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Zusammenfassung

Der Bau eines Teilchenbeschleunigers für Forschung in der Hochenergiephysik erfordert
Jahrzehnte der Planung. Die "European Strategy Group for High Energy Physics" hat
daher die Empfehlung ausgesprochen bereits heute, etwa 20 Jahre vor der geplanten Ab-
schaltung des Large Hadron Colliders (LHC), mögliche Nachfolgeprojekte zu entwickeln.
Die sogenannte Future Circular Collider (FCC) Design Studie untersucht den Nutzen und
die Machbarkeit neuer Speicherringe für Teilchenkollisionen im Hinblick auf die Beantwor-
tung aktueller Fragen der Teilchenphysik und die Suche nach Physik jenseits des Standard-
Modells. Im Zuge der hier vorliegenden Dissertation wird die magnetische Bogenstruktur
eines möglichen Electron-Positron Speicherrings entwickelt und optimiert, der unter dem
Namen FCC-ee eines der Teilprojekte darstellt. Der geplante Umfang von 100 km erlaubt
die Beobachtung von Teilchenkollisionen bis einer Schwerpunktenergie im Bereich von 90
bis 350GeV mit tolerierbaren Synchrotronstrahlungsverlusten. Dieser Energiebereich er-
möglicht nicht nur die Vermessung des W- und Z-Bosons mit sehr hoher Statistik, sondern
auch zum ersten Mal Präzisionsmessungen des kürzlich nachgewiesenen Higgs-Bosons und
des Top-Quarks.

Für die vorgestellten Studien werden zwei Maschinenmodelle mit unterschiedlicher Geo-
metrie verwendet und in dem Programm MAD-X implementiert. Basierend auf einem
Vergleich zweier gängiger Magnetstrukturen wird die Verwendung der sogenannten FODO-
Struktur motiviert und so optimiert, dass die erforderlichen Strahlparameter für die höch-
ste Teilchenenergie erreicht werden. Anders als bei Speicherringen mit hochenergetischen
Leptonstrahlen allgemein üblich sind wegen des großen Umfangs von FCC-ee nur zwei
Strecken mit Hohlraumresonatoren für die Energiezufuhr vorgesehen. Um die beachtliche
Drift des Orbits als Folge des Energieverlustes in der Bogenstruktur und die damit ver-
bundene Optikstörung zu vermeiden, werden verschiedene Lösungen zur Anpassung des
Ablenkwinkels an die lokale Strahlenergie präsentiert.

Um die höchstmögliche Luminosität zu erreichen, werden die Strahlparameter für vier
Strahlenergien individuell angepasst. Dies betrifft insbesondere die horizontale Gleich-
gewichtemittanz des Strahls, da sie von der Teilchenenergie abhängt. Um die Emit-
tanz für kleine Strahlenergien zu erhöhen werden Möglichkeiten zur Modifikation der



Optik beruhend auf denselben Magnetstruktur erfolgreich entwickelt und implementiert.
Eine nachfolgende Feinregulierung der Emittanz im Bereich von 10% wird mit Hilfe von
Dämpfungs- und Anregungswigglern unter akzeptablem Anstieg der Strahlungsleistung
erreicht.
Bei höchster Energie verlieren die nicht kollidierenden Teilchen im Wechselwirkungs-

punkt bis zu 2% ihrer Energie durch Beamstrahlung. Die Energieakzeptanz der Maschine
muss daher beachtliche ±2 % betragen, da diese Teilchen sonst verloren gehen. Dies
erfordert die Korrektur der sehr starken chromatischen Fehler, die vor allem wegen der
starken Fokussierung der Strahlen in den Quadrupolmagneten unmittelbar vor dem Wech-
selwirkungspunkt entstehen. Der Hauptteil der Arbeit umfasst daher eine systematische
Studie von Sextupolschemata in den Bogenstrukturen zur Optimierung der Chromatizi-
tätskorrektur. Dabei ist eine Korrektur des linearen Terms nicht ausreichend. Um das
sehr ambitionierte Ziel von ±2 % Energieakzeptanz zu erreichen, müssen höhere Ordnun-
gen ebenfalls kompensiert werden. Hierzu werden die Sextupolmagnete in verschiedenen
Familien eingeteilt. Das resultierende Sextupolschema wird dann an Hand der erreichten
Energieakzeptanz bewertet. Zunächst wird ein Schema bestehend aus zwei Familien pro
Bogen in der horizontalen Ebene und drei Familien pro Bogen in der vertikalen Ebene
untersucht, das erlaubt die sogenannten W Funktionen zu korrigieren, die ein Maß für die
chromatische Störung der Optik sind. Mit dieser Korrekturmethode wird kann die Ener-
gieakzeptanz von ∆p/p = ±0.04 % auf einen Bereich von −0.3 % bis +0.1 % vergrößert
werden. Für eine höhere Flexibilität des Korrekturschemas wird die Anzahl der Sextupol-
familien anschließend auf sechs pro Bogen pro Ebene erhöht. Die Anzahl der Freiheitsgrade
wird durch die individuelle Optimierung der Stärken der ersten zwölf Sextupolpaare nach
der Wechselwirkungszone weiter erhöht. Mit diesem Sextupolschema kann die Energieak-
zeptanz auf mehr als ±0.5 % erhöht werden. In Ergänzung zu diesen auf analytischen
Annahmen basierenden Korrekturen wurde eine komplett numerische Optimierung der
Sextupolstärken mit Hilfe des Downhill-Simplex-Algorithmus untersucht.
Zusammenfassend gesagt präsentiert diese Arbeit die Entwicklung einer flexiblen Mag-

netstruktur für höchste Luminositäten, mit der die Strahlparameter für alle vier vorgese-
henen Strahlenergien erreicht werden können. In einer ersten Optimierung der Chroma-
tizitätskorrektur wird eine beachtliche Vergrößerung der Energieakzeptanz erreicht. In
Kombination mit einer lokalen Chromatizitätskorrektur nahe des Wechselwirkungspunktes
sind die Zielwerte für die Energieakzeptanz dadurch in greifbarer Nähe.
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Abstract

Following the recommendations of the European Strategy Group for High Energy Physics,
CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of
large-scale circular colliders for future high energy physics research. This thesis presents the
considerations taken into account during the design process of the magnetic lattice in the
arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate
at four different centre-of-mass energies in the range of 90 to 350GeV. Different beam
parameters need to be achieved for every energy, which requires a flexible lattice design
in the arc sections. Therefore methods to tune the horizontal beam emittance without
re-positioning machine components are implemented. In combination with damping and
excitation wigglers a precise adjustment of the emittance can be achieved. A very first
estimation of the vertical emittance arising from lattice imperfections is performed. Special
emphasis is put on the optimisation of the chromaticity correction scheme based on a
multi-family sextupole scheme in the arcs. In order to obtain a momentum acceptance of
±2 %, which is required because of the severe energy loss due to beamstrahlung, it is not
sufficient to correct only the linear chromaticity. The very strong focussing in the final
focus quadrupoles requires the correction of higher-order terms as well. Methods to deal
with this issue are investigated. A systematic study of the higher-order chromaticity and
the optimisation of the sextupole scheme to gain highest possible momentum acceptance
is presented.
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Symbols and Abbreviations

Arabic symbols:

a1, b1 first order chromatic derivatives of α and β

a2, b2 second order chromatic derivatives of α and β

A transverse amplitude function of the betatron oscillation (m)

B magnetic induction (T)

c speed of light (ms−1)

C circumference of the design orbit (m)

Cq = 55
32
√
3

~c
m0c2

= 3.832× 10−13m, constant

Cγ = 4π
3

re
(mec2)3

= 8.8460× 10−5 m
GeV3 m, constant

Dx,y transverse dispersion functions (m)

e unit electronic charge (As)

E total particle or beam energy (eV)

E electric field strength (Vm−1)

f focal length of quadrupole magnets (m) or revolution frequency (Hz)

F force (N)

F = ρ2

l3B
〈H〉, lattice form factor

Hx,y = βx,yD
′2
x,y + 2αx,yDx,yD

′
x,y + γx,yD

2
x,y

I1,2,3,4,5 synchrotron integration integrals

Jx,y,s damping partition numbers

k1 normalised quadrupole strength (m−2)

k2 normalised sextupole strength (m−3)

k3 normalised octupole strength (m−4)

me = 0.510 999MeV/c2, electron rest mass

M transport matrix

N number of particles in the bunch

L length (m)

L∗ longitudinal distance between interaction point and first quadrupole (m)



SYMBOLS AND ABBREVIATIONS

L luminosity (m−2s−1)

p particle momentum (kgms−1, eVc−1)

Pγ synchrotron radiation power (W)

Qx,y transverse tune, number of betatron oscillation per turn

Q′x,y linear chromaticity

Q′′, Q(3), Q(4) higher-order chromatic derivatives of the tune

re classical electron radius (m)
√
s centre-of-mass energy

t time (s)

T revolution time (s)

u variable used in calculations for any of the transverse coordinates x or y

U0 energy loss per turn (eV)

v particle velocity (m/s)

W Montague W vector

W Montague W function, absolute value of the W vector

x, y, s coordinates of the curvilinear Frenet-Serret-Coordinate System (m, m, m)

Greek symbols:

α, β, γ Twiss parameters

αc momentum compaction factor

αf fine structure constant

β∗x,y beta function at the interaction point (m)

γ relativistic Lorentzfactor

δ = ∆p/p, relative energy deviation

∆ difference to nominal value

ε Courant-Snyder invariant (nm rad)

ε0 permittivity of vacuum

εx,y (equilibrium) beam emittance (nm rad)

ηc phase slip factor

θ bending angle (rad, °)

µx,y phase advance of the betatron oscillation (rad, °)

ρ local bending radius of the trajectory (m)

σx,y transverse beam size (m)

Σp cross section of physics event (b)

τ damping time (s)
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SYMBOLS AND ABBREVIATIONS

ϕ phase advance of one unit cell (rad, °)

ψ phase function of the betatron oscillation (rad, °)

ξ beam-beam parameter

Υ beamstrahlung parameter

ωs synchrotron oscillation frequency (Hz)

Abbreviations:

ANKA Angströmquelle Karlsruhe

CLIC Compact Linear Collider

ESS Extended Straight Section in the FCC Racetrack Layout

FCC Future Circular Collider

ILC International Linear Collider

IP interaction point

IR interaction region

LARC Long Arc in Racetrack Layout

LEP Large Electron Positron Collider

LHC Large Hadron Collider

LSS Long Straight Section in the FCC Racetrack Layout

QF, QD focussing, defocussing quadrupole

RF radio-frequency

SARC Short Arc in the FCC Racetrack Layout

SF, SD focussing, defocussing sextupole
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Introduction

This thesis presents the design of the magnet lattice and the calculations and optimisation
of the particle beam optics for a new large-scale electron-positron-collider called FCC-ee.
Following the recommendations of the European Strategy Group for High Energy Physics,
three new large scale projects are under study to investigate the characteristics of the
recently discovered Higgs particle in detail and to path the way for the investigation of the
still open questions in particle physics in the frame of the Standard Model and beyond [1].
The so-called Future Circular Collider Study (FCC) combines the common effort of several
international institutes and labs under the leadership of CERN and covers all three possible
scenarios: a new proton-proton collider aiming for highest energies (FCC-hh), the electron-
positron collider for high precision experiments (FCC-ee), which is the subject of this thesis,
and an electron-proton version to provide deep inelastic scattering experiments between
leptons and hadrons for the study of the quark structure of the proton (FCC-he).

The Future Circular Collider Study FCC is the next natural step in the attempt to answer
today’s questions in particle physics like dark matter, the matter/antimatter asymmetry or
the origin of neutrino masses. In 2012 the existence of the so-called Higgs boson, predicted
by Higgs, Brout and Englert, could be confirmed in collisions at the the Large Hadron
Collider (LHC) [2,3] and led shortly after to the award of the Nobel prize. LHC, the most
powerful particle accelerator ever built, is designed for proton collisions at up to 14TeV
centre-of-mass energy [4]. It advanced our understanding of matter and the Standard
Model and is still producing data for further analysis and the search for new physics.
However, to explore today’s key questions about the Standard Model and our universe a
more powerful machine will be required that increases the energy threshold beyond LHC’s
capacities.

FCC-hh: In order to study physics observations at highest energies, a hadron collider
pushing the energy frontier to 100TeV centre-of-mass energy is proposed. The circum-
ference is determined by the available dipole magnetic field [5], which is in the order of
16 to 20T based on Nb3Sn technology. The study therefore foresees an 80 to 100 km cir-
cumference tunnel in the Geneva area connected to the already existing CERN accelerator
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Figure 1: Illustration of a possible site for the FCC in the Geneva basin [6, 7].

infrastructure. A possible location for such a tunnel in the Geneva basin is illustrated in
Fig. 1.

FCC-he: In continuation of the studies of deep inelastic scattering at HERA scenarios for
electron-proton collisions are investigated in the context of the FCC Study as well. One
interaction point of the hadron collider could be reserved for collisions with an electron
beam provided by an energy recovery linac.

FCC-ee: In order to gain better knowledge about already discovered particles and draw
conclusions about the properties of new physics an electron-positron collider is proposed
for precision measurements. The last high-precision machine, the Large Electron Positron
Collider (LEP), put the Standard Model on solid basis of empirical data by delivering
precise measurements of the W and Z bosons, but was not powerful enough to produce
Higgs bosons and to reach the tt̄ threshold. Since the mass of the Higgs boson remained
unknown, the linear collider projects Compact Linear Collider (CLIC) and International
Linear Collider (ILC) were designed to reach high centre-of-mass energies up to the TeV
range [8, 9]. At such high beam energies a linear machine layout is preferred, because of
the vast energy loss due to synchrotron radiation in the arc sections of circular machines.
However, the relatively low mass of the Higgs boson of mH = 125GeV/c2 and the large
circumference of the FCC would allow the operation of an electron-positron collider with
acceptable amount of synchrotron radiation losses. Therefore, the conceptual design study

2
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Table 1: Preliminary values of the luminosity for TLEP in each of the four planned configurations [8]. Other
parameters relevant for the physics potential of TLEP (beam size, RF cavity gradient, number of bunches, total
power consumption and integrated luminosity per year at each IP) are also listed.

TLEP-Z TLEP-W TLEP-H TLEP-t
p

s (GeV) 90 160 240 350
L (1034 cm�2s�1/IP) 56 16 5 1.3

# bunches 4400 600 80 12
RF Gradient (MV/m) 3 3 10 20

Vertical beam size (nm) 270 140 140 100
Total AC Power (MW) 250 250 260 284

Lint (ab�1/year/IP) 5.6 1.6 0.5 0.13
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Fig. 3: Instantaneous luminosity, in units of 1034 cm�2s�1, expected at TLEP (full red line), in a configuration
with four interaction points operating simultaneously, as a function of the centre-of-mass energy. For illustration,
the luminosities expected at linear colliders, ILC (blue line) and CLIC (green line), are indicated in the same
graph. As explained in the text, the TLEP luminosity at each interaction point would increase significantly if fewer
interaction points were considered. The possible TLEP energy upgrade up to 500 GeV, represented by a dashed
line, is briefly discussed in Section 5.

(as opposed to a naive factor 2 reduction), hence would increase the statistical uncertainties reported
in this article by about 20%. The physics potential of either configuration is summarized in Table 8
(Section 3.3) and Table 9 (Section 4). Although there is some debate as to the functional dependence of
the beam-beam parameter on the damping decrement, any modifications to the formula of Ref. [14] will
have minor effects on the conclusions of this analysis.

Also displayed in Fig. 3 are the luminosities expected for the two linear collider projects, ILC [15,
16] and CLIC [17], as a function of the centre-of-mass energy. It is remarkable that the luminosity ex-
pected at TLEP is between a factor 5 and three orders of magnitude larger than that expected for a linear
collider, at all centre-of-mass energies from the Z pole to the tt̄ threshold, where precision measure-
ments are to be made, hence where the accumulated statistics will be a key feature. Upgrades aimed at
delivering luminosities well beyond the values given above are also being investigated – although they

8

Figure 2: Expected luminosity of TLEP (FCC-ee) in units of 1034 cm−2s−1 as a function
of the centre-of-mass energy

√
s. The dashed line indicates a possible upgrade

of TLEP to 500GeV beam energy. The values of the linear collider projects
ILC and CLIC are given for comparison [10].

also investigates a lepton collider featuring electron-positron collisions at centre-of-mass
energy in the range from

√
s = 90 to 350GeV for precision studies and observations of rare

decay events [10, 11]. Within this energy range following production modes are of highest
interest [12,13]:

• the Z pole at 90GeV: FCC-ee would serve as a very efficient factory of Z bosons
allowing precise measurements of mZ and ΓZ as well as the search for extremely rare
decays.

• the W pair production threshold at 160GeV for high precision measurements of mW

• the ZH production mode at 240GeV: at this energy with maximum rate of Higgs
boson production FCC-ee could precisely measure the characteristics of the recently
found particle.

• operation at and above the tt̄ threshold at 350GeV to allow the first precision meas-
urements of the top quark.

In this energy range below 400GeV circular colliders have much higher luminosity, because
they can provide a higher collision rate and allow continuous top-up injection to compensate
luminosity burn-off [13]. In addition, circular colliders offer the possibility to install several
experiments, which increases the amount of collected data. Fig. 2 compares the expected
luminosity of FCC-ee (TLEP) assuming four interaction points (IPs) to the values of ILC
and CLIC. The expected luminosity of FCC-ee is up to two orders of magnitude larger
than the ILC’s. As a further advantage, for beam energies up to 80GeV circular colliders
allow the most precise measurement of the beam energy through resonant depolarisation
of the transverse particle spin [14].

3
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Fig. 12: Comparison between the projections of the HL-LHC (green) and of e+e� Higgs factories (blue: ILC,
red: TLEP) for the Higgs boson coupling relative uncertainties. For the HL-LHC projections, the dashed bars
represent CMS Scenario 1 and the solid bars represent CMS Scenario 2, for one experiment only [47]. For the
Higgs factories, the data up to

p
s = 350 GeV are combined. The dashed horizontal lines show the ±1% band,

relevant for sensitivity to multi-TeV new physics.

the uncertainties in the theoretical calculations of Higgs properties.

4 Precise measurements of the EWSB parameters
Electroweak loops have the remarkable property of being sensitive to the existence of weakly-coupled
particles, even if they cannot be directly produced or observed in current experiments. For example,
the measurements of the Z resonance line-shape parameters, undertaken at LEP during a dedicated scan
in 1993, led to a prediction of the top quark mass mtop of 172 ± 20 GeV by the time of the Moriond
conference in March 1994 [51]. The uncertainty on mtop was dominated by the range of assumptions
for the Higgs boson mass, varied from 60 to 1000 GeV. When the top quark was discovered at the
Tevatron in 1995, and its mass measured with precision of a few GeV within one standard deviation of
the prediction, the Electroweak fits of the LEP data became sensitive to the only remaining unknown
quantity in the Standard Model, the Higgs boson mass mH, predicted to be mH = 99+28

�23 GeV [52]. It is
remarkable that the observation of the H(126) particle at the LHC falls, once again, within one standard
deviation of this prediction.

These two historical examples are specific of the Standard Model, with its particle content – and
nothing else. Now that the Higgs boson mass is measured with a precision of a fraction of a GeV, and
barring accidental or structural cancellations, these fits rule out the existence of any additional particle
that would have contributed to the Electroweak loop corrections in a measurable way. As emphasized
in Ref. [52], the corrections to the W and Z masses do not necessarily decouple when the mass of new
additional particles increase (contrary to the corrections to, e.g., (g � 2)µ). For example, the top-quark
loop correction scales like (m2

top � m2
b)/m2

W. The Electroweak loop corrections are also delicately
sensitive to the details of the Electroweak Symmetry Breaking Mechanism.

As summarized in Section 2, the TLEP physics programme offers the potential of considerable
improvements in the precision of a large number of Electroweak observables. The outstandingly large
luminosity, the precise energy definition, the absence of energy bias due to beamstrahlung, and an ac-

23

Figure 3: Comparison the relative uncertainties on the Higgs coupling for HL-LHC and
the Higgs factories ILC and TLEP (FCC-ee). The dashed horizontal lines
illustrate the 1% band, relevant for sensitivity to multi-TeV new physics [10].

In summary, compared to hadron colliders, lepton machines provide a clean experimental
environment in which the initial and final states are theoretically known very precisely. The
huge data samples in combination with the precise knowledge of the centre-of-mass energy
allow to measure the properties of the W and Z bosons with unprecedented precision [13].
In addition, high-precision measurements of the Higgs boson and the top quark could be
performed for the first time. Fig. 3 shows a comparison of the relative uncertainties of the
Higgs boson coupling for the HL-LHC, ILC and TLEP (FCC-ee) [10]. Coupling precision
below the 1% threshold would allow to draw conclusions to multi-TeV new physics [10].
For further information on the FCC-ee physics case see [10, 13,15].

FCC-ee baseline parameter set and challenges for the lattice design: The ultimate
performance limit for luminosity production in a lepton storage ring strongly depends on
the energy of the colliding beams. Hence, the machine has to be designed and optimised
for all four physics programmes individually while using the same machine hardware. For
all cases a maximum synchrotron radiation power of Pγ = 50MW per beam was assumed
leading to a considerably higher number of bunches and beam current at the lower beam
energies. An excerpt of the resulting baseline parameter set optimised for highest possible
luminosity is presented in Tab. 1 [16]. The full table is given in the Appendix in Tab. A2
as well as the previous version in Tab. A1.
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Table 1: Excerpt of the baseline parameter set for the different physics programmes of
FCC-ee [16]. The full table is given in the Appendix in Tab. A2.

Z Z W H tt
Beam energy (GeV) 45.5 45.5 80 120 175
Beam current (mA) 1450 1450 152 30 6.6
Bunches/beam 30180 91500 5260 780 81
Bunch population (1011) 1 0.33 0.6 0.8 1.7
Horizontal emittance εx (nm) 0.2 0.09 0.26 0.61 1.3
Vertical emittance εy (pm) 1 1 1 1.2 2.5
Momentum comp. (10−5) 0.7 0.7 0.7 0.7 0.7
Betatron function at IP
- Horizontal β∗ (m) 0.5 1 1 1 1
- Vertical β∗ (mm) 1 2 2 2 2
Synchrotron radiation power Pγ (MW) 50 50 50 50 50
Energy loss/turn (GeV) 0.03 0.03 0.33 1.67 7.55
Total RF voltage (GV) 0.4 0.2 0.8 3 10
Polarization time tp (min) 11200 11200 672 89 13
Luminosity/IP for 2 IPs (1034 cm−2s−1) 207 90 19.1 5.1 1.3
Luminosity lifetime (min) 94 185 90 67 57
Beam-beam parameter ξ
- Horizontal 0.025 0.05 0.07 0.08 0.08
- Vertical 0.16 0.13 0.16 0.14 0.12
Beamstrahlung critical No/Yes No No No Yes

Out of the many challenges for the design of FCC-ee, the following ones concern the
magnetic lattice and are therefore studied in detail in the context of this thesis:

• As the beam parameters are optimised for four different beam energies individually,
the lattice needs to be flexible and easily allow modifications to obtain the beam
parameters for the respective energy.

• The very high synchrotron radiation power requires a sophisticated absorber design
to protect the machine components. Room for the absorbers must be reserved in the
lattice and arrangements have been made to compensate for the energy loss of the
particles while propagating through the arc sections.

• At 45.5GeV beam energy the horizontal beam emittance reaches values below the
nanometer range. In combination with the high bunch population the charge density
in the bunches becomes very high, which might lead to large beam-beam tune shifts,
intra-beam scattering or other collective effects. To prevent negative impact the
emittance might have to be artificially increased.

• The small values of the vertical emittance in the range from 1.0 to 2.5 pm rad and
the ambitious emittance ratio in the permille range correspond to the performance of
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modern synchrotron light sources [17–19] and set serious constraints on the alignment
tolerances of the machine components.

• The luminosity of previous storage ring colliders was mainly limited by the beam-
beam tune shift [20]. At the largest beam energy of 175GeV beamstrahlung created
during the bunch crossing at the interaction point becomes most critical. The non-
colliding particles in the bunch might lose up to 2% of their energy leading to a
required momentum acceptance of ±2 %. The effect of beamstrahlung was mainly
discussed in context with linear colliders so far.

• The very small value of the vertical beta function β∗y = 2mm at the interaction point
requires very strong focussing of the beam in the final doublet quadrupoles, which
creates large chromatic perturbations of the optics for off-momentum particles. A
satisfactory chromaticity correction scheme has to be established with stable motion
for particles up to ±2 % momentum deviation. The global chromaticity correction
scheme of the arc needs to be combined with a local chromaticity compensation
scheme close to the interaction point.

In the context of this work the electron-positron collider version of FCC was studied with
emphasis on the lattice, the beam optics and mainly the optimisation of the chromatic
behaviour of the stored beam particles. In a lepton accelerator the magnetic lattice and
optics, i.e. the periodic arrangement of the magnetic elements and the their strength and
distance, directly affect the beam parameters which describe the characteristics of the
particle beam such as beam size or particle density. A careful design of the lattice is
therefore essential to obtain a certain luminosity of the collider.
The next chapters of this thesis will present the development of a possible lattice for the

FCC-ee collider following above mentioned boundary conditions. The main focus is put
on the investigation of the arc lattice, which in the case of lepton storage rings is essential
to define the beam parameters. Starting from the layout of the basic lattice cell at the
highest beam energy all lattice sections are derived which are required to implement a
model of the whole machine. Methods will be presented that allow the modification of the
horizontal beam emittance for lower energies while using the same hardware and possible
lattice arrangements will be proposed that fulfill the requirements at each beam energy.
To finalise the linear lattice design of FCC-ee a very first investigation of the vertical beam
emittance and the alignment tolerances in the arcs and first results of the emittance fine-
tuning with wigglers will be presented. In order to compensate for the large chromatic
aberrations arising from the strong final focus quadrupoles a systematic study of global
chromaticity compensation schemes was performed. Several sextupole arrangements in the
arc sections were studied and different correction methods were implemented to optimise
the momentum acceptance.
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CHAPTER 1

Concepts of Accelerator Physics

This chapter gives a brief overview about the basics of accelerator physics. Further details
can be found in the usual textbooks like [21] or [22]. A more comprehensive explanation
to the topics relevant for this thesis will be given at the beginning of each chapter.

1.1 Frenet-Serret Coordinate System

The trajectory in a particle accelerator taken by a particle with design energy and no
transverse momentum is called the design trajectory, or in the case of circular accelerators
the design orbit. In order to keep the mathematical description of beam dynamics as
simple as possible, the particle motion is described in reference to this design orbit in a
right-handed orthogonal coordinate system moving along with the reference particle. This
coordinate system is called the Frenet-Serret Coordinate System with the basis x̂, ŷ, and ŝ.
ŝ always points tangentially along the path of the reference orbit and is used as independent
variable. x̂ is the horizontal coordinate pointing in the same direction as the radial vector.
The vertical coordinate ŷ is orthogonal to both ŝ and x̂ as illustrated in Fig. 1.1.

observed particle

x(s)

y(s)

x̂

ρ

ŝ

ŷ

design orbit

Figure 1.1: Frenet-Serret Coordinate System used in accelerator physics. x̂, ŷ, and ŝ form
the right-handed orthogonal basis, ρ is the local bending radius.



1. CONCEPTS OF ACCELERATOR PHYSICS

1.2 Components of particle accelerators

Acceleration, guidance and focusing of the charged particles is performed with the Lorentz
force

FL = e(E + v ×B) = ṗ, (1.1)

which emerges from both electric fields E and magnetic fields B. If the particles have
relativistic velocities the effects of magnetic fields are by a factor of c larger than the effect
of electric fields. In other words a magnetic field of B = 1T corresponds to an electric
field of E = 3 × 108V/m. Electric fields of this strengths are far beyond technical limits,
therefore magnetic fields are usually used to bend and focus the beam in high energy
storage rings. The guiding magnetic field can be expanded into a series of multipoles:

By = By0 +
dBy
dx

x+
1

2!

d2By
dx2

x2 +
1

3!

d3By
dx3

x3 . . . (1.2)

For optics design it is convenient to normalize the multipole strengths to the particle
momentum to get an energy independent description of the focusing properties:

e

p
By(x) =

e

p
By0 +

e

p

dBy
dx

x +
1

2!

e

p

d2By
dx2

x2 +
1

3!

e

p

d3By
dx3

x3 . . .

=
1

ρ
+ k1x +

1

2!
k2x

2 +
1

3!

e

p
k3x

3 . . .

dipole quadrupole sextupole octupole

(1.3)

Each multipole has its particular effect on the particle beam: the homogeneous field of
the dipole magnets is used to bend the particle trajectory and fix the geometry of the
machine. Quadrupoles feature a linear field gradient, which is used to focus the beam.
However, if they focus in one plane, they have a defocussing effect in the other. So a setup
with quadrupole lenses of alternating polarity is required and their strengths and positions
have to be adjusted to obtain an overall focusing effect in both planes. The configuration
widely used in high-energy storage rings, the FODO layout with alternating quadrupoles
in equal distance, is described in Sec. 2.2. Multipoles of higher orders are used to correct
imperfections of the optics. Chromatic aberrations arising from momentum deviations, for
example, are corrected by sextupole magnets.
The periodic sequence of magnetic elements is called the magnetic lattice of a particle

accelerator. A linear lattice just contains dipole and quadrupole magnets.
Longitudinal electric fields in so-called radio-frequency (RF) cavities are used to increase

the particle energy during the acceleration process. The advantage of a circular machine
is, that the same accelerating structure can be used many times.
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1.3 Linear transverse dynamics

1.3.1 Equations of motion, beta function, emittance and tune

The transverse motion of a single particle in an accelerator with periodic magnetic lattice
can be described by Hill’s equation

u′′ +Ku(s)u = 0 (u = x, y) (1.4)

assuming the existence of a closed orbit. Ku represents the focussing effect of dipoles and
quadrupoles

Kx(s) = −k1(s) +
1

ρ2
, (1.5a)

Ky(s) = k1(s). (1.5b)

k1(s) is the normalized quadrupole strength and 1/ρ2 describes the geometric contribution
to the weak focusing of the dipoles, which in a flat machine only arises in the horizontal
plane. The solution of Hill’s equation describes the trajectory of a single particle and is a
transverse oscillation around the reference orbit, called the betatron oscillation:

u(s) =
√
ε
√
β(s) cos (ψ(s) + φ) (1.6a)

u′(s) = −
√
ε√
β(s)

[
α(s) cos(ψ(s) + φ) + sin(ψ(s) + φ)

]
(1.6b)

The detailed derivation of this equations is given in [21]. ε is the so-called Courant-Snyder
invariant, which is proportional to the area A = επ of the phase space ellipse formed by
the particles’s potential states of motion at a specific point of the lattice. As illustrated in
Fig. 1.2 the shape and orientation of the ellipse is described by the Twiss parameters β,
α, and γ:

γ(s)u′2(s) + 2α(s)u(s)u′(s) + β(s)u2(s) = ε (1.7)

β(s) is the amplitude function of the betatron oscillation and depends on the focusing
properties of the lattice. α(s) ≡ −β′(s)/2 is proportional to the slope of the beta function
and indicates the orientation of the ellipse in phase space.

γ(s) ≡ 1 + α2(s)

β(s)
(1.8)

describes the angular envelope of the trajectory and is a measure for the divergence of
the beam. Under the influence of conservative forces, according to Liouville’s theorem,
the phase space volume occupied by the particle beam stays constant. This means, while
traveling through the lattice, the phase space ellipse gets deformed by bending and focusing
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u

u’

√
εγ

−α
√
ε

γ

√
εβ

−α
√
ε

β
√
ε

β

√
ε

γ
A = πε

Figure 1.2: Ellipse representing the potential states of a particle in phase space.

elements, but its area stays constant. As immediate consequence a beam focussed to a
narrow waist has a large divergence.

Considering a Gaussian shaped beam the particle at 1σ orbit offset defines the beam
size

σu =
√
εuβu (1.9)

and its Courant-Snyder invariant is equivalent with the so-called beam emittance, which
describes the phase space volume occupied by the particles of the beam. In the case of more
general particle distributions an alternative definition of emittance is often used [23,24]:

εrms,u =
√
〈u〉2〈u′〉2 − 〈uu′〉2 (1.10)

This statistical definition is not based on a more or less arbitrarily chosen contour of the
phase space volume, but on the mean values of position and transverse momentum.

The difference of the phase functions at two points s1 and s2 in the lattice is called the
phase advance

µ = ψ(s2)− ψ(s1) =

∫ s2

s1

1

β(s)
ds. (1.11)

The phase advance of the whole accelerator lattice divided by 2π gives the number of
betatron oscillations in one revolution and is called the tune

Qu =
1

2π

∮
1

βu(s)
ds. (1.12)
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m m+1
n

n+1

Qy

Qx

Figure 1.3: Tune diagram with optical resonances up to third order. The first order
resonances are depicted with black continuous lines, the second order with
red dashed lines and the third order resonances by dotted blue lines. A
possible working point is marked by the black dot.

The tunes of both transverse planes define the so-called working point of the machine and
have to be chosen very carefully. As in circular accelerators the stored particles encounter
the same magnetic structure repeatedly, perturbations in the lattice can cause optical
resonances that increase the amplitude of the betatron oscillation and hence can rapidly
lead to the loss of the particles. Optical resonances of order l occur in both planes, if the
resonance condition

lQ = p (l, p ∈ Z) (1.13)

is fulfilled. If the lattice contains elements that introduce coupling between the transverse
planes, like solenoids or skew elements, also coupling resonances depending on both the
horizontal and the vertical tune arise for

mQx + nQy = p (m,n, p ∈ Z). (1.14)

|m|+ |n| is the order of the resonance. All resonances up to the third order are visualised
as lines in Fig. 1.3. During the lattice design process it is important to observe the working
point and keep it sufficiently far from these lines.
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1.3.2 Dispersion function

The design orbit is defined by the path of a particle with design momentum p and no
transverse oscillations. The bending radius ρ of a charged particle in a homogeneous
dipolar magnetic field depends on its momentum (compare Eq. (1.3)). The deflection is
stronger for particles with low momentum than for particles with high momentum. In
analogy to light optics this effect is called dispersion. As a consequence the equation of
motion given by Eq. (1.4) needs to be extended. A particle with relative energy deviation
δ = ∆p/p satisfies the inhomogeneous Hill’s equation

u′′ +K(s)u =
1

ρ

∆p

p
. (1.15)

Its solution is a linear combination of the general solution (1.6b), here referred to as uβ(s),
and the particular solution of the inhomogeneous part uδ(s):

u(s) = uβ(s) + uδ(s) (1.16)

The particle with momentum deviation will no longer oscillate around the reference orbit
but around a new dispersion orbit with a transverse offset, which is in first order propor-
tional to the relative energy deviation δ. The so-called dispersion function is defined such,
that it yields the closed orbit for a particle with 100% energy deviation corresponding to
δ = 1. For any other energy deviation the dispersion orbit is

uδ(s) = Du(s) δ. (1.17)

1.3.3 Momentum compaction factor

The dispersion orbit of particles with momentum offset introduced in the previous section
has a different length than the design orbit. Since the bending radii decrease for particles
with smaller momentum, the orbit moves to the inside of the ring and gets shorter. For
particles with larger momentum the orbit becomes longer. In first order the change of orbit
length is proportional to the energy deviation and quantified by the momentum compaction
factor αc:

∆C

C
= αc

∆p

p
(1.18)

The momentum compaction factor is energy independent and constant for a given lattice.
It can also be expressed using the first of the so-called synchrotron radiation integrals, that
describe the modification of the beam parameters by the emission of synchrotron radiation:

αc =
1

C

∮
D(s)

ρ
ds =

I1
C

(1.19)
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In the ultra-relativistic regime, where the particle velocity is close to the speed of light,
the momentum compaction factor is approximately equal to the phase slip factor

ηc = αc −
1

γ2
≈ αc, (1.20)

which describes the change of revolution time depending on the energy offset:

∆T

T
= ηc

∆p

p
(1.21)

The phase slip factor and thus as well the momentum compaction factor is a key para-
meter in longitudinal dynamics, since it determines the arrival time at the RF cavities and
together with the RF voltage the bunch length.

1.3.4 Chromaticity

Linear chromaticity

The deflection of a charged particle in magnetic fields depends on the particle’s energy.
This effect not only creates dispersion in bending magnets, but also modifies the effective
focusing strength of quadrupoles, which is inversely proportional to the momentum. The
change of focusing strength due to energy deviation is

∆k1 = − e

p2
dBy
dx

∆p = −k1 δ. (1.22)

The quadrupole error results in a tune shift proportional to the energy offset:

∆Q =
1

4π

∫
β(s)∆k1(s) ds =

[
− 1

4π

∫
β(s)k1(s) ds

]
δ (1.23)

The derivative of the betatron tune with respect to the momentum deviation includes
the effect of all quadrupoles in the lattice and is called the natural chromaticity of the
accelerator

Q′ =
dQ
dδ

= − 1

4π

∫
β(s)k1(s) ds. (1.24)

Although the quadrupoles create positive chromaticity in their defocusing plane as well,
the natural chromaticity is in general negative. As the beta functions at the quadrupoles
reach maximum values in the focusing plane while having minimum values in the defocusing
plane, the negative contribution from the focusing plane dominates.
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In a FODO lattice (see Sec. 2.2) the value of the chromaticity equals approximately the
negative value of the betatron tune. In collider storage rings the largest contribution to the
chromaticity budget comes from the final focus quadrupoles. Their very large strengths
drove up to 50% of the chromaticity in past machines [4, 25].

Linear chromaticity correction with sextupoles

As explained in the previous section, non-zero chromaticity leads to tune shifts for particles
with momentum offset. Those particles might encounter optical resonances, where their
motion gets unstable and the particles might get lost. Since, especially in the case of a
lepton beam with synchrotron radiation, a certain energy spread of the beam cannot be
avoided, the chromaticity needs to be corrected.

For chromaticity correction the quadrupoles’ focusing strength has to be re-established.
As the focusing errors depend on the particle energy, the correction has to be energy-
dependent as well. Such an energy-dependent focusing strength is provided by sextupole
magnets in dispersive regions (Dx 6= 0). The sextupole field gradient is proportional to the
transverse position of the particle.

e

p
Bx = k2 x y ⇒ ∂Bx

∂y
= k2 x (1.25a)

e

p
By =

1

2
k2 (x2 − y2) ⇒ ∂By

∂x
= k2 x (1.25b)

So in dispersive regions, where the transverse position of particles with energy deviation
is determined by the dispersion orbit xδ = Dxδ, they provide an additional focusing pro-
portional to the energy deviation:

k1,sext = k2 Dx δ (1.26)

Particles with design momentum are not affected by the sextupoles, since their field gradi-
ent is zero on the reference orbit. For off-momentum particles the additional focusing
restores the focal length of the quadrupole as illustrated in Fig. 1.4 and generates a second
term in the chromaticity formula counteracting or increasing the chromatic perturbations:

Q′ = − 1

4π

∫ [
k2(s)Dx(s) + k1(s)

]
β(s) ds (1.27)

Eq. (1.27) directly indicates good positions for the sextupoles for effective chromaticity cor-
rection: in order to reduce the sextupole strength a large value of the dispersion function
is favored. Since sextupoles affect the optics of both transverse planes, the beta functions
should be well-separated to avoid chromaticity increase in the secondary plane. Therefore
the sextupoles are usually placed as close to the quadrupoles as possible, where the differ-
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∆p/p > 0

∆p/p < 0

∆p/p = 0

quadrupole

sextupole

Dx 6= 0

focal length

x

s

Figure 1.4: Linear chromaticity correction with a sextupole magnet in a dispersive region.
The sextupole restores the focal length of the quadrupole for particles with
momentum deviation ∆p/p 6= 0.

ence of the beta functions is maximal. In addition, the sextupoles correct the chromaticity
locally at the source of the chromatic perturbations. It follows, that a beam transport
system can be made achromatic, if every quadrupole is paired with a sextupole of the
strength k2 = k1/Dx. Although such a local chromaticity compensation is very effective,
it cannot be achieved in circular accelerators, which include straight sections with van-
ishing dispersion. Instead, a global chromaticity correction scheme is required, in which
the sextupoles of the arcs compensate the chromatic aberrations of the quadrupoles in the
straight sections as well. As a consequence, the single lattice cell cannot be achromatic
any more.

In state-of-the-art lepton colliders specifically designed chromaticity correction sections
are installed close to the interaction point. Additional bending magnets create non-zero
dispersion, which allows a local correction of the chromatic aberrations created by the final
focus quadrupoles in addition to the global chromaticity correction in the arcs.

The chromaticity correction with sextupoles is unavoidable in large rings, but it has un-
desirable side-effects: non-linear fields are introduced to the lattice, which create geometric
aberrations. This means the particle motion, previously a harmonic oscillation, becomes
unstable for large betatron amplitude. This limit of stability is referred to as the dynamic
aperture of the machine. Moreover, the sextupole fields can introduce coupling between
the two transverse planes driving additional optical resonances. To minimize those effects,
a large number of sextupoles with moderate strength is equally distributed around the ring
instead of a few very strong sextupoles.

15



1. CONCEPTS OF ACCELERATOR PHYSICS

1.4 Synchrotron radiation

1.4.1 Synchrotron radiation power and energy loss per turn

Accelerated charged particles lose energy by emitting electromagnetic waves. The radi-
ation created in particle accelerators is called synchrotron radiation, since it was observed
in synchrotrons for the first time. While the effect is relatively small during longitudinal
acceleration, considerable radiation losses are observed for acceleration in transverse direc-
tion. The synchrotron radiation power of a particle with charge e and energy E due to the
bending forces of the dipole magnets is [26]

Pγ =
cCγ
2π

E4

ρ2
(1.28)

with the speed of light c, the bending radius ρ representing the bending field 1
ρ = e

pB and
the constant Cγ for electrons defined as

Cγ =
e2

3ε0

1

(mec2)4
= 8.8460× 10−5

m
GeV3 . (1.29)

me is the electron mass and ε0 is the permittivity of vacuum. The radiated energy scales
with the forth power of the particle energy, which means that the energy loss increases
very quickly for large beam energies. It also scales inversely with the fourth power of the
particle’s rest mass. As a consequence, synchrotron radiation is mainly observed in electron
storage rings. In order to reduce the losses the bending radius needs to be increased, which
is why circular lepton colliders tend to have a large circumference.

The energy loss per turn is obtained by the integral of the radiation power for one
revolution time T0. Using dt = 1

c ds and the second synchrotron radiation integral [27]

I2 =

∮
1

ρ2
ds (1.30)

the energy loss per turn is given by

U0 =

T0∫

0

Pγ dt =
Cγ
2π
E4I2. (1.31)

Synchrotron radiation is also created in quadrupoles in case of orbit offsets or large
betatron amplitudes. Especially in the final focus quadrupoles of a collider, where the
beam is very large and strongly focused, synchrotron radiation has to be controlled care-
fully to avoid background in the experiments.
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Figure 1.5: Decrease of transverse momentum by radiation damping. The emission of a
photon reduces both longitudinal and transverse momentum, while the re-
acceleration in the RF cavities only increases the longitudinal component.

1.4.2 Radiation damping

The emission of synchrotron radiation damps the particle oscillations both in the longitud-
inal and in the transverse planes. As the amount of emitted energy depends on the forth
power of the particle momentum, particles with large momentum lose more energy due
to synchrotron radiation than particles with a smaller momentum. This leads to a reduc-
tion of the energy spread of the beam and thus to a smaller amplitude of the longitudinal
oscillation, also called the synchrotron oscillation.

The concept of transverse radiation damping is illustrated in Fig. 1.5. The synchrotron
radiation photon is emitted into the forward direction of the particle movement reducing
both longitudinal and transverse momentum. Since the particle only gains longitudinal
momentum in RF system, a net loss of transverse momentum is achieved, which leads to a
compression of the particles in phase space and consequently to a reduction of emittance.

The amplitudes of both synchrotron oscillation and betatron oscillations are damped
exponentially:

Ai = Ai,0e
−αit with i = x, y, s and αi =

cCγ
4πC

E3
0I2Ji. (1.32)

The parameters αi are the damping decrements, the reciprocal of the damping times τi,
and Ji are the damping partition numbers. Obviously, the damping times depend on the
initial beam energy E0 and become shorter when the synchrotron radiation losses increase.

According to Robinson’s theorem [28] the sum of the damping partition numbers is four.
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They can be expressed using the synchrotron radiation integrals I2 and I4 [26]:

Jx = 1− I4xI2
(1.33a)

Jy = 1− I4yI2
(1.33b)

Js = 2 +
I4x + I4y
I2

(1.33c)

The fourth synchrotron radiation integral is given by [27]

I4u =

∮
Du

ρu

(
1

ρ2u
+ 2k1

)
ds. (1.34)

1.4.3 Quantum excitation and equilibrium beam parameters

The emission of synchrotron radiation leads to damping of the particle motion. However,
it also introduces noise to the beam, which is counteracting the damping process. Since
synchrotron radiation is emitted in discrete quanta, this effect is called quantum excitation.
The concept is illustrated in Fig. 1.6. First the particle oscillates around the design orbit
with a small amplitude. After photon emission the particle has less energy and therefore
oscillates around the dispersion orbit corresponding to its energy deviation δ. The new
oscillation starts with a large betatron amplitude, which is equivalent to the transverse
offset xδ = Dxδ of the dispersion orbit. The sudden change of betatron amplitude due to
the energy loss leads to a modification of the phase space ellipse, which can be calculated by
inserting the dispersion orbit xδ into Eq. (1.7), the particle’s Courant-Snyder invariant [29]:

∆ε = δ2
(
βuD

′2
u + 2αuDuD

′
u + γuD

2
u

)
(1.35)

It reasonable to define the so-called H function, which is specified by the guide field and
includes all s-dependent quantities being evaluated at the time of photon emission:

Hu(s) = βuD
′2
u + 2αuDuD

′
u + γuD

2
u (1.36)

Quantum excitation and radiation damping cause a permanent increase and decrease of
oscillation amplitudes and the electron bunch eventually reaches an equilibrium situation.
In the transverse planes the obtained equilibrium beam emittance is given by

εu = Cq
γ2

Ju

I5u
I2

, (1.37)
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Figure 1.6: Transverse momentum and thus emittance increase by quantum excitation.

where Cq is a constant, that for electrons is given by Cq = 55
32
√
3

~c
m0c2

= 3.832× 10−13m.

I5u =

∮
1

|ρu|3
Hu ds (1.38)

is the fifth synchrotron radiation integral [27].

In a perfectly aligned planar lepton storage ring the vertical dispersion is equal to zero
and the H function in I5y vanishes. As a consequence the vertical emittance is dominated
by radiation damping. The fundamental lower limit is determined by the vertical opening
angle of the synchrotron radiation, which still excites small vertical oscillations, so that
the equilibrium beam emittance does not reach zero.

In practice, magnet alignment errors create vertical dispersion and in addition coupling
between the transverse planes transfers momentum to the vertical plane. Most storage
rings therefore operate with a vertical emittance in the order of 1% of the horizontal emit-
tance [27]. With specifically designed low emittance lattices and state-of-the-art alignment
techniques today’s lightsources even reach the per mille range [18,19].

In the longitudinal plane quantum excitation and radiation damping lead to the equilib-
rium energy spread in the beam, given by

σ2E
E2

= Cqγ
2 I3
JsI2

= Cqγ
2 I3
2I2 + I4x + I4y

, (1.39)

which, because of the factor γ2, increases with the beam energy squared. The longitudinal
damping partition number can also be substituted from Eq. (1.33c) yielding an expression
only dependent on the synchrotron radiation integrals I2, I3 and I4. The third synchrotron
radiation integral is defined as [27]

I3 =

∮
1

|ρ3| ds. (1.40)
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The energy spread directly leads to the equilibrium bunch length, which also depends
on the phase slip factor ηc and the synchrotron oscillation frequency ωs. It can also be
expressed using the revolution frequency ω0, the momentum compaction factor αc and the
RF voltage VRF [22]:

σs =
c|ηc|
ωs

(σE

E

)
=

√
2πc

ω0

√
αcE

heVRF cosφs

(σE

E

)
(1.41)

1.4.4 Summary of synchrotron radiation integrals and related parameters

To summarise the discussions in the previous sections, the beam parameters in lepton stor-
age rings are modified by the emission of synchrotron radiation. Assuming an uncoupled
machine they can be expressed using the so-called synchrotron radiation integrals [27]

I1 =

∮
D(s)

ρ
ds

I2 =

∮
1

ρ2
ds

I3 =

∮
1

|ρ3| ds

I4u =

∮
Du

ρu

(
1

ρ2u
+ 2k1

)
ds

I5u =

∮
1

|ρu|3
Hu ds

where u either stands for the transverse coordinate x or y and the H function is given by

Hu(s) = βuD
′2
u + 2αuDuD

′
u + γuD

2
u.

The first synchrotron radiation integral is related to the momentum compaction factor

αc =
I1
C
.

C is the machine circumference. The second integral determines the energy loss per turn

U0 =
Cγ
2π
E4I2

and in combination with the third synchrotron radiation integral the equilibrium energy
spread

σ2E
E2

= Cqγ
2 I3
JsI2

.
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For electrons or positrons the constants Cq and Cγ have the values Cq = 3.832× 10−13m
and Cγ = 8.8460× 10−5 m

GeV3 . The damping partition numbers

Jx = 1− I4xI2
, Jy = 1− I4yI2

and Js = 2 +
I4x + I4y
I2

can be expressed using the second and forth integral and finally the equilibrium emittance
is defined by the ratio of the fifth and second integral

εu = Cq
γ2

Ju

I5u
I2

.

1.5 Parameters and effects relevant in collider storage rings

1.5.1 Luminosity

The production rate of a certain physics event is determined by the product of the event’s
cross section Σp and the collider’s luminosity L:

dNp

dt
= L Σp (1.42)

The cross section is a measure of the probability for the occurrence of the event. The
luminosity basically describes the density of the particle bunches at the collision point
times the number of bunches and repetition rate. Since the cross section is constant, the
luminosity has to be increased for a higher production rate. Especially for the observation
of rare decay events with very small cross sections high luminosity is required to gain
sufficient amount of statistics.

For head-on collision and Gaussian shaped bunches the luminosity is

L =
N1N2fnb

4πσ∗xσ∗y
, (1.43)

where N1 and N2 are the numbers of particles in the colliding bunches, f is the revolution
frequency and nb is the number of bunches per beam. σ∗x and σ∗y are the transverse beam
sizes of the colliding bunches at the interaction point. To obtain highest luminosity both
the number of bunches and the bunch population must be as high as possible. To further
increase the luminosity the beam size at the collision point must be reduced either by
smaller beam emittances or stronger focussing of the beam in the interaction region.
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Figure 1.7: Beam-beam force for round beams (σx = σy) in arbitrary units according
to [20]. The transverse amplitude is given in units of r.m.s. beam size.

1.5.2 Beam-beam tune shift

One of the most important performance limits of high intensity particle colliders is created
by the interaction of the two particle beams at the collision point [20]. During a bunch
crossing only a few particles of the bunch collide. Most particles cross the opposite bunch
only affected by its electric field. The non-colliding particles experience a kick by the
Lorentz force, which is repellant if the bunches have the same charge and attractive for
opposite charge.

The electromagnetic beam-beam force is very non-linear [20] as shown in Fig. 1.7, which
means the strength of this so-called beam-beam effect highly depends on the transverse
particle amplitude. Considering a single particle deflected by a Gaussian charge distribu-
tion and small orbit offsets the beam-beam effect can be linearized and is then equivalent to
an additional quadrupole term, which creates a tune shift. The magnitude of the tune shift
depends on the phase advance between the interaction points and the so-called beam-beam
parameter

ξu =
Nreβ

∗
u

2πγσ∗u(σ∗x + σ∗y)
, (1.44)

where β∗u is the beta function at the interaction point. The beam-beam tune shift increases
for large bunch population N and small beam sizes σ. At high energies with large Lorentz
factor γ the tune shift becomes less relevant. Although it does not describe the non-
linear nature of the beam-beam effect, the beam-beam parameter is often used as a scaling
factor to quantify the strength of the beam-beam interaction. A more detailed model
including the highly nonlinear effects for large orbit offsets and the effect of crossing angles
is presented in [30].
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As mentioned before, the beam-beam effect is one of the most important performance
limits of a collider. It is aimed to be as small as possible to fit the working point including
beam-beam tune shift in a resonance-free area in the tune diagram.

1.5.3 Beamstrahlung

At high particle energies the bending of the particle trajectories during beam-beam in-
teraction at the collision point creates photon emission similar to synchrotron radiation,
called beamstrahlung. The effects are described with the beamstrahlung parameter [26]

Υ ≈ 5

6

r2eγN

αfσs(σx + σy)
, (1.45)

where N is the number of particles per bunch and αf is the fine structure constant. While
Υ� 1 corresponds to the classical limit, beamstrahlung effects occur for Υ� 1. Accord-
ing to Eq. (1.45) a short bunch length, high bunch population and high energy enhance
beamstrahlung. For high beam energies beamstrahlung is expected to be a luminosity limit
in next-generation electron-positron colliders.

1.6 The Optics Code MAD-X

The Methodical Accelerator Design (MAD) scripting language [31] is a tool developed at
CERN for lattice design and beam optics calculations of both circular accelerators and
transfer lines. The current version MAD-X was first released in 2002 and is permanently
maintained by the MAD group. MAD is accessible freely. The user’s guide [32] and a
detailed description of the physics model can be found on the webpage [31].
MAD-X was used for the complete lattice design and all beam optics calculations done

in the framework of this thesis. It offers easy element definitions to set up lattice and
geometry of the machine based on the Frenet-Serret Coordinate System introduced earlier
in this chapter. After finding the closed orbit MAD-X calculates the global machine para-
meters like tunes and chromaticity, but also the optics functions such as beta functions and
dispersion. MAD-X also calculates the synchrotron radiation integrals and the equilibrium
beam parameters. Matching routines provide numerical optimisation tools to adjust mag-
net strengths in order to change the optics. The user can choose from a variety of methods
and define his own constraints.
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CHAPTER 2

Layout and global characteristics of the
FCC-ee Lattice

This chapter presents the layouts that were considered during the studies for this thesis,
and the lattice sections used to assemble them. Moreover, the machine parameters are
compared for two different lattice designs of the arcs: on the one hand a FODO cell
structure, which is the usual choice for high-energy particle colliders, and on the other
hand a Double-Bend-Achromat based arc design, usually used for synchrotron radiation
light sources. The last section focuses on constraints and requirements to deal with the
large amount of synchrotron radiation power.

2.1 Layouts used for the studies

The studies presented in the context of this thesis are based on two different layouts for
the FCC-ee collider. For general studies of beam dynamics a symmetric 12-fold layout was
considered, ideal for lepton storage ring requirements dominated by synchrotron radiation.
At a later stage the FCC baseline layout with a racetrack-like shape was implemented,
which was developed in cooperation with the civil-engineering group following the boundary
conditions of the Geneva valley and the requirements of the hadron machine.

2.1.1 12-fold Layout

The design of high energy lepton storage rings is constrained by the effects of synchrotron
radiation. The constant energy loss in the dispersive arc sections makes the beam drift to
the centre of the machine until it reaches the next straight section with an RF installation,
where it gets re-accelerated and pushed outside again as soon as it enters the next dispersive
arc. This orbit variation in addition to the regular orbit swing is known as the sawtooth
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Figure 2.1: FCC-ee layout with a 12-fold symmetry used for general studies of a 100 km
lepton collider ring.

effect and causes optics distortions. Since the beam does not pass the sextupole magnets
in their centre any more, it experiences an additional quadrupolar term by the feed-down
effect. In order to keep this perturbation on a reasonable level, many dispersion free
straight sections with RF cavities should be evenly distributed around the ring.

The layout used for general studies of FCC-ee shown in Fig. 2.1 provides twelve straight
sections with a length of 1.5 km each. The arcs in-between have a length of 6.8 km leading
to an overall circumference of approximately 100 km (98.4 km). Alternatively, an 80 km
version has been studied as well. The arc design includes dispersion suppressors at the
beginning and at the end to provide a smooth transition to the dispersion-free straight
sections. Additional dispersion suppressors in the middle of the arcs allow an easy in-
stallation of further RF sections, if required. Since this was not the case, the additional
dispersion suppressors were removed for the studies of a global chromaticity correction
scheme. In four of the straight sections mini-beta insertions are included producing small
beam sizes for the experiments. These insertions are located in symmetric positions as well,
to equally distribute the impact of the beam-beam effect and the chromaticity created by
the final focus quadrupoles. Insertions for injection, beam dump and collimation have not
yet been included in this very first design. To gain understanding of the very complex
beam dynamics it is desired to keep the lattice as regular and symmetric as possible.

For the accommodation of many thousands of bunches [16, 33] two separate vacuum
chambers are required. A common beam pipe, as it was realised for LEP, would limit
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Figure 2.2: Second layout for FCC-ee used in the context of this thesis. The layout has
a 100 km circumference and follows the official FCC baseline [16]. The Long
Straight Sections (LSS) have a length of 1.4 km and the Extended Straight
Sections (ESS) have a length of 4.2 km. Both types of arcs have the same
bending radius, but different length: the Short Arcs (SARC) in-between two
Long Straight Sections are 4.4 km long, while the Long Arcs (LARC) have
length of 16.4 km.

the number of bunches to a few hundreds [16]. The two vacuum chambers will be placed
side-by-side to conserve polarization and avoid vertical dispersion. However, in this early
design stage only one single ring is implemented. This lattice will be referred to as the
12-fold Layout.

2.1.2 Racetrack Layout

The second layout implemented within the context of this thesis follows the current ma-
chine baseline [16], which is compatible with the requirements of the FCC hadron collider
summarized in [5] and [34]. Apart from technological aspects, geological factors of the
Geneva basin were also considered.
As illustrated in Fig. 2.2, the layout comprises six straight sections with the length of

1.4 km (Long Straight Section, LSS) for two experimental insertions and injection sections.
They are clustered in groups of three and connected by so-called Short Arcs (SARC) with
the length of 4.4 km. Two additional straight sections (Extended Straight Section, ESS),
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Table 2.1: Length of the lattice sections in the Racetrack Layout and the number of
FODO cells they consist of.

Section length (km) FODO cells
Short Arc (SARC) 4.4 88
Long Arc (LARC) 16.4 328
Long Straight Section (LSS) 1.4 28
Extended Straight Section (ESS) 4.2 84

Table 2.2: Number of dipole, quadrupole and sextupole magnets in the lattices with 12-
fold and Racetrack Layout.

12-fold Layout Racetrack Layout
# of dipole magnets 6528 6656
# of quadrupole magnets 4004 4008
# of sextupole magnets 3168/6336 6528

each 4.2 km long, will house the RF system. In spite of the above mentioned requirement of
well-distributed RF sections, the RF cavities are concentrated in only two points to reduce
the cost of the RF system. Arrangements to keep the sawtooth orbit on a reasonable level
were investigated and will be presented in Sec. 2.4.2. The so-called Long Arcs (LARC)
connecting the Long Straight Sections with the Extended Straight Sections have a length
of 16.4 km.

This Layout will be called the Racetrack Layout in the following sections. The length
of arcs and straight sections and the number of FODO cells they contain are summarised
in Tab. 2.1. Tab. 2.2 presents the number of dipole quadrupole and sextupole magnets in
the lattices with both 12-fold and Racetrack Layout.

2.2 Lattice modules in FCC-ee

The earlier presented layouts consist of so-called arcs, where the beam is bent in the hori-
zontal plane, and straight sections. In-between arcs and straight sections special insertions,
so-called matching sections, are required to guarantee a smooth transition of the optical
functions. In both cases the lattice has a periodic sub-structure. The layout of the cell,
on which the periodic lattice is based, has to be designed very carefully, because it defines
the global parameters of the machine, such as tunes, chromaticity and emittance. The
considerations taken into account for the basic cell design are specified in the following
section.
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Figure 2.3: Maximum and minimum values of the beta function in an FCC-ee FODO cell
for different phase advance per cell. The values calculated with MAD-X are
in good agreement with the analytical expectation from Eq. (2.1).

2.2.1 FODO cells

Arcs and straight sections of the lattices implemented in the context of this thesis are based
on a FODO cell design, which consists of equidistant quadrupoles of altering polarity. This
setup provides the most space for dipole magnets and so leads to the smallest synchrotron
radiation losses for a given machine size and particle energy. In addition, FODO cells are
a preferred lattice arrangement for beam transport because their optical functions can be
calculated easily in an analytical way.

Beta functions: The minimum and maximum values of the beta functions in the quad-
rupoles β̌ and β̂ can be derived from the transfer matrix of a FODO cell, which is for
example derived in [21] or [35]. They only depend on the cell length L and the FODO cell
phase advance ϕ [35, 36]:

β̂ = L
1 + sin(ϕ/2)

sinϕ
and β̌ = L

1− sin(ϕ/2)

sinϕ
(2.1)

For a given phase advance both β̌ and β̂ are proportional to the cell length. The dependency
on the phase advance is illustrated in Fig. 2.3, which shows both minimum and maximum
values of the beta function for different phase advances from 20° to 130° in both planes.
While β̌ decreases with rising values of the phase advance, β̂ reaches a minimum at about
76°. As a consequence, for a given cell length a minimum beam size is obtained for a phase
advance of 76° in both planes.
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Figure 2.4: Maximum and minimum horizontal dispersion of an FCC-ee FODO cell for
different FODO cell phase advance.

Horizontal dispersion: A transfer matrix can also be formed for the horizontal dispersion
function, which allows the derivation of the minimum and maximum values Ďx and D̂x in
the FODO cell [36]:

D̂ =
L2

ρ

(
1 + 1

2 sin (ϕ/2)
)

4 sin2 (ϕ/2)
and Ď =

L2

ρ

(
1− 1

2 sin (ϕ/2)
)

4 sin2 (ϕ/2)
(2.2)

For a given bending radius ρ, which is determined by the beam energy and the acceptable
amount of synchrotron radiation, D̂x and Ďx can be tuned by modifying the cell length L
or the phase advance ϕ. Larger dispersion is obtained by larger cell length or, as shown in
Fig. 2.4, by smaller phase advance. In a longer cell the particles have more time to drift
apart before they get focussed again and smaller phase advance is the direct consequence of
weaker focussing. During the design process the tuning of the horizontal dispersion in the
FODO cell is the key parameter to set the beam emittance, because via the H function in
the fifth synchrotron radiation integral the dispersion defines the strength of the quantum
excitation and thus the equilibrium beam emittance (see Sec. 1.4.3).

Beam emittance: As introduced in Sec. 1.4.3 the equilibrium beam emittance in an elec-
tron storage ring is given by

εx = Cq
γ2

Jx

I5x
I2

. (2.3)

The synchrotron radiation integrals I2 and I5 can be approximated using the mean value
of the H function, the bending angle θ, the bending radius ρ and length of the bending
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magnet lB (for details see [37]):

εx =
Cq

Jx
γ2θ3F (2.4)

The factor F = ρ2

l3B
〈H〉 describes the influence of a certain lattice design on the emittance

and can in case of a FODO lattice be expressed as

FFODO =
1

2 sinϕ

5 + 3 cosϕ

1− cosϕ

L

2lB
. (2.5)

If multiple dipole magnets are installed between two quadrupoles, the bending angle θ and
the dipole length lB correspond to the sum of the values of all bending magnets in a half
cell.

Although expressed in a different way, this method of tuning the emittance is equival-
ent to the previously described matching of the dispersion, since the same parameters are
used: cell length, bending angle and phase advance. However, Eq. (2.4) and Eq. (2.5) allow
to estimate the expected equilibrium emittance from the parameters of one single FODO
cell without establishing the whole lattice and are therefore a useful tool for the cell design.

In summary, the two steps to the design of a FODO cell are

1. choosing a phase advance, which is close to minimum beam size and suitable for an
efficient chromaticity correction scheme (details will be discussed in Sec. 4.3), and

2. defining the cell length such, that the obtained dispersion leads to the required beam
emittance.

The FCC-ee FODO cells

The design of the FODO cell for FCC-ee was realised according to the two steps described
above. In agreement with good experience at LEP the phase advances ϕx = 90° in the
horizontal plane and ϕy = 60° in the vertical plane were chosen as a starting point [38].
With this choice the factor from Eq. (2.5) becomes

FFODO = 2.5
L

lB
. (2.6)

The choice of the cell length involved following considerations:

1. The FCC-ee lattice has to be optimised for operation at four different beam energies
and the design parameter list from 2014 (Tab. A1 in the Appendix) requires differ-
ent design values for the emittance in the range of εx = 2.0 nm rad at 175GeV to
29.2nm rad at 45GeV beam energy. The basic cell was designed to obtain the smal-
lest emittance at the maximum energy E = 175GeV. As it will be shown in Sec. 3.3,
it is easier to increase the emittance afterwards again than to decrease it, but even
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more importantly, the lattice suffers from the strongest synchrotron radiation effects
at this energy, which requires most optimisation for highest performance.

2. To compensate the impact of lattice imperfections like misalignments, field errors or
coupling and emittance blow-up due to the beam-beam effect or beamstrahlung, it
was decided to leave a factor of two margin between the emittance of the ideal lattice
and the design value.

3. About 25% of the overall circumference, in this case 100 km, is reserved for straight
sections to accommodate injection, extraction and RF systems. It follows that the
bending radius is given by ρ = 75 km/2π. Assuming the length of a bending magnet
to be lB = 21m the bending angle is θ ≈ 1.76mrad.

These considerations lead to a cell length of L = 50m. The equilibrium emittance for
175GeV beam energy according to Eq. (2.4) and Eq. (2.6) is then εx = 1.04 nm rad, which
was verified with a MAD-X calculation (εx = 1.00 nm rad). Taking the factor two margin
into account this value is conform to the requirement of εx = 2.00 nm rad.

The studies performed in the context of this thesis made use of two different FODO
cell designs, which have the same cell length, but differ slightly in the arrangement of the
elements.

Asymmetric arc cell: The first design foresees a focusing and a defocusing quadrupole
with the length of 1.5m each, which divide the cell into two parts of equal length. After
each quadrupole a sextupole with the length of 0.5m, a beam position monitor and a
small dipole magnet for orbit correction in the respective plane are placed. The space
between the quadrupoles is occupied by four dipole magnets with the length of 10.5m.
Their maximum length is the result of careful simulations of the synchrotron light fan
and the requirements for the absorber scheme to protect the machine components [39].
The current FCC-ee FODO cell layout already includes space for absorbers, flanges and
bellows [40].

Fig. 2.5 shows the lattice functions of this FODO cell layout. The sketch of the lattice
elements above the plot illustrates the asymmetric arrangement of the sextupoles with
respect to the quadrupole magnets. The beta function of the horizontal plane oscillates
between β̂x = 77.0m and β̌x = 16.2m, where the maximum value is reached in the focussing
quadrupole and the minimum value in the defocussing quadrupole. In the vertical plane
the beta functions are slightly larger because of the smaller phase advance, as expected
from Eq. (2.1). The maximum value is β̂y = 96.5m and the minimum value is β̌x = 26.0m.
As a consequence of the large machine circumference and the large bending radius the
maximum value of the horizontal dispersion function is only 12.7 cm. This is one order
of magnitude smaller compared to the last high-energy lepton collider LEP, which had a
horizontal dispersion in the arcs of 2.2m [25].
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Figure 2.5: Beta functions and horizontal dispersion function in the asymmetric FODO
cell designed for highest dipole filling factor in FCC-ee. Above, the elements
of the lattice are depicted: the large blocks are the dipole magnets and the
rectangles above and below the centre line show the position of the quadrupole
magnets. The smaller rectangles next to them are the sextupoles.

This asymmetric cell layout is designed to obtain the highest possible dipole filling factor
and was used in all calculations regarding the emittance tuning study.

Symmetric arc cell: During the optimisation of chromaticity correction schemes in the
arc sections it became important to design a completely symmetric FODO cell to allow
precise adjustment of phase advances and to place the effective correction provided by
the sextupoles in the centre of the quadrupoles, which are considered as the source of the
chromatic aberrations. Therefore sextupoles were installed at both sides of the quadru-
poles. The previous design included only one sextupole per quadrupole. To create space
for the additional sextupoles the length of the dipoles was reduced to 10.0m. Since the
chromaticity is much larger in the vertical plane, the second design foresees the defocusing
quadrupole at the beginning of the cell. This allows to perfectly adjust the phase advance
from the interaction region to the sextupoles correcting the vertical chromaticity.
The optical functions shown in Fig. 2.6 are the same as in the asymmetric layout. The

FODO cell parameters of both designs are compared to the ones of LEP in Tab. 2.3.

Dipole filling factor: The design of a high-energy lepton collider ring aims for the highest
integrated dipole field in order to minimise the amount of synchrotron radiation power. To
compare different layouts the so-called dipole filling factor is defined, which describes the
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Figure 2.6: Beta functions and horizontal dispersion function in the symmetric FODO
cell layout optimised for the chromaticity correction studies.

Table 2.3: Arc FODO cell parameters of both FCC designs compared to the LEP FODO
cell according to the LEP Design Report [25].

Asymmetric FODO Symmetric FODO LEP
12-fold 12-fold/Racetrack

Cell length/m 50 50 79.0
Number of dipoles per half-cell 2 2 6
Dipole magnetic length per cell/m 42 40 70.02
Dipole filling factor (FODO cell) 84% 80% 89%
Bending radius in the dipoles/m 10749 10237/10491 3096
Bending angle per half-cell/mrad 1.95373 1.95373/1.90630 11.30640
Horizontal phase advance/2π 0.2500 0.2500 0.1666
Vertical phase advance/2π 0.1666 0.1666 0.1666
Max. hor. beta function/m 76.98 77.00/76.98 135
Max. vert. beta function/m 96.55 96.55/96.55 135
Max. hor. dispersion function/m 0.124 0.124/0.121 2.219
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ratio between the integrated dipole length and the length of the design orbit length in the
machine. To achieve the theoretical maximum achievable filling factor the straight sections
are reduced to a minimum and all space of the FODO cells in the arc, which is not occupied
by quadrupoles and sextupoles, is filled with bending magnets. In the case of FCC-ee a
dipole filling factor of 94% could be reached in the arc lattice. However, space for the
magnet coils, absorbers, flanges and beam instrumentation must be allocated. For reasons
of technical feasibility and maintenance a minimum distance of 15 cm between quadrupoles
and sextupoles and 55 cm between quadrupoles and bending magnets is reserved. Between
two bending magnets and between the sextupoles and the bending magnets a minimum
gap of 65 cm is required [40]. Taking these boundary conditions into account, the dipole
filling factor can be optimised as a function of the number of bending magnets per cell and
their length. A value as high as 84% could be achieved for the asymmetric FODO cell.
For the symmetric FODO cell the dipole filling factor drops to 80% because of the shorter
bending magnets. In a later stage the quadrupole length and the drift space reserved for
beam instrumentation will be optimised again to further increase the dipole filling factor.

FODO cells for the straight sections: The FODO cells in the straight sections follow the
design of the FODO cells of the arc lattice. The length is 50m as well and the quadrupoles
are located at the same position. However, since the horizontal dispersion is zero in the
straight sections, no sextupoles are installed and the bending magnets are replaced by the
RF system. In the 12-fold Layout one single RF cavity with the length of 1m is installed
in the middle of every half-cell. In the Racetrack Layout the cavities were combined to
five-cell modules to minimise the length of the RF system. The lattice functions of such a
FODO cell are shown in Fig. 2.7. For the straight sections without RF installation FODO
cells without RF cavities were designed.

2.2.2 Dispersion suppressor

In the arc lattice the horizontal dispersion function oscillates with the same phase as
the horizontal beta function (see Fig. 2.5 and Fig. 2.6). In the straight sections with
RF installation, however, the dispersion function has to disappear, because otherwise the
RF cavities would create coupling between the transverse planes and the longitudinal
plane, which leads to additional resonances in the tune diagram. Moreover, non-vanishing
dispersion at the interaction point of a collider storage ring would dilute the luminosity
of the machine [36]. Therefore special insertions between regular arc lattice and straight
FODO cells have to be installed to suppress dispersion and guarantee a smooth transition
of the lattice functions. Depending on the arc layout different arrangements of magnets
can be chosen to design such a so-called dispersion suppressor. During the studies of the
lattice for FCC-ee the following three dispersion suppressor schemes were used.
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Figure 2.7: Beta functions and horizontal dispersion function of a FODO cell in the
straight sections of the Racetrack Layout. The sextupoles were removed and
the bending magnets were replaced by a five-cell RF cavity module.

Half-bend dispersion suppressor: An elegant way to match the dispersion to zero is to
install a certain number of FODO cells at the end of the arcs, in which the dipoles have half
of the bending strength. The value of the dispersion coming out of the arc is then twice
of the local matched value. The dispersion function begins to oscillate and reaches zero
at half a wavelength. Depending on the horizontal FODO cell phase advance a different
number of half-bend cells are needed. If π/ϕx is an integer, π/ϕx half-bend cells are
necessary to suppress the dispersion. This means in case of FCC-ee with a phase advance
of 90° (ϕx = π/2) such a dispersion suppressor consists of two half-bend cells.

Since the beta functions are not affected by the half-field dipoles1 the aperture require-
ments stay the same. Moreover, the optics do not need to be re-matched and no additional
power supplies are required for free quadrupoles. However, special dipole magnets with
half of the field strength are needed. This has a strong impact on the geometry of the ring,
which is why such a concept needs to be included to the design at an early stage [36].

This kind of dispersion suppressors were chosen for the standard FCC-ee lattice for
175GeV beam energy. The length of each dispersion suppressor is 100m as two half-
bend cells are needed. As shown in Fig. 2.8, the dispersion suppressor provides a smooth
transition from the regular arc optics to the optics of the straight section, where the
dispersion vanishes.

1 The weak focussing effect of the dipoles is neglectable because of the large bending radius.

36



2.2. LATTICE MODULES IN FCC-EE

0.0 400. 800. 1200. 1600.
                               s (m)

FCC-ee Matching Section

10.

19.

28.

37.

46.

55.

64.

73.

82.

91.

100.

βx(m
),βy

(m)

0.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Dx(m
)

β x Dx

20

40

60

80

100

β
x
,β

y
/

m

0 100 200 300 400 500 600 700 800

0

0.05

0.1

s / m

D
x

/
m

βx
βy
Dx

Figure 2.8: Transition of beta functions and horizontal dispersion function from the reg-
ular arc optics to the optics of the straight section. The two half-bend cells at
the end of the arc suppress the dispersion without affecting the beta functions.

Two-cell dispersion suppressor with diverse dipole fields: The half-bend dispersion sup-
pressor scheme only works for certain values of the phase advance. For calculations of the
machine parameters in which the phase advance was modified a different dispersion sup-
pressor scheme was chosen. For any FODO cell phase advance ϕx the dispersion can be
suppressed within two cells, if following conditions are fulfilled [26]:

θB,1 =
θB

4 sin2(ϕx/2)
, θB,2 = θB

(
1− 1

4 sin2(ϕx/2)

)
(2.7)

θB is the nominal bending strength of the regular arc dipoles, θB,1 is the strength of the
dipole in the FODO cell next to the arc cells and θB,2 is the bending strength of the FODO
cell next to the straight section. For ϕx ≤ π/3 reversed dipoles are used in one cell of the
dispersion suppressor [26].
Again beta functions and phase advance are not affected by this way of dispersion

suppression. The change of the bending angles for different phase advances, however,
implies a modification of the geometry. For simulations this is not a problem, but for a
real machine the change of phase advance would imply major reconstruction work.

Quadrupole based dispersion suppressor: The dispersion can also be suppressed using
only quadrupole lenses. Since the suppression of the dispersion and its derivative now
affects the optics, the Twiss parameters beta and alpha need to be re-matched. So in total
six individually powered quadrupoles are needed.
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Quadrupole based dispersion suppressors work for any FODO cell phase advance and
leave the geometry unchanged. They also allow different values of the beta function in
the arc and in the straight sections. However, the individual strengths of the quadrupoles
require separate power supplies, which might be expensive. Also, depending on number
and distance of the quadrupoles, the beta function might reach high values that require a
modification of the vacuum chamber.
In the context of this thesis the quadrupole based dispersion suppressor scheme was used

during the emittance studies, where the length of the FODO cells was modified without
changing the geometry.

2.2.3 Matching section

Matching sections consist of regular FODO cells with individually powered quadrupoles
that allow to match the optics functions from one section to the other. At the beginning and
the end of each straight section in FCC-ee a matching section is installed consisting of four
straight FODO cells. Six free quadrupoles provide sufficient degrees of freedom to adapt
the optics of the arcs to the straight FODO cells. The matching sections, for example,
become important when the phase advance of the straight FODO cells is modified to set
the working point. The modified phase advance in the straight sections leads to a different
periodic solution and hence different beta functions. Without the matching sections in-
between, the modified phase advance in the straight sections would create a beta beat in
the whole machine.

2.2.4 Mini-beta insertion

In collider storage rings very small beam sizes are required at the interaction points to
obtain a high luminosity for the experiments. Special mini-beta insertions are included in
the lattice, that on the one hand provide sufficient drift space to house the experiment and
on the other hand focus the beta function to very small values in the centimeter or even
millimeter range. Apart from the drift space through the detector, mini-beta insertions
consist of a final focus quadrupole doublet2 and a certain number of additional quadrupoles
to match the Twiss parameters to the values of the regular lattice.
The interaction point is placed at the beam waist of the drift space through the detector.

This means, the Twiss parameter α is zero in both planes and the beta function grows
quadratically with the distance s from the interaction point:

β = β∗ +
s2

β∗
, (2.8)

2 For flat beams like in FCC-ee, where σx � σy, a quadrupole doublet is used as a final focus system,
while for round beams, like in LHC, a quadrupole triplet is used.

38



2.2. LATTICE MODULES IN FCC-EE

0.0 40. 80. 120. 160. 200.
                               s (m)

FCC-ee Low-beta Insertion

0.0
500.

1000.
1500.
2000.
2500.
3000.
3500.
4000.
4500.
5000.
5500.
6000.

βx
(m

),
βy

(m
)

β x β y

0

2

4

6

β
x
,β

y
/

km

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

s / m

D
x

/
m

βx
βy
Dx

Figure 2.9: Beta functions and horizontal dispersion function of the mini-beta insertion
used in the context of this thesis. In the shown case, the vertical beta function
at the interaction point is β∗y = 1mm.

where β∗ refers to the beta function at the interaction point. As a consequence of Liouville’s
Theorem, the divergence of the beam increases for small values of β∗. The distance from
the interaction point to the first quadrupole L∗ should therefore be as short as possible to
keep reasonable beam sizes. After all, the minimum spot size is limited by the value of L∗

and the technical feasibility of the quadrupole gradient for a given aperture. If the aperture
cannot be further increased, the beam emittance must be reduced to obtain smaller beam
sizes and so push the luminosity to higher values.

As a consequence of the radiation damping, the vertical beam size in lepton storage
rings is much smaller than the horizontal beam size. Depending on the level of alignment
precision and coupling correction it is the the percent or even per mille range. The first
quadrupole in the final doublet therefore focusses the beam in the vertical plane, where
the beta functions grow faster. Still, the beam can reach large dimensions, which puts
constraints on the field quality and the alignment precision of the final doublet. Fur-
thermore, the large beta function in the final doublet quadrupoles together with the very
high quadrupole gradient drive the chromaticity of the lattice to very high values. The
strong non-linear fields required for the correction are one of the strongest limitations to
the dynamic aperture of the machine.

The design values for the interaction regions of FCC are summarized in Tab. 2.4. Fig. 2.9
shows the optical functions of the mini-beta insertion used in the context of this thesis with
an over-all length of 200m. Besides the final doublet, four quadrupoles on each side are
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Table 2.4: Design parameters for the interaction regions of FCC-ee [16,33]. IP stands for
interaction point and FD is the abbreviation for final doublet.

Over-all length L 200m
Distance between IP and FD L∗ 2m
Horizontal beta function at IP β∗x 1m
Vertical beta function at IP β∗y 1mm/2mm
Horizontal beam size (175GeV) σ∗x 36 µm
Vertical beam size (175GeV) σ∗y 70 nm

used to match the optics. In-between the matching section quadrupoles RF cavities are
installed. At the interaction point the horizontal beta function reduced to β∗x = 1m.
The design value for the vertical plane was first β∗y = 1mm [33] before it was increased
to 2mm [16]. Although the distance between interaction point and first quadrupole is
only L∗ = 2m, the beta function in the vertical plane reaches about 5.5 km in the case
of β∗y = 1mm. For comparison, in the horizontal plane, where the beta function at the
interaction point is β∗x = 1m, the beta function only rises up to 500m.

2.3 Alternative arc lattice

The FODO lattice is the standard beam transport system in collider storage rings, because
it allows the highest dipole filling factor. In context of this thesis a second arc lattice
design with Double Bend Achromat cells was studied for comparison. The Double Bend
Achromat (DBA) Lattice, also known as Chasman Green Lattice, was designed for third
generation low emittance light sources to produce high brilliant synchrotron light from
low emittance beams [41]. In order to increase the luminosity such low emittance lattices
might be interesting for collider storage rings as well.

As the name "achromat" indicates, the dispersion function is zero at the beginning and
the end of each cell, only between the two bending magnets it takes finite values. As a result
the value of the synchrotron radiation integral I5 decreases compared to the previously
studied FODO lattice. The theoretical minimum equilibrium beam emittance in a DBA
lattice with the size of FCC-ee at 45.5GeV beam energy would be

εDBA =
Cq

4
√

15
γ2θ3 = 2.8× 10−5 nm rad. (2.9)

The parameter Cq = 55
32
√
3

~c
m0c2

= 3.832×10−13m for electrons. γ = 89041 is the relativistic
Lorentz factor and θ = 0.52mrad is the deflection angle per bending magnet. The detailed
derivation of Eq. (2.9) is given in [37] and [22]. Compared to the FCC-ee baseline parameter
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Figure 2.10: Beta functions and horizontal dispersion function in the first sector of the
ANKA storage ring. Each sector consists of two DBA cells, a long and a
short straight section. For smallest emittance the DBA optics is modified
and operated with non-vanishing dispersion in the straight sections.

εx = 2 nm rad the theoretical minimum emittance of the DBA lattice is three orders of
magnitude smaller.

The implementation of an DBA lattice in the arc sections in the MAD-X model of FCC-
ee was done to verify this estimation and compare other global machine parameters to
those of the lattice based on the FODO cell design.

2.3.1 Arc lattice based on the Double Bend Achromat cells of ANKA

The cell layout used for the DBA version of FCC-ee was based on the lattice of the ANKA
storage ring at the Karlsruhe Institute of Technology (KIT). The ANKA lattice has a
circumference of 110.4m and consists of eight non-symmetric DBA cells each containing
five quadrupoles, two bending magnets, and three sextupoles. Two straight sections and
two DBA cells form a periodic unit, called sector, with the length of 27.6m. Beta functions
and horizontal dispersion of such a sector are shown in Fig. 2.10. The straight sections
in the middle of the sector have a length of 2.2m and are used for RF installation and
injection. In the fourth straight section and in the longer straight sections with 5.6m
length insertion devices are installed. The different length and purpose of of the straight
sections lead to the non-symmetric optics functions at beginning and end of one DBA cell.

For the study of an alternative arc design for FCC-ee the Racetrack Layout was chosen.
The new FCC-ee arcs are defined as a series of ANKA sectors, as they are the smallest
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Figure 2.11: Beta functions and horizontal dispersion after re-matching the lattice func-
tions of one ANKA sector for the alternative FCC-ee arc lattice. The dis-
persion is set to zero at the beginning and the end of each DBA and its
maximum dropped to 1.23mm because of the large bending radius.

periodic unit of the lattice. The SARCs consist of 160 of these twin-DBA cells, which add
up to a length of 4.42 km. For the LARCs 590 twin-DBA cells are connected resulting in
a length of 16.28 km. The overall circumference of the new lattice is 99.2 km.
As the FCC-ee lattice consists of much more sectors compared to the ANKA storage

ring, the bending angle of the dipole magnets had to be adjusted. The total number of
bending magnets in the lattice is 12000 leading to a bending angle per dipole of θB =

2π/12000 = 0.5236mrad.
To achieve smallest emittances at user operation the ANKA storage ring is operated with

non-vanishing dispersion in the straight sections3 as shown in Fig. 2.10 [42–44]. For the
alternative FCC-ee arcs the dispersion function was re-matched to zero at the beginning
and the end of each DBA. The lattice functions of one sector as used in FCC-ee are shown
in Fig. 2.11. Because of the large circumference the maximum value of the dispersion
function shrinks from Dx = 748.69mm to 1.23mm, which is less than one percent of the
value in the FODO cell (127mm).
The new arcs consisting of the twin-DBA cells were directly connected to the unchanged

straight sections. As the dispersion function is zero at the end of the DBA, dispersion
suppressors are not needed any more. The length of the first FODO cell in the matching
section was reduced to 25m. The contracted cell was necessary to find stable optics as

3The integrated value of the dispersion function can be further decreased, if the dipoles are entered with
non-zero dispersion and a negative value of its derivative.
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Figure 2.12: Mini straight section used for optics matching. After a short arc section
consisting of five twin-DBA cells a four-cell matching section is used to
adapt the lattice functions of the DBA lattice to the FODO optics in the
straight section.

it provides a link between the DBA cells with very short distances between quadrupoles
and the FODO cells with comparably long distance. Fig. 2.12 shows the beta functions
and the horizontal dispersion function of a mini straight section to illustrate the transition
from the DBA optics in the arcs to the FODO lattice in the straight sections. The beta
functions in the matching section reaches large values up to 150m in both planes. In case
the DBA lattice would be chosen to be the baseline lattice the beta functions could be
further optimised by varying strength and position of the matching section quadrupoles.
Still, the optics is absolutely fine for the comparison of general characteristics of the two
lattice designs.

The comparison of the regular FCC-ee lattice using a FODO design in the arc sections
and the alternative lattice with DBA cells comprises general parameters of the optics and
parameters that depend on the beam energy. However, it turned out that stable optics
could only be found for the two lower beam energies of 45.5GeV and 80GeV, which will
be explained later. The results of the comparison are summarized in Tab. 2.5 and will be
discussed in detail in the following paragraphs.

Phase advance, tune and chromaticity: The DBA twin-cell with 27.6m has about half
the length of one FODO cell (50m), while having a more than six times larger horizontal
phase advance of ϕx = 1.7 × 2π. This consequently results in a tune, which is one order
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Table 2.5: Comparison between the FCC-ee lattices based on DBA and FODO cell design.
The table summarises parameters of the single periodic structure and the global
parameters.

DBA cell FODO cell
Cell length (m) 27.6 50.0
Dipole filling factor (%) 31.4 80.0
Dipole bending radius (km) 4.1 10.5
Max. hor. beta function (m) 19.57 76.98
Max. vert. beta function (m) 23.98 96.55
Phase advance per cell 1.701 0.250
Phase advance per cell 0.740 0.167
Max. hor. dispersion (mm) 1.2 121.2
Circumference (km) 99.2 100.0
Horizontal tune 5189.19 501.08
Vertical tune 2277.01 335.14
Linear chromaticity x -10778.23 -585.74
Linear chromaticity y -7710.86 -859.98
Beam energy (GeV) 45.5 80.0 45.5 80.0
Energy loss per turn (MeV) 91.7 876.7 36.0 343.7
Hor. emittance (pm rad) 0.060 0.185 62.6 193.4
Mom. compaction factor 1.20× 10−8 1.20× 10−8 5.45× 10−6 5.36× 10−6

Damping time (s) 0.328 0.060 0.844 0.155

of magnitude larger than the one of the FODO lattice, reaching 5189.19. In the vertical
plane the phase advance is smaller (ϕy = 0.7 × 2π), but still the tune is 2277.01 because
of the large number of cells.
A side product of the large tunes are very large values of the linear chromaticities.

Q′x = −10778.23 in the horizontal plane and Q′y = −7710.86 in the vertical plane exceed
the already remarkable values of the FODO lattice by factors of 18.4 and 9.0 respectively.
The sextupole strengths required for the correction of the linear chromaticity would be
kSF
2 = 37001m−3 in the horizontal plane and kSD

2 = −32421m−3 in the vertical plane.
These very large values are not only needed because of the increased chromaticity, but also
to compensate the smaller beta functions and the tiny dispersion function of only 1.23mm.
It is needless to say, that such sextupole strengths are far beyond technical limits.

Synchrotron radiation power, momentum compaction and emittance: For 45.5GeV
beam energy the energy loss per turn reaches already 91.74MeV compared to 35.96MeV.
While the FODO lattice is designed to obtain highest possible dipole filling factor and so
minimum synchrotron radiation losses, the DBA lattice is optimised to reach minimum
values of the beam emittance and provide space for insertion devices. The dipole filling
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factor of the ANKA DBA is 31.4%, while for the FODO design ≥80% could be achieved.
As a consequence of the smaller dipole filling factor the local bending radius must be
decreased from ρ = 10.5 km to ρ = 4.1 km. As the synchrotron radiation power depends
on the square of the bending radius like

P =
e2c

6πε0

1

(m0c2)

E4

ρ2
,

the energy loss per turn increases for a given beam energy. The energy loss per turn was
also calculated for a beam energy of 80GeV. In this case the energy loss per turn increases
from 343.70MeV to 876.73MeV.

As another consequence of the smaller value of the horizontal dispersion the momentum
compaction factor

αc =
1

L0

∮
D(s)

ρ(s)
ds

describing the variation of the orbit length for particles with energy deviation is two orders
of magnitude smaller than for the FODO lattice. While it has the value αc = 5.45× 10−6

(5.36 × 10−6) for the FODO lattice, it now takes αc = 1.20 × 10−8 (1.20 × 10−8) for
45.5GeV (80GeV) beam energy. Although the bending radius decreases as well, the very
small dispersion creates only minimal orbit offsets and thus very small changes of the orbit
length. According to Eq. (1.41) a decrease of the momentum compaction factor by two
orders of magnitude results in a bunch length of only 10% compared to the FODO cell
lattice.

Last but not least, the horizontal equilibrium emittance reaches values in the sub-
picometer range. The tiny dispersion leads to a reduced effect of the quantum excit-
ation and results in emittances of εx = 0.060 pm rad for 45.5GeV beam energy and
εx = 0.185 pm rad for 80GeV beam energy. The value of 45.5GeV is about twice of the
theoretical minimum, but still three orders of magnitude smaller than the value obtained in
the FODO cell lattice. The reduced effect of the quantum excitation also leads to shorter
damping times in the DBA lattice.

Limitation of the beam energy: For the performance comparison between the DBA
lattice and the FODO lattice just the beam energies 45.5GeV and 80.0GeV could be
investigated. For larger beam energies MAD-X could not find stable orbits any more.
It turned out, that the calculations were very sensitive to energy deviations. Even for
45.5GeV beam energy and an energy offset of only plus-minus one per mill, no stable orbit
could be found. The reason can be found when reviewing the higher-order chromaticities
(see Sec. 4.2):
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Figure 2.13: Beta functions and horizontal dispersion function in one modified twin-DBA
cell. Additional dipoles and shorter drift spaces increase the dipole filling
factor to 48.5%. The maximum beta functions are about 50% larger than
before.
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Although the linear order chromaticity is well-corrected, the higher order terms create large
tune shifts that drive the particles to resonances, where they get lost. Since the energy
offset generated by synchrotron radiation is considered by MAD-X during the calculation
of emittance and energy loss per turn, a careful correction of the higher orders of the
chromaticity would be needed to allow larger beam energies with larger energy offsets.

2.3.2 Modified Double Bend Achromat lattice

As a second approach the ANKA Double Bend Achromat was optimised for collider re-
quirements. To increase the dipole filling factor the length of the long drift spaces was
reduced by 2.83m and the length of the short drift spaces in the middle of each twin-DBA
cell by 1.55m. Moreover, two additional short bending magnets were introduced between
the already existing dipoles and the centre quadrupole leading to a dipole filling factor
of 48.5%. The cell with all is elements was then re-scaled to the initial length of 27.6m
to allow comparison to the previous case. For investigations concerning the length of the
DBA cell a parameter was introduced into the lattice definition, which allows to scale the
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length of the cell and each element by a certain factor. All variables and strengths are
defined in such a way, that they adapt automatically. The length of the DBA cell was
increased by factors of 2, 5 and 10. From the beginning on, the number of cells in the arcs
was chosen to allow this modification without changing the machine circumference.

In Fig. 2.13 the optics functions of the new twin-DBA cell with shorter drift spaces and
additional bending magnets is shown. The matching of the optics was modified to obtain
equal conditions in the middle of a twin-cell and at the beginning. Fig. 2.14 shows the cell
scaled to ten times of the initial length. The beta functions in the DBA scale accordingly
and the dispersion even increased by a factor of 100. Fig. 2.15 shows the same mini-straight
section as previously presented in Fig. 2.12 to illustrate the transition of the arc optics to
the optics in the straight sections, but for ten times longer DBA cells. The beta functions
of the arcs now exceed the ones in the straight sections by more than a factor of three.

Parameter comparison: The lattice parameters of the modified DBA lattice with 27.6m
cell length and 276.0m cell length are summarised in Tab. 2.6 and also compared to
the values of the lattices using the initial DBA layout and the FODO cells. The value
of the beta functions in the 27.6m cell length increased by 50%, which results in even
larger values of the chromaticity compared to the initial DBA lattice. The momentum
compaction factor also increased, because the additional bending magnets are installed very
close to the quadrupole in the middle of the DBA cell, where the dispersion peaks. Their
contribution to the first synchrotron radiation integral is therefore relatively large. The
main difference is, as expected, the reduced synchrotron radiation loss. As a consequence
of the larger dipole filling factor the energy loss per turn could be decreased by about 35%
from 91.7MeV and 876.7MeV to 59.4MeV and 567.5MeV for 45.5GeV and 80.0GeV beam
energy, respectively.

As a second step the length of the twin-DBA cell was increased by a factor of ten, to
reduce the enormous value of the chromaticity and to increase the values of momentum
compaction factor and horizontal beam emittance, which are still far below the require-
ments specified in [16]. The scaling also involved the length of all elements and their
strength. As the phase advance per twin-DBA cell stayed the same while the number of
cells was reduced by a factor of ten, the tunes dropped to Qx = 590.35 in the horizontal
plane and Qy = 271.74 in the vertical plane and are now comparable to the tunes of the
FODO cell lattice (Qx = 501.08 and Qy = 335.14). As a consequence, the chromaticity
decreased as well by a factor of ten. The momentum compaction factor is now in the same
order of magnitude, now just differing by a factor of 2.6. The horizontal emittance equals
the one of the FODO lattice exactly.
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Figure 2.14: Beta functions and horizontal dispersion function for a modified twin-DBA
cell scaled to ten times of the initial length. The maximum beta functions
increase accordingly, the dispersion function increases with the square of the
scaling factor.
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Figure 2.15: Mini straight section used for optics matching. Because of the increased cell
length the arc section is now longer compared to Fig. 2.12. In this case the
beta functions exceed the ones of the FODO cell.
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Table 2.6: Comparison between the lattices with DBA and FODO arc lattice design. The
table summarises both the parameters of the single periodic structure and the
global parameters.

DBA cell Modified DBA cell
Cell length (m) 27.6 27.6
Dipole filling factor (%) 31.4 48.5
Dipole bending radius (km) 4.1 6.4
Max. hor. beta function (m) 19.57 32.84
Max. vert. beta function (m) 23.98 32.24
Phase advance per cell 1.701 1.690
Phase advance per cell 0.740 0.720
Max. hor. dispersion (mm) 1.2 1.3
Circumference (km) 99.2 99.2
Horizontal tune 5189.19 5153.58
Vertical tune 2277.01 2216.51
Linear chromaticity x -10778.23 -13241.86
Linear chromaticity y -7710.86 -9228.83
Beam energy (GeV) 45.5 80.0 45.5 80.0
Energy loss per turn (MeV) 91.7 876.7 59.4 567.5
Hor. emittance (pm rad) 0.060 0.185 0.063 0.194
Damping time (s) 0.328 0.060 0.507 0.093
Mom. compaction factor 1.20× 10−8 1.20× 10−8 2.12× 10−8 2.12× 10−8

Modified DBA cell (2) FODO cell
Cell length (m) 276.0 50.0
Dipole filling factor (%) 48.5 80.0
Dipole bending radius (km) 6.4 10.5
Max. hor. beta function (m) 328.37 76.98
Max. vert. beta function (m) 322.43 96.55
Phase advance per cell 1.690 0.250
Phase advance per cell 0.720 0.167
Max. hor. dispersion (mm) 133.8 121.2
Circumference (km) 99.2 100.0
Horizontal tune 590.35 501.08
Vertical tune 271.74 335.14
Linear chromaticity x -1440.34 -585.74
Linear chromaticity y -1349.66 -859.98
Beam energy (GeV) 45.5 80.0 45.5 80.0
Energy loss per turn (MeV) 59.4 567.5 36.0 343.7
Hor. emittance (pm rad) 62.6 193.6 62.6 193.5
Damping time (s) 0.507 0.093 0.844 0.155
Mom. compaction factor 2.12× 10−6 2.10× 10−6 5.45× 10−6 5.36× 10−6
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2.3.3 Summary and conclusion

To justify the choice of FODO cells for the arc lattice an alternative design was studied.
DBA lattice of the ANKA storage ring at the Karlsruhe Institute of Technology (KIT)
was adapted to the circumference of FCC and compared to the lattice based on FODO
cells. Because of their high dipole filling factor the FODO cells are the usual choice for
collider lattices, while the DBA lattice is designed to obtain low horizontal emittance for
a high brilliance in synchrotron light sources. In order to maximise luminosity, such low
emittance beams are interesting for collider storage rings as well. As expected, the beam
emittance at 45.5GeV beam energy could be reduced to 0.06 pm rad, which is three orders
of magnitude smaller than the value of the FODO cell lattice (63 pm rad).

In order to mitigate the synchrotron radiation losses, the DBA layout was optimised for
collider requirements, i.e. the dipole filling factor was increased from 31.4% to 48.5% by
reducing the length of drift spaces and installing two additional bending magnets in the
free space next to the centre quadrupole. The energy loss per turn could be decreased, but
it still exceeds the one of the FODO lattice by 65%.

The most limiting factor of the DBA lattice was its large chromaticity of up to 13000
units in the horizontal plane. The sextupole strengths required for their corrections are
proportional to the reciprocal of the dispersion function and the beta function

k2 ∝
1

Dx

1

β
.

As a consequence of the tiny value of the dispersion function of Dx = 1.23mm and the
small beta functions compared to the FODO cell lattice, sextupole strengths are needed
with values of kSF

2 = 2.15 × 10+4m−3 and kSD
2 = −1.51 × 10+4m−3. These strengths are

not only far beyond technical capability, but also limit the dynamic aperture so far, that
a closed orbit could only be found for the two lower beam energies 45.5GeV and 80GeV.

In order to reduce the chromaticity of the DBA lattice the unit cell was scaled to 276m,
which is ten times the initial length. Element lengths and magnet strengths were scaled
accordingly. As a consequence, the phase advance in the arcs is ten times smaller resulting
in lower tunes and chromaticities. The now required sextupole strengths, kSF

2 = 3.2m−3

and kSD
2 = −3.1m−3, are in the same order of magnitude compared to the sextupole

strengths in the FODO lattice. However, the horizontal emittance increased so much, that
it now has exactly the same value as in the FODO cell lattice.

In summary, the studies of the alternative DBA design have shown, that a reduction of
the emittance can only be achieved with the side-effect of a large increase of chromatic
aberrations. In combination with the already challenging effects of the interaction regions
just solutions for the low energies could be found.
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Since the large circumference of FCC-ee already leads to small emittances, a further
reduction is not compulsory. Therefore, it was decided to keep the FODO cell lattice in
the arc sections, because it features 40% less synchrotron radiation power. For synchrotron
radiation facilities, where the beam energy is in the order of a few GeV, this is not a severe
limitation. As the synchrotron radiation power increases with the fourth power of the beam
energy, in high-energy storage rings this becomes a matter of cost and technical feasibility
in terms of shielding requirements. Moreover, the requested momentum acceptance of
±2% energy deviation needs a sophisticated chromaticity correction with a multi-family
sextupole scheme. Because of the dedicated phase advance such a scheme is easier to set
up for FODO cells.

2.4 Design constraints from synchrotron radiation

In high-energy lepton storage rings the emitted synchrotron radiation is an undesired side
product. Both the energy loss of the beam and the energy deposition in the machine
components demand careful treatment during the design phase. For FCC-ee the over-all
synchrotron radiation power was set to 50MW [33]. Since the emitted radiation power is
proportional to the fourth power of the beam energy, this allows to increase the maximum
beam current for lower energies to reach higher luminosity. In addition, the high energies
lead to very small opening angles from θ = 2/γ = 0.022mrad at 45.5GeV beam energy
to θ = 0.006mrad at 175GeV beam energy. The large radiation power in combination
with the punctual energy deposit requires a sophisticated absorber layout to protect the
machine.
At LEP the aluminum vacuum chamber was water cooled to prevent heat-up and coated

with a 3-8mm thick lead shielding for radiation protection [25]. This option would be
very expensive for a 100 km machine. Instead the CERN vacuum group works on a design
using discrete water-cooled absorbers [39]. Taking these boundary conditions into account
the general cell layout of the arc lattice was optimised to avoid direct photon hits from
the bending magnets on the vacuum chamber. One consequence is a serious limit on the
maximal allowed dipole length [39]. The results of this optimisation are already included
in the previously presented FODO cell designs.
Beyond the general limits of Pγ the lattice has to be optimised to keep the critical energy

well below the pair production threshold. In the arc section this requirement is fulfilled.
The critical energy is Ecrit = 755 keV.

2.4.1 Sawtooth orbit for different RF schemes

The emission of synchrotron light photons results in a decreasing beam energy in the arc
sections. The particles follow dispersion orbits with smaller and smaller bending radii,
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Figure 2.16: Sawtooth orbits in the lattice with 12-fold Layout at 175GeV beam energy
for different numbers of RF sections. For comparison the sawtooth orbit for
120GeV beam energy and four RF sections is presented in addition.

which causes them to drift to the inside of the ring as they propagate through the arc
lattice. In the RF sections between two arcs they regain energy. As soon as they enter the
next arc section the particles now follow a dispersion orbit for positive energy offset and
again start to drift to the inside as they travel through the arc lattice. The constant energy
loss in the arcs in combination with the re-acceleration in the straight RF sections creates
a particular pattern for the horizontal beam position, which is known as the sawtooth orbit.

Fig. 2.16 shows the sawtooth orbit at 175GeV beam energy for four, eight and twelve RF
sections. Each particle looses approximately 7.8GeV per turn, which corresponds to 4.5%
of their total energy. The amplitude of the orbit offsets is directly correlated to the number
of RF sections. In the lattice with twelve RF stations the maximum sawtooth amplitude is
only one third compared to the scheme with four RF stations. Nevertheless, the maximum
orbit offset still is xδ = 227 µm, which compared to the beam size of σx ≈ 300 µm is a
considerable effect. As the radiation losses decrease for smaller energies, the sawtooth
effect becomes smaller as well. For 120GeV beam energy the maximum amplitude with
four RF sections is comparable with the one in the twelve RF section scheme at 175GeV.
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Figure 2.17: Illustration of the tapering method. In order to restore the ideal bending
angle the magnetic field of the dipoles is adjusted to the local beam energy.

Assuming the chromatic aberrations are well-corrected, the energy loss along the arcs
does not perturb the beam optics. However, since the sawtooth orbit does not traverse the
sextupoles in their centre, the feed-down of the sextupoles creates an additional focussing
term, which does perturb the optics. Therefore, a maximum of equally distributed RF
systems is desirable to limit the sawtooth amplitude. Additional dispersion free sections
are needed in the lattice to provide space for the installation of the RF cavities. These
dispersion free sections, however, will significantly reduce the dipole filling factor of the
machine and so increase the overall synchrotron radiation losses. In addition, space will
be needed to suppress the dispersion either in missing bend or half-bend dispersion sup-
pressor schemes. If a quadrupole-based scheme is chosen instead, additional independent
quadrupole lenses are required. The lattice design therefore needs a careful optimisation
between the tolerable sawtooth amplitude, the overall synchrotron light losses and the RF
distribution needs, which are directly correlated to the dipole filling factor and functional
aspects. Several optics have been studied and at present the most preferable is a two RF
system in combination with a sophisticated compensation of the sawtooth effect in the arc
section.

2.4.2 Tapering options for the dipoles in the arc sections

In the last section it has been motivated that a large number of RF sections is desired to
keep the radial orbit excursions small. Considering the large size of FCC it nevertheless
is aimed to restrict the RF system to two sections in order to lower cost and simplify
maintenance. To compensate the lack of RF distribution shimming methods were studied,
in which the bending angle of the dipoles was readjusted to the current particle energy
in the arc [45, 46]. The concept of tapering the dipole strength is illustrated in Fig. 2.17.
When the particles enter the arc, they have an energy larger than the design energy E0.
Its bending angle therefore is smaller than for a particle with design energy and they exit
the dipole with an orbit offset as shown in Fig. 2.17 (a). The idea of the tapering is to
adjust the dipole field to the local beam energy E0 + ∆E in order to restore the ideal
bending angle. In MAD-X tapering can be realised in two ways: additional orbit corrector
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Figure 2.18: Sawtooth orbit in the lattice with Racetrack Layout with two RF sections
in the Extended Straight Sections.

magnets can be installed after each dipole to provide an additional bending angle or errors
of the bending field can be introduced. The nominal value of the bending strength cannot
be modified, since this would have effects on the geometry of the whole machine. In a
real machine the dipole strength will most probably be adjusted with back-leg windings
connected to individual power supplies.

To obtain full compensation of the energy variation along the lattice the strength of
each and every element needs to be adjusted to the local beam energy. This, however,
would require individual power supplies for every magnet, which, considering the size of
FCC-ee, would be tremendously expensive. Therefore, the tapering studies are focussed on
the compensation of the sawtooth effect by adjusting only the dipole fields. If necessary,
the tapering of quadrupoles still can be included on top.

The tapering was investigated for both layouts and different numbers of RF sections [45].
In the context of this thesis only the options for the Baseline Layout, the Racetrack Lattice
with two RF stations, will be presented for the most critical beam energy of 175GeV.

The orbit without adjusted dipole strengths is shown in Fig. 2.18. In the first Long
Straight Section (LSS) with interaction region the beam energy has design value. In the
subsequent arcs it constantly decreases until the first Extended Straight Section (ESS) is
reached. At the end of the first Long Arc (LARC) the maximum orbit offset is about
xδ = −1.4mm. The RF cavities in the ESS increase the beam energy by 3.9GeV, which
is half the energy loss per turn. In the second LARC the orbit offset now is xδ = 1.4mm
before it decreases until it reaches design value again in the LSS with the second interaction
region at s = 50 km.
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Figure 2.19: Horizontal orbit in the Racetrack Lattice with two RF sections after adjust-
ing the strength of every dipole individually to the local beam energy.

In the remaining part of this section two scenarios of tapering will be presented: in
the first scheme every single bending magnet was tapered individually and in the second
approach the bending magnets in-between two RF sections were grouped into six blocks
with equal bending strength in order to save costs for power supplies and increases the
reliability because of the lower number of components.

Individually adjusted dipole strengths: The first tapering option is to equip every single
dipole with its own correction mechanism. The local beam energy was both calculated
analytically and with MAD-X to determine the required correction of the bending angle
using the equation

θ(E + ∆E) = θ0

(
1− ∆E

E0

)
. (2.10)

The maximum modification is ∆θ = 1.1× 10−2mrad, which corresponds to about 1.2% of
the nominal bending angle θ0 = 9.53× 10−4mrad.

After assigning the strengths based on the energy calculations of MAD-X the sawtooth
amplitude could be reduced to a maximum value of xδ = 17 µm. This corresponds to a
correction of the sawtooth amplitude of 98.8%. The horizontal orbit with tapered dipole
strengths is shown in Fig. 2.19. It still shows some excursions. Especially in front of
the RF section the correction of the bending angles was too strong and the beam is now
shifted to a positive orbit offset. As the radiated synchrotron radiation power depends on
both the particle energy and the bending dipole field, the energy loss along the lattice is
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Figure 2.20: Sawtooth orbit of the Racetrack Lattice with two RF sections after arc-wise
adjustment of the bending strength of the dipoles.

slightly changed after the modification of the bending angles. The sawtooth amplitude
could probably be further decreased with another iteration of local energy calculation.
However, the results suffice for a qualitative discussion and since the accouterment of each
dipole with its own power supply still is an expensive task, it was decided investigate a
more global tapering option instead.

Sector-wise tapered dipole strengths: Depending on the tolerance limits of the resulting
sawtooth amplitude the dipoles do not necessarily need to be tapered individually. Instead,
sectors of dipoles can be defined that have the same strength determined by the average
beam energy in the sector. As a first step the dipole strengths were tapered arc-wise. All
dipoles of a certain arc had the same strength leading to eight families of dipoles. The
resulting orbit is shown in Fig. 2.20. The maximum amplitude could already be reduced
from xδ = 1.4mm to xδ = 0.52mm. The pattern of this orbit could also be created by a
lattice with RF stations in every straight section. To obtain symmetric orbit offsets the
cavities of the respective straight section must compensate the energy loss in the last half
of the previous and the first half of the subsequent arc.

A further sub-division of the dipole chain in the long arcs could improve the reduction
of the sawtooth effect: in Fig. 2.21 the orbit is shown for the FCC-ee dipole chain divided
into twelve sectors. In the middle of the LARCs, where the dipole strength switches, a
matching section of four FODO cells with individually powered quadrupoles is needed
to provide a smooth transition of the lattice functions. This creates the unique orbit

56



2.4. DESIGN CONSTRAINTS FROM SYNCHROTRON RADIATION

0 10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

s / km

x
/

m
m

Figure 2.21: Sawtooth orbit of the Racetrack Lattice with two RF sections where the
dipole chain is divided into twelve sectors. The excursions in the middle
of the LARCs are created by the matching sections required to provide a
smooth transition between the two sectors within the arc.

excursions that can be observed in Fig. 2.21. Apart from these exceptions the residual
sawtooth amplitude is approximately 0.3mm for the maximum design energy of 175GeV.
Since this orbit variations are in the same order of magnitude compared to the 12-fold
RF scheme studied before, the remaining sawtooth amplitude is so far considered to be
tolerable for FCC-ee. Fig. 2.22 shows a comparison of the obtained orbits without modified
bending angles, with sector-wise tapering and with individual tapering.
Studies of alignment tolerances and coupling correction will investigate, whether the

design emittance ratio of one per mille can be reached or if the sawtooth effect has to be
corrected by either more sectors or individual tapering.
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Figure 2.22: Orbits in the lattice with Racetrack Layout and two RF sections in compar-
ison. While the orbit without corrected bending angles shows the largest
orbit excursions, they nearly vanish, if the dipole strengths are individu-
ally adjusted to the local beam energy. The case with the twelve sectors
compromises between orbit correction and a reasonable number of power
supplies.
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CHAPTER 3

Emittance tuning

The beam emittance describes the particle density of the beam in phase space. Therefore,
it is one of the most important parameters in beam dynamics and influences both single
particle and collective effects. In lepton storage rings the emittance determines the size of
the source point of the synchrotron radiation. Modern synchrotron light sources therefore
aim for lowest emittance to obtain radiation with high brilliance. In colliders a small beam
size is required during the collision of the bunches to gain highest luminosity. One of the
limits to the minimum beta function at the interaction point is the aperture of the final
doublet quadrupoles. A smaller emittance therefore not only decreases the beam size at
the interaction point, but also allows larger beta functions in the final focus quadrupoles
for a given beam size. This on the other hand allows to reduce the value of β∗ and focus
the beam even stronger.

In lepton storage rings the emittance can be controlled during operation in a certain
range, but it mainly depends on the machine geometry, the lattice and the beam energy.
This means the emittance is already defined during the design phase of the machine. This
chapter presents the considerations taken into account for the design of the linear lattice,
in order to obtain the required design values. For the calculations the 80 km version of the
lattice with 12-fold Layout was used. Since the equilibrium emittance is determined by the
parts of the lattice with non-vanishing dispersion, the mini-beta insertions were replaced
by regular straight FODO cells to facilitate the constraints for the calculations.

3.1 Horizontal emittance

In hadron machines, where the effect of energy loss by synchrotron radiation can usually be
neglected, the emittance is given by the Maxwell-Boltzmann statistics of the particle source
through the temperature of the ensemble [47]. If only conservative forces are present, it
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will remain a constant of motion. In lepton machines, on the contrary, the horizontal beam
emittance depends on two equally important effects that both result from the emission of
synchrotron light: quantum excitation and radiation damping. When both effects reach
an equilibrium, the horizontal beam emittance results in

εx = Cq
γ2

Jx

I5x
I2

, (3.1)

which for a given beam energy is defined by the value of the synchrotron radiation integrals
and thus the lattice design. As discussed in Sec. 2.2.1, the basic cell layout of FCC-ee lattice
was designed to obtain the design emittance value for 175GeV beam energy. At this energy
the highest radiation losses occur, which requires best performance of the lattice. Using the
same lattice and geometry at lower beam energies will produce a smaller beam emittance,
because according to Eq. (3.1) the emittance also depends on the square of the Lorentz
factor γ and thus on the beam energy. The expected decline was calculated using Eq. (2.4),
which was given by

εx =
Cq

Jx
γ2θ3F (3.2)

with the lattice form factor

FFODO =
1

2 sinϕ

5 + 3 cosϕ

1− cosϕ

L

2lB
. (3.3)

Although Eq. (3.2) is an approximation and F = 2.98 simplifies the situation, the com-
parison with an exact calculation shows a remarkably good agreement. In Tab. 3.1 the
values according to Eq. (3.2) and the respective MAD-X results are summarised for the
four design energies of FCC-ee. It has to be emphasised that due to quadratic dependence
on γ the emittance shrinks from εx = 1.0 nm rad to 0.2 nm rad for 80GeV beam energy and
for 45.5GeV even to 0.07 nmrad. Such a small value of the emittance in combination with
the bunch population in the order of 1011 particles leads to high charge densities within
the bunches. It still has to be proven whether such parameters are feasible, especially in
terms of the beam-beam tune shift. The beam-beam parameter introduced in Sec. 1.5.2 is
proportional to the reciprocal of the beam energy and the beam emittance:

ξu ∝
1

γ

βu
σ2u

(3.4)

Therefore the effect becomes more important at lower energies and can be compensated
by larger emittance values. A second set of parameters with an increased beam emittance
for 45.5GeV and 80GeV was therefore proposed [33]. The alternative design values are
included in Tab. 3.1. The value εx = 0.47 nm rad for 120GeV is consistent with the natural
emittance decrease.
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Table 3.1: Lorentz factor and equilibrium beam emittances for all design energies. Both
the analytically calculated emittance values from Eq.(2.4) and the results of the
MAD-X calculation were compared to the alternative design parameters of [33]
with increased emittance for 45.5GeV and 80GeV. Following the discussions
in Sec. 2.2.1 the designed values leave a factor of two margin to the baseline
values for emittance increase due to lattice imperfections.

Z W H tt
Beam energy (GeV) 45.5 80 120 175
Lorentz factor γ 89041 156556 234834 342466
Horizontal emittance εx (nm rad)
- Analytical calculation 0.071 0.218 0.491 1.04
- MAD-X calculation 0.068 0.209 0.488 1.00
- Alternative design parameter 14.60 1.65 0.47 1.00

In the context of this thesis several possibilities were studied to increase the horizontal
beam emittance and meet the required design values. Following the discussion in Sec. 2.2.1,
the key parameter to define the beam emittance is the horizontal dispersion function. Via
the H function

Hu(s) = βuD
′2
u + 2αuDuD

′
u + γuD

2
u (3.5)

in the fifth synchrotron radiation integral, it determines the strength of the quantum
excitation and thus modifies the equilibrium state. The minimum and maximum value of
the dispersion function in a FODO cell are given by

D̂ =
L2

ρ

(
1 + 1

2 sin (ϕ/2)
)

4 sin2 (ϕ/2)
and Ď =

L2

ρ

(
1− 1

2 sin (ϕ/2)
)

4 sin2 (ϕ/2)
(3.6)

and they depend on the bending radius ρ, the length L of the FODO cell and the phase ad-
vance ϕ. The bending radius obviously needs to stay the same, because the new lattice must
fit the same geometry. This leaves cell length and phase advance for modification. Both
options were studied in detail towards their capabilities and limitations. The boundary
conditions for the modification and the resulting lattices will be presented in the following
sections.

3.1.1 Modification of the cell length

For a constant phase advance per cell the length of the FODO cell has been modified and the
obtained minimum and maximum value of the horizontal dispersion function according to
Eq. (3.6) are presented in Fig. 3.1. For the calculation the parameters of FCC were used, i.e.
a bending radius of ρ = 11.7 km was used and a phase advance per cell of ϕ = 90°. For given
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Figure 3.1: Minimum and maximum value of the horizontal dispersion depending on the
FODO cell length. The values are results of Eq. (3.6) with using the FCC
bending radius of ρ = 11.7 km and ϕ = 90° phase advance per cell. The line
connecting the single marks was added to guide the eye.
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Figure 3.2: Horizontal equilibrium emittance for different length of the arc FODO cells.
The values were calculated with Eq. (3.2) for a phase advance of ϕ = 90° and
175GeV beam energy. Bending angle θ and length of the bending magnets
lB were adapted to keep the bending radius constant.
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L = 50m

L = 100m

L = 150m

Figure 3.3: Proposed method to increase the FODO cell length. By switching off all the
defocussing quadrupoles and reversing the polarity of every second remaining
quadrupole the cell length can be increased from L = 50m (top) to 100m
(middle). L = 150m is obtained by keeping just every third quadrupole of
the regular lattice (bottom).

phase advance and bending radius the values show a quadratic increase for larger FODO
cells as expected from Eq. (3.6). As mentioned before, the dispersion function affects the
horizontal emittance via the H function in the fifth synchrotron radiation integral. Since
the H function contains the square of the dispersion, the increase of the beam emittance is
even larger for longer cells. The values presented in Fig. 3.2 were calculated with Eq. (3.2)
for a phase advance of ϕ = 90° and 175GeV beam energy. The bending angle θ and length
of the bending magnets lB were adapted such that the bending radius stayed constant.
Fig. 3.2 illustrates what a powerful lever the cell length is for the modification of the
emittance. It is an obvious boundary condition that a modification of the effective length
of the arc cells has to be based on the same hardware installed in the lattice. Re-positioning
or exchanging lattice elements would lead to intolerably long technical interruptions in the
machine operation. For carefully chosen FODO cell parameters however, i.e. mainly the
phase advance per cell, a very elegant solution is proposed: the cell length can be increased
by switching off a certain number of quadrupoles and changing the polarity of others.
The method is illustrated in Fig. 3.3, where the symbols of lenses depict the quadrupole
magnets. The schematic on the top shows the regular lattice for 175GeV beam energy
with 50m cell length. In the second row all defocussing quadrupoles have been switched off
(dotted elements) and the polarity of every second focussing quadrupole has been reversed
as indicated by the red arrows. The effective cell length is now L = 100m, which is twice
as long as before in the regular lattice. If more quadrupoles are switched off, even longer
cell lengths can be arranged as for example L = 150m, which is presented in the third
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Figure 3.4: Beta functions and horizontal dispersion function in the modified FODO cell
with a length of 100m. The quadrupoles at s = 25m and s = 75m were
switched off. The polarity of the quadrupole at s = 50m was reversed, it
is now used as a defocussing quadrupole. The beta functions increased by a
factor of two according to Eq. (2.1), the dispersion by a factor of four, since
it depends on the square of the cell length.

schematic. To guarantee smooth operation, it is foreseen to equip the relevant quadrupoles
with switches, that should be included in the technical design from the beginning. A similar
concept had been realised for the sextupoles at the HERA storage ring [48]. Beyond the
context of this thesis a sophisticated powering scheme should be addressed.
Eq. (3.2) allows to estimate the required cell lengths to obtain the baseline values presen-

ted in Tab. 3.1. Taking the corresponding Lorentz factor into account and assuming the
same phase advance of ϕ = 90°, a cell length of L = 100m creates an emittance of
εx = 1.74 nm rad, which complies with the baseline value within 5.5%. For 45.5GeV beam
energy the cell length needs to be increased to L = 300m. The obtained emittance is then
εx = 15.24 nm rad, only 4.4% larger than the baseline of 14.60 nm rad.

3.1.2 Lattice for 80GeV beam energy with 100m cell length

In order to fulfill the requirements for the horizontal emittance at 80GeV beam energy
the FODO cells in the arc lattice were increased to a length of L = 100m as described
in the previous section. The phase advance of ϕx = 90° and ϕy = 60° per cell was not
modified. The beta functions and the horizontal dispersion function of the new FODO cell
are presented in Fig. 3.4. The maximum and the minimum values of the beta functions
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Figure 3.5: Optics of the dispersion suppressor in the lattice with 100m cell length in the
arcs. Eight free quadrupoles are used to suppress the dispersion.

increased by a factor of two as expected from Eq. (2.1). According to Eq. (2.2) and the
previous discussions, the dispersion function increased by a factor of four.

The different optics functions correspond to a different periodic solution of the particle
trajectory. As a consequence the matching sections and dispersion suppressors between
arcs and straight sections need to be readjusted. For the lattice with 50m cell length a
half-bend dispersion suppressor was installed. This scheme does not work any more for
the 100m FODO cells, because the two half-bend cells correspond to one cell in the 100m
case and a second cell would be required to match the dispersion to zero. Instead, free
quadrupoles are used to suppress the dispersion. A minimum of six degrees of freedom
is required to match the dispersion, its derivative and Twiss parameters β and α. Since
this dispersion suppressor scheme affects the optics, eight quadrupoles were used for this
lattice of FCC-ee to re-optimise the Twiss parameters and avoid large values of the beta
functions. Fig. 3.5 shows two dispersion suppressor sections next to each other. In-between,
the dispersion functions is vanishing as required.

The lattice in the straight sections was not modified in order to preserve the same optics
conditions for the injection scheme, interaction regions etc. As no dipole magnets are
installed in these parts of the lattice the synchrotron radiation integral I5 is vanishing
and the optics of the straight sections does not affect the equilibrium emittance. It can
be optimised in a wide range following other boundary conditions. The radiation effects
defining the equilibrium beam emittance are thus small compared to the ones in the arc
sections. The matching sections at the beginning and at the end of the straight sections
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Figure 3.6: Vertical beta function and horizontal dispersion function in the first 11 km
of the 80 km version of the lattice with 12-fold Layout and 100m FODO cell
length in the arcs. The beta functions increase, as expected, by a factor of
two in the arc sections. To allow a clear view only the beta function of one
plane is presented. The dispersion increases even by a factor of four, which
results in the aimed emittance increase. The dispersion suppressors in the
middle of the arc were included to allow additional RF sections, if required.
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were used to provide a smooth transition between the two different periodic solutions of the
beta functions. Fig. 3.6 presents the matched optics in the first 11 km of the 80 km-12-fold
lattice. The vertical beta function in Fig. 3.6 (a) nicely shows the different period length
of the betatron oscillation and the increase of the beta functions arising from the different
length of the FODO cells. The irregularity of the beta function in the middle of the arc
is created by the dispersion suppressor, which were installed in the beginning to allow
installation of additional RF section if required. As shown in Fig. 3.6 (b) the dispersion
reaches zero in the middle of the arc.
The change of the beta functions inevitably results in a modification of the tune, which

according to Eq. (1.12) was defined as the integral of 1/β. The beta functions increase
because the focusing of the quadrupoles in the arc sections is weaker. As a consequence, the
tune decreases from Qx = 495.05 to 296.68 in the horizontal plane and from Qy = 329.45

to 204.75 in the vertical plane.
The horizontal beam emittance calculated by MAD-X for the lattice with 100m cell

length is εx = 1.70 nm rad. Including a factor of two margin for emittance increase due to
alignment errors, this value is even closer to the baseline value of εx = 1.65 nm rad than
the previously estimated value using Eq. (3.2) (1.74 nm rad).

3.1.3 Modification of the phase advance

A second possibility to modify the dispersion function without repositioning or even re-
cabling elements is to change the phase advance per FODO cell by modifying the gradients
of the quadrupoles. To demonstrate the effect of the phase advance on the dispersion func-
tion and thus the beam emittance, the optics of the FCC-ee FODO cell was matched to
different values of the phase advance in the range from ϕ = 20° to 130°. While the phase
advance of the regular FCC-ee FODO cell is set to 90° in the horizontal and 60° in the
vertical plane, for this scan the same phase advance in both planes was chosen for stability
reasons. This also allows to compare the MAD-X results with the analytical values expec-
ted from Eq. (3.6), which was derived under exactly this assumption. Fig. 3.7 shows the
resulting maximum and minimum values of the dispersion function calculated by MAD-
X and the functions of Eq. (3.6). Both minimum and maximum values of the dispersion
function increase quickly for phase advances below ϕ = 40°, because the denominator in
Eq. (3.6) sin2 (ϕ/2) → 0 for ϕ → 0. Even though the analytical formula assumes thin
lenses, the agreement of the values is very good. Only for phase advances below 60° the
MAD-X results deviate slightly. In order to obtain a considerable increase of the dispersion
function and thus the emittance, the phase advance must be decreased to values in the
range of ϕ = 20° to 40°.
The largest emittance increase from εx = 0.07 nm rad to 14.60 nm rad has to be achieved

for 45.5GeV, which is why it was decided to investigate the correlation of phase advance
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Figure 3.7: Maximum and minimum horizontal dispersion of an FCC-ee FODO cell for
different FODO cell phase advance.

and emittance at this beam energy. In addition to the analytical calculations, the emittance
of the FCC-ee lattice was calculated for the FCC-ee model in MAD-X. Since the emittance
calculation in MAD-X takes both synchrotron radiation and re-acceleration of the particles
into account, the straight sections with the RF installation has to be included in the lattice.
Therefore the modification of the phase advance in the arc FODO cells requires for each
step considered a careful re-matching of the dispersion suppressors in order to sustain a
valid periodic optics. As the phase advance varies in a wide range, a quadrupole-based
dispersion suppressor is not capable of providing a stable solution in all cases. Instead, the
two-cell dispersion suppressor described in Sec.2.2.2 had to be implemented in addition.
The hereby resulting geometric modifications of the layout were neglected in this very case.

The scan of the FODO cell phase advance reached from ϕ = 19° to 136°. For smaller or
larger values the matching of the FODO cell did not converge successfully. The resulting
horizontal emittances as a function of the phase advance are shown in Fig. 3.8. To allow
a detailed view only the values from ϕ = 19° to 90° are presented. For phase advances
below 30° the emittance increases rapidly. The analytically calculated values of Eq. (3.2)
are shown as the dotted line for comparison and indicate a more moderate emittance
growth. However, Eq. (3.2) is an approximation, which does not include effects for extreme
situations. For example, as a side-effect at small values of the phase advance, the energy
loss per turn U0 seems to be correlated to the increase of the dispersion and emittance as
well. For a better understanding of this behaviour, the optics at the upper and lower limit
of the phase advance were studied in detail.
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Figure 3.8: Horizontal emittance of the 80 km 12-fold Lattice at 45.5GeV beam energy
and energy loss per turn for different phase advances. The values calcu-
lated by MAD-X were connected to guide the eye. The values expected from
Eq. (3.6) are given by the dotted line for comparison.

Upper phase advance limit: A large phase advance is created by strong focussing of
the beam in the quadrupoles, which corresponds to a short focal length. The minimum
acceptable focal length for stable particle motion depends on the length of the FODO cell.
To provide a periodic solution of the equation of motion the lattice needs to fulfill the so-
called stability criterion: the trace of the transport matrix M describing the lattice must
be smaller than two:

tr(M) < 2 (3.7)

The transport matrix of a FODO cell can be obtained by the multiplication of the matrices
describing focusing quadrupole - drift - defocusing quadrupole - drift [36]. The trace of
this matrix is in thin lens approximation given by

tr(MFODO) = 2 +
L2

f1f2
− 2L

(
1

f1
+

1

f2

)
, (3.8)

where f1 is the focal length of the first quadrupole, f2 is the focal length of the second
quadrupole and L is the cell length. Since in this case the quadrupoles have the same
gradients (f1 = f2 = f) Eq.(3.7) and Eq.(3.8) lead to following requirement as a limit for
particle stability in FCC-ee:

f >
L

4
= 12.5m or k1 < 0.053

1

m2
(3.9)
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Although the calculations of the FCC-ee lattice include elements of finite length and non-
linear contributions from sextupole magnets, the agreement with the expectations from the
linear approximation is very accurate: the normalised quadrupole strengths in the lattices
with the largest stable phase advances are

k1(ϕ = 120°) = 0.047
1

m2
,

k1(ϕ = 130°) = 0.049
1

m2
,

k1(ϕ = 136°) = 0.050
1

m2
.

The required quadrupole strengths for a FODO cell phase advance of ϕ = 140° are already
too close to the upper limit and the lattice is not stable any more. Therefore, a maximum
phase advance of ϕ = 135° per FODO cell is considered as a feasible limit for FCC-ee.

Lower phase advance limit: As mentioned before, the dispersion function increases rap-
idly for values of the phase advance below ϕ = 40°. For ϕ = 19° phase advance per cell
the dispersion function reaches a maximum value of Dx,max = 2.00m while it was only
Dx,max = 0.13m in the case of 90° phase advance per cell. It has to be emphasised that as
a consequence of this considerable increase the sawtooth amplitude for a given beam en-
ergy becomes more than ten times larger than for ϕ = 90° phase advance. As the magnetic
field in the quadrupoles increases linearly with the distance from the centre, particles with
larger orbit offset experience stronger fields. The consequence is a considerable increase of
the energy loss due to synchrotron radiation, as presented in Fig. 3.8, because of the larger
deflection. The additional energy loss modifies the local particle energy and increases the
sawtooth amplitude even further.

The sawtooth orbits for different FODO cell phase advances are compared in Fig. 3.9
and Fig. 3.10. Fig. 3.9 shows the orbit in the lattice with ϕ = 90° phase advance per cell,
where the amplitude of the sawtooth is about ±4 µm. As shown in Fig. 3.10 the sawtooth
amplitude reaches 25 µm for 35° phase advance and 50µm for 30°. For a phase advance of
20° the orbit excursions become larger than 200µm. In addition to the larger energy loss
such sawtooth amplitudes bring a second complication: the feed-down of the sextupole
fields, which are used to correct the linear chromaticity, creates an additional quadrupole
field and results in a perturbation of the optics. The orbits presented in Fig. 3.10 show an
increasing distortion for reduced phase advance and larger sawtooth amplitudes. In order
to prevent a negative influence on the optics a minimum phase advance in the range of
ϕ = 35° to 40° is considered as a reasonable limit.

As discussed before, the dispersion function was increased to obtain a larger emittance.
This results in a larger beam size, which according to Eq. (1.9) reaches values of up to
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Figure 3.9: Horizontal orbit for 45GeV beam energy in the FCC-ee lattice with 12-fold
Layout without interaction regions and 90° FODO cell phase advance.
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Figure 3.10: Horizontal orbit for 45GeV beam energy in the FCC-ee lattice with 12-fold
Layout without interaction regions for different FODO cell phase advances
close to the lower limit.
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σx = 5.18mm for ϕ = 19° phase advance compared to the beam size σx = 0.07mm
in the case of 90° phase advance of the standard cell. However, in lepton storage rings
the emission of synchrotron radiation photons creates a considerable energy spread of the
beam. Eq. (1.9) therefore needs to be expanded by a term, which takes the energy spread
of the beam and the resulting blow-up into account:

σx =

√
εxβx +

(
∆p

p
Dx

)2

(3.10)

For FCC-ee with 45.5GeV beam energy synchrotron radiation and beamstrahlung lead to
an estimated energy spread of ∆p/p ≈ 0.1 % [16], which increases the beam size by 60µm
to σx = 5.24mm. While the increase of the beam size is small, such a large beam size in
general would require an unreasonably large magnet aperture and therefore seems not to
be feasible.

In addition to the previously discussed reasons, it was decided to choose a phase advance
larger than 40° because of considerations for beam stability in terms of lattice imperfections.
At operation below that value the beam emittance becomes very sensitive to tune shifts.
Already small variations of the phase advance have a large impact on the emittance at
45.5GeV beam energy:

ϕ = 24° = 0.067× 2π: εx = 24.05 nm rad
ϕ = 25° = 0.069× 2π: εx = 17.28 nm rad
ϕ = 26° = 0.072× 2π: εx = 12.57 nm rad

However, since the arc optics should allow a multi-family sextupole scheme for higher-order
chromaticity correction it is mandatory to keep certain phase advance relations between
the sextupoles. Therefore the phase advance per cell cannot be chosen freely. Values that
allow sextupole schemes with ϕ = n × π phase advance between two sextupoles of one
family are for example ϕ = 90°, 45°, 72° or 60°.

3.1.4 Lattice for 80GeV beam energy with 45° phase advance per cell

For operation at 80GeV beam energy the horizontal emittance needs to be increased from
εx = 0.21 nm rad to 1.65 nm rad. A first lattice with an increased length of the FODO cells
in the arc sections has already been proposed earlier in this section. However, an alternative
configuration with modified phase advance per FODO cell was studied in addition. To
obtain the required emittance value, estimations with Eq. (3.2) suggest to decrease the
FODO cell phase advance from ϕ = 90° to 45° in both planes. The estimated emittance
would then be εx = 1.50 nm rad. The phase advance is still above the recommended limit
and allows to install a multi-family sextupole scheme.
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To set up a valid lattice the geometry must be compatible to the regular lattice for
175GeV. The regular dispersion suppressor based on two half-bend cells therefore needs
to replaced by a quadrupole-based dispersion suppressor scheme. As mentioned earlier, a
minimum of six quadrupoles is required to connect the optical functions of the new arc
lattice with the optics based on the 50m FODO cells in the straight sections. The resulting
optics in the dispersion suppressors is shown in Fig. 3.11 (a). For this optics solution the
polarity of two quadrupoles had to be reversed and the beta functions reach values of
about 350m in both planes. In order to obtain a more regular quadrupole configuration
and lower beta functions a second scheme was implemented: an additional FODO cell was
assigned to the dispersion suppressor, which increases the number of quadrupoles and thus
degrees of freedom to eight. The optics of this second approach is shown in Fig. 3.11 (b).
The two additional quadrupoles allowed to considerably decrease the maximum value of
the beta functions to 140m. Fig. 3.12 shows the optics in the first 11 km of the whole
lattice. Fig. 3.12 (a) presents the vertical beta function and (b) the horizontal dispersion
function.

The decrease of the phase advance in the arc cells affects of course the transverse tunes.
In the horizontal plane it reduced from Qx = 495.05 to 294.25, which is basically the same
value as in the lattice with 100m cell length for obvious reasons. In the vertical plane the
tune reduced from Qx = 329.45 to 260.25, which is 55 units larger than in the alternative
lattice. In both planes a fine-tuning will have to be applied for exact matching of the
non-integer part of the tune. The horizontal beam emittance calculated by MAD-X is
εx = 1.47 nm rad, in nice agreement with the analytical value of 1.50 nm rad.

3.1.5 Lattices for 45.5 GeV beam energy

For the lowest beam energy of 45.5GeV the beam emittance has to be increased to
εx = 14.60 nm rad to limit the beam-beam tune shift. A FODO cell phase advance of
25° would produce an emittance value of εx = 17.28 nm rad, however, following the pre-
vious discussions this phase advance is below the recommended minimum. Therefore the
emittance increase has to be accomplished by a modification of the cell length or a com-
bination of increased cell length and smaller phase advance. In any case, the cell length
must be a multiple of 50m and the phase advance must allow the installation of sextupole
families. Three lattice arrangements were studied, that fulfill those requirements:

1. L = 200m and ϕx,y = 60°
2. L = 250m and ϕx,y = 72°
3. L = 300m and ϕx = 90° and ϕy = 60°
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(a) Quadrupole-based dispersion suppressor scheme consisting of six quadrupoles
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(b) Quadrupole-based dispersion suppressor scheme consisting of eight quadrupoles

Figure 3.11: Beam optics of different quadrupole-based dispersion suppressor schemes for
ϕ = 45° phase advance in the arc FODO cells. A minimum of six free quad-
rupoles is needed to provide sufficient degrees of freedom. The according
optics are shown in (a). Two additional quadrupoles per dispersion sup-
pressor allow to reduce the maximum value of the beta functions as shown
in (b).
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Figure 3.12: Optics of the first 11 km of the 12-fold lattice. (a) shows the vertical beta
function and (b) the horizontal dispersion function.
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Figure 3.13: Beta functions and horizontal dispersion function in the modified FODO
cell with a length of 300m and the regular phase advance of 90° in the
horizontal plane and 60° in the vertical plane. The red crosses mark the
quadrupoles, which are switched off. The beta functions increased by a
factor of six according to Eq. (2.1), the dispersion by a factor of about 35.5,
since it depends on the square of the cell length.

The last option was chosen to be discussed in detail, because in this case the emittance
increase was achieved only by a modification of the cell length and the phase advances can
stay the same. The beta functions and the horizontal dispersion function for the 300m
FODO cell are presented in Fig. 3.13. The vertical beta function reaches a maximum value
of 594m, the dispersion function 4.6m. According to Eq. (2.1) the beta functions increased
by a factor of six compared to the 50m long FODO cell, the dispersion even by a factor of
about 35.5, since it depends on the square of the cell length (see Eq. (2.2)).

As in the previously discussed lattices for 80GeV beam energy, the dispersion suppressors
need to be modified and re-optimised for each case. Six free quadrupoles were sufficient
to match the optics, thus no additional degrees of freedom were required. In order to fit
the available number of FODO cells, two of the dispersion suppressor cells have a length
of 200m and for the third one 250m cell length has been chosen. The optics of the first
11 km of the 80 km-12-fold lattice are presented in Fig. 3.14. The arcs now only consist of
2 × 7 regular FODO cells. As a direct consequence the tunes are reduced and values of
Qx = 158.9 in the horizontal plane and Qy = 101.1 in the vertical plane are obtained.

The emittance calculation with MAD-X yields εx = 14.2 nm rad, which is even closer to
the design value of 14.6 nm rad than the analytically estimated value of 15.2 nm rad.
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Figure 3.14: Optics in the first 11 km of the 12-fold Lattice with 300m cell length in the
arcs. (a) shows the vertical beta function and (b) the horizontal dispersion
function.
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Lattice for 175GeV and 120GeV: L = 50m, ϕ = 90°/60°

Half-bend dispersion suppressor

Lattice for 80GeV: L = 50m, ϕ = 45°/45°

Dispersion suppressor based on quadrupoles

Lattice for 80GeV: L = 100m, ϕ = 90°/60°

Lattice for 45.5GeV: L = 200m, ϕ = 60°/60°

Lattice for 45.5GeV: L = 250m, ϕ = 72°/72°
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Lattice for 45.5GeV: L = 300m, ϕ = 90°/60°
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Dispersion suppressor

Straight FODO cell

Straight matching section

Figure 3.15: Illustration of the lattices proposed for the different beam energies of FCC-
ee. Every box symbolises a FODO cell. Starting from the lattice with
50m cell length designed for the highest beam energies of 175GeV and
120GeV the cell length in the arcs is increased in order to increase the
beam emittance. The cell length in the straight section is kept constant.
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3.2. VERTICAL EMITTANCE

3.1.6 Summary of lattice modification options for FCC-ee

For both 80GeV beam energy and 45.5GeV beam energy several options of lattice modi-
fications were studied in order to compensate for the natural shrinking of the emittance
with the beam energy and thus to increase the beam emittance to limit the beam-beam
tune shift. For 80GeV two optics are proposed, one with an increased FODO cell length
of 100m and one with half the phase advance per FODO cell. For 45.5GeV beam energy
it is not recommended to increase the beam emittance only by reducing the FODO cell
phase advance. Values as small as only 25° would have been needed, which would increase
the energy loss, lead to optics distortions and a high sensitivity to tune variations due to
lattice imperfections. Therefore lattices with increased cell lengths in the range from 200m
to 300m are proposed instead. The lattices with 200m and 250m cell length in addition
require a modification of the phase advance.
Summarising the situation, all five lattices are compared in Fig. 3.15 and Tab. 3.2.

Fig. 3.3 illustrates the increase of the cell lengths. The gray boxes symbolise the FODO
cells in the arcs, the white boxes the FODO cells in the straight sections. The dispersion
suppressor regions are marked in red and the matching sections in the straight section
in yellow. While the cell lengths in the straight sections stay the same, the length of the
FODO cells is increased for the low energy lattices in order to increase the beam emittance.
In the case of 250m and 300m length of the regular arc cells, the lengths of the dispersion
suppressor cells had to be adapted in order to fit the number of available cells in the arc.

3.2 Vertical emittance

In an ideal circular storage ring the dispersion function and its derivative are zero in the
vertical plane. Lepton beams therefore do not experience quantum excitation, which has
the result that the vertical equilibrium beam emittance is dominated by radiation damping.
By the nature of this effect lepton storage rings therefore feature flat beams. The ultimate
minimum of εy is determined by the so-called quantum limit, which means the only vertical
momentum of the particles is created by the emission of the synchrotron radiation photons
in an opening angle given by 1/γ [26], where γ is the Lorentz factor. However, in a real
machine other effects play a role and the vertical emittance e.g. is increased as a result of
alignment errors of the lattice elements. Transverse misalignments of quadrupoles create
extra dipole kicks, which create a non-zero vertical dispersion. According to Eq. (1.38) the
value of the fifth synchrotron radiation integral increases, which immediately results in a
larger equilibrium emittance. The second effect, that leads to vertical emittance growth,
is coupling between the transverse planes. If the particle motion is coupled, momentum is
transferred from one plane to the other. The consequence is a decreased particle density
in phase space and thus a larger beam emittance. The main sources of coupling in the
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3. EMITTANCE TUNING

Table 3.2: Comparison of the parameters of the lattices based on different FODO cell
layouts and the design parameters. The listed parameters are the cell length L,
the phase advances per cell ϕx and ϕy, the equilibrium emittance εx, the energy
loss per turn U0, the momentum compaction factor αc, the maximum values
of horizontal and vertical beta functions β̂x and β̂x as well as the maximum
horizontal dispersion D̂x and the maximum horizontal beam size σ̂x.

80GeV
L (m) 100 50
ϕx, ϕy (°) 90, 60
εx (nm rad) 1.70 1.47
U0 (MeV/turn) 337.03 337.03
αc (10−5) 2.22 1.99
β̂x (m) 181.54 141.47
β̂y (m) 211.05 141.68
D̂x (m) 0.58 0.41
σ̂x (mm) 0.56 0.46

45.5GeV
L (m) 200 250 300
ϕx, ϕy (°) 60, 60 72, 72 90, 60
εx (nm rad) 12.5 14.5 14.2
U0 (MeV/turn) 35.3 35.3 35.3
αc (10−5) 1.69 1.86 1.81
β̂x (m) 366.5 465.71 554.0
β̂y (m) 407.92 477.70 626.43
D̂x (m) 4.02 4.87 4.56
σ̂x (µm) 2.14 2.60 2.98
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3.2. VERTICAL EMITTANCE

case FCC-ee are vertical orbit offsets in the sextupole magnets and errors in the angular
alignment of the quadrupoles. In case of collider rings other large sources of coupling are
the solenoid fields in the experiments, which are required for the momentum measurements
of the created particles inside the detector. Usually these solenoid fields are quire strong
and therefore have to be compensated.

In order to maximise luminosity, the design of FCC-ee aims for the very ambitious
emittance ratio of

εy
εx

= 0.001

requiring a vertical emittance of 2 pm rad. Such a small value is comparable with state-of-
the-art synchrotron radiation light sources such as ESRF [19] or the Australian Light Source
[18]. While light sources are compact machines with circumferences in the order of some
hundred meters, which allows to use special girders to pre-align the lattice elements, FCC-ee
has a circumference of 80-100 km. Therefore, in the context of this thesis a very first study
of the effect of misalignments was undertaken to evaluate, if the desired emittance ratio is
feasible assuming today’s alignment and correction techniques. The effect of quadrupole
misalignments on the vertical emittance was investigated for both the 80 km and the 100 km
12-fold lattice at 175GeV beam energy. In order to follow a realistic approach, transverse
alignment errors are introduced in the lattice and the orbit is corrected in several iterations.

The dipolar field created through the feed-down of a misaligned quadrupole with length
LQ leads to a modification of the angular coordinate

∆x′ = k1 ∆xLQ. (3.11)

The orbit distortion created by a single quadrupole is then given by [49]

xc(s) =

√
β(s)

2 sinQπ
∆x′

√
β(s0) cos

[
ψ(s)− ψ(s0)−Qπ

]
(3.12)

and depends on the square root of both the local beta function
√
β(s) at the observation

point and the beta function at the place of the misaligned element
√
β(s0). As the beta

function reaches maximum values in the final focus quadrupoles, they not only amplify
the orbit distortions created in the rest of the lattice, but also require best alignment
precision. As a first step, only the effect of misalignments in the arc lattice was studied
and the mini-beta insertions were replaced by regular straight FODO cells.

Although alignment techniques will hopefully improve over the next 20 years, a worst case
scenario using today’s alignment precision was done. For LHC the relative rms tolerance
of transversal alignment is 0.15mm and the angular precision is 0.1mrad [50]. Gaussian-
distributed transverse misalignments with a maximum of three σ were introduced to all
quadrupoles in both planes. After each quadrupole a beam position monitor and a small
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3. EMITTANCE TUNING

dipole magnet for orbit corrections was installed. The number of orbit correctors thus
foreseen in FCC-ee is 1620 per plane.

Starting from an uncorrected orbit, the amplification factor of the misaligned quadru-
poles on the orbit amplitudes are so big that a possible solution for the orbit, a so-called
closed orbit, cannot be determined. Therefore a step-by-step procedure has been used: in
a first step the orbit without periodic boundary conditions is calculated as presented in the
top picture of Fig. 3.16 for the horizontal plane. Starting on the ideal orbit the transverse
offset increases and reaches amplitudes of more than 20mm. After three iterations of orbit
corrections a closed orbit was found and periodic calculations became possible. A fourth
iteration could reduce the transverse orbit displacement to about 0.3mm. The resulting
orbit shown in the middle picture of Fig. 3.16 allows now to correct the linear chromaticity
with the sextupoles. The final step is to include the RF cavities and the energy loss due to
synchrotron radiation, which are required for the EMIT module in MAD-X, that calculates
the equilibrium beam parameters. The resulting sawtooth orbit, that has been discussed
in the previous section for the ideal lattice, is presented in the bottom picture of Fig. 3.16.

For the 80 km lattice the emittances calculated by MAD-X for the presented error seed
are εx = 1.23 nm rad in the horizontal plane and εy = 1.05 pm rad in the vertical plane.
Compared to the ideal machine the horizontal emittance increased by 0.23 nm rad. The
obtained emittance ratio, however, is

εy
εx

= 0.00085, (3.13)

and thus even below the target value. In the 100 km case the emittances are smaller because
of the larger bending radius. The resulting horizontal beam emittance is εx = 0.97 nm rad
and the vertical emittance εy = 0.84 pm rad leading to the comparable ratio of

εy
εx

= 0.00087. (3.14)

These very first calculations of the vertical emittance lead to the conclusion, that the
aimed emittance ratio of one per mille is achievable with todays’s alignment precision.
However, to allow an final evaluation the mini-beta quadrupoles need to be taken into
account as well. The large beta functions at their location are a challenge for the orbit
correction procedure, because they create large contributions to the vertical dispersion
function. The impact becomes clear in Fig. 3.17, which shows the vertical orbit in the
lattice with mini-beta insertions reaching an amplitude of y = 1m. In addition, the
effect of angular misalignment and the precision of the coupling correction needs to be
further investigated. A more comprehensive study of alignment tolerances is still under
investigation. First results were presented in reference [51].
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Figure 3.16: Horizontal orbits during with transverse misalignments of the quadrupoles.
The top picture shows the uncorrected orbit calculated without periodic
boundary conditions. The orbit after four iterations of orbit correction is
shown in the middle picture. This stage allowed to correct the linear chro-
maticity and switch on the radiation effects. The bottom picture presents
the resulting sawtooth orbit.
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Figure 3.17: Vertical orbit for 175GeV beam energy in the FCC-ee 12-fold layout. Gaus-
sian distributed, transverse alignment errors with 0.15mm standard devi-
ation were introduced to the quadrupoles. The orbit was calculated without
periodic boundary conditions and shows the increase of the vertical disper-
sion created by the final focus quadrupoles.

3.3 Emittance fine tuning with wigglers

To allow the precise adjustment of the beam emittance, wigglers were installed in the FCC-
ee lattice [45]. If located in dispersion-free sections, they enhance the radiation damping
and thus decrease the equilibrium emittance. In this case they are referred to as damping
wigglers. If they are installed in regions with non-vanishing dispersion, they boost the effect
of quantum excitation and are then called excitation wigglers. Both types were studied
with the aim to vary the horizontal emittance of the lattice with Racetrack Layout by a
factor of two.

3.3.1 Installation of damping wigglers

LEP damping wiggler design: As a first approach a wiggler concept based on LEP design
was investigated. The wiggler has an overall length of L = 2.99m and consists of three
poles as illustrated in Fig. 3.18. The end poles are 0.925m long while the centre pole has
a length of 0.74m. A maximum field of 1.0T is foreseen for the centre pole and 0.4T for
the end poles [25].

Assuming the wiggler does neither affect the beta functions nor the dispersion function
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Figure 3.18: Schematic of the damping wiggler with three poles designed for LEP [52].
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Figure 3.19: Horizontal emittance of the FCC-ee lattice with sixteen LEP-type wigglers
for different magnetic fields of the centre pole. The line connects the marks
of the discrete calculations.

the effect of the wiggler on the beam emittance can calculated analytically:

εx =
Cqγ

2

Jx

I5
I2

=
Cqγ

2

Jx

I5,ring + I5,wiggler

I2,ring + I2,wiggler
(3.15)

According to calculations in MATLAB, 200 of these damping wigglers would be required
to reduce the emittance by a factor of two, while only 10 excitation wigglers are sufficient
to double the emittance [45].
As a next step the effect of the wigglers was calculated with MAD-X. Sixteen wigglers

were installed in the dispersion-free straight sections of FCC-ee to study the damping
performance. The reduced number of damping wigglers requires stronger dipole fields
to achieve the same effect as before. Different magnet strengths of the centre pole were
investigated up to B = 1.5T. Stronger fields were not considered in order to comply with
conventional non-superconducting magnet technology. The strengths of the end poles were
adjusted in such way that the total bending angles remained zero. The resulting emittance
depending on the field strength of the centre pole is presented in Fig. 3.19.
A minimum emittance of 0.93 × εx,0 can be achieved for the design strengths of the

wiggler poles. However, contrary to the expectations, the emittance increases again, if
stronger fields are used. This behaviour can be explained by analysing the dispersion
function inside the wiggler, which is shown in Fig. 3.22. For a magnetic field of B = 1T
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Figure 3.20: Horizontal dispersion function in the first half of a straight FODO cell
equipped with a wiggler of LEP design. In the centre pole a maximum
value of Dx ≈ 0.6mm is reached. For magnetic fields above B = 1.1T
the dispersion inside the wiggler results in an undesired quantum excitation
effect and an overall emittance increase (see Fig. 3.19).

Figure 3.21: Schematic view of the damping wiggler design with 39 poles. The edge poles
have only half of the bending field [52].

the dispersion function already reaches a maximum value of Dx ≈ 0.6mm in the centre
pole. For larger fields this considerable value increases even more and in the end leads to
an excitation effect inside the wiggler, that becomes larger than the damping effect.

Wiggler design with 39 poles: To allow larger magnetic fields without increasing the
integrated dispersion, the wiggler was optimised towards a larger number of poles. The
new design foresees 39 poles with a length of 10 cm and a separation of 2.5 cm leading to
a period length of λ = 25 cm. The edge poles have half the strength of the regular poles.
The overall length of the insertion device is 4.78m. A schematic of the design is presented
in Fig. 3.21.

Sixteen of those wigglers were installed in the lattice, four in each of the Long Straight
Sections without interaction region. The bending field of the wiggler was increased and
an emittance reduction of up to 0.53 × εx,0 can be achieved for a pole tip field of 1.75T.
Details of the required optics adjustments are discussed in [45]. The emittance ratio with
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Figure 3.22: Horizontal beam emittance and energy loss per turn of the FCC-ee lattice
with sixteen wigglers of the 39-pole design. (a) shows the beam emittance
normalised to the value without wigglers for different magnetic fields. (b)
presents the corresponding energy loss per turn.

and without wigglers is shown in Fig. 3.22 (a). It should be mentioned, however, that
the decrease of emittance must be paid with additional radiation losses in the wigglers as
presented in Fig. 3.22 (b). For the maximum pole field B = 1.75T considered here the
energy loss per turn increased from U0 = 7.9GeV by about an factor of two to 14.9GeV.
Such an increase in energy loss is not feasible as it drives the operation costs beyond budget
and puts severe constraints on the absorber design. Assuming, however, an additional
energy loss of 10% as a reasonable limit, the emittance could be reduced to 0.9 × εx,0,
which is considered to be enough for fine-tuning purposes.

3.3.2 Installation of excitation wigglers

In a second step the wiggler design with 39 poles was also investigated as an excitation
wiggler. Two wigglers were installed in Long Straight Sections without interaction region
at symmetric positions in the lattice. Since a finite value of the dispersion function is
required for quantum excitation, the dispersion suppressors of these straight sections were
modified to allow for a dispersion beat [45].

As for the previous damping wiggler case, the emittance was calculated depending on
the bending field of the regular wiggler poles. The result of the scan is presented in
Fig. 3.23 (a). For a bending field of B = 1.2T an emittance increase by a factor of two
is obtained. Again, the wiggler produces additional synchrotron radiation, but because
of the smaller number of wigglers the increase of the energy loss per turn presented in
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Figure 3.23: Horizontal beam emittance and energy loss per turn of the FCC-ee lattice
with two excitation wigglers of 39-pole design. (a) shows the beam emittance
normalised to the value without wigglers for different magnetic fields. (b)
presents the corresponding energy loss per turn.

Fig. 3.23 (b) is eight times smaller. For +10% fine-tuning of the emittance only 1.3%
additional energy loss are created.
To summarise this section, wigglers have been installed in the FCC-ee lattice in order
to allow both to increase and to decrease the horizontal beam emittance. It was shown,
that a fine-tuning within ±10 % can be achieved with reasonable amount of additional
synchrotron radiation losses of maximum 10%. For increasing the emittance less wigglers
with lower magnetic field were required, which resulted in considerably less amount of
additional energy loss. The basic design of the lattice therefore aims for a lower value of
emittance instead of a larger one.
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CHAPTER 4

Systematic Optimisation of Chromaticity
Compensation Schemes in the Arcs

Particles with momentum deviation experience different focusing strengths in the quadru-
pole magnets than particles with design momentum. As described in Chapter 1, this leads
to a tune shift depending on the momentum offset, which is called the chromaticity of the
machine. The large number of quadrupoles and especially the very demanding require-
ments of the interaction region with beta functions of β∗y = 1 or 2mm at the interaction
point drive the linear chromaticity of FCC-ee to absolute values of more than 2000 units
in the vertical plane. Without compensation, the resulting tune shift would drive off-
momentum particles to resonances where they get lost. The required correction depends
on the maximum energy deviation in the machine. In the case of FCC-ee with 175GeV
beam energy the non-colliding particles lose up to two percent of their total energy due to
beamstrahlung. As a consequence, the required momentum acceptance of FCC-ee must be
±2 % in order to prevent losing those particles. It might be emphasised that such an energy
range is extremely large. Considering the large chromaticity of FCC-ee ±2 % momentum
acceptance is a very challenging goal. The compensation of the linear chromaticity alone
is therefore not sufficient. Higher-order terms must be corrected as well.
In the context of this thesis chromaticity correction schemes in the arc lattice were

systematically studied including non-linear orders. Known techniques and methods were
implemented and benchmarked towards their capabilities to correct chromaticity of such
extraordinary magnitude. In addition, tools were developed to optimise configuration and
strength of the sextupoles to improve the momentum acceptance as far as possible.



4. SYSTEMATIC OPTIMISATION OF CHROMATICITY COMPENSATION SCHEMES IN THE ARCS
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Figure 4.1: The beta function around the interaction point at s = 0 for different values
of β∗. The beta function increases quadratically with distance s according to
Eq. (4.2). The smaller the value of β∗, the higher is the beam divergence.

4.1 Linear chromaticity correction

As a very first step the effects of linear chromaticity were studied. As discussed in Sec. 1.3.4
the chromatic effects created by the quadrupoles in the lattice lead to a tune shift, which
is in first order proportional to

Q′ =
dQ
dδ

= − 1

4π

∫
β(s)k1(s) ds. (4.1)

With Eq. (4.1) it can easily be verified, that in high-energy storage ring colliders the fi-
nal doublet quadrupoles in the interaction regions create the largest contribution to the
chromaticity. In order to obtain maximum luminosity, the beam is focused strongly to
beam sizes as small as possible. Since the phase space occupied by the beam stays con-
stant, because of the Liouville theorem, the small beam size leads to a large divergence
of the beam. For a symmetric beam waist with α = 0 and β∗ being the beta function at
the interaction point the beta function increases quadratically with distance ∆s from the
interaction point:

β(∆s) = β∗ +
∆s2

β∗
. (4.2)

The divergence of the beam depends on the value of β∗, which increases for small choices
of β∗ as illustrated in Fig. 4.1.

In the case of FCC-ee the first quadrupole is placed at a distance of L∗ = 2m to the
interaction point and as a consequence the beta function reaches several kilometers in
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4.1. LINEAR CHROMATICITY CORRECTION

Table 4.1: Maximum value of the vertical beta function βy,max in the final doublet and
linear chromaticity Q′y of three different layouts for different values of β∗y .
While the 12-fold Layout was studied for both two and four interaction points,
the Racetrack Layout only foresees two interaction points (IPs).

β∗y (mm) βy,max (m) Q′y Q′y Q′y
12-fold, 4 IPs 12-fold, 2 IPs Racetrack

1 5397.9 -2048.9 -1253.9 -1154.5
2 2698.9 -1257.9 -858.4 -791.5
5 1079.5 -780.9 -619.9 -573.3
10 539.9 -620.8 -539.9 -500.4
20 270.1 -541.1 -500.0 -464.8
50 198.8 -494.0 -476.5 -443.3

the first quadrupole lenses for values of β∗ in the millimeter range. Tab. 4.1 presents
the maximum beta functions βy,max in the interaction region introduced in Sec. 2.2.4 for
different values of β∗. The table also lists the corresponding vertical chromaticity of the
lattices with 12-fold layout both for two interaction points and four interaction points as
well as the lattice with Racetrack Layout. For values of β∗y smaller then 10mm the final
focus quadrupoles become the major contributors to the chromaticity. The very strong
quadrupole strengths k1 in combination with the large beta functions in the final focus
quadrupoles dominate the chromatic effects. As a consequence the number of interaction
points determines the chromaticity of the lattice, which is confirmed by the comparison
between the chromaticities of the 12-fold Layout with two and four interaction points in
Tab. 4.1. Fig. 4.2 shows the vertical chromaticity as a function of β∗y for both cases. The
value of the chromaticity without any interaction region, Q′y = −458.94, is indicated by
the dotted line.

As already discussed in Sec. 1.3.4, the linear chromaticity can be compensated by in-
stalling sextupole magnets in dispersive regions the lattice, preferably next to the quad-
rupoles. In thin lens approximation, where the elements are treated as a single kick,
quadrupole and sextupole form an achromatic doublet when the strength of the sextupole
equals

k2 = k1
1

Dx

β(sQ)

β(sS)

LQ

LS
. (4.3)

The linear chromaticity is then zero. However, this correction is only applicable in the
dispersive arc section, where Dx 6= 0. The chromaticity created in the dispersion-free
straight sections must be compensated by the sextupoles in the arcs as well. If the lattice
includes straight sections or even mini-beta insertions the sextupole strengths must be
increased accordingly in order to compensate the complete chromaticity of the lattice.
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Figure 4.2: Chromaticity of the lattice with 12-fold Layout for different values of β∗y . For
both two and four interaction points the chromaticity increases strongly for
β∗y in the millimeter range and confirms the large contribution of the final
doublet quadrupoles depending on the number of interaction points (IPs).
The dotted line indicates the chromaticity without any interaction regions.

For the study of chromaticity correction schemes for FCC-ee the lattice with symmetric
FODO cells was chosen. This cell layout foresees sextupoles on each side of every quad-
rupole in the arc sections. The length of of the sextupoles was set to 50 cm as a starting
point. This design offers the highest possible symmetry within the cell and provides twice
the integrated sextupole length. This means, the sextupole strengths reduce by a factor
of two compared to the asymmetric cell layout where only one sextupole next to each
quadrupole is foreseen.

Tab. 4.2 summarises the values of chromaticity and the sextupole strengths after correc-
tion of the linear chromaticity. For comparison, the sextupole strengths in LEP according

Table 4.2: Number of sextupole magnets and their strengths in one FODO cell and the
12-fold Layout for different numbers of interaction points.

FODO cell 12-fold, 0 IPs 12-fold, 2 IPs 12-fold, 4 IPs
β∗y 1mm 2mm 1mm 2mm
# of sextupoles 2 6336 6336 6528
k2SF 0.48 0.60 0.77 0.70 0.94 0.80
k2SD -0.73 -0.91 -2.02 -1.47 -3.13 -2.04
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Table 4.3: First four orders of chromaticity and their corresponding tune shifts for a
particle with δ = 0.1 % momentum deviation. The values were calculated
using the 12-fold Layout with two and four interaction points (IPs).

2 IPs 4 IPs 4 IPs
β∗y = 1mm ∆Q β∗y = 1mm ∆Q β∗y = 2mm ∆Q

Q′x -5.86× 102 -0.59 -6.19× 102 -0.62 -6.18× 102 -0.62
Q′′x 1.02× 104 0.01 1.87× 104 0.01 1.84× 104 0.01
Q

(3)
x -1.16× 108 -0.02 -1.20× 108 -0.02 -1.19× 108 -0.02

Q
(4)
x 2.35× 1012 0.10 1.28× 1012 0.05 1.28× 1012 0.05

Q′y -1.25× 103 -1.25 -2.05× 103 -2.05 -1.28× 103 -1.26
Q′′y 4.50× 106 2.25 8.92× 106 4.46 1.26× 106 0.63
Q

(3)
y -1.38× 1011 -23.05 -2.17× 1011 -36.11 -1.26× 1010 -2.11

Q
(4)
y 5.62× 1015 234.03 7.50× 1015 312.52 1.52× 1014 6.32

to the design report [25], were in the range from k2 = 0.05m−3 to 0.12m−3 for the focus-
sing quadrupoles and k2 = 0.03m−3 to 0.10m−3, which is about one order of magnitude
smaller than in the FCC-ee lattice.

4.2 Higher-order chromaticity and the Montague formalism

In order to achieve the required momentum acceptance of δ = ±2%, which is needed
due to the severe energy loss by beamstrahlung during the interaction process, it is not
sufficient to apply a simple correction of the linear chromaticity. Higher-order derivatives
of the tune need to be compensated as well. For a description of the higher-order terms
the tune function is expanded into a Taylor series

Q(δ) = Q0 +
dQ
dδ
δ +

1

2

d2Q
dδ2

δ2 +
1

6

d3Q
dδ3

δ3 + . . .

= Q0 +Q′δ +
1

2
Q′′δ2 +

1

6
Q(3)δ3 + . . .

(4.4)

where δ refers to the relative energy deviation ∆p/p. The higher-order derivatives of the
tune are not calculated directly by MAD-X. The values presented in this thesis are based
on a macro provided by A. Bogomyagkov [53]. The macro uses five calculations of the
tune, one for design momentum and four with δ = ±0.01 % and ±0.02 % momentum
offset, to calculate the derivatives from difference quotients. Details about the macro are
explained in the Appendix C. For a given energy offset the contribution to the tune shifts of
each term can be calculated individually using Eq. (4.4). The chromaticities of the 12-fold
lattice and their respective tune shifts calculated with that macro are listed in Tab. 4.3.
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The values of both planes are presented up to the fourth order for β∗y = 1mm and 2mm.
As expected, the largest tune shifts of more than one unit are created in the vertical plane,
where the beam is focused more strongly than in the horizontal plane.

One of the key aspects of this thesis is the development of a multi-family sextupole
scheme in the arc lattice, which is capable of correcting these higher-order terms. The
different sextupole schemes will be evaluated according to the momentum acceptance,
which is obtained by an energy scan. In the end, six dimensional particle tracking will
determine the real dynamic aperture.

4.2.1 The Montague formalism

In [54] B. Montague introduced a very descriptive theory to extend chromaticity correction
beyond linear order. A detailed explanation of the theory can also be found in [35]. Instead
of correcting the derivatives of the tune the perturbation of the optics due to energy
deviation is analysed. The theory applies for both planes, so the indices will be omitted in
the following. Instead, the index 0 will refer to the parameters for design energy and the
index 1 will refer to the perturbed optics due to energy offset. Two chromatic variables
are introduced

a = lim
δ→0

1

δ

(α1β0 − α0β1)

(β0β1)1/2
(4.5a)

b = lim
δ→0

1

δ

(β1 − β0)
(β0β1)1/2

(4.5b)

which describe the mismatch of the off-momentum beam envelope for an energy devi-
ation δ = ∆p/p0. In an achromatic region the difference in focusing strength ∆kn =

limδ→0

(
1
δ (−K1 +K0)

)
= 0 und a und b fulfill the equations

d2a
dµ2

+ 4a = 0 and
d2b
dµ2

+ 4b = 0, (4.6)

which means they oscillate with twice the betatron phase µ.

The variables a and b can be represented by vectors in the complex plane. It is also
useful to define the so-called W vector as

W = b+ ia. (4.7)

In achromatic regions its magnitude is an invariant, since it can be shown [35], that

a2 + b2 = constant. (4.8)

The W vector with constant absolute value will therefore rotate in the (b,a) space with
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b

a W

Figure 4.3: In an achromatic region the W is the sum of the chromatic variable a and b
and rotates in the (b,a) space.

twice the betratron phase as illustrated in Fig. 4.3. The absolute value of the W vector

|W| =
√
a2 + b2 (4.9)

is also referred to as theW function. It is used as a measure of the strength of the chromatic
perturbations and an invariant in achromatic regions.

The W vector is a very useful tool to design chromaticity compensation schemes. In
achromatic regions it has a constant absolute value, only when passing a quadrupole or a
sextupole magnet its amplitude is modified. In thin lens approximation ∆b = 0, since the
beta functions stay the same before and after the kick created the respective element. In
this case only ∆a is modified in following way [35]:

∆a = −(β0β1)
1/2∆kn∆s ' β0k1Lq for quadrupole (4.10a)

∆a = −(β0β1)
1/2∆kn∆s ' −β0Dxk2Ls for sextupole (4.10b)

Strictly speaking, Eq. (4.10a) and Eq. (4.10b) only apply in the approximation of thin
lenses. Exact expressions, taking the finite length of the elements into account, are for
example given in [35]. The theory is also implemented in the MAD-X programme. The W
functions are calculated when the option "chrom" is used in the Twiss command.

As the Montague formalism describes the perturbations of the optics, the effect of the
higher-orders of the chromaticity are already taken into account.
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Figure 4.4: The periodic evolution of the vertical W vector in a FODO cell lattice. The
phase advance per cell is ϕx = ϕy = 60°, focusing and defocusing quadru-
poles have same strength k1,f = k1,d and equal separation. So the phase
advance between two quadrupoles is µ = 30° in both planes. (a) shows the
uncompensated case and (b) shows the compensated case starting without
chromatic aberrations according to [35].

The W vector in a FODO lattice

The regular FODO cells in the arcs have periodic lattice functions. Consequently the W
functions are periodic as well and form a closed curve in the (b,a) space. As described in
the previous section, the W vector rotates with twice the phase advance in the achromatic
sections, like drift spaces, and performs jumps due to the effect of quadrupoles and sextu-
poles. Fig. 4.4 shows the W vector of the vertical plane in the (b,a) space. The FODO cell
phase advance in this case is ϕ = 60° in both planes and focusing and defocusing quadru-
poles have same strength k1 = k1,f = k1,d, same length LQ and equal distance. Fig. 4.4 (a)
shows the uncompensated case. At the focusing quadrupole the chromatic variable a is
modified by ∆a ' βQFk1LQ with positive absolute value. In the subsequent drift the W
vector rotates by 2 × (0.5ϕ) = 60° before it experiences another jump at the defocusing
quadrupole. This time the absolute value of ∆a is negative and larger than before, because
of the different value of the beta function. The second rotation of 60° brings the W vector
back to its starting point. Fig. 4.4 (b) shows the case of a lattice consisting only of FODO
cells, in which the chromatic aberrations are corrected by a sextupole that is located im-
mediately after the quadrupole. This picture gives a nice visualisation how the source and
corrections of the chromatic perturbations act together.
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4.2.2 Non-linear chromaticity expressed with Montague functions

As a further benefit, the Montague formalism also allows very descriptive expressions for
the non-linear terms of the chromaticity derived by A. Bogomyagkov [55]. In addition to
the two chromatic variables a and b, which in future will be referred to as a1 and b1, second
order chromatic derivatives of the Twiss parameters are introduced. In A. Bogomyagkov’s
notation the first order terms, which are used for the definition of the W vector, are given
by

b1 =
1

β

∂β

∂δ
and a1 =

∂α

∂δ
− α

β

∂β

∂δ
(4.11)

and the second order terms by

b2 =
1

β

∂2β

∂δ2
and a2 =

∂2α

∂δ2
− α

β

∂2β

∂δ2
. (4.12)

The horizontal dispersion function Dx is expanded until the third order. Assuming a
flat machine, where the vertical dispersion is zero, the index can be omitted, which yields
following equations for dispersion and orbit offset:

x = D0δ +D1δ
2 +D2δ

3 (4.13a)

Dx = D0 +D1δ +D2δ
2 (4.13b)

The formulae for the higher-order terms of chromaticity are derived using the canonical
perturbation method as described by M. Takao in [56]. However, the expressions derived
in this paper contain many-fold integrals up to third order. The same equations can be
represented in a much easier way using the higher-order chromatic derivatives:

∂Qy
∂δ

=
1

4π

∮
βy(k1 − k2D0) ds (4.14a)

∂2Qy
∂δ2

=− 2
∂Qy
∂δ
− 1

2π

∮
βy

(
k2D1 + k3

D2
0

2

)
ds+

1

4π

∮
βyb1y(k1 − k2D0) ds (4.14b)

∂3Qy
∂δ3

= 6
∂Qy
∂δ
− 1

2π

∮
βy(k1 − k2D0)(a

2
1y + b21y) ds

+
3

2π

∮
βy

(
k2D1 + k3

D2
0

2
− k2D2 − k3D0D1

)
ds (4.14c)

+
3

4π

∮
βyb2y(k1 − k2D0) ds

These equations allow direct conclusions about how the different orders are created and
how they can be controlled. For example, the second term in the third-order formula
contains (a21,y + b21,y), which is the square of the W function. This means the integral of
the W function around the ring must be minimised to reduce the third-order chromaticity.
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4.3 Planning the chromaticity correction scheme for FCC-ee

For the arrangement of the sextupoles several issues were considered, which will be dis-
cussed in the this section.

FODO cell layout: As already mentioned before, the chromaticity in the vertical plane
is much larger than in the horizontal plane because of the smaller beta function at the
interaction point. The first sextupole of the arc lattice, which is the closest to the final
focus quadrupoles, should therefore be a defocussing one, which corrects the chromaticity
in the vertical plane. The basic cell layout presented in Sec. 2.2 was designed accordingly:
the first quadrupole is a defocussing quadrupole, not a focussing as in the standard FODO
cell. This FODO cell layout was already . In order to obtain the highest possible symmetry
of the layout, sextupoles are installed at each side of a quadrupole. The chromatic error
is thereby corrected partly before and partly after the quadrupole. Also the integrated
length of the sextupoles is longer compared to the asymmetric cell layout, which helps to
decrease their required strength.
A FODO cell layout with split quadrupoles and a sextupole magnet in the centre was

studied as well. Such a design would allow to adjust the phase relations between the
sextupoles perfectly, since they define the symmetry point of the cell. However, this layout
was not further investigated, since no difference to the regular lattice was observed.

−I transformation and geometric aberrations: While the sextupole magnets are used
to correct chromatic aberrations for off-momentum particles, which arise from the modified
focusing properties, they introduce so-called geometric aberrations, which become signific-
ant for any particle with large betatron oscillation amplitude. To overcome the effect of
the geometric aberrations, as many sextupoles as possible are installed in the lattice to
minimise the strength of the non-linear fields. If the stability still suffers from geometric
aberrations, a more sophisticated sextupoles scheme is required: the geometric effects of
the sextupoles can be canceled, if they are installed in pairs with equal strength and the
separating transfer matrix for x, x′, y and y′ is a negative unity transformation:

−I =




−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




(4.15)

Since the chromatic perturbations oscillate with twice the phase advance, the chromatic
correction of the sextupoles still adds up while the geometric aberrations are canceled for
all oscillation amplitudes.
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S1 S20 1 2 3

−I

Figure 4.5: Sextupole layout used to prove the cancellation of geometric aberrations. The
sextupoles are considered as thin lenses separated by a −I transformation.

In thin lens approximation where the sextupoles create single kicks the cancellation
of geometric aberrations can be calculated quickly. Assuming a layout as illustrated in
Fig. 4.5 the particle arrives at the sextupole S1 at the coordinates (x0,y0). Its direction of
motion is given by (x′0,y′0). The kicks induced by the sextupoles are then

∆x′ =
1

2
(k2LS) (x2 − y2) (4.16a)

∆y′ = (k2LS) x y. (4.16b)

So after traversing the sextupole the particle motion is defined by

x1 = x0 y1 = y0

x′1 = x′0 −
k2LS

2
(x20 − y20) y′1 = y′0 − k2LS x0 y0

After the −I transformation the particle arrives at the second sextupole with

x2 = −x1 = −x0 y2 = −y1 = −y0

x′2 = −x′0 = −x′0 +
k2LS

2
(x20 − y20) y′2 = −y′1 = −y′0 + k2LS x0 y0

Because of x2 = −x0 and y2 = −y0 the second sextupole applies a kick of equal strength,
which cancels the additional transverse momentum created by the first one:

x3 = x2 = −x0 y3 = y2 = −y0

x′3 = x′2 −
k2LS

2
(x22 − y22) = −x′0 y′3 = y′2 − k2LS x2 y2 = −y′0

In summary, to cancel the geometric aberrations sextupoles should be installed in pairs
separated by a −I transformation, which corresponds to a phase advance of µ = π or 180°.
As a matter of fact, it can be shown in a similar calculation that geometric aberrations
are also canceled for a +I transformation in the vertical plane as long there still is a −I
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transformation in the horizontal. As a direct consequence, a sophisticated chromaticity
correction scheme comprises an even number of sextupoles and phase advance errors should
be kept on a minimum level, since they reduce the effectiveness of the cancellation [22].

In strict sense the above described compensation of geometric effects only applies for
thin lenses. The finite length of the sextupoles introduces higher-order terms [57], which
are not canceled by the −I transfer map. Still the cancellation of geometric aberrations of
first order can be reduced significantly.

Sextupole families: So far the sextupoles have been grouped into focusing and defocus-
sing types, each dedicated to adjust the linear chromaticity of one transverse plane. This
setup is not capable of correction of the W function. Fig. 4.6 shows the W vector for the
vertical plane and its absolute value, the W function, in eight cells of the first FCC-ee
arc after linear chromaticity correction. The phase advance per FODO cell is ϕy = 60°.
The effect of the sextupoles ∆a1 is the same for every sextupole, but as the W rotates
by 2ϕy = 120° in-between two sextupoles their effect on the W vector is different as
shown in Fig. 4.6 (a). While the sextupoles S2 and S3 reduce the absolute value of the
W vector, S1 increases it, which leads to the oscillation of the absolute value presented in
Fig. 4.6 (b). After three FODO cells, corresponding to 180° phase advance, the W reaches
again its starting point. It is therefore reasonable to group the sextupoles in families,
where the phase advance separation between two members of each families equals π. This
arrangement not only cancels the geometric aberrations introduced to the lattice, but also
allows to modify the W vector effectively. As the sextupoles of a certain family affect
the W vector always at the same chromatic phase, such a scheme allows to iteratively
reduce the W functions in the lattice and thus the chromatic perturbance of the lattice
function. However, it also puts constraints on the FODO cell phase advance, as already
discussed in the emittance tuning chapter. In order to obtain a −I transformation from
one family member to the next, the phase advance must be an odd integer of π. Possible
phase advances and their corresponding number of sextupole families are listed in Tab. 4.4.
Different arrangements of the families will be discussed in Sec. 4.3.1.

Phase advance between final doublet and sextupoles: The orientation of the W vector
must not only be considered within the arc itself, especially its orientation at the beginning
of the arc must be adjusted carefully. Assuming no chromatic aberrations at the interaction
point the quadrupoles of the final doublet create the largest contribution to the W vector.
Since the interaction region with the mini-beta insertion is located in a straight section the
chromatic perturbations cannot be corrected locally due to the missing dispersion and are
therefore carried through the lattice until the next arc section with finite dispersion, where
they finally can be corrected. Special dispersive insertions for chromaticity correction are
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Figure 4.6: The W vector and its absolute value in a ϕ = 60° FODO cell lattice after
linear chromaticity correction. (a) shows how the sextupoles modify the W
vector during passage of three FODO cells. (b) shows the corresponding
absolute value of the W vector in eight cells of the first arc in the FCC-ee
Racetrack lattice.

Table 4.4: Possible FODO cell phase advances to establish a multi-family sextupole
scheme in the arc and the corresponding number of sextupole families. More
exotic arrangements are for example presented in [58] and [54].

Phase advance # of families
π/4 45° 4
π/3 60° 3
π/2 90° 2
3π/5 108° 5
3π/4 135° 4
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Figure 4.7: Modification of the W vector by sextupoles with µ = π phase advance sep-
aration. The square brackets denote the occurrence of the sextupole of the
family. (a) shows the orientation of the W vector in the (b1,a1) space. Since
the phase advance between final doublet and first sextupole is not adjus-
ted properly, the absolute value, shown in (b) only reaches a minimum and
increases again.

under investigation [59,60] but not considered in the context of this thesis. The contribution
of the FODO cell quadrupoles in the straight section is small compared to the effect of
the final doublet, because beta function and quadrupole strength are both by an order of
magnitude smaller. Therefore, the W vector rotates with twice the phase advance. Since
the sextupoles just affect the chromatic parameter a1, the correction of the W vector is
most effective, when b1(s) = 0 and the W vector points in the direction of a1 in the (b1,a1)
space. This means the phase advance between final doublet quadrupole and respective
correcting sextupole has to be an integer of π to fulfill a full rotation in the (b1,a1) space.

Fig. 4.7 illustrates the situation for a phase advance mismatch of ∆µy = 0.05 × 2π.
Fig. 4.7 (a) shows the orientation of the W vector in the (b1,a1) space and its iterative
modification by sextupoles of the family S1. The phase advance separation between two
members of the family is µ = π, the number in the square brackets denotes the number
of the sextupole in the lattice. The absolute value of the W vector is first decreased, but
as the phase advance is not adjusted properly, it does not reach zero and the chromatic
perturbance cannot be corrected completely.

The same is shown in Fig. 4.8. However, this time the phase advance between final
doublet and first sextupole S1 is adjusted correctly. For a given number of sextupoles a
certain strength can be found to achieve full compensation of the chromatic aberrations.
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Figure 4.8: Correction of the W vector by sextupoles with µ = π phase advance separ-
ation. The square brackets denote the number of the sextupole within the
family. (a) shows the orientation of the W vector in the (b1,a1) space. The
sextupoles iteratively decrease the absolute value of W as shown in (b).

4.3.1 Interleaved and non-interleaved sextupole schemes

The arrangement of sextupoles in families is the key aspect in designing the chromaticity
compensation scheme and should be given careful thought. The number of families defines
the degrees of freedom for chromaticity correction and depends on the characteristics of
the lattice. In general there are two different ways to arrange sextupole families among
each other in the lattice: interleaved schemes and non-interleaved schemes. Both have
advantages and disadvantages, which will be highlighted in the following discussion.

Non-interleaved sextupole schemes: In order to obtain the best cancellation of geomet-
ric effects every sextupole should have a partner separated by a −I transfer map. In the
ideal case only linear elements are installed between the two sextupoles. Other sextupoles
might disturb the phase relation and the cancellation of the geometric effects is hindered.
When no other sextupoles are installed in-between a pair of sextupoles with a phase shift
of µ = π in-between, the sextupole scheme is called a non-interleaved scheme.

Fig. 4.9 shows an illustration of such a non-interleaved scheme for the FCC-ee arcs,
where the FODO cell phase advance is ϕx = 90° in the horizontal plane and ϕy = 60° in
the vertical plane. The grid represents the FODO cells, the long vertical lines stand for the
defocussing quadrupoles and the short lines for the focussing quadrupoles. The sextupoles
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Figure 4.9: Completely non-interleaved sextupole scheme for the FCC-ee FODO cell lat-
tice with ϕx = 90° phase advance in the horizontal plane and ϕ = 60° in
the vertical plane. Only linear elements are installed between two sextupoles
forming a pair.

installed at each side of one quadrupole form a doublet, which is considered as one member
of a family. As the phase advance is 60° in the vertical plane, two sextupoles forming a pair
are separated by three FODO cells. In the horizontal plane, where the phase advance is
90°, the separation corresponds to two cells. The scheme starts with a pair of defocussing
sextupoles located at the beginning of the cells 1 and 4. Since the sextupole pairs are
completely non-interleaved the first focusing sextupole pair is installed in the middle of the
cells 4 and 6. Although the next defocusing sextupole could be placed at the beginning of
cell 7, it is installed at the beginning of cell 8. Otherwise the phase advance to the previous
pair would be µ = π and the sextupoles would belong to the same family as the first pair.

A non-interleaved sextupole scheme with completely non-interleaved sextupole pairs re-
quires many FODO cells. In the example shown in Fig. 4.9 only seven sextupoles are
installed in twelve cells. The low number of sextupoles requires large strengths, which in
the end might have a bad effect on the dynamic aperture. In order to save space and in-
crease the number of sextupoles most studied and applied non-interleaved schemes interlace
the sextupole pairs of the horizontal plane and the vertical plane, but not the sextupole
pairs within the same plane. If the difference of the beta functions is large enough, the
effect of the sextupoles on the other plane is small and the resulting distortion is tolerable.
Such a scheme is illustrated in Fig. 4.10. The twelve FODO cells now accommodate fifteen
sextupoles instead of seven in the completely non-interleaved scheme.

Interleaved scheme: The highest amount of sextupoles in the lattice can be achieved, if
every quadrupole is paired with sextupoles. Since the FODO cell phase advance is smaller
than π this requires to interleave the sextupole pairs of the families forming groups of the
first elements of each family, second elements of each family etc. Depending on the FODO
cell phase advance a different number of families can be established. The main advantage
of this arrangement is the high number of sextupoles, which allows to decrease the sextu-
pole strengths.

104



4.4. CORRECTION OF THE W FUNCTIONS IN THE ARC LATTICE

1 2 3 4 5 6 7 8 9 10 11 12

SD1 SD1 SD2 SD2 SD3 SD3 SD1

SF1 SF1 SF2 SF2 SF1 SF1 SF2 SF2

ϕy = 60°

ϕx = 90°

1st pair 2nd pair 3rd pair

1st pair 2nd pair 3rd pair 4th pair

Figure 4.10: Sextupole scheme with interleaved focusing and defocussing sextupoles.
Within one plane the sextupole pairs are non-interleaved. The number of
sextupoles can be increased significantly.
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Figure 4.11: Interleaved sextupole scheme with two families in the horizontal and three
families in the vertical plane as installed in the FCC-ee lattice.

A non-interleaved sextupole scheme for FCC-ee is studied by K. Oide [60]. Nearly 600
independent sextupole pairs (300 per half-ring) are varied in strength in order to optimise
the dynamic aperture. The required strengths are moderate since the scheme includes a
local chromaticity correction section in a special insertion close to the interaction point.
The study of chromaticity correction schemes in the context of this thesis focus on schemes
based only on the arc lattice like it was realised for LEP or LHC [4,25] and the investigation
of their capabilities and limitations. Because of the large value of the chromaticity it was
decided to use an interleaved scheme to reduce the sextupole strength. According to the
FODO cell phase advance of ϕx = 90° and ϕy = 60° the scheme consists of two families in
the horizontal plane and three families in the vertical plane as illustrated in Fig. 4.11.

4.4 Correction of the W functions in the arc lattice

After the correction of the linear chromaticity the momentum acceptance obtained for
the FCC-ee lattice is limited to ±0.04 %. In order to reach the design goal for luminosity
stable operation must be guaranteed for ±2% momentum acceptance. Therefore, as a next
step the sextupoles of the arcs are grouped into interleaved sextupole families as described
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Figure 4.12: Matching of the phase advance between final doublet and the first quad-
rupoles in the regular arc lattice. The phase advance must be an integer
number of π to allow effective correction of theW vector with a multi-family
sextupole scheme.

above. Each arc has independent families. Such a multi-family sextupole scheme allows in
addition to the linear chromaticity compensation to correct the W functions, the absolute
value of the W vector. This correction involves following steps in exactly this order:

1. Adjusting the phase advance between the final doublet and the first arc cell
2. Rematching the betatron tunes
3. Correcting the W functions in the arcs next to the interaction regions
4. Matching the linear chromaticity with the sextupoles of the arcs in-between

Adjusting the phase advance between final doublet and arc lattice: As mentioned
before, theW vector rotates in the (b1,a1) while propagating through the lattice with twice
the average phase advance. For most efficient manipulation, the b1 component should be
zero at the place of the sextupole, since only the a1 component is modified. Therefore the
phase advance between the source of the chromatic perturbation, where the W vector is
created, and the correcting element must be an integer number of π. Since sextupoles are
installed at both sides of the quadrupoles in the arc lattice, the phase advance was adjusted
in reference to the first quadrupole in the respective plane as illustrated in Fig. 4.12.

Before adjusting the linear optics, the phase advance between the defocussing quadrupole
of the final doublet to the beginning of the first defocussing quadrupole in the regular arc
lattice is µy = 3.05. In the horizontal plane the phase advance from the corresponding final
doublet quadrupole to the first focusing quadrupole in the middle of the first arc FODO cell
is µx = 4.89. The modification of the phase advance should be as small as possible to keep
the effect on the beta functions on a feasible level. This basically leaves two alternatives in
this case: µx = 4.5, µy = 3.0 and µx = 5.0, µy = 3.0. The beta functions for both options
as well as for the initial optics are shown in Fig. 4.13. In the first case the horizontal
beta function reaches a large peak of βx ≈ 130m at the third matching quadrupole of the
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matching section between dispersion suppressor and the regular straight FODO cells. This
high value could be prevented by adding further constraints to the optimisation, but this
would require more free quadrupoles. As the difference between initial phase advance and
final phase advance is smaller in the second case also the effect on the optics is smaller.

Phase advance fine-tuning: The phase relations discussed earlier once again just apply
in the thin lens approximation. Because of their finite length the beta function varies
within the quadrupole and the actual phase advance therefore slightly deviates from the
thin lens case. In order to obtain highest possible efficiency of the sextupole families, the
phase advance was varied until the best correction of the W functions was achieved.
For the variation of the phase advance a so-called phasor was used. A phasor is a

symplectic matrix, which modifies the phase functions within the range of ±π but leaves
the other lattice functions unchanged. Additional information to the matrix and the used
MAD-X macro is given in Appendix B. For optimisations a phasor is a useful tool, because
it is quickly installed and removed, while actual re-matching of the optics for each step
would require a considerable amount of time. The phase advance was optimised in such
a way, that the W functions reached a minimum value at the end of the arc. Once the
optimum phase was found, the phasor was removed and the phase advance was matched
with the quadrupoles.
In the FCC-ee Racetrack Layout the optimum phase advance was found smaller than

the theoretical value. The difference was ∆µx = −4.18 × 10−3 in the horizontal plane
and ∆µy = −4.07 × 10−4 in the vertical plane, which corresponds to ∆µx = −0.24° and
∆µy = −0.02° and shows that the thin lens approximation applied in Fig. 4.13 already
leads to quite accurate results.

Rematching the tunes: Calculations of the beam-beam tune shift suggest fractional parts
of the tunes of Qx = .54 and Qy = .571 [61]. After the presented adjustments of the
phase advances the ideal tune values need to be restored by modifying the phase advance
in other sections. For a large number of FODO cells in the arcs the flexibility of the
phase advance per cell gets more and more restricted. In long arcs deviations from the
nominal phase advance quickly add up to values, where the effect of the sextupoles become
counterproductive. To fully exploit the potential of sextupole families the phase advance
in the arcs should be kept constant and the tune should be adjusted in specific insertions
without sextupoles [62]. In the FCC-ee lattices the FODO cells of straight sections were
used to set the tunes. The matching sections were adjusted simultaneously in order to
prevent the beta functions from beating. An example of the optics is shown in Fig. 4.14.

1The optimisation of the tune with respect to the beam-beam tune shift are still ongoing and the recom-
mended values as well. For consistency all the calculations in context of this thesis were performed
with the above mentioned working point.
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Figure 4.13: Beta function before and after matching the phase advance between final
doublet and arc. The interaction point is located at s = 0. The phase ad-
vance was adjusted using the quadrupoles of the FODO cells in the straight
section and the matching section towards the arc. The picture on the top
shows the initial state. In the middle the optics for the phase advances
µx = 4.5, µy = 3.0 are shown and below the optics for µx = 5.0, µy = 3.0.
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the top presents the initial optics, the one below the optics after matching.
The plot on the bottom shows the difference between the beta functions.
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Matching of the W functions: After the preparation of the linear lattice, described in
the previous paragraphs, the correction of the W functions and the linear chromaticity
was performed. This involves certain steps, which depend on the lattice, the actual beam
optics and the sextupole scheme. Sometimes several iterations were necessary to achieve
all the constraints. The following procedure was most effective and mainly used:

1. The W functions created by the final doublet are corrected iteratively by the sextu-
poles of the first family in each plane without periodic boundary conditions. Using
the Matching Module of MAD-X the sextupole strengths are adjusted in such a way,
that the W functions reach minimum values at the end of the arc.

2. The obtained sextupole strengths are also assigned to the last sextupole family of
the arc in front of the next interaction region to increase the W functions again.

3. The sextupoles of the arcs in-between are used to compensate the remaining linear
chromaticity. It is corrected to be zero.

4. The last step is an optimisation with periodic boundary conditions and all constraints.
Additional families can be used for fine-tuning.

After the matching of theW functions the momentum acceptance was measured to evaluate
the performance of the sextupole scheme. The dynamic aperture needs to be determined
with six-dimensional particle tracking, which is very time-consuming. Therefore, a series of
optics calculations with different energy deviations was done instead to get a first estimate.

The correction of the W functions was first applied to the 12-fold Layout described in
Sec. 2.1.1. This layout allows to study lattices with different numbers of interaction points,
which, as discussed in Sec. 4.1, has a major impact on the chromaticity budget. For FCC-
ee two designs were proposed: an option with four interaction regions and an alternative
option with only two interaction regions. Both were investigated.

4.4.1 12-fold Layout with four interaction points

As a first step the option with four interaction points was investigated. The minimum
beta functions at the interaction points were β∗x = 1m and β∗y = 1mm. Fig. 4.15 shows
the W functions for one quarter of the ring after correction according to above described
method. A detailed view of the first 11 km of the lattice is presented in Fig. 4.16. Starting
from Wx = Wy = 0 at the first interaction point at s = 0 the W functions reach values
of about Wx = 105 in the horizontal plane and Wy = 2500 in the vertical plane due to
the strong field and the large beta functions in the mini-beta quadrupoles. After the final
doublet they are not modified considerably before they reach the first arc. Here, mainly the
sextupoles of the first family are used. As shown in Tab. 4.5, the strengths of the second
and third sextupole family are by orders of magnitude smaller as they are just used for
fine-tuning of the chromatic phase. As a result the W functions get iteratively decreased

110



4.4. CORRECTION OF THE W FUNCTIONS IN THE ARC LATTICE

0 5 10 15 20 25

0

20

40

60

80

100

120

140

s / km

W
x

0

500

1,000

1,500

2,000

2,500

W
y

Wx

Wy

Figure 4.15: W functions of both transverse planes in-between two interaction points
after correction. Starting from zero the W functions are created in the final
doublet quadrupoles. They are iteratively decreased using one sextupole
family in the first arc. The sextupoles of the second arc are used with equal
strength for linear chromaticity correction. In the third arc one sextupole
family per plane is used to increase the W again in order to compensate the
left side of the next final focus system.
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Figure 4.16: Detailed view of the W functions shown in Fig. 4.15. At the end of the
arc, where theW functions are small, a considerable effect of the defocusing
sextupoles in the horizontal plane is observed.
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Table 4.5: Sextupole strengths of the 12-fold lattice with four interaction points after
correction of W functions and linear chromaticity.

Sextupole strengths in 1/m3

Horizontal plane Vertical plane
Arc 1 k2sf1.1 = 0.18 k2sd1.1 = -9.29

k2sf1.2 = 1.92× 10−9 k2sd1.2 = 1.25× 10−3

k2sd1.3 = -9.18× 10−3

Arc 2 k2sf2.1 = 2.64 k2sd2.1 = -3.24
k2sf2.2 = 2.64 k2sd2.2 = -3.28

k2sd2.3 = -3.27
Arc 3 k2sf3.1 = -1.89× 10−3 k2sd3.1 = -9.29

k2sf3.2 = 0.18 k2sd3.2 = -9.83× 10−3

k2sd3.3 = -7.78× 10−3

until they reach values below 10 at the end of the arc. When the W functions are small,
a considerable effect of the defocusing sextupoles in the horizontal plane is observed.

In the second arc all sextupoles are used with roughly the same strength. The W
functions oscillate as earlier illustrated in Fig. 4.6. Because of the different scales of the
axes, the oscillation is mainly observable in the horizontal plane, where the sextupoles
increase the amplitude of the oscillation considerably compared to the straight section
before. The variation of amplitude and the different values of Wx in the straight section
between arc 2 and arc 3 is created, because the lattice is not completely symmetric. The
request to arrange the sextupoles in pairs to cancel geometric aberrations requires to remove
the sextupoles next to the last defocusing quadrupole of the second arc. As a consequence
the phase relations from first interaction point to first arc and from the third arc to the
second interaction point are slightly different. The sextupole families in the second arc
therefore cannot have exactly the same strength. They were optimised to be slightly
different in order to compensate the difference in phase advance.

In the third arc theW functions are built up again in order to compensate the chromatic
effect of the left final doublet of the second interaction region. Again, the strengths of
the second and third family are slightly different compared to the first arc, because the
sextupoles are not distributed completely symmetrically.

The effect of the correction on the optics is illustrated in Fig. 4.17. The picture on
top shows the beta functions – after correction – for design energy and for relative energy
deviations of δ = ±0.06 %. The picture below shows the same for the vertical plane.
Especially in the vertical plane the beta beat is very strong. The beta function reaches
more than 700m, which is seven times its nominal value. As the W function is iteratively
decreased also this chromatic beta-beat becomes smaller.
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Figure 4.17: Beta functions after chromaticity correction. The top picture compares the
horizontal beta functions for ideal energy and ±0.06 % energy offset. The
plot below shows the same for the vertical plane. As the W function is
iteratively decreased the chromatic beta-beat becomes smaller. Still, even
for an optimised W function a considerable chromatic distortion of the beta
functions remains especially in the vertical plane.
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Table 4.6: First four orders of chromaticities and their respective tune shifts in the 12-
fold Layout before and after correction ofW functions and linear chromaticity.
The tune shift correspond to a relative energy offset of δ = 0.1 %.

Uncorrected ∆Q (0.1%) Corrected ∆Q (0.1%)
Q′x -6.19× 102 -6.19× 10−1 8.07× 10−6 8.07× 10−9

Q′′x 1.87× 104 9.33× 10−3 -2.72× 103 -1.36× 10−3

Q
(3)
x -1.20× 108 -2.00× 10−2 -7.46× 106 -1.24× 10−3

Q
(4)
x 1.28× 1012 5.33× 10−2 -2.18× 1010 -9.09× 10−4

Q′y -2.05× 103 -2.05× 100 -6.25× 10−6 -6.25× 10−9

Q′′y 8.92× 106 4.46× 100 9.11× 103 4.56× 10−3

Q
(3)
y -2.17× 1011 -3.61× 101 -2.21× 109 -3.68× 10−1

Q
(4)
y 7.50× 1015 3.13× 102 -2.60× 1011 -1.08× 10−2

Chromaticity: The values of the different orders of chromaticity before and after correc-
tion are compared in Tab. 4.6. In the horizontal plane the second order could be reduced
by one order of magnitude, the third and fourth even by two orders. In the vertical plane
the correction of the third order was relatively poor. While the second order was reduced
by three orders of magnitude and the fourth order even by four, the decrease of the third
order chromaticity was only two orders of magnitude. Comparing the tune shifts created
by each order of chromaticity, the correction resulted in considerably smaller tune shifts.
The largest tune shift is created by the third order chromaticity in the vertical plane.

Momentum acceptance: The strong effect of the third order chromaticity in the vertical
plane is well visible in Fig. 4.18, which shows the tunes as a function of the energy offset
δ = ∆p/p. As calculated, the tune mainly follows a negative third order polynomial.

MAD-X was able to calculate stable optics in a range from δ = −0.21 % to δ = +0.7 %.
However, the vertical tune function for negative energy deviation crosses both an integer
and even before a half-integer resonance. The momentum acceptance corresponding to this
chromaticity correction scheme is therefore restricted to the range from δ = −0.08 % to δ =

+0.07 %. This is already considerably larger compared to the simple linear chromaticity
correction, where the momentum acceptance was δ < ±0.04 %, but at the same time still
more than one order of magnitude below the requirement of ±2%.

In addition to the tune functions calculated by MAD-X Fig. 4.19 shows the functions
calculated from the chromaticity values of the macro. In the range of δ = ±0.05 % both
calculations agree very well, for larger energy offsets the values deviate, but still show
good agreement within the accepted momentum range. This means the higher-order terms
calculated with the macro suffice for a first evaluation of the sextupole scheme.
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Figure 4.18: Tune functions and omentum acceptance of the lattice with 12-fold Layout
and four interaction points after the correction of W functions and linear
chromaticity.
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Figure 4.19: Comparison of the tune functions obtained with optics calculations in MAD-
X and the with the macro used to evaluate the chromaticity. In the range
of δ = ±0.05 % the agreements is very good. The deviations for larger
momentum offsets are still small enough within the accepted energy range
to allow a first evaluation of the sextupole scheme.
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Figure 4.20: Tune functions and momentum acceptance of the lattice with 12-fold Layout
and four interactions points. The W functions were matched as before, but
in this case the vertical linear chromaticity of the lattice is set to Q′y = +25.

Positive linear chromaticity: The momentum acceptance obtained after matching theW
functions and compensation of the linear chromaticity is limited by the integer resonance
Qy = 334 for positive energy offset and the half integer resonance Qy = 334.5 for particles
with negative energy offset. In order to further increase the momentum acceptance, the
vertical tune must be decreased for particles with negative momentum deviation and in-
creased for particles with positive energy deviation. Such energy dependent tune shifts can
be provided by a larger linear chromaticity. Instead of matching the linear chromaticity
of the vertical plane to zero, as in the previous case, it is now set to a positive value.
Fig. 4.20 shows the resulting tune functions for an increased vertical linear chromaticity
of Q′y = +25. The additional linear contribution is visible in the slope of the vertical
tune function at δ = 0. With this simple modification the momentum acceptance could be
increased by another 40% and reaches now values between δ = −0.14 % to δ = +0.07 %.

4.4.2 12-fold Layout with two interaction points

As a next step the design option with two interaction regions was studied. Following the
same procedure, explained above, the W functions were iteratively decreased by the first
sextupole family in Arc 1 and increased again in Arc 6 as shown in Fig. 4.21. The four
remaining arcs in-between were used for linear chromaticity correction, while for symmetry
reasons the families of Arc 2 and Arc 3 had the same strength and the families in Arc 4
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Figure 4.21: MatchedW functions in the 12-fold Layout with two interaction points. The
plot shows the lattice between two interaction points, which corresponds to
half of the ring.

and Arc 5. The increase of the W function in the horizontal plane is remarkable. In the
straight section at s = 25 km it reaches a value of about Wx = 30.

The corresponding sextupole strengths after correction are listed in Tab. 4.7. The fam-
ilies used for correction of the W functions have similar strength compared to the lattice
with four interaction regions. The sextupole families used for linear chromaticity correc-
tion, have less than half the strength compared to the lattice with four interaction regions.
As discussed earlier in Sec. 4.1, the linear chromaticity created by the final doublet quad-
rupoles decreases from Q′y = −2048.9 to Q′y = −1253.9 for two interaction points. In
addition, the sextupole magnets of four arcs are now used for the correction instead of
only one as in the case of four interaction points. While in the vertical plane all sextu-
poles families in the Arcs 2, 3, 4 and 5 have the same strength, a considerable difference
is observed in the horizontal plane leading to the previously mentioned increase of the W
function.

The smaller number of interaction points also leads to a decrease of the higher-order
terms of the natural chromaticity, which were presented in Tab. 4.3. The values after
correction should therefore be smaller compared to the case with four interaction points,
resulting in smaller tune shifts and a larger momentum acceptance. Tab. 4.8 compares
the chromaticities of both cases after correction of W functions and linear chromaticity.
Except the linear chromaticity and the second order in the horizontal plane, the higher
order terms have indeed roughly half the value than in the four interaction point lattice.
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Table 4.7: Sextupole strength of the 12-fold Layout with two interaction points after
correction of W functions and linear chromaticity.

Sextupole strengths in 1/m3

Horizontal plane Vertical plane
Arc 1 k2sf1.1 = 0.19 k2sd1.1 = -9.30

k2sf1.2 = 0.00 k2sd1.2 = -0.01
k2sd1.3 = -0.03

Arc 2, 3 k2sf2.1 = 1.10 k2sd2.1 = -1.54
k2sf2.2 = 1.13 k2sd2.2 = -1.54

k2sd2.3 = -1.53
Arc 4, 5 k2sf4.1 = 1.12 k2sd4.1 = -1.53

k2sf4.2 = 1.11 k2sd4.2 = -1.53
k2sd4.3 = -1.55

Arc 6 k2sf6.1 = -0.01 k2sd6.1 = -9.31
k2sf6.2 = 0.17 k2sd6.2 = -0.02

k2sd6.3 = -0.09

Table 4.8: Chromaticities and tune shifts of the 12-fold Layout compared for four and for
two interaction points (IPs). The tune shifts correspond to an energy deviation
of δ = 0.1 %.

Four IPs ∆Q (0.1%) Two IPs ∆Q (0.1%)
Q′x 8.07× 10−6 8.07× 10−9 -3.56× 10−5 -3.56× 10−8

Q′′x -2.72× 103 -1.36× 10−3 -4.63× 102 -2.31× 10−4

Q
(3)
x -7.46× 106 -1.24× 10−3 -3.88× 106 -6.47× 10−4

Q
(4)
x -2.18× 1010 -9.09× 10−4 -1.35× 1010 -5.63× 10−4

Q′y -6.25× 10−6 -6.25× 10−9 -1.45× 10−4 -1.45× 10−7

Q′′y 9.11× 103 4.56× 10−3 4.92× 103 2.46× 10−3

Q
(3)
y -2.21× 109 -3.68× 10−1 -1.11× 109 -1.85× 10−1

Q
(4)
y -2.60× 1011 -1.08× 10−2 -1.33× 1011 -5.54× 10−3
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Figure 4.22: Tune functions and momentum acceptance of the 12-fold lattice with two
interactions points after matching the W functions. In case (a) the linear
vertical chromaticity is set to Q′y = +5 to prevent crossing the half-integer
resonance. If the the linear chromaticity is further increased to Q′y = +10
the tune function gets flatter and the momentum acceptance slightly shifts
to positive values of δ.
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The largest tune shifts are still created in the vertical plane, especially by the third-order
chromaticity.

Fig. 4.22 (a) shows the result of the momentum scan after matching the W function.
The vertical tune function is still determined by the third order, but since the tune shifts
are smaller it was sufficient to set the linear chromaticity to Q′y = +5 to avoid crossing
the half-integer resonance Qy = 334.5 instead of Q′y = +25. The obtained momentum
acceptance reaches from δ = −0.19% to +0.06%. If the linear chromaticity is increased
to Q′y = +10 the stable energy range shifts to δ = −0.18 % to +0.07 %, which is slightly
more symmetrical around δ = 0, as illustrated in Fig. 4.22 (b).

4.5 W functions of the FCC-ee Racetrack Layout

The first corrections of theW functions in the FCC-ee 12-fold lattice helped to understand
the applied correction method. It once again became clear how important the number of
interaction points is for the chromaticity budget and thus the momentum acceptance. As
a next step the same method was applied to the FCC-ee lattice with Racetrack Layout
introduced in Sec. 2.1.2. This layout is compatible with the requirements of the FCC
hadron collider and the site-specific constraints of the Geneva basin. For an optimised
correction of the W functions the lattice is designed to offer highest possible symmetry of
both linear lattice and the sextupole distribution. In addition, the arcs next to the straight
sections with interaction regions have a length of 4.4 km instead of 6.8 km in the 12-fold
Layout, which means the W functions are corrected in a shorter distance. According to
Eq. (4.14c) this will reduce the third order chromaticity. The formula consists of four terms

∂3Qy
∂δ3

= 6
∂Qy
∂δ
− 1

2π

∮
βy(k1 − k2D0)(a

2
1y + b21y) ds

+
3

2π

∮
βy

(
k2D1 + k3

D2
0

2
− k2D2 − k3D0D1

)
ds

+
3

4π

∮
βyb2y(k1 − k2D0) ds

The first one is determined by the linear chromaticity, which is considered to be com-
pensated. The third term describes the effect of octupole fields to the lattice, represented
by the normalised octupole strength k3. Since no octupoles are installed in the lattice, these
factors vanish. It also describes the effect of sextupoles at places with finite higher-order
dispersion D1 and D2. The contribution of these factors has been evaluated and proved to
be negligible [63], since the D1 and D2 are small. The last term includes the second-order
chromatic derivative of the beta function b2, which is determined by the FODO lattice and
cannot be modified. The second term, however, is the integral over the square of the W
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Last FODO cell in SARC First FODO cell in LARCLSS

QD QF QD QD QF QD

µx = 8× 2π

µy = 5× 2π

Figure 4.23: Phase advance between the LSS straight sections in the Racetrack Layout.
The phase advance was adjusted to be µx = 8 × 2π and µy = 5 × 2π. The
+I transformation makes the straight section invisible for the chromaticity
correction scheme.

function and depends on the actual sextupole correction scheme:

− 1

2π

∮
βy(k1 − k2D0) (a21y + b21y)︸ ︷︷ ︸

W 2

ds (4.17)

Therefore, when the W function is corrected in shorter arcs, the integral decreases and so
should the third-order chromaticity.
In the end, the FCC-ee Racetrack Layout not only corresponds to the machine baseline

of the design study since it is compatible with the requirements of the FCC hadron collider,
but also features better conditions for the design of the chromaticity correction scheme.

4.5.1 Comparison of 12-fold and Racetrack Layout for β∗y = 1mm

The Racetrack Layout includes two interaction regions. For the comparison to the cor-
responding 12-fold layout the same beta functions at the interaction point β∗x = 1m and
β∗y = 1mm were established. The W functions, starting from zero at the interaction point,
consequently reach the same values as in the 12-fold Layout and are then iteratively correc-
ted by the first sextupole family of the SARC. The phase advance of the subsequent LSS
straight section between short arcs and long arcs are adjusted as illustrated in Fig. 4.23.
The phase advance from the sextupoles in the first arc to the sextupoles of the second
arc is µx = 8 × 2π in the horizontal plane and µy = 5 × 2π in the vertical one. The
+I transformation makes the straight section transparent for the chromaticity correction
scheme. In the LARCs the symmetric sextupole distribution allows to group all sextupoles
in only one family per plane, which is then used to compensate the linear chromaticity.
In the SARC before the second interaction region the W functions are built up again to
compensate the effect of the left final doublet.
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Figure 4.24: W functions in the first half of the Racetrack Layout after chromaticity
correction.

The W functions for the first half of the lattice are shown in Fig. 4.24. The second
half is identical. As in the cases before, the W functions are zero at the interaction point
at s = 0. However, because of the shorter length, the W functions are corrected already
after 5 km instead of approximately 7.5 km in the 12-fold Layout. Different to the previous
cases presented in Fig. 4.15 and Fig. 4.21 the oscillation of the W function in the arcs used
for the correction of the linear chromaticity is regular and has the same amplitude in the
whole arc.

Sextupole strengths: The sextupole strengths applied for the correction of the W func-
tion in the Racetrack Layout are listed in Tab. 4.9. Compared to the sextupole strengths
of the two interaction point 12-fold Layout (Tab. 4.7) the strength of the first defocussing
family in Arc 1 increased by a factor of +0.53, which corresponds to the lower number of
sextupoles. While in the 12-fold Layout 88 sextupoles were used to correct theW function,
only 54 are available in the Racetrack Layout. In the horizontal plane the second family
of the first arc counteracts the compensation of the W function, probably because of a
phase mismatch. Taking this extra increase for the first family into account the increase
compared to the value of the 12-fold Layout is also equal to +0.53. For the same reason
the strength of the sextupoles for the linear chromaticity correction on the other side be-
comes smaller. On the one hand more sextupoles are available in the LARCs, on the other
hand the absolute value of the natural linear chromaticity is about 100 units smaller in the
Racetrack Layout (compare Tab. 4.1).
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Table 4.9: Sextupole strengths in the Racetrack lattice after correction of the W func-
tion and linear chromaticity compensation. The vertical beta function at the
interaction point was β∗y = 1mm.

Sextupole strengths in m−3

Horizontal plane Vertical plane
Arc 1,4 k2sf1.1 = 0.37 k2sd1.1 = -14.91

k2sf1.2 = 0.08 k2sd1.2 = 7.57× 10−4

k2sd1.3 = -4.81× 10−3

Arc 2,3 k2sf = 0.91 k2sd = -1.26

Table 4.10: Comparison of the chromaticities and respective tune shifts ∆Q of the 12-fold
Layout with two interaction points (IPs) and the Racetrack Layout.

12-fold (2 IPs) ∆Q (0.1%) Racetrack (2 IPs) ∆Q (0.1%)
Q′x -3.56× 10−5 -3.56× 10−8 5.76× 10−2 5.76× 10−5

Q′′x -4.63× 102 -2.31× 10−4 6.86× 102 3.43× 10−4

Q
(3)
x -3.88× 106 -6.47× 10−4 -3.19× 106 -5.32× 10−4

Q
(4)
x -1.35× 1010 -5.63× 10−4 -1.03× 1010 -4.27× 10−4

Q′y -1.45× 10−4 -1.45× 10−7 3.76× 10−2 3.76× 10−5

Q′′y 4.92× 103 2.46× 10−3 6.33× 102 3.16× 10−4

Q
(3)
y -1.11× 109 -1.85× 10−1 -8.44× 108 -1.40× 10−1

Q
(4)
y -1.33× 1011 -5.54× 10−3 -6.50× 1010 -2.70× 10−3

Chromaticity and momentum acceptance: As the correction of the W functions is ob-
tained in a shorter distance a smaller third-order chromaticity contribution is expected.
Tab. 4.10 compares the chromaticity of the two interaction point version of the 12-fold lat-
tice to the Racetrack Layout. In the horizontal plane the third-order chromaticity reduced
about 18% from Q

(3)
x = −3.88 × 106 to Q(3)

x = −3.19 × 106. In the vertical plane the
effect is even larger: the third order-term decreased about 34% from Q

(3)
y = −1.11 × 109

to Q(3)
y = −8.44× 108. The linear vertical chromaticity was increased to Q′y = 15 to avoid

the half-integer resonance. In the 12-fold Layout a linear chromaticity of just Q′y = 5 was
necessary. The tune shift for negative energy deviation created by the forth order decreased
as well. This could be the reason, why a larger linear chromaticity is required.
The momentum acceptance of the Racetrack Layout obtained by an energy scan in MAD-

X is presented in Fig. 4.25. Compared to the 12-fold Layout the momentum acceptance
could be increased by another 14% to a range from δ = −0.22 % to δ = +0.07 %. The
more efficient correction of the W functions in the Racetrack Layout results, as expected,
in a larger momentum acceptance than in the 12-fold Layout for the same conditions.
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Figure 4.25: Tune functions and momentum acceptance of the Racetrack Layout with
β∗y = 1mm. The linear chromaticity of the vertical plane was set to Q′y = 15
to avoid crossing the half-integer resonance.
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Figure 4.26: W functions in the first half of the Racetrack Layout with β∗y = 2mm after
chromaticity correction.
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4.5.2 Racetrack Layout with β∗y = 2mm

The committee of the FCC-ee Review in October 2015 recommended a set of new baseline
parameters, which are summarized in [16]. The main outcome for the chromaticity com-
pensation scheme was the increase of the vertical beta function at the interaction points
from β∗y = 1mm to 2mm in order to reduce the chromaticity budget of the machine and
so to achieve higher momentum acceptance of the lattice. This development was highly
appreciated, because it relaxes the requirements for the chromaticity correction scheme.
The discussions in Sec. 4.1 showed, that the linear chromaticity strongly depends on the
value of β∗. It is no surprise that this also applies for the higher-order terms (see Tab. 4.3).
The W functions after their correction are shown in Fig. 4.26. The only difference to

the β∗y = 1mm case (Fig. 4.24) is the maximum value of the vertical W function in the
straight sections with the interaction regions. The focussing of the final focus quadrupole
is less strong and consequently creates less chromatic aberrations. The maximum value
is therefore Wy = 1256 instead of 2500. This means, by doubling β∗ the maximum W

function decreases as expected by a factor two.
The sextupole strengths after correction are listed in Tab. 4.11. The smaller value of

the W function consequently leads to reduced sextupole strengths in the vertical plane. In
the horizontal plane the non-zero strength of the second family in the first arc indicates
a phase mismatch between final doublet and arc sextupoles, which is compensated by the
strength of the second sextupole family.
Tab. 4.12 compares the chromaticities of the Racetrack lattices after correction: in the

case of the higher β∗y = 2mm all values could be decreased. The main tune shift is still
created by the third order in the vertical plane, but for the first time it is in the order of
10−2. This improvement can of course also be recognized in the momentum acceptance.
This lattice offers the largest momentum acceptance so far, which spans a range from
δ = −0.29 % to δ = 0.11 %. The tune functions are shown in Fig. 4.27. This time no linear
chromaticity contribution was required to avoid the half-integer resonance.

Table 4.11: Sextupole strengths of the Racetrack Layout with β∗y = 2mm after chromati-
city correction with two families in the horizontal plane and three families in
the vertical plane.

Sextupole strengths in m−3

Horizontal plane Vertical plane
Arc 1, 4 k2sf1.1 = 0.47 k2sd1.1 = -7.47

k2sf1.2 = -0.19 k2sd1.2 = 0.01
k2sd1.3 = 0.00

Arc 2, 3 k2sf = 0.79 k2sd = -1.21
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Table 4.12: Chromaticities and tune shifts for 0.1% energy deviation of the Racetrack
Layout for β∗y = 1mm and 2mm.

β∗y = 1mm ∆Q (0.1%) β∗y = 2mm ∆Q (0.1%)
Q′x 5.76× 10−2 5.76× 10−5 -3.99× 10−3 -3.99× 10−6

Q′′x 6.86× 102 3.43× 10−4 3.56× 102 1.78× 10−4

Q
(3)
x -3.19× 106 -5.32× 10−4 -1.89× 106 -3.15× 10−4

Q
(4)
x -1.03× 1010 -4.27× 10−4 -3.02× 109 -1.26× 10−4

Q′y 3.76× 10−2 3.76× 10−5 7.81× 10−3 7.81× 10−6

Q′′y 6.33× 102 3.16× 10−4 2.36× 103 1.18× 10−3

Q
(3)
y -8.44× 108 -1.40× 10−1 -2.29× 108 -3.82× 10−2

Q
(4)
y -6.50× 1010 -2.70× 10−3 1.64× 109 6.85× 10−5
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Figure 4.27: Tune functions and momentum acceptance of the Racetrack Lattice with
β∗y = 2mm after correction of W functions and linear chromaticity.
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Figure 4.28: Sextupole scheme for the the 60°/60° optics with three interleaved sextupole
families per plane.

4.5.3 Three sextupole families per plane in a 60°/60° optics

To complete the study of sextupole schemes for the correction of the W functions the
efficiency of this method was benchmarked for a different phase advance per cell. It was
decided to investigate an optics with ϕx,y = 60° FODO cell phase advance in both planes,
which was the phase advance chosen for LEP during the design phase of the machine [25].
The corresponding sextupole scheme now comprises three interleaved families per plane as
illustrated in Fig. 4.28, which during the investigations of the 90°/60° optics proved to be
more flexible than a two-family scheme.

Linear optics: For completeness it might be mentioned, that beyond the fact that the
allocation of the sextupoles magnets had to follow the new phase advance, a modification
of the dispersion suppressors was required. A third half-bend cell was installed in order to
create a smooth transition of the dispersion function from the arc lattice to the straight
cells. The phase advance between final focus quadrupoles and first quadrupoles in the
regular arc lattice was set to µx = 3.5 × 2π and µy = 2.5 × 2π and the phase advance of
the LSS to µ = 5.5× 2π in both planes. The tunes of the 60°/60° optics are Qx = 337.08

and Qy = 335.14. The natural linear chromaticity is Q′x = −336.93 in the horizontal plane
and Q′y = −635.92 in the vertical plane.

W functions and sextupole strengths: The W functions in the 60°/60° case were cor-
rected as described before. Fig. 4.29 shows the W functions after their correction and
the compensation of the linear chromaticity with the sextupoles of the LARCs. At first
sight they look the same as for the 90°/60° optics, but a closer look in Fig. 4.30 reveals
an oscillation of the horizontal W with a large amplitude in the first arc, where the W
functions are corrected. This oscillation can easily be explained: since the phase advance
is the same in both planes, the families of one plane have now an additive effect in the
other plane as well, which has to be compensated in addition. The details of this effect
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Figure 4.29: W functions in the first 50 km of the Racetrack lattice with 60°/60° optics
after chromaticity correction with three sextupole families per plane.
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Figure 4.30: Detailed view of the W functions shown in Fig. 4.29. The strong oscillation
of the W function in the horizontal plane is created by the defocussing
sextupoles. Because of the 60°/60° optics the defocussing sextupoles have
an additive effect in the horizontal plane as well.
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Figure 4.31: W functions in eight cells of the first arc. While having a correcting effect
in one plane, the sextupoles increase the W functions of the other.

Table 4.13: Sextupole strengths in the Racetrack Layout with 60°/60° optics after cor-
rection of the W function and linear chromaticity compensation.

Sextupole strengths in m−3

Horizontal plane Vertical plane
Arc 1, 4 k2sf1.1 = 0.45 k2sd1.1 = -2.81

k2sf1.2 = -0.68 k2sd1.2 = 1.34
k2sf1.3 = 0.26 k2sd1.3 = 1.47

Arc 2, 3 k2sf = 0.38 k2sd = -0.83

are presented in Fig. 4.31, which shows the W functions and the position of the sextupole
magnets in eight FODO cells of the first arc. The effect of the families SD1.1 and SD1.3
in the horizontal plane is comparable to the one of the focussing families.

In the 90°/60° optics only the first sextupole family was used to correct the W func-
tions. The others were just required for fine-tuning and had small strengths compared
to the first family. As shown in Tab. 4.13 the strengths of the sextupole families in the
60°/60° optics are distributed in a completely different way. The second and third family
now have considerable values in the same order of magnitude than the first family. In
the horizontal plane the second family is even stronger. It is also remarkable, that three
of the families switched their sign to obtain a convenient W -matching. This change of
sign can be explained by locating the effect of the sextupole families in the (b1,a1) space.
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Figure 4.32: Schematic illustration of the orientation of the W vector at the location of
each sextupole family in the first arc. The arrows indicate, the positive or
negative modification of a1 under the influence of the sextupole fields. The
estimated values of the modification are given in Tab. 4.14.

Table 4.14: Effect of sextupoles in the first arc on the variable a1 according to Eq. (4.10b).

family k2/m3 ∆a1,x ∆a1,y family k2/m3 ∆a1,x ∆a1,y
SF1.1 0.45 -4.59 1.62 SD1.1 -2.81 5.90 -16.71
SF1.2 -0.68 6.94 -2.45 SD1.2 1.34 -2.81 7.97
SF1.3 0.26 -2.65 0.94 SD1.3 1.47 -3.09 8.75

Fig. 4.32 shows a schematic illustrating the orientation of the W vector at the position of
the respective sextupole family. The direction of the arrows indicate, whether the sextu-
pole family induces a positive or negative change of the variable a1. The absolute value of
the change can be estimated with Eq. (4.10b), which was given by

∆a1 ' −β0Dxk2Ls.

They are summarised in Tab. 4.14. The effect of a certain sextupole family is not equally
strong in both planes, because of the different values of the beta functions. Also, a negative
change of the variable a1 does not necessarily result in a decrease of the W vector. Ref-
erencing Fig. 4.32 (a) it becomes clear, that the families SD1.2 and SD1.3 need to switch
their sign in order to have a decreasing effect. Still, because of the orientation of the W
vector their contribution is less effective than the one of the first family SD1.1.
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Table 4.15: Comparison of the chromaticities of the Racetrack Layout for the
90°/60°optics and the 60°/60°optics. The tune shifts correspond to a relative
energy deviation of δ = 0.1 %.

90°/60°optics ∆Q (0.1%) 60°/60°optics ∆Q (0.1%)
Q′x -3.99× 10−3 -3.99× 10−6 1.10× 10−5 1.10× 10−8

Q′′x 3.56× 102 1.78× 10−4 3.53× 103 1.76× 10−3

Q
(3)
x -1.89× 106 -3.15× 10−4 -9.68× 105 -1.61× 10−4

Q
(4)
x -3.02× 109 -1.26× 10−4 -2.12× 109 -8.83× 10−5

Q′y 7.81× 10−3 7.81× 10−6 2.39× 10−6 2.39× 10−9

Q′′y 2.36× 103 1.18× 10−3 -3.90× 103 -1.95× 10−3

Q
(3)
y -2.29× 108 -3.82× 10−2 -7.50× 108 -1.25× 10−1

Q
(4)
y 1.64× 109 6.85× 10−5 -2.82× 1011 -1.17× 10−2

Chromaticity and momentum acceptance: The different orders of chromaticity for the
90°/60° optics and the 60°/60° optics after correction of the W function is presented in
Tab. 4.15. Comparing the results of both optics the most remarkable differences are the
values of the even higher-order terms. In the horizontal plane the second order increased
by a factor of 10 and creates the largest tune shift now. The reason for this increase can
be explained by analysing the equation of the second-order chromaticity in the horizontal
plane, which is given by Eq. (4.14b)

∂2Qx
∂δ2

= −2
∂Qx
∂δ

+
1

2π

∮
βx

(
k2D1 + k3

D2
0

2

)
ds− 1

4π

∮
βxb1x (k1 − k2D0) ds.

Without octupole magnets and assuming the higher-order dispersion termD1 to be small [63],
the second order chromaticity is mainly driven by the third term,

− 1

4π

∮
βxb1,x (k1 − k2D0) ds,

which is the integral over βb1. The evolution of this product along the lattice is shown
in Fig. 4.33 for eight FODO cells in the first arc. Not only the amplitude is larger for
the 60°/60° optics, but also the oscillation is less symmetric, which creates a non-vanishing
contribution to the integral and thus leads to the increase of the second order chromaticity.

Despite of the large increase of the second-order term in the horizontal plane, the in-
duced tune shift of ∆Qx = 1.76×10−3 is still by two orders of magnitude smaller than the
largest tune shift in the vertical plane ∆Qy = −1.25 × 10−1. The pattern of the vertical
tune function is still determined by the third-order chromaticity. However, the second- and
fourth-order terms not only increased their value but also changed their sign. The con-

131



4. SYSTEMATIC OPTIMISATION OF CHROMATICITY COMPENSATION SCHEMES IN THE ARCS

1000. 1100. 1200. 1300. 1400.
                               s (m)

2946.

2947.

2948.

2949.

2950.

2951.

2952.

2953.

2954.

2955.Wy

950 1,000 1,050 1,100 1,150 1,200 1,250 1,300 1,350

−10

−5

0

5

SF3 SF1 SF2 SF3 SF1 SF2 SF3 SF1

SD1 SD2 SD3 SD1 SD2 SD3

s / km

β
x
·b

1
/

m

60°/60°
90°/60°

Figure 4.33: Product of beta function βx times chromatic variable b1,x, which drives the
second order chromaticity.
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Figure 4.34: Tune functions and momentum acceptance of the Racetrack lattice with
60°/60° optics. Compared to the 90°/60° optics the momentum acceptance
is 58% smaller.
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sequences are large negative tune shifts, which limit the momentum acceptance to a range
between δ = −0.11 % and +0.06 % as shown in Fig. 4.34. Compared to the 90°/60° optics
the momentum acceptance is 58% smaller. This result agrees with the experience of LEP,
where the 90°/60° optics also had a better performace then the 60°/60° optics [38].

4.6 Further studies with additional tools

So far, the largest momentum acceptance was obtained for the Racetrack Lattice with
90°/60° optics after correcting the W functions with two sextupole families per arc in
the horizontal plane and three families per arc in the vertical plane and reaches from
δ = −0.29 % to +0.11 %. Compared to the ±0.04 % momentum acceptance obtained after
linear chromaticity correction this is already a considerable success, but the required ±2 %

are by far not achieved. For further improvement both the sextupole scheme and the
correction method are changed. This section presents the studies, that were undertaken in
addition to or instead of the correction of the W function.

4.6.1 Sextupole scheme with six families per plane

The SARCs, where the W function is corrected, have a length of 4.4 km and consist of
84 regular FODO cells. In the horizontal plane there are 42 sextupoles per family and in
the vertical plane 28. That the tolerances on the phase advance per cell gets smaller with
increasing number of sextupoles per family [62]. To allow a little bit more flexibility in
the sextupole strength, a scheme with six interleaved families per plane was investigated.
The scheme is illustrated in the top picture of Fig. 4.35. Although the phase advance per
cell is different, the first order geometric aberrations should cancel, because two sextupoles
of each family are separated by a −I transfer map in the horizontal plane and by a +I

transformation in the vertical plane (see bottom schematic of Fig. 4.35).
As the phase advance in the linear arc lattice was not modified, the six families should

basically behave similarly to the previous scheme with two and three families per plane.
The sextupole strengths after correction of the W functions confirm this hypothesis as
shown in Tab. 4.16. Still, deviations can be observed like the increased strength of the
families SF4.5 and SD4.6 in Arc 4. Although they seem very small, the momentum ac-
ceptance obtained with the same correction method can be increased compared to the 2/3
family scheme by 10% to a range from δ = −0.33 % to +0.11 %. Unfortunately only the
range for negative energy deviation could be improved. The shape of the tune functions are
still determined by the third order chromaticity in the vertical plane, as shown in Fig. 4.36,
and is limited by the integer resonance Qy = 337. Since now the range is three times larger
for negative momentum offset than for positive, the main emphasis of further corrections
must be placed to obtain a symmetric tune function.

133



4. SYSTEMATIC OPTIMISATION OF CHROMATICITY COMPENSATION SCHEMES IN THE ARCS

1 2 3 4 5 6 7 8 9 10 11 12

SD1 SD2 SD3 SD4 SD5 SD6 SD1 SD2 SD3 SD4 SD5 SD6 SD1

SF1 SF2 SF3 SF4 SF5 SF6 SF1 SF2 SF3 SF4 SF5 SF6

ϕy = 60°

ϕx = 90°

1st group 2nd group

1st group 2nd group

1 2 3 4 5 6 7 8 9 10 11 12

SD1 SD1 SD1

SF1 SF1

ϕy = 60°

ϕx = 90°

µx = 3π: −I
µy = 2π: +I

µx = 3π: −I
µy = 2π: +I

Figure 4.35: Sextupole scheme with six families per plane for ϕx = 90° and ϕy = 60°
phase advance of per FODO cell. In the horizontal plane two members of a
family are separated by a −I transformation, in the vertical plane by a +I
transformation to cancel geometric aberrations as discussed in Sec. 4.3.
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Figure 4.36: Momentum acceptance of the Racetrack Lattice after correction of W func-
tions and linear chromaticity with six sextupole families per plane.
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Table 4.16: Sextupole strengths in the Racetrack lattice with 90°/60° optics after the
correction of W functions and linear chromaticity with six sextupole families
per plane.

Sextupole strengths in m−3

Horizontal plane Vertical plane
Arc 1 k2sf1.1 = 0.228 k2sd1.1 = -7.429

k2sf1.2 = 0.000 k2sd1.2 = 0.000
k2sf1.3 = 0.228 k2sd1.3 = 0.000
k2sf1.4 = 0.000 k2sd1.4 = -7.429
k2sf1.5 = 0.228 k2sd1.5 = 0.000
k2sf1.6 = 0.000 k2sd1.6 = 0.000

Arc 4 k2sf4.1 = 0.228 k2sd4.1 = -7.425
k2sf4.2 = 0.000 k2sd4.2 = 0.068
k2sf4.3 = 0.228 k2sd4.3 = -0.012
k2sf4.4 = 0.001 k2sd4.4 = -7.425
k2sf4.5 = -0.228 k2sd4.5 = 0.069
k2sf4.6 = 0.000 k2sd4.6 = -0.012

Arc 2 k2sf2.1 = 0.841 k2sd2.1 = -1.209
k2sf2.2 = 0.841 k2sd2.2 = -1.209
k2sf2.3 = 0.841 k2sd2.3 = -1.209
k2sf2.4 = 0.841 k2sd2.4 = -1.209
k2sf2.5 = 0.841 k2sd2.5 = -1.209
k2sf2.6 = 0.841 k2sd2.6 = -1.209

Arc 3 k2sf3.1 = 0.841 k2sd3.1 = -1.203
k2sf3.2 = 0.841 k2sd3.2 = -1.209
k2sf3.3 = 0.841 k2sd3.3 = -1.209
k2sf3.4 = 0.841 k2sd3.4 = -1.204
k2sf3.5 = 0.841 k2sd3.5 = -1.209
k2sf3.6 = 0.841 k2sd3.6 = -1.209
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Figure 4.37: Illustration of the functionality of the macro used to flatten the tune func-
tions. The tune is calculated for different momentum offsets and the squared
difference to the nominal tune for δ = 0 is then minimised by optimising
the available sextupole strengths.
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Figure 4.38: Tunes depending on the energy deviation δ after the optimisation with the
macro to flatten the tune function. A significant improvement of the sym-
metry of the acceptance could be achieved.
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Table 4.17: First four orders of the chromaticity after correction of the W function and
linear chromaticity compared to the case after optimising the bandwidth
in addition. The tune shifts correspond to a relative energy deviation of
δ = 0.1 %.

W corrected ∆Q (0.1%) Optimised bandwidth ∆Q (0.1%)
Q′x -2.87× 10−2 -2.87× 10−5 2.96× 100 2.96× 10−3

Q′′x -2.98× 102 -1.49× 10−4 -4.72× 102 -2.36× 10−4

Q
(3)
x -1.64× 106 -2.73× 10−4 -1.67× 106 -2.79× 10−4

Q
(4)
x -3.46× 109 -1.44× 10−4 -3.90× 109 -1.62× 10−4

Q′y -3.00× 10−2 -3.00× 10−5 4.84× 101 4.84× 10−2

Q′′y 2.38× 103 1.19× 10−3 -2.94× 104 -1.47× 10−2

Q
(3)
y -1.96× 108 -3.27× 10−2 -1.03× 108 -1.72× 10−2

Q
(4)
y 1.45× 109 4.78× 10−5 3.08× 1011 1.29× 10−2

4.6.2 Optimisation tool to flatten the tune function

For positive energy offset very strong negative tune shifts occur, that limit the acceptance
by crossing the integer resonance. As a first step to a more symmetrical acceptance range
the nominal tunes were increased from Qx = 499.54 to 499.56 and from Qy = 337.57 to
337.59. This increases the allowed an additional tune shift of ∆Q = −0.02. In a second
step the third-order chromaticity in the vertical plane must finally be corrected as it still
determines the limit for positive energy deviation. To correct even higher orders of the
chromaticity, that might limit the momentum acceptance, a macro was written to flatten
the tune function in the allowed bandwidth. The functionality of the macro is illustrated
in Fig. 4.37. The tune is calculated by MAD-X for a user-defined number of steps within
the acceptable range of energy deviation. The squared difference to the nominal tune for
δ = 0 is then minimised by optimising the available sextupole strengths using the matching
routines in MAD-X. The MAD-X code of this macro is given in Appendix D.

Fig. 4.38 shows the tune functions after two iterations of the optimisation. The mo-
mentum acceptance reaches from δ = −0.24 % to +0.28 %. It is not only 18% larger
compared to the previous case, also the symmetry of the acceptance range could be im-
proved significantly. While the acceptance for negative energy offsets was three times of
the acceptance for positive energy deviation before, the range in both directions is similar
now. However, the resulting vertical tune function includes a very strong positive linear
component for on-momentum particles. The analysis of the chromaticity summarised in
Tab. 4.17 yields a vertical linear chromaticity of Q′y ≈ 50. The third order indeed reduced
by nearly 50%, but the absolute values of the second- and fourth-order terms increased
by orders of magnitude. Since the function is still dominated by an odd polynomial, the

137



4. SYSTEMATIC OPTIMISATION OF CHROMATICITY COMPENSATION SCHEMES IN THE ARCS

Table 4.18: Sextupole strengths in the Racetrack Layout with six sextupole families per
plane after optimisation with the macro to flatten the tune function.

Sextupole strengths in m−3

Horizontal plane Vertical plane
Arc 1 k2sf1.1 = 0.231 k2sd1.1 = -7.537

k2sf1.2 = 0.011 k2sd1.2 = -0.682
k2sf1.3 = 0.231 k2sd1.3 = -0.284
k2sf1.4 = 0.006 k2sd1.4 = -7.534
k2sf1.5 = 0.231 k2sd1.5 = -0.635
k2sf1.6 = 0.004 k2sd1.6 = -0.263

Arc 4 k2sf4.1 = 0.232 k2sd4.1 = -7.533
k2sf4.2 = 0.004 k2sd4.2 = -0.671
k2sf4.3 = 0.232 k2sd4.3 = -0.289
k2sf4.4 = 0.003 k2sd4.4 = -7.530
k2sf4.5 = -0.231 k2sd4.5 = -0.619
k2sf4.6 = 0.004 k2sd4.6 = -0.266

Arc 2 k2sf2.1 = 0.853 k2sd2.1 = -1.532
k2sf2.2 = 0.854 k2sd2.2 = -1.184
k2sf2.3 = 0.852 k2sd2.3 = -0.902
k2sf2.4 = 0.855 k2sd2.4 = -1.533
k2sf2.5 = 0.852 k2sd2.5 = -1.185
k2sf2.6 = 0.855 k2sd2.6 = -0.893

Arc 3 k2sf3.1 = 0.853 k2sd3.1 = -1.524
k2sf3.2 = 0.854 k2sd3.2 = -1.188
k2sf3.3 = 0.853 k2sd3.3 = -0.905
k2sf3.4 = 0.854 k2sd3.4 = -1.525
k2sf3.5 = 0.853 k2sd3.5 = -1.189
k2sf3.6 = 0.854 k2sd3.6 = -0.896

fifth order increased probably as well. It is interesting, that the tune shifts for a relative
energy deviation of δ = 0.1 % created by the vertical terms of the chromaticity are all in
the same order of magnitude now. This means at the same time, that the effect of the
higher-orders increase for larger momentum offsets. In the horizontal plane the linear chro-
maticity increased as well, which also can be recognised by the slope of the tune function
around δ = 0. At the upper limit of the acceptance range, the influence of the even terms
is visible, which increased as well.
The sextupole strengths after the optimisation of the tune function are listed in Tab. 4.18.

The correction now benefits from the flexibility of the additional sextupole families. Espe-
cially in Arc 1 and Arc 4, where the W functions were matched, the secondary sextupole
families in the vertical plane deviate from the three family symmetry. The strength of the
families 2 and 5 are different as well as the strengths of the families 3 and 6.
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Figure 4.39: Illustration of the functionality of the tool used to minimise the slopes of the
tune functions at the edge of the acceptance range. Two optics calculations
for different energy offset determine the tunes close the edge. The difference
between the tunes is minimised by optimising the strengths of the individu-
ally powered sextupole pairs next to the straight sections with interaction
regions.

4.6.3 Individual sextupole pairs at the beginning of the arc sections

As a next step the first six sextupole pairs in both planes in Arc 1 and the last six sextupole
pairs of Arc 4 were powered individually. Hence, the sextupole scheme consists of six
families per arc per plane and 24 individually powered sextupole pairs next to the straight
sections including mini-beta insertions. Assuming the two superperiods have the same
sextupole scheme, the number of degrees of freedom is now 4× 6 + 2× 6 = 36. It turned
out, however, that the best results are obtained, when the main sextupole families of the
arcs are kept constant and the additional sextupole pairs are optimised on top.

In order to enlarge the energy acceptance, the very steep slopes of the tune functions
at the edge of the acceptance range need to be flattened. Therefore an second optim-
isation tool was implemented, which calculates the tunes of particles with two different
energy deviations close to the edge and minimises their difference. The user can define,
whether both sides should be optimised or just one. The momentum acceptance can be
increased iteratively until the current configuration does not allow any further progress.
The functionality of this tool is illustrated in Fig. 4.39. The MAD-X code can be found in
Appendix E.
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Table 4.19: Optimised sextupole strengths of the individual sextupole pairs, that were
installed in addition to the sextupole families in the arcs.

Sextupole strengths in m−3

Horizontal plane Vertical plane
Arc 1 k2sf.p1 = 0.449 k2sd.p1 = -7.489

k2sf.p2 = 0.052 k2sd.p2 = -0.838
k2sf.p3 = 0.437 k2sd.p3 = -0.563
k2sf.p4 = 0.085 k2sd.p4 = -7.488
k2sf.p5 = 0.373 k2sd.p5 = -0.726
k2sf.p6 = 0.069 k2sd.p6 = -0.571

Arc 6 k2sf.p1 = 0.456 k2sd.p1 = -7.488
k2sf.p2 = 0.045 k2sd.p2 = -0.956
k2sf.p3 = 0.444 k2sd.p3 = -0.757
k2sf.p4 = 0.081 k2sd.p4 = -7.488
k2sf.p5 = 0.379 k2sd.p5 = -0.828
k2sf.p6 = 0.067 k2sd.p6 = -0.754

Starting from the sextupole configuration of Tab. 4.18 the slopes of the tune functions
were optimised in several iterations. The obtained tune functions are shown in Fig. 4.40
for a selection of six steps. The initial tune functions are shown in the top left plot.
The one right to it shows the functions after an iteration of optimising the vertical tune
function for negative energy deviation. The optimisation of both sides of the horizontal
tune yields the functions shown in the left plot in the middle. It followed two iterations of
optimisation of the vertical tune function for negative energy offset, before the optimisation
of the horizontal tune was repeated. A final optimisation of both sides of the vertical tune
functions result in the tune functions displayed in Fig. 4.41. The strengths of the individual
sextupole pairs are summarised in Tab. 4.19. The acceptance could be increased for energy
offsets up to δ = −0.49 % and +0.69 %. This range for the first time approximates the
percent range, which having the challenging conditions in mind can be considered as a
large success.

Characteristics of the tune functions: The shape of the tune functions already indic-
ates very strong higher-order terms of the chromaticity. The values calculated with the
macro in MAD-X are given in Tab. 4.20. The energy offset used for the calculation of
the difference quotients was increased from δ = 0.01 % to δ = 0.1 % to follow the larger
of the momentum acceptance. Compared to the values before optimising the strength of
the additional sextupole pairs (Tab. 4.17) the absolute value of the third order could be
further decreased in both planes. Also the linear order increased in both planes in order to
counteract the very strong negative tune shifts for positive energy offsets. In the vertical
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Figure 4.40: In order to further increase the momentum acceptance additional free para-
meters in the chromaticity control are taken into account: on top of the
correction of the W functions the first six sextupole pairs in the mini-arcs
next to the interaction regions were powered individually. In several itera-
tions the momentum acceptance has been increased varying the strengths
of the additional free sextupole pairs.
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Figure 4.41: Energy acceptance of the Racetrack Layout after optimisation of the
strengths of the individual sextupole pairs in addition to the regular arc
families.

Table 4.20: Chromaticitiy including higher-order terms and tune shifts for different en-
ergy deviations after optimising the bandwidth using individually powered
sextupole pairs at the beginning of the arcs adjacent to the mini-beta inser-
tions.

Chromaticity ∆Q(−0.4 %) ∆Q(−0.1 %) ∆Q(0.1 %) ∆Q(0.4 %)
Q′x 1.73× 101 -6.90× 10−2 -1.73× 10−2 1.73× 10−2 6.90× 10−2

Q′′x -9.57× 102 -7.66× 10−3 -4.79× 10−4 -4.79× 10−4 -7.66× 10−3

Q
(3)
x -8.64× 105 9.22× 10−3 1.44× 10−4 -1.44× 10−4 -9.22× 10−3

Q
(4)
x -2.20× 109 -2.34× 10−2 -9.15× 10−5 -9.15× 10−5 -2.34× 10−2

Q′y 5.83× 101 -2.92× 10−1 -5.83× 10−2 5.83× 10−2 2.92× 10−1

Q′′y -1.21× 104 -9.71× 10−2 -6.07× 10−3 -6.07× 10−3 -9.71× 10−2

Q
(3)
y -3.61× 107 3.85× 10−1 6.02× 10−3 -6.02× 10−3 -3.85× 10−1

Q
(4)
y 5.29× 1010 5.64× 10−1 2.20× 10−3 2.20× 10−3 5.64× 10−1
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Figure 4.42: Comparison of the tune functions calculated consisting of the first four orders
and the tunes calculated by MAD-X.

plane the linear chromaticity has now a value of Q′y = 58. In the horizontal plane all
orders create negative tune shits for δ < 0. At δ = −0.5 % this causes the horizontal tune
function to cross the integer resonance and thus defines the lower limit of the momentum
acceptance.

Tab. 4.20 also shows the tune shifts for δ = ±0.1 % and δ = ±0.4 %. For δ = 0.1 %

adding the tunes using Eq. (4.4) yields Qc
y = 337.2285, which is in very good agreement to

the value of MAD-X, which is Qy = 337.2287. For δ = 0.4 %, on the contrary, the value
Qc
y = 337.4948 obtained by the macro exceeds the value of MAD-X Qy = 337.2584 by a

quarter unit. Also, considering the irregular shape of the functions, it is questionable, if
the calculated orders are sufficient to represent the behaviour of the tunes for momentum
offset. To investigate the accuracy of the first four orders, the function consisting of
the calculated polynomials was plotted together with the tunes obtained by MAD-X in
Fig. 4.42. While the calculated tunes agree well for energy deviation smaller than ±0.2 %,
large deviations arise above those values. Especially in the vertical plane the plateau of
relatively constant tune values between δ = 0.2 % and δ = 0.5 % is not dissolved. In the
horizontal plane, the slope becomes positive again for tune shifts larger than δ = 0.6 %,
which is not represented by the first four orders. Before continuing this optimisation
method additional orders should be included to the macro or a different way to evaluate
the higher-order chromaticities should to be chosen. One possibility would be to switch to
the Polymorphic Tracking Code (PTC), which is included in MAD-X. PTC was not used
so far, because it is very slow for machines as large as FCC-ee.
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Figure 4.43: W functions after optimising the bandwidth with additional free sextupole
pairs next to the straight sections with mini-beta insertions.

The optimisations described in the last two sections were performed on top of the pre-
viously corrected W functions. The modification of the sextupole strengths during the
flattening process of the tune functions and especially the introduction of the individual
sextupole pairs in the SARCs caused a perturbation of the carefully matched situation.
For completeness the mismatched W functions are shown in Fig. 4.43.

To summarise the optimisations undertaken in addition to the correction of the W func-
tions, the individual sextupole pairs proved to be a powerful tool. The stable energy range
could be more than doubled. The studies of such a sextupole scheme could be continued
with a more reliable method to calculate the higher-order terms of the chromaticity. After
the optimisation to flatten the bandwidth a considerable contribution of the linear chro-
maticity was introduced. Based on these results a set of sextupole strengths without linear
contribution is proposed as a starting point for the next step. Also different optimisation
algorithms outside MAD-X might have a better performance. However, six dimensional
tracking calculations need to examine, whether an optics with tune functions such as the
ones presented in Fig. 4.42 provides sufficient dynamic aperture. For δ = −0.15 % the
functions for the horizontal and the vertical tune get very close. The difference of the
fractional parts is just ∆Q = 0.1000 − 0.0927 = 0.0073, which is very close to the coup-
ling resonance. In further optimisations, this difference should be increased for example
by choosing a slightly larger tune in the vertical plane. For optimisations on this level of
precision the effect of the beam-beam tune shift has to be taken into account as well.
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4.6.4 Optimisation with the Downhill-Simplex-Algorithm

All previous optimisations of the momentum acceptance were done with analytical ap-
proximations and built-in tools of MAD-X. The optimisation of the individual sextupole
pairs with the matching module brought an increase of the momentum acceptance by a
significant amount, but the matching module was not able to find any solutions, if all
the sextupoles including the nominal families were included to the optimisation. Indeed,
the matching module in MAD-X is not meant to perform a global optimisation of a large
parameter space with initial values far away from the solution [64].

For completeness and comparison a numerical approach outside the MAD-X programme
was studied in this thesis. In order to keep track of the optimisation process and to gain
full comprehension of the algorithm it was decided to set up an own tool instead of relying
on available libraries. The Downhill-Simplex-Algorithm [65] was implemented [45], which
is a standard optimisation algorithm. N + 1 data sets consisting of different values of the
N variables, which are being optimised, are modified during the execution of the algorithm
and are evaluated using a penalty function. In this case the variables are the sextupole
strengths and the penalty function consisted of the tune shifts created by the first four
orders of both vertical and horizontal chromaticity:

P = Q′xδ +
1

2
Q′′xδ

2 +
1

6
Q(3)
x δ3 +

1

24
Q(4)
x δ4

+Q′yδ +
1

2
Q′′yδ

2 +
1

6
Q(3)
y δ3 +

1

24
Q(4)
y δ4 (4.18)

The algorithm was started independently from MAD-X in a Fortran programme, which
created the data sets and managed their modifications. MAD-X is only used to evaluate
the penalty function.

Several sextupole schemes with different numbers of families were studied: 6 interleaved
families per plane, 12 and 54 families per plane. In contrast to the previous schemes the
same strengths are used for the families in all arcs. The number of degrees of freedom
is thus reduced by a factor of four. The largest momentum acceptance was obtained for
the scheme with six families per plane reaching from δ = −0.38 % to +0.54% as shown
in Fig. 4.44. Within δ = ±0.2 % the tunes stay constant in both planes. Beyond this
range the vertical tune is defined by an odd polynomial, which limits the momentum
acceptance by crossing the integer resonance at Qy = 335 and the half-integer resonance
at Qy = 335.5 for negative and positive energy offset respectively. In the horizontal plane
an even polynomial creates the main tune shift.

To understand the results and evaluate the performance of the algorithm the first four
orders of the chromaticity were calculated as usual. The energy offsets used in the macro
were increased from δ = ±0.01 % to ±0.15 %, following the increasing acceptance. The
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Figure 4.44: Tune functions and momentum acceptance of the Racetrack Layout with
six families per plane after optimising the sextupole strengths

absolute value of all higher-order terms could be decreased (see Tab. 4.21). The third-order
term was reduced by two orders of magnitude in both planes. In the vertical plane it still
has the largest contribution to the tune shift and it changes its sign compared to the case of
corrected W functions, which explains the pattern of the tune function. In the horizontal
plane the largest tune shift is created by the second-order chromaticity, which agrees with
the expectations from above.
Compared to the previously studied cases, the required sextupole strengths are relatively

small. The very strong sextupole fields required for the W correction are not needed as
shown in Tab. 4.22. It is interesting to see, that this scheme with less degrees of freedom can
be optimised to a better performance than the case with correctedW functions. With only
six degrees of freedom an acceptance range close to the one with independent sextupole
pairs (36 degrees of freedom) could be achieved. Also the pattern of the tune functions
is much more regular. The stability of the numerically optimised scheme will be verified
including field error studies.
The optimisation outside of the MAD-X frame proved to be very efficient and can most

likely be further extended. At present it seems the main limitation still comes from the third
order chromaticity in the vertical plane, but the fifth and sixth order could be taken into
account as well. For an optimisation on top of the presented results the energy deviation
used for the calculation of the higher-order chromaticity should be further increased to
follow the larger acceptance range. As a further step it is proposed to define further
sextupole families and thereby increase the number of variables.
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Table 4.21: Chromaticities of the Racetrack Layout with Downhill-Simplex-optimised
sextupole strengths compared to the case with corrected W functions. The
tune shifts correspond to a relative energy deviation of δ = 0.1 %.

90°/60°optics ∆Q (0.1%) Simplex ∆Q (0.1%)
Q′x -3.99× 10−3 -3.99× 10−6 -1.98× 10−2 -1.98× 10−5

Q′′x 3.56× 102 1.78× 10−4 -2.72× 102 -1.36× 10−4

Q
(3)
x -1.89× 106 -3.15× 10−4 7.55× 104 1.26× 10−5

Q
(4)
x -3.02× 109 -1.26× 10−4 -3.48× 108 -1.45× 10−5

Q′y 7.81× 10−3 7.81× 10−6 6.42× 10−3 6.42× 10−6

Q′′y 2.36× 103 1.18× 10−3 -3.19× 102 -1.59× 10−4

Q
(3)
y -2.29× 108 -3.82× 10−2 8.73× 106 1.45× 10−3

Q
(4)
y 1.64× 109 6.85× 10−5 -8.53× 108 -3.55× 10−5

Table 4.22: Sextupole strengths after the optimisation with the Downhill-Simplex-
Algorithm. All arcs use the same strengths.

Sextupole strengths in m−3

Horizontal plane Vertical plane
k2sf1 = 0.179 k2sd1 = -0.678
k2sf2 = 0.221 k2sd2 = -0.285
k2sf3 = 0.100 k2sd3 = -0.244
k2sf4 = 0.198 k2sd4 = -0.514
k2sf5 = 0.209 k2sd5 = -0.257
k2sf6 = 0.140 k2sd6 = -0.237
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Summary

The Future Circular Collider (FCC) Study investigates the potential of 100 km circular
colliders for future high-energy physics research in the post-LHC era. In this thesis the
electron-positron collider version FCC-ee was studied with emphasis on the lattice design,
the beam optics and mainly the optimisation of the chromaticity compensation scheme.

Two models of the machine were implemented with the optics code MAD-X: a lattice
with 12-fold symmetry for generic studies and a racetrack-shaped lattice considering tech-
nological aspects and geological factors of the Geneva basin. The layout of the basic cell is
of FODO design, which provides the highest dipole filling factor and thus produces 40%
less synchrotron radiation power than the Double-Bend-Achromat lattice investigated for
comparison. To guarantee a smooth transition of the lattice functions between arc and
straight sections, half-bend dispersion suppressors and matching sections with individually
powered quadrupoles were installed. Up to four mini-beta insertions were included for the
experiments. Considering the large size of FCC only two RF sections are foreseen. Still,
simulations presented in this thesis showed, that the amplitude of the sawtooth orbit can be
kept on a reasonable level by adjusting the dipole strength to the local beam energy. Both
individual and sector-wise approaches were proposed. The final choice will be determined
by the available alignment tolerances and their impact on the vertical emittance.

The large circumference of FCC-ee allows operation in the range of 90 to 350GeV centre-
of-mass energy with acceptable amount of synchrotron radiation power. Not only the
properties of the Z and W bosons can be measured with unprecedented precision, also
first precise measurements of the Higgs particle and the top quark are possible for the first
time. In order to obtain highest luminosity, different beam parameters are required for
each beam energies. To reduce the beam-beam tune shift the horizontal beam emittance
might have to be increased towards the lower beam energies of 45.5GeV and 80GeV.
Possible lattice arrangements with longer cells and/or smaller phase advance were studied
and implemented including re-matching of the whole optics. The proposed lattices, based
on the same hardware as the regular lattice, allow for the installation of a multi-family
sextupole scheme. An emittance fine-tuning in the range of 10% could be achieved with
tolerable increase of synchrotron radiation power using damping and excitation wigglers.



SUMMARY

The main subject investigated in the context of this thesis was the optimisation of the
chromaticity correction scheme in the arc sections. Unprecedented values of the chro-
maticities require a correction including higher-order terms to obtain the very ambitious
momentum acceptance of ∆p/p = ±2 %, which is required because of the severe energy
loss due to beamstrahlung. As a first step towards this goal this thesis includes a system-
atic study of multi-family sextupole schemes in the arc sections evaluated according to the
obtained momentum acceptance. A scheme of two interleaved families in the horizontal
plane and three families in the vertical plane allowed to correct the Montague W functions
for different numbers of interaction points and different values of the vertical beta function
at the interaction point β∗y . With this method the momentum acceptance could be in-
creased from ∆p/p = ±0.04 % to a range from −0.3 % to +0.1 % for two interaction points
with β∗y = 2mm. In order to increase the degrees of freedom and allow more flexibility
of the correction, the number of families was increased to six per arc per plane and the
first twelve sextupole pairs in the arcs next to the interaction regions were powered indi-
vidually. Several optimisation tools were implemented and used successfully to maximise
the acceptance range from ∆p/p = −0.5 % to +0.7 %. For completeness and comparison
the Downhill-Simplex-Algorithm was implemented to study a numerical optimisation in-
dependent from the built-in tools of MAD-X. Considering the challenging values of the
chromaticity this already is a remarkable success.
In summary the work presented in this thesis highlights the benefit of a state-of-the-art

chromatic correction scheme in the arc sections of a particle collider. To obtain highest
possible momentum acceptance in a storage ring that aims for new and un-precedented
luminosities and on four different beam energies, a flexible lattice layout had to be es-
tablished, the cell parameters had to be optimised following the synchrotron radiation
integrals and so the resulting emittance, and the chromatic effects had to be studied and
compensated up to fourth order. The proposed lattice layout provides the option to have
a direct influence on the beam emittance to control and limit the beam-beam effect via a
tunable equilibrium emittance at all foreseen collision energies. Fine-tuning methods are
available using wiggler sequences that were included in the lattice. The proposed sextupole
scheme provides an efficient method to optimise the momentum acceptance of the lattice
arcs. Combined with a local chromaticity correction scheme in the interaction regions, the
design values for dynamic aperture and momentum acceptance are within reach.
In continuation of the work presented in this thesis the powering scheme for the lattice

modifications could be addressed. The synchrotron radiation power could be further de-
creased by investigating a combined but separately powered quadrupole-sextupole design.
Dynamic aperture studies and the combination of the multi-family sextupole scheme in
the arcs with a local chromaticity correction section would be the next step towards the
realisation of a new electron positron collider for future high-energy physics research.
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Appendix

A FCC-ee Design Parameter Sets

The specifications for the FCC Lepton Collider were first published in February 2014 and
summarised in [33]. The document includes a list of the design parameters for all four
beam energies, which are compared to the values of the last high-energy lepton collider
LEP. A selection of these design parameters were already presented in the introduction
chapter, the full table according to [33] is given in Tab. A1.
The machine specifications were revised after the FCC-ee Design Review in October 2015

and then published in [16]. The new set of baseline parameters is presented in Tab. A2.
As a main difference, the crab-waist crossing scheme [66] was included into the design of
the interaction region to increase the luminosity for 45.5GeV and 80GeV. This interaction
scheme not only increases the luminosity but also allows larger beam-beam tune shifts.
While in the first parameter set the horizontal emittance had to be increased for the lower
beam energies, in theory this is not necessary any more. Still, if the low emittances lead
to instabilities, methods to increase it again were presented in Sec. 3.1. In order to relax
the requirements for the chromaticity correction scheme the vertical beta function at the
interaction point was increased from β∗y = 1mm to 2mm. An ultimate set of parameters
with β∗y = 1mm for 45.5GeV beam energy is given in addition.
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Table A1: The full FCC-ee Baseline Parameter Set, published in February 2014 [33].

LEP1 LEP2 Z W H tt
Circumference C (km) 26.7 26.7 100 100 100 100
Bending radius ρ (km) 3.1 3.1 11 11 11 11
Beam energy E (GeV) 45.4 104 45.5 80 120 175
Beam current (mA) 2.6 3.04 1450 152 30 6.6
Bunches/beam 12 4 16700 4490 1360 98
Bunch population (1011) 1.8 4.2 1.8 0.7 0.46 1.4
Transverse emittance ε
- Horizontal (nm) 20 22 29.2 3.3 0.94 2
- Vertical (pm) 400 250 60 7 1.9 2
Momentum comp. (10−5) 18.6 14.0 18.0 2.0 0.5 0.5
Betatron function at IP
- Horizontal β∗ (m) 2.0 1.2 0.5 0.5 0.5 1.0
- Vertical β∗ (mm) 50 50 1 1 1 1
Beam size at IP σ∗ (µm)
- Horizontal 224 182 121 41 22 45
- Vertical 4.5 3.2 0.25 0.084 0.044 0.045
Energy spread (%)
- Synchrotron radiation 0.07 0.16 0.04 0.07 0.1 0.14
- Total (including beamstrahlung) 0.07 0.16 0.06 0.09 0.14 0.19
Bunch length (mm)
- Synchrotron radiation 8.6 11.5 1.64 1.01 0.81 1.16
- Total (including beamstrahlung) 8.6 11.5 2.56 1.49 1.17 1.49
Energy loss/turn (GeV) 0.12 3.34 0.03 0.33 1.67 7.55
SR power/beam (MW) 0.3 11 50 50 50 50
Total RF voltage (GV) 0.24 3.5 2.5 4.0 5.5 11.0
RF frequency (MHz) 352 352 800 800 800 800
Longitudinal damping time tE (turns) 371 31 1320 243 72 23
Energy acceptance RF (%) 1.7 0.8 2.7 7.2 11.2 7.1
Synchrotron tune Qs 0.065 0.083 0.65 0.21 0.096 0.1
Polarization time tp (min) 252 4 11200 672 89 13
Hourglass factor H 1.00 1.00 0.64 0.77 0.83 0.78
Luminosity L/IP (1034 cm−2s−1) 0.002 0.012 28 12 6 1.8
Beam-beam parameter ξ
- Horizontal 0.044 0.040 0.031 0.060 0.093 0.092
- Vertical 0.044 0.060 0.030 0.059 0.093 0.092
Luminosity lifetime (min) 1750 434 298 73 29 21
Beamstrahlung critical No No No No Yes Yes
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Table A2: Updated set of baseline parameters for FCC-ee published in January 2016 [16].

Z Z W H tt
Circumference C (km) 100 100 100 100 100
Bending radius ρ (km) 11 11 11 11 11
Beam energy E (GeV) 45.5 45.5 80 120 175
Beam current (mA) 1450 1450 152 30 6.6
Bunches/beam 30180 91500 5260 780 81
Bunch spacing (ns) 7.5 2.5 50 400 4000
Bunch population (1011) 1.0 0.33 0.6 0.8 1.7
Horizontal emittance ε (nm) 0.2 0.09 0.26 0.61 1.3
Vertical emittance ε (pm) 1.0 1.0 1.0 1.2 2.5
Momentum comp. (10−5) 0.7 0.7 0.7 0.7 0.7
Betatron function at IP
- Horizontal β∗ (m) 0.5 1 1 1 1
- Vertical β∗ (mm) 1 2 2 2 2
Horizontal beam size at IP σ∗ (µm) 10 9.5 16 25 36
Vertical beam size at IP σ∗ (nm) 32 45 45 49 70
Crossing angle at IP (mrad) 30 30 30 30 30
Energy spread (%)
- Synchrotron radiation 0.04 0.04 0.07 0.10 0.14
- Total (including beamstrahlung) 0.22 0.09 0.10 0.12 0.17
Bunch length (mm)
- Synchrotron radiation 1.2 1.6 2.0 2.0 2.1
- Total (including beamstrahlung) 6.7 3.8 3.1 2.4 2.5
Energy loss/turn (GeV) 0.03 0.03 0.33 1.67 7.55
SR power/beam (MW) 50 50 50 50 50
Total RF voltage (GV) 0.4 0.2 0.8 3.0 10.0
RF frequency (MHz) 400 400 400 400 400
Longitudinal damping time (turns) 1320 1320 243 72 23
Energy acceptance RF (%) 7.2 4.7 5.5 7.0 6.7
Synchrotron tune Qs 0.036 0.025 0.037 0.056 0.075
Polarization time tp (min) 11200 11200 672 89 13
Interaction region length Li (mm) 0.66 0.62 1.02 1.35 1.74
Hourglass factor H(Li) 0.92 0.98 0.95 0.92 0.88
Luminosity L/IP for 2 IPs (1034 cm−2s−1) 207 90 19.1 5.1 1.3
Beam-beam parameter ξ
- Horizontal 0.025 0.05 0.07 0.08 0.08
- Vertical 0.16 0.13 0.16 0.14 0.12
Luminosity lifetime (min) 94 185 90 67 57
Beamstrahlung critical No/Yes No No No Yes
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B Phasor

The correction of the W functions in Chapter 4 requires careful adjustment of the phase
advance between final focus quadrupoles and the first sextupoles in the arc lattice. As
the matching of the optics is time-consuming, a so-called phasor was used to speed up
the optimisation process. A phasor is a symplectic transfer matrix R(∆µx,∆µy), which
modifies the betatron phase functions and thus the phase advances µx and µy within a
range of ±π while leaving the the optical functions unchanged. Following [67], the matrix
for phase advance modification without coupling and vertical dispersion is represented by:

R(∆µx,∆µy) =




R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0

0 0 R43 R44 0 0

R51 R52 0 0 1 0

0 0 0 0 0 1




with (B.1)

R11 = cos(∆µx) + αx sin(∆µx) R33 = cos(∆µy) + αy sin(∆µy)

R12 = βx sin(∆µx) R34 = βy sin(∆µy)

R21 = −γx sin(∆µx) R43 = −γy sin(∆µy)

R22 = cos(∆µx)− αx sin(∆µx) R44 = cos(∆µy)− αy sin(∆µy)

R16 = Dx(1−R11)−D′xR12 R51 = D′x(1−R11) +DxR21

R26 = D′x(1−R22)−D′xR21 R52 = Dx(R22 − 1)−D′xR12

βx/y, αx/y and γx/y denote the Twiss parameters. Dx is the horizontal dispersion and D′x
its derivative.
Such a phasor is not provided by MAD-X, but can be defined. A macro to calculate the

matrix elements for given phase shifts and to install the phasor at a certain position was
provided by A. Bogomyagkov [53]. The MAD-X code used in the context of this thesis is:

PHASESHIFT(seqname,LOC,FROMRK,dphix,dphiy) : macro = {

markLOC: marker;

seqedit,sequence=seqname;
remove, element=MATLOC;
remove, element=markLOC;
endedit;

seqedit,sequence=seqname;
install,element=markLOC,at=LOC,from=FROMRK;
endedit;
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MATLOC : MATRIX, RM11:=R11LOC,RM12:=R12LOC,RM21:=R21LOC,RM22:=R22LOC,
RM16:=R16LOC,RM26:=R26LOC,RM51:=R51LOC,RM52:=R52LOC,
RM33:=R33LOC,RM34:=R34LOC,RM43:=R43LOC,RM44:=R44LOC,
RM55:=1.,RM66:=1.;

use,sequence=seqname;
twiss;
betxLOC =table(twiss,markLOC,betx);
betyLOC =table(twiss,markLOC,bety);
alfxLOC =table(twiss,markLOC,alfx);
alfyLOC =table(twiss,markLOC,alfy);
dispxLOC =table(twiss,markLOC,dx);
disppxLOC=table(twiss,markLOC,dpx);

R11LOC:= cos(twopidphix)+alfxLOCsin(twopidphix);
R12LOC:= betxLOCsin(twopidphix);
R22LOC:= cos(twopidphix)-alfxLOCsin(twopidphix);
R21LOC:=-sin(twopidphix)(1+alfxLOC^2)/betxLOC;
R33LOC:= cos(twopidphiy)+alfyLOCsin(twopidphiy);
R34LOC:= betyLOCsin(twopidphiy);
R44LOC:= cos(twopidphiy)-alfyLOCsin(twopidphiy);
R43LOC:=-sin(twopidphiy)(1+alfyLOC^2)/betyLOC;
R16LOC:= dispxLOC(1-R11LOC)-R12LOCdisppxLOC;
R26LOC:= disppxLOC(1-R22LOC)-R21LOCdispxLOC;
R51LOC:= R21LOCR16LOC-R11LOCR26LOC;
R52LOC:= R22LOCR16LOC-R12LOCR26LOC;

seqedit,sequence=seqname;
install, element=MATLOC,at=0.0,from=markLOC;
endedit;

use, sequence=seqname;

};

C Macro for the calculation of higher-order chromaticity

The tune as a function of the momentum deviation δ = ∆p/p can be expanded to a Taylor
series:

Q(δ) = Q0 +
dQ
dδ
δ +

1

2

d2Q
dδ2

δ2 +
1

6

d3Q
dδ3

δ3 + . . .

In the case of FCC-ee the large chromatic perturbations created due to the aggressive design
values of the beta functions at the interaction point require a chromaticity compensation
beyond the linear order to obtain a momentum acceptance of δ = ±2 %. The higher-order
derivatives of the tune function are not calculated directly by MAD-X. A macro with
calculations based of difference quotients was provided by A. Bogomyagkov [53]. For the
calculation of the linear and the second-order term three Twiss calculations are required:
one with design energy and two for ±δ momentum deviation. The tune of the calculation
with design energy will be denoted with Q0, the one for the particles with energy deviation
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with Q+δ and Q−δ. The linear chromaticity is then given by

dQ
dδ

=
1

2δ
(Q+δ −Q−δ). (C.1)

To calculate the second-order derivative the slope of the tune function is evaluated separ-
ately for positive and negative momentum deviation. A second difference quotient gives
the second order derivative:

d2Q
dδ2

=
1

δ

[
(Q+δ −Q0)

δ
− (Q0 −Q−δ)

δ

]

=
1

δ2
(Q+δ +Q−δ − 2Q0) (C.2)

For the calculation of third- and forth-order terms two additional Twiss calculations with
±2δ are needed to allow a third and fourth iteration of calculating the difference quotients.
After simplifying the equations the third- and fourth-order terms are given by

d3Q
dδ3

=
1

2δ3
(Q+2δ −Q−2δ − 2Q+δ + 2Q−δ) and (C.3)

d4Q
dδ4

=
1

δ4
(Q+2δ +Q−2δ − 4Q+δ − 4Q−δ + 6Q0). (C.4)

Different values of δ were used in the context of this thesis. The value was adapted to
the range of the momentum acceptance in order to obtain a good agreement with the tunes
calculated by MAD-X.

check_chromaticity(aux_seq): macro = {
print, text = "check_chromaticity...";
!************************************************
print, text = "1st order...";

use,sequence=aux_seq;!, range=IP2R/IP1L;
deltap=1e-4;

dpp=deltap*0;
TWISS,DELTAP=dpp,chrom;
dq1_0=table(summ,q1); dq2_0=table(summ,q2);
dq1_1=table(summ,dq1); dq2_1=table(summ,dq2);

!************************************************
print, text = "2nd order...";

dpp=deltap;
TWISS,DELTAP=dpp,chrom;
qxp1=table(summ,q1); qyp1=table(summ,q2);
TWISS,DELTAP=-dpp,chrom;
qxn1=table(summ,q1); qyn1=table(summ,q2);
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! qx1=(qxp1-qxn1)/(2deltap);
! qy1=(qyp1-qyn1)/(2deltap);

dq1_2=(qxp1+qxn1-2dq1_0)/deltap^2;
dq2_2=(qyp1+qyn1-2dq2_0)/deltap^2;

!************************************************
print, text = "3rd and 4th order...";

dpp=deltap*2;
TWISS,DELTAP=dpp,chrom;
qxp2=table(summ,q1); qyp2=table(summ,q2);
TWISS,DELTAP=-dpp,chrom; qxn2=table(summ,q1); qyn2=table(summ,q2);

dq1_3=0.5*(qxp2-qxn2-2qxp1+2qxn1)/deltap^3;
dq2_3=0.5*(qyp2-qyn2-2qyp1+2qyn1)/deltap^3;

dq1_4=(qxp2+qxn2-4qxp1-4qxn1+6dq1_0)/deltap^4;
dq2_4=(qyp2+qyn2-4qyp1-4qyn1+6dq2_0)/deltap^4;

!************************************************

value,dq1_0,dq2_0,dq1_1,dq2_1,dq1_2,dq2_2,dq1_3,dq2_3,dq1_4,dq2_4;

};

D Optimisation tool to flatten the tune function

This section presents the MAD-X code of the tool for the optimisation of the tune function
used in Sec. 4.6.2. The macro calculates the tune for a user-defined number of steps within
the acceptable range of energy deviation. The squared difference to the nominal tune for
δ = 0 is then minimised by optimising the available sextupole strengths using the matching
routines in MAD-X.

penalty_x = 0;
penalty_y = 0;
penalty := penalty_x + penalty_x;

counter = 0;
optimise_bandwidth : macro = {

value, counter;
counter = counter + 1;

delete, table=mytab;
create, table=mytab, column=dp, tune_x, tune_y, penalty_x, penalty_y;
tune_x:=table(summ,q1);
tune_y:=table(summ,q2);
dp:=deltap_min;

penalty_x = 0;
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penalty_y = 0;

deltap_max = 0.0025;
deltap_min =-0.0025;
deltap_int = 0.001;

twiss;
q1ref = table(summ,q1);
q2ref = table(summ,q2);
!value, q1ref, q2ref;

while (deltap_min<=deltap_max) {
value, deltap_min;
twiss, deltap=deltap_min;

if (tune_x>0) {
penalty_x = penalty_x + (table(summ,q1)-q1ref)^2;

}
if (tune_y>0) {

penalty_y = penalty_y + (table(summ,q2)-q2ref)^2;
}

fill, table=mytab;

deltap_min = deltap_min + deltap_int;
}

value, penalty;
!write,table=mytab;

}

E Optimisation tool to decrease the slope of the tune
function at the edge

This section presents the MAD-X code of the tool for the minimisation of the slopes of
the tune function at the edge of the momentum acceptance used in Sec. 4.6.3. The tunes
of particles with two different energy deviations close to the edge of the accepted energy
range are calculated. The user can define, whether both sides should be optimised or just
one.

deltapstart1 = 0.0067;
deltapstart2 =-0.0044;
counter = 1;

check_tunesdeltap : macro {
deltap_start1= deltapstart1;
deltap_start2= deltapstart2;

twiss, deltap = deltap_start1;
qpx1=table(summ,q1);
qpy1=table(summ,q2);

158



5.5. OPTIMISATION TOOL TO DECREASE THE SLOPE OF THE TUNE FUNCTION AT THE EDGE

twiss, deltap = deltap_start1-0.0001;
qpx2=table(summ,q1);
qpy2=table(summ,q2);

twiss, deltap =deltap_start2+0.0001;
qnx2=table(summ,q1);
qny2=table(summ,q2);
twiss, deltap =deltap_start2;
qnx1=table(summ,q1);
qny1=table(summ,q2);

penalty_xp=(abs(qpx1-qpx2))/0.0001;
penalty_xn=(abs(qnx2-qnx1))/0.0001;
penalty_yp=(abs(qpy1-qpy2))/0.0001;
penalty_yn=(abs(qny2-qny1))/0.0001;

}

If the macro is executed from a while loop, the momentum acceptance can be increased
iteratively until the current configuration of the sextupoles does not allow any further
progress.

weiter=1;
while (weiter>0) {

match,use_macro;

vary, name=knl_hilf_sf1.1, step=1.0E-10;
vary, name=knl_hilf_sf1.2, step=1.0E-10;
vary, name=knl_hilf_sf1.3, step=1.0E-10;
vary, name=knl_hilf_sf1.4, step=1.0E-10;
vary, name=knl_hilf_sf1.5, step=1.0E-10;
vary, name=knl_hilf_sf1.6, step=1.0E-10;
vary, name=knl_hilf_sf6.1, step=1.0E-10;
vary, name=knl_hilf_sf6.2, step=1.0E-10;
vary, name=knl_hilf_sf6.3, step=1.0E-10;
vary, name=knl_hilf_sf6.4, step=1.0E-10;
vary, name=knl_hilf_sf6.5, step=1.0E-10;
vary, name=knl_hilf_sf6.6, step=1.0E-10;

vary, name=knl_hilf_sd1.1, step=1.0E-10;
vary, name=knl_hilf_sd1.2, step=1.0E-10;
vary, name=knl_hilf_sd1.3, step=1.0E-10;
vary, name=knl_hilf_sd1.4, step=1.0E-10;
vary, name=knl_hilf_sd1.5, step=1.0E-10;
vary, name=knl_hilf_sd1.6, step=1.0E-10;
vary, name=knl_hilf_sd6.1, step=1.0E-10;
vary, name=knl_hilf_sd6.2, step=1.0E-10;
vary, name=knl_hilf_sd6.3, step=1.0E-10;
vary, name=knl_hilf_sd6.4, step=1.0E-10;
vary, name=knl_hilf_sd6.5, step=1.0E-10;
vary, name=knl_hilf_sd6.6, step=1.0E-10;
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use_macro, name=check_tunesdeltap;

constraint, expr=penalty_xp=0;
constraint, expr=penalty_xn=0;
constraint, expr=penalty_yp=0;
constraint, expr=penalty_yn=0;
jacobian, calls=5, tolerance=1.0E-8, bisec=1;

endmatch;

twiss, deltap=deltapstart1+0.0001;
test1 = table(summ, q2);
twiss, deltap=deltapstart2-0.0001;
test2 = table(summ, q2);
testweiter = test1+test2;

if (test1>0) deltapstart1=deltapstart1+0.0001;
if (test2>0) deltapstart2=deltapstart2-0.0001;

if (testweiter<1) weiter=0;
if (counter>5) weiter=0;
value, counter;
counter=counter+1;

value, deltapstart1, deltapstart2;

}
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