EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Fusion hindrance at sub-barrier energies for weakly bound nuclei on heavy targets: the ${}^{8}B + {}^{208}Pb$ case

May 18, 2017

A. Pakou¹, I. Martel², A. M. Sánchez-Benítez², N. Keeley³, K. Rusek⁴, N. Alamanos⁵,

R. Raabe⁶, F. Cappuzzello^{7,8}, L. Acosta⁹, A. Assimakopoulou¹⁰, Ch. Betsou¹¹, D.

Carbone⁷, M. Cavallaro⁷, M. La Commara^{12,13}, R. Lică^{14,15}, M. Mazzocco^{16,17}, N. G.

Nicolis¹, A. K. Orduz¹⁸, D. Pérez Álvarez¹⁸, D. Pierroutsakou¹², J. S. Segovia¹⁸, O.

Sgouros¹, F. M. de Sola¹⁸, V. Soukeras¹, G. Souliotis¹⁰, A. Trzcinska⁴, M.

Wolinska-Cichocka⁴, B. Zalewski⁴, K. Zerva¹.

¹ Department of Physics and HINP, The University of Ioannina, Ioannina, Greece.

 2 Departamento de Ciencias Integradas, Universidad de Huelva, Huelva

³ National Center for Nuclear Research, Otwock, Poland

⁴ Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland

⁵ CEA-Saclay, DAPNIA-SPhN, 91191, Gif-sur-Yvette, France

 6 Instituut voor kern-en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium

⁷ INFN-Laboratori Nazionali del Sud, Catania

⁸ Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95125, Catania, Italy

⁹Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico

¹⁰Department of Chemistry and HINP, National and Kapodistrian University of Athens, Greece

¹¹Department of Physics and HINP, Aristotle University of Thessaloniki, Greece

¹² INFN-Sezione di Napoli, Napoli, Italy.

¹³ Department of Physical Science, University of Napoli, Napoli, Italy.

¹⁴CERN, CH-1211 Geneva 23, Switzerland.

 $^{15}\mathrm{Horia}$ Hulubei National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest, Romania

¹⁶Department of Physics and Astronomy, University of Padova, Padova, Italy.

¹⁷ INFN-Sezione di Padova, Padova, Italy.

¹⁸C.H.U.H. Juan Ramn Jímenez, 21005 Huelva, Spain

Spokesperson: Athena Pakou - apakou@cc.uoi.gr Local Contact: Razvan Lică - razvan.lica@cern.ch

Abstract:

We propose a study of the ${}^{8}B + {}^{208}Pb$ system at the sub-Coulomb energy of 43 MeV via measurements of the elastic scattering and ⁷Be production cross sections. The main goal of this work is to answer a fundamental question concerning the competition between fusion and direct channels below the barrier for a proton halo nucleus like ⁸B incident on a heavy target. It is believed from phenomenological predictions that for weakly bound nuclei incident on heavy targets the direct channels exhaust most of the total reaction cross section for incident energies below the Coulomb barrier, with important consequences for both fusion and various astrophysical problems. In this context the sub-barrier breakup and elastic scattering will be investigated for a global understanding of this issue and the relevant channel coupling effects. In addition the elastic scattering measurement will address another fundamental question: how far does the elastic scattering for proton halo nuclei deviate from Rutherford scattering at energies below the barrier? The measurement will include angular distributions of both the elastically scattered ⁸B nuclei and the ⁷Be breakup fragments by using the GLORIA multiarray. The breakup measurement will be performed in inclusive mode due to the low beam flux, via the measurement of the ⁷Be - production. These nuclei can be produced as breakup fragments and as reaction products of a p - transfer process. The latter is, however, expected to occur with a very low probability, while the total ⁷Be production includes all direct processes, the determination of which is the main goal of this study.

Requested shifts: 21 shifts - 7 days **Installation:** 2nd beamline of HIE-ISOLDE

1 Scientific Motivation

This proposal, which includes an elastic scattering and a breakup measurement, is mainly motivated by a sound result reported in Ref. [1] for the fusion hindrance of weakly bound nuclei on heavy targets starting at energies just below barrier. This conclusion was obtained using systematic results for fusion and total reaction cross sections and mapping the energy dependence for the ratio of direct to total reaction cross section at near and sub-barrier energies (see Fig. 1). It was found that while at near but above -barrier energies this ratio is similar for weakly bound nuclei on all targets, close to $\sim 20\%$, for energies below the barrier and only for heavy targets this ratio increases up to ~ 100 %, leaving little room for fusion. If this prediction can be validated experimentally it will have important consequences for the fusion mechanism itself and for various astrophysical problems. So far it has only been verified above the barrier because the cross sections are usually very small at sub-barrier energies and therefore very difficult to measure sufficiently accurately. ⁸B, a proton rich nucleus with a possible proton halo, gives us a unique possibility to obtain the direct part of the total reaction cross section at energies below the barrier. According to Continuum Discretized Coupled Channels (CDCC) calculations, breakup seems to exhaust most of the total reaction cross section, presenting at the sub-barrier energy of 43 MeV the rather large cross section of $\sigma_{\text{breakup}} = 360 \text{ mb}$ in comparison with a total reaction cross section of $\sigma_{tot} = 415$ mb. Calculated elastic scattering and breakup angular distributions are shown in Figs. 2 and 3. As may be seen from Fig. 3, the breakup cross section is concentrated in a very narrow angular range at forward angles and therefore should be easily accessible in an angular distribution measurement. It should be noted that the subject of fusion hindrance for stable heavy-ions has been reported and debated in several articles in the past but for extreme sub-barrier energies [2, 3, 4, 5]. The only existing measurements for the fusion ⁸B on ⁵⁸Ni [6] present a large enhancement below and above barrier contradicting results above barrier for ⁸B fusion on ²⁸Si [7].

Furthermore, elastic scattering of exotic nuclei has proved to be a powerful tool for investigating channel coupling mechanisms, especially at near-barrier energies [8]. Standard methods, usually within a CDCC approach for weakly bound projectiles, have been developed to study near-barrier elastic scattering and its associated direct reactions within the coupled-channels technique. In these investigations strong couplings to direct channels do not always seem to be directly connected with the observation of large breakup or transfer reaction cross sections. Specifically, in Ref. [9] the authors investigate breakup coupling effects on near-barrier ⁶Li, ⁷Be and ⁸B + 58 Ni elastic scattering in a CDCC approach. They observe the following paradox: ⁶Li, with a relatively small breakup cross section, exhibits an important breakup coupling effect on the elastic scattering, whereas ⁸B, with a large breakup cross section, shows a very modest coupling effect. Further investigation found that the coupling effect on the modulus of the S matrix, which is connected with changes in the imaginary part of the potential, is almost negligible for ${}^{8}B$ and largest for ⁶Li. By contrast, for $\arg(S)$, which is connected with changes to the real part of the potential, the coupling effect is greatest for ⁸B, smallest for ⁷Be and intermediate for ⁶Li. The same problem is reported in the literature in an alternative approach, related to the effect of Coulomb or/and nuclear couplings as a source of Coulomb rainbow suppression [10] or as a deviation from Rutherford scattering at energies below the barrier [11]. Each case investigated appears to be unique. In this respect large effects concerning the disappearance of the Coulomb rainbow are observed for ⁶He on heavy targets and calculations confirm [12] that they are mostly due to Coulomb dipole couplings. For ¹¹Be the effect persists for medium mass targets and the origin of the phenomenon seems to be different, in that nuclear couplings are much more important here [9, 13]. With respect to deviations from Rutherford scattering at very low energies, measurements at near-barrier energies for ⁶He show slight deviations, while well below the barrier the only existing measurement for ¹¹Li+²⁰⁸Pb exhibits the persistence of a dramatic deviation from Rutherford scattering [11]. The reduction is confirmed in four-body continuum-discretized coupled channel calculations based on a three-body model of the ¹¹Li projectile and is attributed to the strong Coulomb dipole coupling to the the low-lying continuum of ¹¹Li.

Motivated by the above considerations, we propose an elastic scattering measurement for the ${}^{8}B + {}^{208}Pb$ system at the sub-Coulomb energy of $E_{{}^{8}B} = 43$ MeV with a simultaneous measurement of the ⁷Be production. According to our calculations [9] a rather moderate deviation from Rutherford scattering is predicted for this system, as may be seen from Fig. 1, but this needs to be verified experimentally. As was already said the rather large ⁷Be production yield is expected to come mainly from the elastic breakup and with a very low probability from a p - transfer process. This was verified previously in a ${}^{8}B$ + ${}^{58}Ni$ measurement [14]. Moreover, breakup and p - transfer are the only direct open

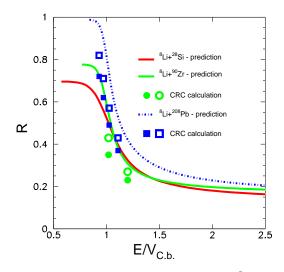


Figure 1: Ratio direct to total reaction cross section for ${}^{8}Li$ on various targets. Similar results can be obtained for ${}^{8}B$ - from Ref. [1].

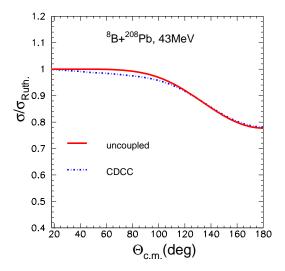


Figure 2: Elastic scattering calculations in a CDCC approach for ${}^{8}B + {}^{208}Pb$ [8].

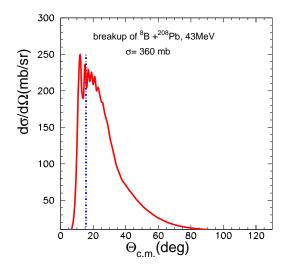


Figure 3: Calculated breakup cross sections in a CDCC approach [8]. The vertical dotdashed blue line denotes the lower point up to which we can measure the breakup with our setup.

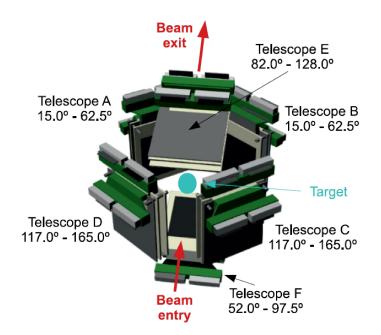


Figure 4: 3D representation of our setup, the GLORIA array [15]. Relative positions of the detectors are indicated in the figure.

channels in this energy, therefore the determination of ${}^{7}\text{Be}$ - production will determine all the direct part of cross section, which is the main goal of this study.

2 Proposed Experiment

The proposed experiment is well suited for a beam with a low flux such as the ⁸B beam at REX-ISOLDE. It is of particular interest due to the importance of ⁸B in astrophysical and reaction mechanism problems, especially at near-barrier energies. To date low-energy beams of ⁸B have been produced by the in flight technique and are therefore of low quality. The availability of a post accelerated beam at REX-ISOLDE will give us the possibility to obtain high quality data with a strong impact in our community. The proposed experiment includes angular distribution measurements of both the elastically scattered ⁸B and the ⁷Be-particle production. Our experimental set up, schematically presented in Fig. 4, will include six two-stage telescopes, $40\mu m$ DSSSD + 1500 μm thick DSSSD detectors from the GLObal Reaction Array (GLORIA) [15]. The telescopes will be set at a distance of ~ 6 cm from the target in a compact geometry, as illustrated in Fig. 4, at positions so as to cover the angular range between 15° and 165° . The exact position of each telescope is indicated in Fig. 4. The most forward telescopes (A and B) will be set at symmetrical positions for testing divergence of the beam, accurately determining the beam flux and determining the breakup cross section with good statistical accuracy, covering most of the angular range of the breakup fragments (see Fig. 3). The other telescopes will cover most of the angular range of the elastically scattered ${}^{8}B$. A 1.5 mg/cm² thick target will be set in the middle of the chamber tilted by 25° with respect to the z-axis in order to avoid the shadow of the target holder in the angular range around 90° .

Summary of requested shifts: Taking into account a mean secondary beam intensity of 5×10^3 pps, a lead target thickness of 1.5 mg/cm², the differential cross section for elastic scattering and breakup appearing in Figs. 2 and 3 respectively, and a solid angle per strip $(\Delta \theta_{\rm lab} \sim 3.0^{\circ})$ of $\sim 4.4 \times 10^{-2}$ sr, we request **17** shifts. Within this beam time schedule we intend to obtain differential cross sections for elastic scattering with a statistical error of less than 1% for angles below 38° while for critical angles such as those at $\theta = 90^{\circ}$ we will obtain cross sections with an error of ~ 7%, at $\theta = 130^{\circ}$ with an error of 12% and at $\theta = 160^{\circ}$ an error of 15%, the last two dropping down to 8% and 10% respectively if we take into account a weighted mean between the two symmetrical detectors. For the breakup measurement at the most prominent angles, 15° to 29° , where the differential cross section is between 230 to 150 mb/sr the statistical error will be between 10% to 12% respectively (the collected counts will be 110 to 70 between 15° and 29°). To the right of the peak, at 47° the error will be 21% for 23 counts in total ($\sigma(\theta) = 50 \text{ mb/sr}$). These uncertainties could be reduced to 7%, 8.5% and 15% correspondingly, if we take into account a weighted mean between data from the two symmetrical detectors. Four additional shifts are requested for delivering the beam and for tuning the electronics. Therefore, in total we request 21 shifts corresponding to ~ 7 days

References

- [1] A. Pakou et al; Eur. Phys. J. A 51, 55 (2015).
- [2] C. L. Jiang et al., Phys. Rev. Lett. 89, 052701 (2002).
- [3] C. L. Jiang et al., Phys. Rev. Lett. **93**, 012701 (2004).
- [4] C. L. Jiang et al., Phys. Rev. Lett. **113**, 022701 (2014).
- [5] C. L. Jiang et al., Phys. Rev. C **91**, 044602 (2015).
- [6] E. F. Aguilera et al., Phys. Rev. C 107, 092701(2011).
- [7] A. Pakou et al., Phys. Rev. C 87, 014619 (2013).
- [8] N. Keeley, N. Alamanos, K.W. Kemper, K. Rusek, Prog. Part. Nucl. Phys. 63, 396(2009).
- [9] N. Keeley, R. S. Mackintosh and C. Beck, Nucl. Phys. A834, 792c (2010).
- [10] N. Keeley, N. Alamanos, K. W. Kemper and K. Rusek, Phys. Rev. C 82, 034606(2010).
- [11] M. Cubero et al., Phys. Rev. Lett. **109**, 262701 (2012).
- [12] O. R. Kakuee et al., Nucl. Phys. A765, 294 (2006).
- [13] A. Di Pietro et al., Phys. Rev. Lett. **105**, 022701(2010).
- [14] J. J. Kolata et al., Phys. Rev. C 63, 024616 (2001).
- [15] G. Marquínez-Durán et al., Nucl. Instr. and Methods in Phys. Research A755, 69 (2014).

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: (name the fixed-ISOLDE installations, as well as flexible elements of the experiment)

Part of the	Availability	Design and manufacturing
(General purpose reaction cham-	\boxtimes Existing	\boxtimes To be used without any modification
ber HIE-ISOLDE 3rd beam line,		
XT03)		
Silicon detector system GLORIA	\boxtimes Existing	\boxtimes To be used without any modification
[*]		
		\Box To be modified
	\Box New	\Box Standard equipment supplied by a manufacturer
		\Box CERN/collaboration responsible for the design
		and/or manufacturing
	\Box Existing	\Box To be used without any modification
		\Box To be modified
	\Box New	\Box Standard equipment supplied by a manufacturer
		\Box CERN/collaboration responsible for the design
		and/or manufacturing
[insert lines if needed]		

* G. Marquinez-Duran, et al. "GLORIA: A compact detector system for studying heavy ion reactions using radioactive beams". Nuclear Instruments and Methods in Physics Research Section A 755 (2014) 69-77.

HAZARDS GENERATED BY THE EXPERIMENT (if using fixed installation:) Hazards named in the document relevant for the fixed [MINIBALL + only CD, MINIBALL + T-REX] installation.

Additional hazards:

Hazards	[Part 1 of experiment/ equipment]	[Part 2 of experiment/ equipment]	[Part 3 of experiment/ equipment]		
Thermodynamic and fluidic					
Pressure					
Vacuum	10^{-6} mbar				
Temperature	Room temperature				
Heat transfer					
Thermal properties of materials					
Cryogenic fluid					
Electrical and electromagnetic					
Electricity					

Static electricity		
Magnetic field		
Batteries		
Capacitors		
Ionizing radiation		
Target material [mate-	208 Pb, 1.5 mg/cm ²	
rial]		
Beam particle type (e,	⁸ B	
p, ions, etc)		
Beam intensity	$10^3 - 10^7$	
Beam energy	$5.38 \ {\rm MeV/u}$	
Cooling liquids		
Gases		
Calibration sources:		
• Open source	\boxtimes	
• Sealed source		
• Isotope	Am,Pu,Cm	
• Activity	1 kBq	
Use of activated mate-	NO	
rial:		
• Description		
• Dose rate on contact		
and in 10 cm distance		
• Isotope		
Activity		
Non-ionizing radiatio	n	
Laser		
UV light		
Microwaves (300MHz-		
30 GHz)		
Radiofrequency (1-300		
MHz)		
Chemical		
Toxic	[chemical agent], [quan-	
	tity]	
Harmful	[chem. agent], [quant.]	
CMR (carcinogens,	[chem. agent], [quant.]	
mutagens and sub-		
stances toxic to repro-		
duction)		
Corrosive	[chem. agent], [quant.]	
Irritant	[chem. agent], [quant.]	
Flammable	[chem. agent], [quant.]	
Oxidizing	[chem. agent], [quant.]	
Explosiveness	[chem. agent], [quant.]	
	1	
Asphyxiant	[chem. agent], [quant.]	

			1		
Dangerous for the envi-	[chem. agent], [quant.]				
ronment					
Mechanical	Mechanical				
Physical impact or me-	[location]				
chanical energy (mov-					
ing parts)					
Mechanical properties	[location]				
(Sharp, rough, slip-					
pery)					
Vibration	[location]				
Vehicles and Means of	[location]				
Transport					
Noise					
Frequency	[frequency],[Hz]				
Intensity					
Physical	Physical				
Confined spaces	Bat. 170, 1 Rack for				
	electronics and dacq				
High workplaces	[location]				
Access to high work-	[location]				
places					
Obstructions in pas-	[location]				
sageways					
Manual handling	[location]				
Poor ergonomics	[location]				

Hazard identification:

Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): [make a rough estimate of the total power consumption of the additional equipment used in the experiment]: 20 kW