

σ
50 100 150 200 250 300 350

Comb.7 Channel - 11
+ 141   pb 8± 5±176 

Comb.5 Channel  12±  8±   pb 5±176 
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+ 91   pb 16±164 
 TLµExcl. - 39
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(lumi)±(syst)±(stat)

Figure 10.1: Summary of the tt̄ cross section measurements per l+track channel and the combined mea-
surement (error bars indicate the statistical and the total uncertainty) and comparison with the theoretical
prediction (error band) at approx. NNLO [63]. Five channel combination of the exclusive l+track analysis
with conventional dilepton channels, as well as 7-channel combination with with exclusive ee and µµ events
with b-tag are also presented.
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Figure 10.2: Summary of the tt̄ cross section measurements in 1.9 TeV pp̄ collision data with Tevatron and
7 TeV pp collision data with LHC. Figure adapted from [106] by Tony Liss.

There are several ways the results of this analysis may be improved. One may consider using more

sophisticated tools for the TL and l+track event selection requirement optimization such as multivariate

analysis tools. Since the DY/Z dilepton process is the major background in dilepton final states and the

Emiss
T cut is the main tool to suppress it, a special treatment is required for the high Emiss

T tails. This for

example could be achieved by ensuring that electromagnetic clusters, associated with electrons reconstructed

as TLs, enter the Emiss
T calculation as an electromagnetic object as opposed to a jet. The Emiss

T correction

deployed in the µ+track channel may also be improved by trading the cut on ∆φ between TL and Emiss
T

with a criteria on the TL being a minimum ionizing particle. Another promising tool that could be used

to further suppress the background and systematic uncertainties is b-tagging jets. Last but not least, the

track-lepton object may be successfully used to gain signal acceptance in new physics searches involving

leptonic final states. Examples of such searches that deploy the l+track approach are searches for flavor

changing weak neutral currents (FCNC) and high mass dilepton resonances.
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Appendix A

Atlantis Event Display of the First
l+track Events

Figure A.1: Atlantis event display of the first e+track candidate event observed by ATLAS. Run number
160530, event number 42761229. Inner Detector is zoomed in with respect to other sub-systems. The color
code on the display is as follows: jets are depicted in brown, b-tagged jets are in blue, electrons in purple,
muons in green, τ -leptons are in grey, Emiss

T is shown with red arrow and track are color coded as a function
of their PT .
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Figure A.2: Atlantis event display of the first e+track candidate event observed by ATLAS. Run number
160530, event number 42761229. The color code on the display is as follows: jets are depicted in brown,
b-tagged jets are in blue, electrons in purple, muons in green, τ -leptons are in grey, Emiss

T is shown with red
arrow and track are color coded as a function of their PT .
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Figure A.3: Atlantis event display of the first µ+track candidate event observed by ATLAS. Run number
161379, event number 49866533. The color code on the display is as follows: jets are depicted in brown,
b-tagged jets are in blue, electrons in purple, muons in green, τ -leptons are in grey, Emiss

T is shown with red
arrow and track are color coded as a function of their PT .
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Figure A.4: Atlantis event display of the first µ+track candidate event observed by ATLAS. Run number
161379, event number 49866533. Inner Detector is zoomed in with respect to other sub-systems. The color
code on the display is as follows: jets are depicted in brown, b-tagged jets are in blue, electrons in purple,
muons in green, τ -leptons are in grey, Emiss

T is shown with red arrow and track are color coded as a function
of their PT .
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Appendix B

A Study of the Tile Calorimeter
Response Uniformity as a Function of
Radial Depth

B.1 Introduction

As discussed in Section 3.3.2 the ATLAS calorimetry in general and TileCal in particular must provide

accurate energy and position measurement for electrons, photons, isolated hadrons, jets and transverse

missing energy. In order to accomplish this, for each TileCal cell, the electromagnetic (EM) scale calibration

constant must be determined, converting the calorimeter PMT signals (measured as electric charge in pC)

to the kinetic energy deposited by electrons.

In order to obtain the EM scale calibration constant, 11% of the 4x64 TileCal modules were exposed to

electron, muon, hadron (pion and proton) beams, at various energies with different geometrical set-ups in

the scope of TileCal test-beam program that was situated in the H8 area of the CERN SPS facility, as shown

in Fig. B.1. The main goal of the test-beam program was not only to obtain the TileCal EM scale, but

also to explore the uniformity of the modules and to determine the calorimeter performance at projective

pseudorapidity. The following experimental setup was put in place to address these goals. On a massive

scanning table capable of x, y, θ and φ motion, the prototype TileCal Module 0 was the lowest in a stack

of three modules. The middle layer was a production barrel module, and the top layer was either a pair of

poses.

−90°

+90°

+20° 

Figure B.1: Tile Calorimeter module layout during beam test operation in the H8 area of the CERN SPS.
From bottom to top the Module 0, a production barrel module and two extended barrel modules are shown.
Approximate beam directions for θ = +90◦, θ = −90◦, θ = +20◦ and η-projective setup (dashed arrows)
are shown.
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production extended barrel modules (as shown in the figure) or another production barrel. Since some data

was taken with projective geometry, module orientation is denoted by positive or negative η, with positive

η being the beam-right side of the scanning table.

Calibration of each module consisted of using the beam with the following geometries:

• Beam incident at the center of the front face of each A cell at ±20◦ from the normal (see Figure 3.6).

• Beam incident at the projective angles across the front face of the calorimeters.

• Beam incident at the sides of the calorimeters into the center of each tile row. This is referred to as

the ±90◦ measurements.

Beam energies for TileCal measurements were between 20 GeV and 180 GeV. In general, the beam

composition was a mixture of hadrons, muons and electrons. The particle type was identified mainly by using

the calorimeter response and a pair of beam line Cerenkov counters assisting in further particle identification.

B.2 TileCal Electromagnetic Scale Calibration

The TileCal EM scale calibration constant was obtained from an analysis of the TileCal response to electron

test beams of over 200 TileCal cells, where the charge collected in one TileCal cell was equal to the sum of

charges collected by the two PMTs reading out the cell. The response of the calorimeter modules to electron

beams was defined as:

R =
QPMT1 +QPMT2

〈Ee
Beam〉 (B.1)

where QPMT1(2) is the charge collected by the first (second) PMT reading out the cell respectively, and

〈Ee
Beam〉 is the average electron beam energy.

In order to derive the TileCal EM scale calibration constant, the response of all A cells of the three long

barrel modules and five extended barrel modules to electron beams was studied1. The beams entered the

modules at θ = ±20◦, having energies of 20, 50, 100 and 180 GeV. Only runs with all PMTs working were

included in the analysis.

A distribution of all obtained responses of over 200 calorimeter cells is presented in Fig B.2. The mean

value of this distribution is 1.050 ± 0.003 pC/GeV and is taken as the TileCal electromagnetic scale. The

1The following modules were analyzed in this case: extended barrel modules ANL-23, ANL-30, ANL-44, IFA-27 and IFA-42;
long barrel modules JINR-12, JINR-27 and JINR-55.
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Figure B.2: The cell response of electrons at the angle θ = ±20◦ (Mean = 1.050 ± 0.003 pC/GeV, RMS
= 2.4 ± 0.1%), with one entry for each A-cell measured. The plot contains data taken at 20, 50, 100 and
180 GeV electron beam energies.

RMS spread of the measurement is 2.4 ± 0.1 % [107].

B.3 Tile Light Collection Uniformity Studies

In early testbeam studies of the light collection properties of scintillating tiles, we did not explicitely inves-

tigate the possibility of a non-uniform response of the tile surface along the radial depth direction of the

ATLAS detector. While electron beams used for setting the calorimeter EM scale deposit most of their en-

ergy in the A compartment of the Tile calorimeter modules, the question of whether the cells in the BC and

D compartments are properly calibrated at the EM scale after calibration with the cesium γ-source remains

open. In order to address this question, the data from muon beams entering the calorimeter modules at

θ = ±90◦ along the centers of the tiles was used. The total muon signal was measured in every tile-row.

In-depth analysis of that data was performed and summarized in [107]. The response of TileCal modules to

muon beams at θ = 90◦ is presented in Fig. B.3. As one can see after the gain of all cells in the calorimeter

is equalized with Cs calibration, the muon response depends on the tile row number.

The main goal of this section is to investigate the cause for this response non-uniformity, more specifically

to compare the light collection of the tile central region within a radius of 2.5 cm (where electrons and muons

incident on the calorimeter at θ = 90◦ and 20◦ are used for the absolute electromagnetic calibration scale

determination), with the light collection area around the tile outer radius hole (where the 137Cs calibration

source passes) and with light collection from the entire tile surface (illuminated by hadronic showers). For an
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Figure B.3: The muon response summed over the full calorimeter module length in the 90◦ configuration,
averaged over all analyzed modules and divided by the muon path length (560 cm in barrel and 255.5 cm in
extended barrel module, end-plates excluded). Results for barrel modules (left) and extended barrel modules
(right) are presented. The dashed lines show the edges of radial compartments (A, BC and D from left to
right), for which the particle/Cs correction factors are computed. The fact that the path length normalized
response to muons is on average lower in EB than in LB is understood and confirmed by Monte Carlo studies.
Details are given in the text.

in-depth discussion see [108]. Section B.3.1 presents the results of the tile surface uniformity studies using a

90Sr β-source. This section also discusses the effect of the read-out fiber configuration on tile light collection

and introduces the Tile Optical Model which describes the light collection mechanism in the trapezoidal

tiles. Section B.3.2 focuses on the studies with 137Cs γ-source on individual tiles, and in Section B.3.3 we

describe the results of 137Cs calibration scans of TileCal modules at the Test Beam and in the ATLAS pit.

Section B.4 presents our conclusions.

B.3.1 Individual Tile Measurements with 90Sr β-source

Setup and Experimental Results

A collimated 90Sr β-source with ∼ 30MBq intensity and electron beam size of less than 3mm (determined

by the plastic collimator) was used for tile surface uniformity studies by scanning the source over the tile

surface in a predefined grid as shown in Figure B.4. A dummy non-aluminized fiber was attached to the

other side of the tile to provide realistic conditions of light reflection between the tile and the fiber. The

measurements were done with masked tiles using a single readout fiber (of fixed length of 1 m) in the

‘Standard’ configuration, i.e. with the PMT close to the tile outer radius edge as in the Tile Calorimeter.

The measurements with the 90Sr β-source were performed with an ammeter connected to the PMT anode

and application of the β− source on the tile surface. The accuracy of the measured response at a point was
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estimated from the ∼ 4% dispersion of repeated measurements at all points of tile size 1 and tile size 11.

In the following, the y-axis is along the TileCal radius, i.e. parallel to the line joining the holes with y=0

located at the outer radius. The x-axis is parallel to the sides of the tile.
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Figure B.4: Schematic view of the tile with predefined grid of points for 90Sr measurements in the ‘Standard’
configuration with single fiber readout

In order to obtain a picture of the tile response to the 90Sr source in the ‘double fiber’ readout configu-

ration with additional equidistant points, we constructed a two-dimensional grid of equally weighted points

using the following procedure:

• The measured points in one half of the tile (obtained with a step size of 0.5 cm or 1 cm in the central

X-strip of ±2 cm, and with 1 cm or 2 cm step size elsewhere) were mirror reflected with respect to the

plane perpendicular to the tile surface and passing through tile holes (the X = 0 axis) and the results

were summed over. These points were considered as the measured response values at respective (X,Y )

coordinates

• A grid of a fixed step size (using 1cm steps) was placed over the measured points along lines parallel

to X axis, by interpolating and extrapolating the measured points with a 3rd degree polynomial fit.

When all the X-lines were filled with these fitted points, the same procedure was applied to lines

parallel to the Y axis with the same step size of 1 cm

• The grid step size was decreased to 0.25 cm and repeated once more along the X-direction and then

along the Y -direction

• When the new fitted points appeared to overlap with the previously fitted points, the average number

was stored.
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• A 2-dimensional grid of measured and fitted points covering the entire tile surface with 0.25 cm step

size was thereby obtained.

The resulting response to the 90Sr β-source over the whole tile surface is shown in Fig. B.5 for individual

masked tiles of sizes 1 and 11 in arbitrary units. The measured points (green crosses) and the meshed fitted

points are shown in the 3D response map of Figure B.5(a). The blue colored mesh represents regions with

response less than the average of the tile surface, whereas the red colored mesh represents the regions with

higher than the average response.

From Figure B.5(a) and B.5(b) we observe a hump in the central region along the tile hole direction

with response higher than the average, as well as a decrease in response in the direction from the outer to

the inner radius. The slight increase of light in the central strip between the holes is due to the reflection of

scintillation light from the surfaces of the holes. In the direction perpendicular to the holes a ∼5% increase

of light near the tile sides coupled to the fibers is observed, even in tiles masked with black ink. The

increase would have been much higher (>20%) if the tiles had not been masked [109], [110]. The RMS of

the measurements in the mesh over the whole tile surface is ∼5% for all tile sizes, which is well within the

uniformity specifications of TileCal.
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(a) 3D Scan Map
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(b) 2D Scan Map

Figure B.5: (a) Reconstructed 3D response of a tile to the 90Sr β-source (mesh) based on individual mea-
surements (green dots). (b) The 2D response map to 90Sr of a tile size 1 (top) and a tile size 11 (bottom).
The Y-axis is parallel to the holes and Y=0 is the outer radius edge.
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Tile 11-1

Figure B.6: Tile response to 90Sr-source along the X(φ) direction (perpendicular to the line joining the
holes) for all Y scans (circles); Averaging only the radial scans in the central region of 2.5 cm between the
holes (triangles).

Figure B.6 shows the average response along the X (φ) coordinate for the case of taking the average of

all the Y radial scans (red circles) and the case of taking the average of only central Y scan values within

a strip of ± 2.5 cm around Y=0 (green triangles) for tile size 11. As expected, one observes the typical

W-shape profile for the case of double-sided tile signal read out.

Tile 1-1

(a) Tile Size 1

Tile 11-1

(b) Tile Size 11

Figure B.7: Tile response to 90Sr-source along the Y radial direction (parallel to the line joining the holes)
for all the X values (circles); Averaging only central Y scans in a region of 2 cm (triangles).

Fig. B.7 shows the average tile response to the 90Sr β-source along the Y radial coordinate after averaging

all the X scans for tile size 1 and 11. Y = 0 corresponds to the outer radius extremity of the tiles. For tile

size 1, Y = 97 mm is the inner radius extremity while for tile size 11, it is Y = 187 mm as shown in Table 3.2.

The tile response to the 90Sr source decreases when moving from the tile outer to inner radius holes (Y

scan). This decrease is due to the trapezoidal shape of the tiles. The scintillation light is more efficiently

collected at the outer radius. A detailed explanation of this effect is discussed later in this Appendix.
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Figure B.8: Relative tile response to 90Sr-source along the Y radial direction. Y=0 is always the outer
radius edge for all tile 11 sizes.

The radial decrease in scintillation light response is confirmed for all tile sizes. Fig. B.8 shows the relative

tile response to the 90Sr β-source parallel to the tile hole direction upon averaging over the central X-region

of ±2 cm for all available measurements of tiles sizes 1 to 11. A clear negative slope is observed of the

order of ∼ 1% to 2% per cm for all tile sizes. Our estimate of the statistical uncertainty of this estimate is

∼ 2%. The systematic uncertainty is represented by the width of the band of all 11 measurements, which

on average is ∼ 7%. Hence an upper limit for the uncertainty can be estimated as 3 × 2% + 7% = 13%.

A more precise quantitative estimate of this effect was achieved using measurements carried out with the

137Cs γ-source passing through the entire calorimeter module and sequentially exciting the areas around

the inner and outer radius holes of hundreds of scintillating tiles of size 7 and several individual tiles of all

11 sizes. This is described later in Sections B.3.2 and B.3.3.

The effect of scintillation light collection reduction in the trapezoidal tiles when moving from the tile

outer to inner radius holes gives an indication of the reason for the observed undercalibration of the middle

and rear longitudinal depth cells after the calibration of TileCal with the Cesium γ-source (passing always

in the outer radius holes) [107]. We set the absolute electromagnetic scale in TileCal with electrons and

muons impinging the center of the tiles at θ = 90◦ and 20◦ and exciting the central region of the tiles

(radius of 2.5 cm), whereas TileCal cells are intercalibrated with the 137Cs γ-source using the response in

the area around the outer radius hole. Thus, the discrepancy between the response to electrons or muons

and 137Cs γ-source grows larger for larger tiles. The radial distance between these 2 regions, hence the

magnitude of undercalibration, increases with the tile size (H/2 dimension) as is shown in Table 3.2.

The remaining question is whether or not the light response from the center of the tile is an accurate

representation of its surface and how this response depends on the tile size. Fig. B.9 shows the ratio of 90Sr

response in the central region of radius ∼ 2.5 cm to the response averaged over the total tile area as a
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function of the tile row number. This ratio is tile size independent. Fig. B.9 shows this measurement for 2

sets of 15 tiles, 1 tile of each size except for tile size 1 and 11 where 3 tiles were measured. Merging the 2

tile samples (30 tiles) we obtain a mean of the ratio in the central region (radius = 2.5 cm) over the total

tile surface of 1.03 with RMS = 1.4% as shown in Fig. B.10.

(a) March-2002 Sample.

(b) April-2002 Sample

Figure B.9: The ratio of the response to the Sr β-source within a circle of 2.5 cm radius located at the center
of the tile over the response of the whole surface as a function of the tile row number. Three different tiles
of size 1 and 11 were measured.
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Ratio D=5cm / Whole

Figure B.10: The ratio of the response to the 90Sr-source within a circle of 2.5 cm radius located at the
center of the tile to the response of the whole tile surface. A sample of 30 tiles was used; 6 tiles of size 1 and
11 and 2 tiles of each size for tile sizes 2 to 10.
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Figure B.11: Scheme of fiber readout by PMT-1 as in the calorimeter with PMT-1 closer to the tile outer
radius. The fiber was inverted and PMT-2 placed closer to the tile inner radius edge for the special test
with inverted fiber configuration.

Read-out Fiber Configuration Effects on Tile Light Collection

In order to address the possible impact of the read out fiber attenuation length on light collection reduction

as a function of tile radius the response of tile size 11 to the 90Sr-source was measured in the Standard

configuration of TileCal modules, i.e. the PMT closer to the tile outer radius edge (green fiber and PMT-1

in Fig. B.11). The same measurements were also conducted in the ‘Inverted’ configuration, i.e. the PMT

closer to the tile inner radius edge (PMT-2 and pink fiber in Figure B.11). The same fiber of 97 cm length

was used for both fiber configurations. Scintillating light was collected from one tile side via the WLS fiber

connected to the PMT, while the other tile side was coupled to a dummy fiber. Figure B.12 shows the ratio

of tile mean response in the Standard and the Inverted configurations for 7 radial scans inside the X range

from +3 to +9 cm from the tile center (Figure B.11). One can see from Figure B.12 that the S/I ratio

distribution is consistent with a flat response. This is clear evidence that this effect is not correlated to the

light attenuation in the WLS fibers and has to do with the tile geometry, i.e. the tile trapezoidal shape only.

The Tile Optical Model

In order to address the issue of tile light collection reduction from the outer to the inner radius holes described

in the previous section, we developed the Tile Optical Model, based on simple statements of geometrical optics

and Liouville’s theorem. We assume here that scintillation light collection is due only to only the direct

light incident on the read out WLS fiber side and single reflections from the tile sides to the WLS fiber. We

further assume total internal reflection from the tile edges. More specifically, this means that the scintillation
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Figure B.12: The ratio of average responses of the 3 cm < X < 9 cm strip of the tile to the 90Sr β-source
along the radial direction between the standard and inverted fiber readout (see Figure B.11). A tile of size
11 was used.

light at source SR will be collected by the WLS read out fiber (see Figure B.13 ):

• Due to direct incidence of scintillation light on the fiber, associated with solid angle Θ0

• Due to light reflection from the outer radius edge, an extra acceptance in solid angle Θ1, which

corresponds to an imaginary source S1
I at the mirror image location of SR with respect to the tile

outer radius edge.

• Similarly, an additional acceptance due to reflection from the tile inner radius edge in solid angle Θ2,

corresponds to an imaginary source S2
I at the SR mirror image position with respect to the tile inner

radius edge.

Also note that the light collection intensity depends on the length (L) of the propagation of the light in

the tile material due to light attenuation (LAtt) according to the I = I0 exp−L/LAtt rule. This means that the

weights of contributions to the tile light collection are different in each of the solid angles described above.

We further assume that the weight of the contribution from the tile inner (outer) radius edge reflection is

negligible (i.e. its weight is zero) for the source in proximity to the outer (inner) radius tile edge, respectively.

As is well known, Liouville’s theorem states that the light flux per unit area and solid angle is constant.

This means that the larger the solid angle (in which the read out fiber is seen from the source position)

the greater the light flux, hence greater light collection from the source. Consider two sources S1 and S2

the same distance away from the tile outer and inner radius edges respectively. Both are the same distance

away from the axis passing through the tile holes (see Figure B.14). Figure B.14 clearly shows that due to
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Figure B.13: Schematic view of tile light collection from the β-source at SR.

the tile trapezoidal shape the solid angle at S1 is greater than the one at S2 resulting in the light collection

reduction effect from outer to inner radius described earlier in this section.

Based on the Tile Optical Model, one can predict that black-painting the tile outer radius edge (i.e.

suppressing the reflection from that edge) will result in a deterioration of tile light collection, and this

degradation will be greater in proximity to the tile outer radius edge, hence resulting in a flatter reduction

in the response curve (see comparison of solid and dashed lines of Figure B.15).

Similarly, black-painting the tile inner radius edge also causes deterioration of tile light collection, however

this deterioration must be more notable for the region close to the inner radius edge. Hence, the decrease

in the response curve should become steeper (compare solid and dash-dotted lines in Figure B.15).

In order to further investigate the issue of the light collection reduction and study the validity of the Tile

Optical Model and predictions suggested by it, a set of measurements with the collimated 90Sr β-source

was carried out. A collection of three different tiles without Tyvek wrapping nor masking was used. The

settings of the experimental equipment were described earlier in this section.

Figure B.16(b) shows a comparison of light collection of the tile in the standard configuration (circles)

versus that for the outer radius 3 mm thick edge painted black (triangles) as in Fig. B.16(a). As can be

seen, the characteristic negative slope is less steep. This is expected, since by suppressing the reflection from
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Figure B.14: The comparison of light collection in proximity to the tile inner radius (position at S2) versus
tile outer radius (position at S1) edges.
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Figure B.15: Prediction for the behavior of the tile light collection reduction curve for masking with black
ink on the tile outer radius edge (dashed red line) versus masking the inner radius edge (dash-dotted green
line).
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the tile outer radius edge, we essentially suppress the acceptance in the solid angle Θ1 (see Fig. B.13), the

contribution of which is apparently greater when the β-source is closer to the outer tile radius edge. We also

obtain good agreement between the Tile Optical Model prediction (dashed red line of Fig. B.15) for the tile

outer radius edge black-painted configuration with experimental data collected with the 90Sr β-source. One

can also note from Fig. B.16(b) that there is always a decreasing tail in proximity to the tile outer radius

edge i.e. the region of +3 cm < Y < +7 cm. This is due to non-ideal reflection from the tile outer radius

edge. Note also, that it is steeper for the black-painted case.

Figure B.17(b) shows the comparison of the tile light collection in the standard versus the tile inner

radius edge black-painted configurations. One can now see that the negative slope is steeper. This can be

explained by the suppression of the reflection from the tile inner radius edge, the contribution of which is

more significant in proximity to the tile inner radius edge. Again, we obtain good agreement between the

Tile Optical Model prediction (dash-dotted line of Fig. B.15) for the tile inner radius edge black-painted

configuration and experimental data collected with the 90Sr β-source.

Figure B.18(b) shows the comparison of tile light collection from standard versus the side opposite to

single fiber readout black-painted configurations. One can see that the reduction in slope does not change

significantly. This explicitly justifies our approximation in which we neglect light collection due to double,

triple, etc. reflections.

Lastly, note that there is a discrepancy2 in light collection from three different tiles probed in the Standard

configuration, which is due to tile-to-tile, tile-to-fiber optical fluctuations (compare red data curve and the

red boxes of Figure B.16(b), Figure B.17(b), Figure B.18(b)). We estimate the fractional uncertainty of the

light collection reduction measurement as the ratio of the uncertainty of the ‘p1’ parameter (see red boxes

of Figure B.16(b), Figure B.17(b), Figure B.18(b)) to its value. The numerical estimate is 30% − 40%.

B.3.2 Measurements of Individual Tiles with 137Cs γ-source

The same individual tiles that were measured with the 90Sr β-source (Section B.3.1), were measured in a

special test bench setup at CERN in the barrel module instrumentation workshop using the 137Cs γ-source

calibration system [111]. Fig. B.19 shows the picture of the setup.

Each of the tiles was positioned on the Cs γ-source tube in between two steel plates 10mm thick. The

scintillation light was collected from both tile sides connected to a PMT in the drawer. The response of

the individual tile was defined as the amplitude of the fit of the tile response curve. Fig. B.20 depicts a

typical fit for an individual tile response curve. For the individual tile measurements the response to the

21.5 % to 2.2 % per cm decrease from outer to inner radius edges from 3 different tiles.

144



PMT
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(b) Tile light collection reduction curves

Figure B.16: Schematic view of the tile outer radius black-painted configuration (a) and average response to
90Sr β-source along Y radial scans in a region of +3 < X < +9 cm. (Circles) for tile size 11 without Tyvek
in the ‘Standard’ configuration, (triangles) after painting the tile outer radius 3 mm thick edge to suppress
light reflection from that edge.
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(b) Tile light collection reduction curves

Figure B.17: Schematic view of the tile inner radius black-painted configuration (a) and average response to
90Sr β-source along Y radial scans in a region of +3 < X < +9 cm. (Circles) for tile size 11 without Tyvek
in the ‘Standard’ configuration, (triangles) after painting the tile inner radius 3 mm thick edge to suppress
light reflection from that edge (b).
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(a) Tile side (opposite to fiber read-out) black
painted configuration
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(b) Tile light collection reduction curves

Figure B.18: Schematic view of tile side (opposite to fiber read-out) black-painted configuration (a) and
average response to 90Sr β-source along Y radial scans in a region of +3 < X < +9 cm. (Circles) for tile
size 11 without Tyvek in ‘Standard’ configuration, (triangles) after painting the tile side (opposite to fiber
read-out) black (b).

Figure B.19: Setup for measuring individual tile responses with 137Cs γ-source at the instrumentation lab
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Figure B.20: Typical fitted response of one tile to 137Cs γ-source in the setup of Fig. B.19

137Cs γ-source was measured for the source passing through the outer and the inner tile radius holes.

Fig. B.21(a) shows that the tile response to 137Cs γ-source (circles) passing through the outer radius hole

for the case of larger tile sizes is overestimated compared to the tile response from the whole tile surface as

obtained using the 90Sr β-source (triangles). This figure should be treated as a qualitative illustration of this

effect. The experimental uncertainties associated with the square points are dominated by the fact that the

137Cs and 90Sr measurements were done using two different setups. The tile outer radius hole was enlarged

to enable passage of the Cs γ-source and the tile/fiber coupling was changed for these two measurements.

It is an independent verification of the light collection reduction effect as observed in other 90Sr β-source

studies (Section B.3.1). One should also note that the ratio presented in Fig. B.21(a) (triangles) was also

depicted in Fig. B.9(b) for the same sample of 15 tiles. Our estimate of the statistical uncertainty (using

the measurement for the tile size 9) is ∼ 7% and the systematic uncertainty is ∼ 17%. Hence an upper limit

on the overall uncertainty can be estimated to be 3 × 7% + 17% = 38%.

More precise evidence of this effect is depicted in Fig. B.21(b), showing the ratio of the response of

the probed tile to the 137Cs γ-source passing through the inner radius hole to the response at the outer

radius hole. One clearly sees the dependence of the light collection reduction effect on tile size. From these

measurements the estimate of light collection reduction from the tile outer radius hole to the inner radius

hole is on average ∼ 0.8% per cm. For example, for tile row 7 (where the distance between holes is 12 cm)

the ratio R(O/I) = 1/0.91 = 1.1 or 0.83% per cm. The uncertainty on this measurement can be estimated

as the repeatability of the measurement, which for tile size 9 is 15%. This value is compatible with the

value obtained with the 90Sr measurements described in Section B.3.1. In the next section, we will compare

this value with that computed from Cesium source data at the Test Beam over a sample of ∼ 10% of EB

modules and data collected with Cesium source scans of the majority of the EBC modules during cesium
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source calibration runs in the pit.

(a) (b)

Figure B.21: (a) The ratio of the response to 90Sr of the tile central region with 5 cm diameter (outer hole
region) to tile overall surface (triangles) and the ratio of response to 137Cs to the response to 90Sr of the
tile overall surface (circles) vs tile size (1 to 11), both sets normalized to the corresponding ratio at tile size
1. (b) The ratio of response to 137Cs γ-source at the source passage from the inner radius over the one at
the passage through the outer radius hole, tile sizes 1 to 11.

B.3.3 137Cs γ-source in TileCal Modules

The Setup at TB and in the ATLAS Pit

As described in Section 3.3.2, each scintillating tile has two 9.0 mm diameter holes positioned always at

the same distance (13.5 mm) from the inner and the outer radius edges where the 137Cs calibration source

passes through. A schematic view of the barrel module source tube installation is shown in Fig. B.22(a). The

capsule containing the radioactive ∼ 10 mCi 137Cs γ-source is carried along by a liquid flowing inside the

calibration tubes passing through all cells of the calorimeter, hence measuring the response and monitoring

the optical quality of more than 463000 tiles coupled to fibers in all 256 TileCal modules [112]. Typically the

Cesium source passes through the tile outer radius hole. Figure B.22(b) shows the concept of the γ-source

path in a calorimeter module. The cesium tube installation has a peculiarity in the EB modules, since in

those, the 137Cs γ-source passes through both holes in tile row 7. This enables an independent estimate

of the light collection reduction between the outer radius and the inner radius regions, similar to what was

previously presented for individual tiles with 90Sr and 137Cs systems. The advantage of exciting many

tiles of the same size at the same time allows reducing the effect of optical fluctuations that are present

in individual tile measurements compared to the thousands of tiles excited inside the Tilecal modules. As

opposed to studies of individual tile response to 137Cs γ-source, where the quantitative estimate of this effect

is simply the ratio of the tile responses for tile outer to inner hole cases, the studies of the γ-source scans
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(a) (b)

Figure B.22: (a) Schematics of source path in TileCal. (b) Source passing through a tile row in a cell.

of the entire tile module need to address carefully the issue of energy leakage into the adjacent tile rows.

In the EB modules tile row 7 and 6 belong to BC cells while tile row 8 belongs to D cells. Hence, when

computing the response of tile 7 with the Cs source passing through the inner radius hole, the leakage from

tile row 7 to 6 must be taken into account. The method used to unfold the effect of leakage between tile

rows is addressed in Appendix C.

Results of 137Cs Scans at Test Beam and in the ATLAS Pit

As was discussed in Section B.3.2, the quantitative measure of the light collection reduction effect is the ratio

of tile response to 137Cs γ-source passing through the tile outer radius hole to the response at the tile inner

radius hole; R(O/I). The distribution of that ratio estimated from the data collected during the calibration

runs in the Test Beam in periods 2001 to 2004 is presented in Fig. B.23(a). We use this data to measure the

Mean = 1.104 and RMS = 11% for R(O/I). The leakage into adjacent tile rows is corrected for. The 137Cs

leakage corrections in Tile 7 outer and inner radius holes are discussed in detail in Appendix C. The length

of the fibers reading out the tiles in those cells vary between 160 cm and 190 cm [109]. Fig. B.23(b) provides

evidence of η-uniformity of the measured ratio R(O/I) reinforcing the conclusions described in Section B.3.1,
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Figure B.23: (a) The distribution of the ratio of the tile row 7 responses to Cs for its passage through the
outer radius hole over the inner radius hole. (b) The same ratio for all the B cells’ tile row 7 vs the cell
position. The sample represents multiple runs of the testbeam EB calibrated modules.

e.g. the WLS fiber plays no role in the reduction of the light collection along the tile radius. We remind the

reader that the typical effective attenuation length of these aluminized fibers is more than 3 m [113].

Similar results were acquired by the analysis of 137Cs scans of the entire EBC partition of TileCal in the

ATLAS pit. Those results are shown in Fig. B.24 and confirm with high statistics3 that the tile response

to the 137Cs γ-source is ∼ 10% higher in the outer radius hole than in the inner radius hole for tile size

7, compatible with the values extracted from the 137Cs and 90Sr results done on individual tiles (Fig. B.5,

Fig. B.7, Fig. B.21(b)). We remind the reader that the distance between the holes in tile 7 is 120 mm leading

to an average reduction of the light collection between the holes of 0.87% per cm.

The Effect of Tile Polystyrene Type on Light Collection

Two types of polystyrene were used for the TileCal module instrumentation: BASF and PSM [110], [114].

Concerning the polystyrene types of BC and D cells in TileCal there are three families of modules; ones

instrumented with BASF tiles only, another with PSM tiles and a third with mixed types. We show below

that the above-mentioned effect of light collection reduction as a function of tile depth is tile polystyrene

type independent. The evidence for this is shown in Fig. B.25 where we present the distribution of the

ratio R(O/I) of the tile response to Cs source passing through holes at the outer radius to response at the

3The statistics of Fig. B.23(a) is from multiple runs on the EB modules exposed to test beam. The statistics of Fig. B.24(a)
is a subset of the B-cells in a single EBC run in ATLAS.
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Figure B.24: (a) The distribution of the ratio of the tile row 7 responses to Cs for its passage through the
outer radius hole to that for the inner radius hole. (b) The same ratio for all the B cells’ tile row 7 vs the
cell position. The sample is a fraction of the EBC modules.

inner radius. The upper plot of Fig. B.25 shows the ratio R(O/I) for modules instrumented exclusively

with PSM tiles, whereas the lower plot shows the R(O/I) ratio only for modules only with BASF tiles. For

the measured values of the R(O/I) distribution for PSM modules is Mean = 1.1 with RMS = 4.5% and

for BASF modules we measured Mean = 1.107 with RMS = 5.4%. Hence, within RMS uncertainties, we

report the same values for both polystyrene cases.

B.4 Conclusions

The 137Cs system is the main tool used to equalize the response from all of the TileCal cells via setting

the PMT HV in an iterative procedure. The absolute energy scale or the pC/GeV conversion scale was

determined with electrons and muons impinging the calorimeter at the centre of tiles at θ = 20◦ and

90◦ [107]. This created the necessity for us to study and take into consideration possible differences of

the TileCal cell response to real particles versus the 137Cs γ-source, since it was reported that the 137Cs

weights, obtained with the amplitude method, in BC and D cells were underestimated by 2.5% and ∼ 8.8%

respectively for the barrel and 0.9% and 5.5% for the EB [107].

In this Appendix we presented the reason for this, which is the difference in response between particles

(e±, µ±) and 137Cs γ-source, which grows larger for larger tile sizes. The previously observed decrease in

the e/Cs and µ/Cs ratios as a function of the tile size (1 to 11) is attributed to the light collection decrease
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Figure B.25: The distribution of the ratio of the tile size 7 responses to 137Cs at its passage through the outer
radius hole over the inner radius hole for modules with tiles made from PSM (top) and BASF scintillator
(bottom).

from the outer to the inner radius sides of the tiles. This decrease, as extracted by several independent

137Cs and 90Sr measurements is shown in Table B.1.

The level of decrease that would be consistent with the undercalibration of BC and D cells mentioned

above is 1.5% to 2% per cm in the radial direction of the ATLAS detector. The ideal sample, needed

to precisely extract the extra correction factors for the BC and D cells would be fine muon radial scans

between the source passage holes. Unfortunately, such testbeam data samples are not available. Our

investigation showed that there is no dependence on the fiber attenuation or the type of polystyrene used

in tile production. The light collection reduction effect is due to the trapezoidal shape of the tile and the

fact that the tile radial depth changes with longitudinal layer. Our results indicate the need for additional

corrections to the electromagnetic scale factor in BC and D cells as summarized in Tables AA, BB and

reported in [107].
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Table B.1: Summary of the light collection reduction measurements along tile radius.

Source Sample Reference Figure Measurement
(% per cm)

Uncert.

137Cs scans in the pit and
TB, outer/inner radius re-
sponse ratio

Tile 7, ∼ 200 B-cells B.23(a), B.24(a) 0.9 % 11 %

137Cs scans of individual tiles,
outer/inner radius response
ratio

All sizes, 30 tiles B.21(b) 0.8 % 15%

90Sr individual tile scans Tile 11, 3 tiles B.16(b), B.17(b), B.18(b) 1.5 % to 2.2 % 30%-40%
90Sr individual tile scans 1 tile per size B.8 1 % to 2 % 13%
137Cs outer radius hole over
90Sr(surface average) ratio

All sizes, 30 tiles B.21(a) 2 % to 4 % 38%
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Appendix C

TileCal Energy Leakage Correction

Energy Leakage from Tile Row to Tile Row for 137Cs γ-source

Passage in TileCal Modules

The response of a cell is determined as the mean of individual tile response amplitudes over the time interval

corresponding to cell limits (see Fig. C.1(a))

I = Ileft + Icenter + Iright (C.1)

A typical picture of a cell response as a function of γ-source position in the Cesium tube is depicted in

Fig. C.2. From top to bottom one can see the response of the A cell tile row 3 to 1. One can note that the

response of tile row 3 is ∼ 25% less than ones from tile rows 2 and 3. This is due to the fact that the energy

leakage from tile row 3 to adjacent tile row 4 belongs to B cells and hence is not registered by the A cell

PMTs. When the 137Cs γ-source passes through the tile row, the radiation energy is uniformly distributed

around the source path in a cylindrical shape (see Fig. C.1(b)). This causes an energy leakage from the

actual tile row into the adjacent row. Therefore, in order to have a good quantitative estimate of the light

collection reduction along the tile depth one needs to develop a model for accurate estimation of tile to tile

energy leakage.

The main assumptions of the Energy Leakage Model are:

• The energy transfers across the boundary between any pair of tile rows is the same

• Light collection depends only on:

– Geometry of the tile (the trapezoidal shape). Hence, we introduce light collection coefficients

RI and RO, which describe the tile geometrical features when 137Cs γ-source passes through tile

inner and tile outer radius holes, respectively.

– Depth of the tile.
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(a) (b)

Figure C.1: (a) Sketch of quantitative measurement of tile light collection to 137Cs γ-source. (b) Two
adjacent tiles in the radial direction.

– Energy deposited in the cell.

• Light collection does not depend on

– Tile width

– Read out fiber length (discussed in section 2.1.3)

– Tile material, i.e. tile sensitivity or the ability for energy-to-light conversion.

Notation

E0 energy deposit into tiles by 137Cs γ-source

∆E energy transfer across the tile boundary

S optical sensitivity of tile material

RI light collection geometrical coefficient at the tile inner radius edge

RO light collection geometrical coefficient at the tile outer radius edge

IN measured response of a cell when the 137Cs γ-source passes through tube N

I0
N pure response of a cell (excluding the energy leakage component) when the 137Cs γ-source passes through

tube N
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Figure C.2: Typical response to 137Cs γ-source vs position inside a cell with the individual tile amplitudes
unfolded.

Hence, based on the assumptions described above the generic expression for cell response will be:

I = E × S ×R (C.2)

This enables us to write the equations of energy balance when 137Cs γ-source passes through cesium

tubes 6,7,8.

I0
6 = (E0 − ∆E) ×RO = I6 − ∆ ×RI (C.3)

I0
8 = (E0 − ∆E) ×RI = I8 − ∆ ×RO (C.4)

I0
7 = (E0 − ∆E) ×RO = I7 (C.5)

We define the inverse of the light collection reduction ratio along the tile depth as:

1/R(O/I) = I0
7/I

0
8 = (E0 − ∆E) ×RO/(E0 − ∆E) × RI (C.6)

Hence,

R(O/I) = RO/RI (C.7)
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Figure C.3: (a) Leakage parameter between tile rows vs. B cell position in the Extended Barrel. (b) Leakage
parameter from the EB modules calibrated at the testbeam

Upon some simple algebraic manipulations, one obtains:

(1/R)2 − (I8/I7) × (1/R) + (I6 − I7)/I7 = 0 (C.8)

The term α ≡ (I6 − I7)/I7 is the so-called leakage parameter which describes the ratio of the light

collected in tile row 7 with 137Cs γ-source traveling in tube 6, to the case with the 137Cs γ-source traversing

the module in tube 7.

The term β ≡ I8/I7 is the light collection reduction ratio in the no-leakage scenario. Both parameters α

and β are determined by the optical and geometrical properties of tiles in row 6 and 7. Since we assumed that

those properties are similar, we expect that the experimentally measured values of those parameters should

converge to some mean value. The distribution of the α-parameter per EB cell is presented in Fig C.3(a),

with measured Mean = 0.268 and RMS = 0.051.

The data was collected during the test beam period 2001/2004. The mean values are well fitted with a

horizontal line demonstrating that the α-parameter values measured in various cells are statistically compat-

ible with each other, and hence can be combined. Fig. C.3(b) depicts all measured values of the α-parameter

with fitted offset value p0 = 0.263 ± 0.013. The mean of the latter distribution and the horizontal fit offset

are in good agreement within the RMS uncertainties, suggesting validation of the Leakage Model under

consideration.

Another validation test is a comparison of the R(O/I) value distribution for the cases of free and fixed

(α= 0.268 determined from Fig. C.3(b)) α-parameter values (see Fig. C.4(a) and Fig. C.4(b) respectively).
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Figure C.4: The distribution of R(O/I) responses to 137Cs γ-source with the leakage parameter fixed (a)
and free (b).
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Appendix D

List of MC Samples

ID Description Matrix Element Parton Shower cross section [pb] k-factor
5200 tt̄ No full hadr. (e, µ, τ) MC@NLO Herwig 79.988 1.117
8340 tchan → e MC@NLO Herwig 7.12 1
8341 tchan → µ MC@NLO Herwig 7.12 1
8342 tchan → τ MC@NLO Herwig 7.10 1
8343 schan → e MC@NLO Herwig 0.47 1
8344 schan → µ MC@NLO Herwig 0.47 1
8345 schan → τ MC@NLO Herwig 0.47 1
8346 Wt→ inclusive MC@NLO Herwig 14.59 1

Table D.1: Top Monte-Carlo samples.

ID Description Matrix Element Parton Shower cross section [pb] k-factor
7680 Wenu Np0 Alpgen Herwig 6921.60 1.20
7681 Wenu Np1 Alpgen Herwig 1304.30 1.20
7682 Wenu Np2 Alpgen Herwig 378.29 1.20
7683 Wenu Np3 Alpgen Herwig 101.43 1.20
7684 Wenu Np4 Alpgen Herwig 25.87 1.20
7685 Wenu Np5 Alpgen Herwig 7.00 1.20
7690 Wmunu Np0 Alpgen Herwig 6919.60 1.20
7691 Wmunu Np1 Alpgen Herwig 1304.20 1.20
7692 Wmunu Np2 Alpgen Herwig 377.83 1.20
7693 Wmunu Np3 Alpgen Herwig 101.88 1.20
7694 Wmunu Np4 Alpgen Herwig 25.75 1.20
7695 Wmunu Np5 Alpgen Herwig 6.92 1.20
7700 Wtaunu Np0 Alpgen Herwig 6918.60 1.20
7701 Wtaunu Np1 Alpgen Herwig 1303.20 1.20
7702 Wtaunu Np2 Alpgen Herwig 378.18 1.20
7703 Wtaunu Np3 Alpgen Herwig 101.51 1.20
7704 Wtaunu Np4 Alpgen Herwig 25.64 1.20
7705 Wtaunu Np5 Alpgen Herwig 7.04 1.20

Table D.2: W+jets samples.
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ID Description Matrix Element Parton Shower cross section [pb] k-factor
7650 Zee Np0 Alpgen Herwig 668.32 1.25
7651 Zee Np1 Alpgen Herwig 134.36 1.25
7652 Zee Np2 Alpgen Herwig 40.54 1.25
7653 Zee Np3 Alpgen Herwig 11.16 1.25
7654 Zee Np4 Alpgen Herwig 2.88 1.25
7655 Zee Np5 Alpgen Herwig 0.83 1.25
7660 Zmumu Np0 Alpgen Herwig 668.68 1.25
7661 Zmumu Np1 Alpgen Herwig 134.14 1.25
7662 Zmumu Np2 Alpgen Herwig 40.33 1.25
7663 Zmumu Np3 Alpgen Herwig 11.19 1.25
7664 Zmumu Np4 Alpgen Herwig 2.75 1.25
7665 Zmumu Np5 Alpgen Herwig 0.77 1.25
7670 Ztautau Np0 Alpgen Herwig 668.40 1.25
7671 Ztautau Np1 Alpgen Herwig 134.81 1.25
7672 Ztautau Np2 Alpgen Herwig 40.36 1.25
7673 Ztautau Np3 Alpgen Herwig 11.25 1.25
7674 Ztautau Np4 Alpgen Herwig 2.79 1.25
7675 Ztautau Np5 Alpgen Herwig 0.77 1.25

Table D.3: Z+jets/Drell-Yan samples with phase space cuts ml+l− > 40 GeV.

ID Description Matrix Element Parton Shower cross section [pb] k-factor
116250 Zee Np0 Alpgen Herwig 3055.20 1.25
116251 Zee Np1 Alpgen Herwig 84.92 1.25
116252 Zee Np2 Alpgen Herwig 41.40 1.25
116253 Zee Np3 Alpgen Herwig 8.38 1.25
116254 Zee Np4 Alpgen Herwig 1.85 1.25
116255 Zee Np5 Alpgen Herwig 0.46 1.25
116260 Zmumu Np0 Alpgen Herwig 3054.90 1.25
116261 Zmumu Np1 Alpgen Herwig 84.87 1.25
116262 Zmumu Np2 Alpgen Herwig 41.45 1.25
116263 Zmumu Np3 Alpgen Herwig 8.38 1.25
116264 Zmumu Np4 Alpgen Herwig 1.85 1.25
116265 Zmumu Np5 Alpgen Herwig 0.46 1.25
116270 Ztautau Np0 Alpgen Herwig 3055.10 1.25
116271 Ztautau Np1 Alpgen Herwig 84.93 1.25
116272 Ztautau Np2 Alpgen Herwig 41.47 1.25
116273 Ztautau Np3 Alpgen Herwig 8.36 1.25
116274 Ztautau Np4 Alpgen Herwig 1.85 1.25
116275 Ztautau Np5 Alpgen Herwig 0.46 1.25

Table D.4: Low mass Z+jets/Drell-Yan samples with 10 GeV < ml+l− < 40 GeV.

ID Description Matrix Element Parton Shower cross section [pb] k-factor
7280 WbbNp0 Alpgen Herwig 47.32 1.20
7281 WbbNp1 Alpgen Herwig 35.77 1.20
7282 WbbNp2 Alpgen Herwig 17.34 1.20
7283 WbbNp3 Alpgen Herwig 6.63 1.20

Table D.5: W+bb samples.
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ID Description Matrix Element Parton Shower cross section [pb] k-factor
9300 Z+bb Np0 Alpgen Herwig 6.57 1.25
9301 Z+bb Np1 Alpgen Herwig 2.48 1.25
9302 Z+bb Np2 Alpgen Herwig 0.89 1.25
9303 Z+bb Np3 Alpgen Herwig 0.39 1.25
9305 Z+bb Np0 Alpgen Herwig 6.56 1.25
9306 Z+bb Np1 Alpgen Herwig 2.47 1.25
9307 Z+bb Np2 Alpgen Herwig 0.89 1.25
9308 Z+bb Np3 Alpgen Herwig 0.39 1.25
9310 Z+bb Np0 Alpgen Herwig 6.57 1.25
9311 Z+bb Np1 Alpgen Herwig 2.49 1.25
9312 Z+bb Np2 Alpgen Herwig 0.89 1.25
9313 Z+bb Np3 Alpgen Herwig 0.39 1.25

Table D.6: Z+bb samples.

ID Description Matrix Element Parton Shower cross section [pb] k-factor
7100 WW + 0j, both W → lν Alpgen Herwig 2.0950 1.26
7101 WW + 1j, both W → lν Alpgen Herwig 0.9962 1.26
7102 WW + 2j, both W → lν Alpgen Herwig 0.4547 1.26
7103 WW + 3j, both W → lν Alpgen Herwig 0.1758 1.26
7104 WZ + 0j, W → inclusive , Z → ll Alpgen Herwig 0.6718 1.28
7102 WW + 2j, both W → lν Alpgen Herwig 0.4138 1.28
7106 WZ + 2j, W → inclusive , Z → ll Alpgen Herwig 0.2249 1.28
7107 WZ + 3j, W → inclusive , Z → ll Alpgen Herwig 0.0950 1.28
7108 ZZ + 0j, Z → inclusive , Z → ll Alpgen Herwig 0.5086 1.30
7109 ZZ + 1j, Z → inclusive , Z → ll Alpgen Herwig 0.2342 1.30
7110 ZZ + 2j, Z → inclusive , Z → ll Alpgen Herwig 0.0886 1.30
7111 ZZ + 3j, Z → inclusive , Z → ll Alpgen Herwig 0.0314 1.30

Table D.7: Diboson samples.

ID Description Matrix Element Parton Shower cross section [pb] k-factor
5205 tt̄ AcerMC Pythia 58.23 1.53
5860 tt̄ POWHEG Herwig 79.171 1.129
5861 tt̄ POWHEG Pythia 79.171 1.129
117255 tt̄ ISR min AcerMC Pythia 58.23 1.53
117256 tt̄ ISR max AcerMC Pythia 58.23 1.53
117257 tt̄ FSR min AcerMC Pythia 58.23 1.53
117258 tt̄ FSR max AcerMC Pythia 58.23 1.53

Table D.8: Systematic generator and ISR/FSR samples.
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