
C
ER

N
-T

H
ES

IS
-2

01
0-

32
9

//
20

10

Monitoring and calibration of the

ALICE time projection chamber

Dag Toppe Larsen
�
�

��
��� � 	

�

�

�
� � � �

�
� �

Dissertation for the degree philosophiae doctor (PhD)

at the University of Bergen

June 2010

Contact: Dag Toppe Larsen

Institute of Physics and Technology

University of Bergen

Allégaten 55

5007 Bergen

Norway

Email: dagtl@ift.uib.no

Private email: dag.toppe.larsen@gmail.com

Download: http://web.ift.uib.no/˜dagtl/dag-phd.pdf

Vi skal ikkje sova burt sumarnatta;

ho er for ljos til det.

[1]

Acknowledgements

I have spent the past seven years studying in the experimental nuclear physics group

in Bergen. Throughout these very busy years, I have had the chance to expand my

knowledge in physics, to meet many interesting people, to work on challenging tasks, to

visit places of the world I might otherwise never see.

First of all, I would like to thank Professor Dieter Röhrich, my supervisor, for giving

me the opportunity to work in the group, and for great guidance in both physics and

life. Your intuitive and inspiring way of explaining physics has made the topic so much

more interesting and enjoyable. I have deeply appreciated being your student.

A special thank goes to my co-supervisor, Professor Joakim Nystrand. You are always

patient and helpful, and a good teacher of physics. I thank Professor Kjetil Ullaland,

for being cheerful and joking, teaching me electronics, and helping with many practical

issues. “Tusen takk” to Professor H̊avard Helstrup, for always thoroughly answering my

questions more like a friend, and final reading and commenting of my thesis. I thank

Luciano Musa, for his guidance to the detector electronics. I am impressed by both your

overview and detailed knowledge of the electronics. Many thanks go to Marian Ivanov,

for introducing me to the complex field of calibration of the TPC, when I came to GSI

I was new to this topic. All your great help have been essential to my thesis.

A large part of my work has been on the DCS for the TPC and PHOS. Matthias

Richter, Sebastian Bablok, Johan Alme, Dominik Fehlker, Christian Lippmann and Attiq

Ur Rehman provided valuable input and help to the development of the FeeServer in

general, and for the TPC in particular, while Per-Thomas Hille and Øystein Djuvsland

helped me with the PHOS FeeServer. I learnt a lot from you, and had a great time

working with you!

I also had the chance to meet and work with the following colleagues and friends:

Boris Wagner has been my office mate, we have had countless interesting discussions.

I enjoyed working with Kalliopi Kanaki on the HLT part of the drift velocity calibra-

tion. Like me, Ketil Røed, Kenneth Aamodt, Gaute Øvrebekk, Øystein Haaland, Kyrre

Skjerdal, Therese Sjursen, Alex Kastanas, Lijiao Liu, Meidana Huang, Henrik Qvigstad

and Are Stangeland all had the chance to spend considerable time in both Bergen and

at CERN. Especially at CERN, I often had the chance to join some of you, as well as

Jochen Thäder, Magnus Mager and many others for lunch or dinner, or some completely

i

ii Acknowledgements

different activity. You have made my stays at CERN much, much more enjoyable!

The other major part of my work was with the TPC drift velocity calibration, because

of which I frequently had to travel to GSI. During these stays, I enjoyed sharing office

with Alexander Kalweit, who helped me through a rather steep learning curve with the

calibration framework. I appreciated the stimulating environment at GSI, including the

lunch and the following coffee breaks with colleagues in the group.

I would like to thank my parents Britt and Eiulf, and my brother Ken, your con-

stant support could not mean more to me. Over the past years, I have been ever more

frequently away, and had less time to spend with you. I am always looking forward to

come home to you!

Special thanks go to my dear Hongyan for your constant love and encouragement.

Thank you for reading through my thesis and giving valuable comments. Thank you for

being there for me all time the past years. I have been very lucky to have met you and

have you by my side.

There are also many other people who have helped me, in one way or another, to

make it possible for me to finish this work — too many to be listed here. Thank you all.

Dag Toppe Larsen

Bergen, June 2010

Preface

The aim of the A Large Ion Collider Experiment (ALICE) experiment at CERN is to

study the properties of the Quark–Gluon Plasma (QGP). With energies up to 5.5 A TeV

for Pb+Pb collisions, the Large Hadron Collider (LHC) sets a new benchmark for heavy-

ion collisions, and opens the door to a so far unexplored energy domain. A closer look

at some of the physics topics of ALICE is given in Chapter 1.

ALICE consists of several sub-detectors and other sub-systems. The various sub-

detectors are designed for exploring different aspects of the particle production of an

heavy-ion collision. Chapter 2 gives some insight into the design.

The main tracking detector is the Time Projection Chamber (TPC). It has more than

half million read-out channels, divided into 216 Read-out Partitions (RPs). Each RP is

a separate Front-End Electronics (FEE) entity, as described in Chapter 3. A complex

Detector Control System (DCS) is needed for configuration, monitoring and control.

The heart of it on the RP side is a small embedded computer running the FeeServer

software, providing a means for remote configuration and continuous monitoring of the

FEE. Chapter 4 gives details of the implementation of this software, and also shows the

performance measurements. In Chapter 5, potential improvements to the FeeServer class

factorisation is discussed.

Converting the electronics signals, as measured by the sub-detectors, into useful

physics data is a complicated process. This is called the calibration. Every sub-detector

has its unique set of calibration tasks and challenges. Chapter 6 looks into some of

the aspects of calibrating the electron drift of the TPC. This discussion is continued in

Chapter 7, where the concrete AliRoot framework for some of the TPC calibration tasks

is described. Chapter 8 dwells on the specifics of the TPC drift velocity calibration.

Finally, the status of the effort is given in Chapter 9.

iii

Contents

Acknowledgements i

Preface iii

Contents v

List of Figures ix

List of Tables xi

Introduction 1

1 Ultra-relativistic heavy ion collisions 1

1.1 Heavy ion collision . 1

1.2 Perturbative quantum chromo-dynamics 4

1.3 Lattice QCD . 5

1.4 QGP signatures . 7

1.4.1 Collective flow . 7

1.4.2 High-pT suppression and jet quenching 11

2 A large ion collider experiment 17

2.1 Large hadron collider . 17

2.2 ALICE sub-detectors . 19

2.2.1 Time projection chamber . 19

2.2.2 Photon spectrometer . 24

2.2.3 Electro-magnetic calorimeter . 25

2.2.4 Di-jet calorimeter . 25

2.2.5 Inner tracking system . 25

2.2.6 Transition radiation detector . 25

2.2.7 Time-of-flight . 26

2.2.8 High momentum particle identification detector 26

2.2.9 Muon spectrometer . 26

v

vi CONTENTS

2.2.10 Zero degree calorimeter . 26

2.2.11 Forward multiplicity detector . 27

2.2.12 Photon multiplicity detector . 27

2.2.13 Time-zero . 27

2.2.14 Veto . 27

2.3 Trigger system . 27

2.3.1 TTCrx of DCS board . 28

2.3.2 Busy-box . 28

2.3.3 Central trigger processor . 29

2.3.4 PHOS trigger . 29

2.4 High-level trigger . 30

2.5 Data acquisition . 30

Detector control system 33

3 Front-end electronics components 33

3.1 DCS hierarchy overview . 33

3.2 Front-end electronics for TPC and PHOS 34

3.3 DCS board . 36

3.3.1 Hardware components . 38

3.3.2 Firmware . 38

3.3.3 Operating system — Linux . 39

3.3.4 Tools . 40

3.3.5 File system layout and scripts . 41

3.3.6 Start of FeeServer . 43

3.3.7 Network . 43

3.4 DCS bus . 44

3.4.1 Message buffer-operation . 45

3.4.2 Flash-operation . 45

3.4.3 Select map-operation . 46

3.5 RCU . 46

3.6 TPC and PHOS FECs . 49

3.6.1 Board controller . 50

3.6.2 PASA . 50

3.6.3 ALTRO . 51

3.6.4 Interrupt . 51

CONTENTS vii

4 FeeServer software 53

4.1 FeeServer Core . 54

4.2 FeeServer ControlEngine . 56

4.2.1 Control engine . 56

4.2.2 Device . 57

4.2.3 Service . 58

4.2.4 Issue . 60

4.2.5 State machine . 61

4.2.6 Base classes and inheritance . 63

4.2.7 Interrupt handling . 63

4.3 Versions . 64

4.3.1 TPC and PHOS . 64

4.3.2 Trigger-or . 66

4.3.3 Busy-box . 66

4.3.4 Laser synchronisation . 67

4.3.5 Gate pulser . 67

4.3.6 Calibration pulser . 67

4.4 General DCS infrastructure . 67

4.4.1 InterComLayer . 67

4.4.2 ICL interaction . 69

4.4.3 Configuration database . 69

4.4.4 PVSS . 70

4.4.5 DIM . 70

4.5 DCS operation and performance . 71

5 FeeServer refactoring outlook 77

5.1 Access class . 78

5.2 Resource class . 81

5.3 State machine class . 85

5.4 Device class . 87

5.5 Control class . 88

5.6 Outlook . 88

TPC calibration 89

6 Calibration overview 89

6.1 The electron drift vector . 91

6.2 Effects influencing the electron drift . 92

6.2.1 Mechanical distortions . 92

viii CONTENTS

6.2.2 Electrostatic distortions . 92

6.2.3 E × B . 92

6.2.4 Gain . 93

6.2.5 Electron attachment . 93

6.2.6 Space charge . 94

6.2.7 Drift velocity . 94

7 TPC AliRoot calibration framework 95

7.1 Off-line classes . 95

7.2 Order of calibration . 96

7.3 Condition database . 97

7.4 HLT production of calibration objects . 99

8 Drift velocity calibration 101

8.1 Influencing parameters . 101

8.2 Correction sources . 104

8.2.1 Track matching . 105

8.2.2 Laser tracks . 109

8.2.3 Goofie . 110

8.2.4 Time-bin distribution . 110

8.3 Systematics of effects . 110

8.4 Strategy . 114

8.5 Impact of uncalibrated TPC drift velocity on physics 114

8.6 TPC performance . 115

Summary 117

9 Conclusion and outlook 117

Appendix I

Publications I

Bibliography III

Glossary IX

List of Figures

1.1 The phase-space diagram. 2

1.2 Schematic view of a heavy-ion collision. 2

1.3 Light-cone collision space–time coordinate system. 3

1.4 LQCD predictions. 6

1.5 Collision geometry. 8

1.6 v2 as function of centrality. 9

1.7 v2/nq as function of pT/nq. 10

1.8 v2 as function of pT . 10

1.9 RAA as function of centrality. 12

1.10 RAA as function of pT . 13

1.11 RAA as function of pT . 14

1.12 Jet production in heavy-ion collision. 15

1.13 Dihadron azimuthal correlations at high pT 15

2.1 Schematic view of ALICE. 18

2.2 Schematic view of the LHC. 19

2.3 Schematic view of the TPC. 20

2.4 Event rate and data rate as function of occupancy for TPC read-out. . . 21

2.5 TPC particle identification. 22

2.6 TPC dE/dx. 22

2.7 First TPC collision event. 23

2.8 DAQ overview. 31

3.1 TPC DCS working principle. 34

3.2 TPC trigger and data read-out working principle. 35

3.3 Picture of a DCS board and a SIU mounted on an RCU. 36

3.4 Picture of a DCS board. 37

3.5 DCS board communication block diagram 37

3.6 RCU dataflow diagram. 47

3.7 Picture of a TPC FEC. 49

3.8 Picture of a PHOS FEC. 50

ix

x LIST OF FIGURES

4.1 DCS communication block diagram. 54

4.2 Inheritance diagram of the main FeeServer CE classes 55

4.3 FeeServer–DIM–FeeClient interaction . 70

4.4 DCS configuration performance. 72

4.5 A PVSS panel showing graphically the FEC temperatures. 73

4.6 A PVSS panel showing numerically the FEC data-points. 74

4.7 A PVSS panel showing graphically the BusyBox data-points. 75

5.1 Simplified collaboration diagram for a possible refactorised FeeServer CE. 78

6.1 Simplified process from raw to reconstructed data for the TPC. 89

6.2 E × B correction as function of field strength. 92

6.3 TPC electron attachment calculation principle. 94

7.1 Inheritance diagram for TPC calibration classes. 97

7.2 Collaboration diagram for TPC calibration objects. 99

8.1 A positive Δz around the TPC CE, schematic view. 102

8.2 A track miss-match around the CE. 102

8.3 Drift velocity correction as function of time. 103

8.4 TPC uncorrected drift velocity as function of time. 107

8.5 TPC uncorrected drift velocity as function of ΔT/P 107

8.6 TPC drift velocity corrected for P/T . 107

8.7 TPC drift velocity corrected for P/T and time-dependent offset. 108

8.8 Relative resolution of TPC counting gas temperature. 108

8.9 Relative resolution of TPC counting gas pressure. 108

8.10 TPC laser tracks. 109

8.11 Perfectly calibrated TPC tracks. 111

8.12 Impact of uncorrected positive Δz scaling on TPC tracks. 111

8.13 Impact of uncorrected negative Δz scaling on TPC tracks. 111

8.14 Impact of uncorrected TPC–ITS shift on TPC tracks. 112

8.15 Impact of uncorrected t0 on TPC tracks. 112

8.16 Impact of uncorrected t0, TPC–ITS shift and Δz scaling on TPC tracks. 112

8.17 TPC dE/dx resolution. 115

8.18 TPC pT resolution. 115

List of Tables

4.1 DCS configuration performance . 71

7.1 Drift and gain calibration object naming convention. 99

xi

Chapter 1

Ultra-relativistic heavy ion collisions

1.1 Heavy ion collision

The goal of heavy-ion collisions at ultra-relativistic energies is to study the property of

strongly interacting systems, which are described by the theory of Quantum Chromo-

Dynamics (QCD). It was predicted by QCD that a new state of matter, the so-called

QGP can be created in such collision systems, if the temperature and energy density

exceed a certain threshold, obtained by increasing the kinetic energy of the colliding

beams. In this new state of matter, the constituent partons, namely quarks and gluons,

are freed from nucleons in which they are normally confined by the strong force. The

phase diagram (Figure 1.1) shows the different phases of strongly interacting matter. A

phase transition separates hadronic matter from the QGP over a wide range of the baryon

chemical potential μb; at small μb a cross-over is predicted at a critical temperature

Tc ≈ [160, 170]MeV [4, 5].

In the laboratory, there have been decades of efforts in heavy-ion collisions at the

highest possible energy, Alternating Gradient Synchrotron (AGS) [6, 7, 8], Super Proton

Synchrotron (SPS) [9, 10, 11] and Relativistic Heavy Ion Collider (RHIC) [12, 13, 14].

For the fixed target experiment at AGS and SPS, the energy density might have been

high enough to create this hot and dense matter [15]. Later on, the RHIC at Brookhaven

National Laboratory (BNL) in the United States reached a centre-of-mass energy of√
sNN = 200 GeV in Au + Au collisions. There have been several indications of cre-

ation of a new state of matter in the most central Au + Au collisions at RHIC, e.g. jet

quenching and high pT suppression [16, 17], observed by the four major experiments:

Broad Range HAdron Magnetic Spectrometer (BRAHMS), Pioneering High-Energy Nu-

clear Interactions eXperiment (PHENIX), PHOBOS and Solenoidal Tracker At Rhic

(STAR).

The LHC facility at CERN has a design goal of 5.5 A TeV for Pb + Pb collisions,

compared to the Au+ Au collisions at RHIC of 200 A GeV , allowing for higher energy

1

2 Ultra-relativistic heavy ion collisions

250 500 750 1000 1250 1500 1750 2000
Baryon chemical potential �MeV�

25

50

75

100

125

150

175

200

Te
m

pe
ra

tu
re
�M

eV
�

Quark�gluon plasma

Hadron phase 2SC

NQ
CFL

Figure 1.1: The phase-space diagram of strongly interacting matter. Different states
are indicated. In general, most of the regions of the phase-diagram are to a large extent
unknown, and further exploration of it will be an important topic for future experiments.
[2]

Figure 1.2: Schematic view of a heavy-ion collision. The impact parameter b is the vector
between the centres of the nuclei at the collision. The reaction plane is defined by b and
the projectile trajectory. [2]

densities and temperatures. This will give an opportunity to study the new state of

matter — QGP — in detail, and furthermore to understand how the universe has been

evolving to what it is now.

In the following, a short introduction to the heavy-ion physics will be given, followed

by a brief discussion regarding the QCD theory and Lattice QCD (LQCD) calculations.

Finally, two selected topics, flow and jet quenching, are discussed as evidences of creation

of QGP, and current experimental observations will be shown.

According to the theory of relativity, nuclei at relativistic velocity are Lorentz-

contracted in the direction of movement, making them appear as disk-like shapes. Con-

sequently, a nuclear collision can be illustrated schematically as two approaching disks,

as shown in Figure 1.2. The dark areas of the two approaching nuclei is the over-lapping

region of the collision; the nucleons contained within are called participants of the col-

lision. The remaining nucleons of the nuclei are called spectators, as they will continue

1.1 Heavy ion collision 3

Hadron Gas

QGP

Parton Formation

Thermalization

t

z

Figure 1.3: Light-cone collision space–time coordinate system. The four stages of the
collision evolution are indicated in separate colours. [3]

moving with approximately original speed during and after the collision. An important

parameter describing the centrality of a collision, is the vector between the centres of

each nucleus, called the impact parameter b. A smaller impact parameter indicates a

more central collision. Also, the number of participants in each collision illustrates the

centrality of a collision with the same projectile and target. When the impact parameter

is small, the overlapping region is large and the total number of participants in the col-

lision is large. In such collisions, the system is extremely heated and squeezed. Partons

from participants of the highly compressed region interact with each other, creating a

“soup” of free quarks and gluons. The number of particles produced in the collision can

be used as a measure of the collision centrality.

The evolution of the collision can be divided into four main stages: initial parton

scattering; fireball formation; hadronisation; and hadron freeze-out. It is convenient to

describe these four stages in a light-cone coordinate system, Figure 1.3. The partons of

the nucleons inside two colliding nuclei start scattering at partonic level when the nuclei

hit each other. This is the initial condition of the collision when a fireball is created. A

QGP may be produced inside the fireball if the energy density is sufficiently high. The

expanding post-collision system cools down. When the temperature gets below a critical

temperature threshold, hadrons freeze out.

There are two extreme scenarios for describing the interaction between two colliding

nuclei. The Landau [18] picture is based on full stopping — all nucleons of the colliding

nuclei come to a full stop, and the energy carried by the colliding nuclei is deposited in the

vicinity of the collision centre-of-mass. This is a hydro-dynamical model, which implies

a net-baryon distribution close to a Gaussian around mid-rapidity, and will result in a

Gauss-distributed rapidity spectrum of produced particles. The Bjorken [19] picture, on

4 Ultra-relativistic heavy ion collisions

the other hand is based on transparency — most of the nucleons will only lose a small

fraction of their energy and momentum. Hence, the nuclei will continue with almost their

original speed after interaction. In this picture, the central region will be net-baryon free.

Such a scenario is expected for LHC energies.

1.2 Perturbative quantum chromo-dynamics

The theoretical model describing heavy-ion collisions is QCD. It is based on non-abelian

gauge theory, and is a part of the standard model. The strong force is described in

terms of colour charge, carried by quarks and gluons. Quarks come in six flavours,

grouped into three generations. In addition there are the corresponding anti-partners.

The generations are up, charm and top with charge 2
3
e and their counterparts down,

strange and bottom with charge −1
3
e. There are three colours: red, green and blue; as

well as three anti-colours for anti-particles. Each quark carries just one colour. The

gluon is the force-exchange particle of the strong force, and will carry both colour and

anti-colour. QCD requires all free particles to be colour neutral. Hence, free quarks

can not exists, but are confined inside hadrons. Besides quark–anti-quark pairs of the

corresponding colour–anti-colour — mesons — also hadrons with three quarks of all

three colours — baryons — are colour-neutral [20].

Under the physics conditions found on earth, nuclear matter is the only stable phase.

Only the two quarks with the lowest energy level, u and d, exist in nucleons. Probing

other forms of matter requires creating physics conditions with temperatures and baryon

densities significantly higher than those found in ordinary nuclear matter. This can be

achieved by colliding heavy ions at ultra-relativistic speeds, which will break up the

nucleons, and a short-lived state with the desired conditions is created. To the best of

current understanding, a soup of quarks and gluons may be created in such collisions.

This is called quark matter.

QCD predicts asymptotic freedom, deconfinement and QGP.

Asymptotic freedom stems from SU(2) gauge theory. The field of the strong force

has two components, one Coulomb-like that decreases with the square of the distance,

and one that increases linearly [20]. Hence, at short distances the quarks are only weakly

bound by the strong force, and may be considered semi-free; or, asymptotic free.

When a threshold of temperature and density of baryons is approached, the baryons

start to overlap, and distinct baryons gradually cease to exist as the temperature or

density increases. Since the distances between the quarks are now very short, they may

adhere to the principle of asymptotic freedom. Thus, the quarks are free to move; they

are no longer confined.

When two ultra-relativistic heavy ions collide, the temperature and baryon density

is expected to be high enough to create a comparatively large volume where a soup

1.3 Lattice QCD 5

of deconfined quarks and gluons may exist in equilibrium — the QGP. It is a direct

implication of QCD and SU(3) group theory. Figure 1.1 shows the phase-diagram, where

the region of QGP is indicated. The search for it and the study of its properties may

be the most important topic of current ultra-relativistic collision experiments. As will

be shown later, some experiments claim to have observed a form of QGP, or a more

strongly coupled state — Strongly coupled QGP (sQGP) — at RHIC [21, 22].

QCD can not be solved exactly, however, effective methods exist [23]. The strong cou-

pling αs is reduced at decreasing space-time distances, i.e. high energies, and it is possible

to describe the coupling as a perturbative expansion. Hence, it can be treated similar to

the Quantum Electro-Dynamics (QED). This is called perturbative QCD (pQCD). On

the other hand, at large distances, pQCD suffers severe problems, such systems can only

be treated non-perturbativelly [23].

The rules of pQCD follow the Feynman rules, also allowing for gluon–gluon inter-

actions [23]. However, the strong coupling is 30–100 times greater than that of QED,

α/π = O(10−3). Thus, it is often necessary to include higher-order Feynman diagrams

to reach the required precision.

Equation 1.1 [2, 24] shows the pQCD calculation of the cross-section to produce a

hadron h at given pT . fi/A (x1, Q
2) and fj/B (x2, Q

2) are the Parton Distribution Function

(PDF) (the momentum distribution for the partons of a hadron) for two hadrons A and

B, respectively. dσ̂ij→kl

dt̂
is the differential cross section for the scattering ij → kl, which

can be calculated by pQCD at Leading Order (LO) or Next-to-Leading Order (NLO).

Dk→h (z, μ2
F) is the fragmentation function describing the hadronisation of a parton k

into a hadron h with a fraction z of the momentum. In vacuum, these quantities evolve

with the fragmentation scale μ2
F , which is obtained from global fits. x1 and x2 are are

the fractions of the initial momentum carried by the partons. This is the standard

factorisation for pQCD calculations of hard scattering [24]. The equation is also valid

for nuclear collisions, assuming they can be considered pure super-positions of many

nucleon+ nucleon collisions, without any medium effects.

dσAB→h

dp2
Tdy

=
∑

i,j,k=q,q̄,g

∫
dy2

dz

z2
x1fi/A

(
x1, Q

2
)
x2fj/B

(
x2, Q

2
) dσ̂ij→kl

dt̂
Dk→h

(
z, μ2

F

)
(1.1)

Medium effects will modify the cross-section

1.3 Lattice QCD

As was mentioned in the previous section, pQCD gives good results for short distances,

but suffers severe limitations at long distances. Problems that involve calculations at

such scale includes the freeze-out transition to hadronic matter [23].

6 Ultra-relativistic heavy ion collisions

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

T/Tc

ε/T4 εSB/T4

3 flavour
2+1 flavour

2 flavour

Figure 1.4: LQCD predictions for the energy density as function of temperature. Around
the critical temperature Tc, i.e. T/Tc = 1, the active number of freedoms rises rapidly,
and there is a phase transition from a hadronic to a partonic state of matter. The
behaviour is typical of an ideal quark–gluon gas. LQCD predicts Tc to be in the range
160 to 170 MeV [4, 5]

To avoid such problems at large scales, an alternative approach is developed. LQCD

is a numerical method, where the QCD interactions, rather than taking place in a contin-

uum, are placed on a discrete lattice, with a limited lattice spacing a. Lattice calculations

are highly suitable for parallel processing on computers. Better results can be obtained

by decreasing the lattice spacing, thus also increasing the computing power needed. Al-

though the method in general involves approximations to simplify the calculation, it does

not involve those of pQCD. Hence, it can be applied to system of very large distances.

However, LQCD can only predict thermodynamical variables of a system in equilibrium.

Usually, LQCD calculations are performed assuming zero baryon density. This may

be an adequate description of systems with very low baryon density, such as the Big Bang

and possibly the conditions at LHC. However, effort is being undertaken to improve the

results of calculations with a non-zero baryon density.

Figure 1.4 shows the LQCD predictions for the energy density as function of tem-

perature [4]. Around the critical temperature Tc, i.e. T/Tc = 1, the active number of

freedoms rises rapidly, and there is a phase transition from a hadronic to a partonic state

of matter. The behaviour is typical of an ideal quark–gluon gas. LQCD predicts Tc to

be in the range 160 to 170 MeV .

1.4 QGP signatures 7

1.4 QGP signatures

Ever since the start of RHIC there has been extensive discussions over the evidence for

a new state of matter. A number of indications have been observed.

It is not possible to detect QGP directly in experiment, but it is possible to detect

particles produced in relativistic heavy-ion collisions, where QGP might have been cre-

ated. On one hand, it is possible to calculate the production of particles from heavy-ion

collision using theoretical models, given either the presence or absence of a QGP in such

processes. A clearly identifiable discrepancy between those two pictures is called a signa-

ture or signal. An important method is also the comparison of the result from heavy-ion

collisions to those of proton collisions scaled by the number of binary collisions.

Several potential signatures have been proposed. Electromagnetic probes, such as

direct photons can give information of the early stage of the process since they do not

interact strongly with the medium. The J/ψ quarkonia production is expected to be

sensitive to the matter due to its interaction with the medium. Existence of collective

flow at partonic level can be understood as a signature of the strongly interacting nuclear

matter. High-pT suppression and jet quenching also give hints to the existence of the

deconfined state of matter, because high-pT particles are expected to be moderated by

the medium, and the away-side jet is very probably absorbed by the QGP. In addition,

Hanbury-Brown Twiss (HBT) source size measurements and chiral symmetry restoration

can provide signatures for QGP.

The four major experiments at RHIC [25, 26] are dedicated to measure such QGP

signals. Their measurements of three very interesting signals, namely the collective flow,

high-pT suppression and jet quenching, will be discussed in the following. In general, the

measurements seem to be consistent with a sQGP state of matter. This is a strong hint

that also a “real” QGP should exist at even higher energies.

1.4.1 Collective flow

During the early stage of the collision, pressure gradients inside the collision volume are

created, and in turn give rise to collective flow among particles. The amplitude of flow is

dependent on collision energy and centrality, and the property of the produced matter,

e.g. its compressibility, and can reveal information of the early stage and development

of the collision [27, 28, 29].

Modern flow analysis mainly distinguishes between three types of flow [30]. The two

first, in-plane and out-of-plane transverse flow (relative to projectile trajectory), are

relevant for non-central collisions where a reaction plane can be defined. The reaction

plane is defined by the impact parameter and the direction of movement of the projectile

nuclei, as shown in Figure 1.5. In-plane flow is associated with particles emitted in the

reaction plane, whereas out-of-plane flow is particles emitted approximately perpendic-

8 Ultra-relativistic heavy ion collisions

Figure 1.5: Collision geometry and definition of the reaction plane, namely the x–z plane
defined by the impact parameter and direction of the colliding nuclei.

ular to the reaction plane. For collisions in the lower part of the energy domain, the

presence of the spectators will block the emission of in-plane flow in the direction of the

spectators, leading to enhanced out-of plane flow, where there are no spectators. At

ultra-relativistic energies this effect is much smaller since spectators vanish much faster.

Rather, pressure gradients will enhance in-plane flow. The third type of flow is radial

flow, meaning the flow is isotropic in all directions. This is relevant for the most central

collisions where it is not possible to define a reaction plane, and the pressure gradients

are isotropic.

For high-energy, non-central collisions, it is useful to describe flow in terms of the

Fourier transform of the azimuthal distribution of particles. In the most general case, the

differential distribution of produced particles can be written in the form of a Fourier series

with respect to the reaction plane [31, 32], as in Equation 1.2. The Fourier coefficients are

given by Equation 1.3, which is averaging over all outgoing particles from the collision.

E
d3N

d3p
=

1

2π

d2N

ptdptdy

(
1 +

∞∑
n=1

2vn cos [n (φ− ψr)]

)
(1.2)

vn = 〈cos [n (φ− ψr)]〉 (1.3)

For these equations, ψr is the azimuthal angle of the reaction plane relative to the

fixed experiment frame, and φ is the azimuthal angle of each produced particle, also

in the experiment frame. ψr − φ is the azimuthal angle of the particle in the relative

reaction plane frame. The first coefficient, v1, is the directed flow, meaning the overall

flow has an offset in either direction along the x-axis as result of a uneven momentum

transfer from the two colliding nuclei to the fireball. The second coefficient, v2 is the

1.4 QGP signatures 9

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

max/nchn

2v

Figure 1.6: Centrality dependence of v2 in Au + Au collisions at
√
sNN = 130 GeV ,

measured by the STAR experiment at RHIC, compared to expectations from a hydro-
dynamical model [33]. Solid points represents the measurements, open rectangles show
the range of values expected in the hydro-dynamic limit.

elliptic flow, the ratio of in-plane to out-of-plane flow.

A QGP is expected to behave close to a perfect fluid, where the hydro-dynamical

model will apply. Flow measurements in agreement with this can be a QGP signature.

Figure 1.6 shows the centrality dependence of v2 in Au + Au collisions at
√
sNN =

130 GeV , measured by the STAR experiment at RHIC, compared to expectations from a

hydro-dynamical model [33]. Solid points represents the measurements, open rectangles

show the range of values expected in the hydro-dynamic limit. The measurements are

well explained by the hydro-dynamical model.

Figure 1.7 shows v2 normalised by number of constituent quarks as function of pT

normalised by number of constituent quarks for various charged particles in minimum

bias Au+Au collisions, measured by the STAR experiment at RHIC [34]. The measure-

ments show a nice scaling, which is an indication of collectivity developed at partonic

level.

Figure 1.8 shows v2 as function of pT for various charged particles in minimum bias

Au + Au collisions at
√
sNN = 200 GeV , measured by the STAR experiment at RHIC

[35]. Ω and φ contain the heavier s-quark, whereas π and p do not. Despite the difference

in mass, there is no or little difference in pT dependence, also implying that collective

flow was developed already at a partonic level.

10 Ultra-relativistic heavy ion collisions

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1 Λ and S
0Fit to K

+π+-π p p+
S
0 K Λ+Λ

+Ξ+-Ξ

+
Ω+-Ω

 (GeV/c)q/nTp

q
/n 2v

Figure 1.7: v2 normalised by number of constituent quarks as function of pT normalised
by number of constituent quarks for various charged particles in minimum bias Au+Au
collisions, measured by the STAR experiment at RHIC [34].

0 1 2 3 4 5

2
A

ni
so

tr
op

y
Pa

ra
m

et
er

 v

0

0.1

0.2

0.3

p

π

0 1 2 3 4 5

Ω

φ

200 GeV Au+Au M.B. collisions

STAR Preliminary

 (GeV/c)
T

Transverse Momentum p

Figure 1.8: v2 as function of pT for various charged particles in minimum bias Au+Au
collisions at

√
sNN = 200 GeV , measured by the STAR experiment at RHIC [35]. Ω and

φ contain the heavier s-quark, whereas π and p do not.

1.4 QGP signatures 11

1.4.2 High-pT suppression and jet quenching

Production of a QGP in the centre of the collision implies that a fast particle traversing

through the matter will see a strongly interacting coloured state of matter — partonic

matter — rather than a colour neutral state of matter — hadronic matter. This will

have consequences for the propagation. A hard collision may be described using pQCD,

where the partons contained in the initial nuclei are scattered off each other, and finally

fragment into hadronic showers. A particle with high pT traversing the medium of

partonic matter, may lose energy through bremsstrahlung radiation of gluons, and its

momentum is distributed over a larger number of partons. Hence, high-pT particles are

suppressed.

High-pT particles produced in p+p collisions provides information on pQCD and the

PDF in protons, as well as the fragmentation functions of the partons. For relativistic

heavy-ion collisions, it is a sensitive probe of the strongly interacting matter produced in

the collisions, because a modification of their momentum distribution may be due to an

energy loss mainly via gluon radiation induced by soft collisions of the leading partons

or the radiated gluons in the medium.

The nuclear modification factor is a tool to quantify nuclear effects on particle pro-

duction in A+A collisions with respect to that in p+p collisions, which is defined as the

ratio of particles produced in A + A collisions to that in p + p collisions, scaled by the

average number of binary collisions in A+A collisions, as in Equation 1.4 [2]. One would

expect RAA = 1 if nuclear collisions are simple superpositions of p+p collisions, without

any nuclear effect. RHIC has measured the RAA for the range of energy available in

these experiments [16, 17].

RAA =
dσAA/dp

2
Tdy

〈Ncoll〉dσpp/dp2
Tdy

(1.4)

Figure 1.9 shows RAA as function of centrality for high-pT particles, measured by

the STAR (upper) and PHENIX (lower) experiments at RHIC [16]. Circles show mea-

surements, rectangles show the range of values expected in theoretical calculations with

parton energy loss. There is stronger suppression for high-pT particles in central collisions

than in peripheral collisions. In central collisions, with a large number of participants,

a strong suppression is observed. In peripheral collisions, on the other hand, only a few

nucleons are involved as participants, and a RAA close to one is seen. With just a few

participants, the situation of a peripheral collisions is similar to that of p+ p collisions,

and no, or very little, nuclear modification is expected. The suppression at central col-

lisions might be attributed to the presence of a QGP. High-pT particles traversing the

colour-dense QGP will lose some of the momentum, i.e., there will be fewer high-pT

particles observed compared to the non-QGP situation.

12 Ultra-relativistic heavy ion collisions

0.2
0.4
0.6
0.8

1
1.2
1.4

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

Figure 1.9: RAA as function of centrality for high-pT collisions, measured by the STAR
(upper) and PHENIX (lower) experiments at RHIC [16]. Circles show measurements,
rectangles show the range of values expected in theoretical calculations with parton
energy loss.

Figure 1.10 shows the RAuAu and RdAu as function of pT for central Au + Au and

minimum bias d + Au at
√
sNN = 200 GeV , respectively, measured by the BRAHMS

experiment at RHIC [17]. While RdAu shows an enhancement at intermediate pT , the

central RAuAu collisions show a significant suppression at high-pT . The different results

show that the high-pT particles are very likely suppressed by the hot and dense medium

created in central Au+ Au collisions.

Figure 1.11 shows a compilation [36] of RAA of collisions at
√
sNN = 200 GeV ,

measured by the PHENIX and STAR experiments at RHIC [37, 38, 39, 40]. Panel a

shows RdAu and RAuAu for hadrons in minimum bias collisions. While RdAu is enhanced

for pT > 2 GeV/c because of the Cronin effect [41], RAuAu is suppressed. Panel b shows

RdAu and RAuAu for η and π0 at central collisions. For RdAu neither suppression nor

enhancement is observed, but central Au + Au collisions show a suppression for both

1.4 QGP signatures 13

 [GeV/c]Tp
1 2 3 4 5

N
uc

le
ar

 M
od

ifi
ca

tio
n

Fa
ct

or

0.5

1

1.5

d+Au (MB)

Au+Au (0-10%)

=0η

Figure 1.10: RdAu and RAuAu as function of pT for central Au+Au and minimum bias
d + Au at

√
sNN = 200 GeV , respectively, measured by the BRAHMS experiment at

RHIC [17].

particles. Panel c shows RAuAu for direct γ, η, π and π± in central collisions. The direct

γ do not interact strongly, and are not suppressed. On the other hand, η, π0 and π± are

suppressed. The different behaviours indicate that the suppression is due to the coloured

medium.

Jets are high-momentum hadron showers emitted as a results of the hard scattering of

partons from nucleons of the colliding nuclei, and are produced from the hadronisation

of a back-to-back quark–anti-quark pair, as shown in Figure 1.12. They are emitted

back-to-back for momentum conservation. The presence of a QGP is assumed to make

them suffer strong energy loss through induced gluon radiation while traversing the

colour-dense medium. The energy loss scales with the distance which the jet has to

traverse through the medium. For a back-to-back jet pair produced at the edge of a

central collision fireball, the jet with the shorter exit distance will be detected almost

unattenuated, whereas the jet which has to pass through most of the fireball may be

completely suppressed [16]. This is called jet quenching.

Figure 1.13 shows dihadron azimuthal correlations of high-pT particles measured by

the STAR experiment at RHIC [13]. The left panel shows the near-side and away-side

jets in minimum bias p+ p and central d+Au and Au+Au collisions. In the p+ p and

d+Au collisions, both jets are visible, whereas in Au+Au collisions, the away-side jet is

almost completely suppressed. This is believed to be caused by the presence of a QGP,

14 Ultra-relativistic heavy ion collisions

A
A

 (d
A

)
R

0

0.5

1

1.5

2 (b)
 = 200 GeVNNs

 : 0-20% central d+Au (PHENIX)
dA

 Rη

 : 0-20% central d+Au (PHENIX)dA R0π

 : 0-20% central Au+Au (PHENIX)
AA

 Rη

 : 0-10% central Au+Au (PHENIX)AA R0π

 (GeV/c)TP
0 1 2 3 4 5 6 7 8 9 10

A
A

R

-110

1

10 : 0-10% central Au+Au (PHENIX)γDirect
 : 0-20% central Au+Au (PHENIX)η
 : 0-10% central Au+Au (PHENIX)0π
 : 0-12% Au+Au (STAR)±π

(c) = 200 GeVNNs

A
A

 (d
A

)
R

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

(a)
 = 200 GeVNNs

)/2: d+Au Min-bias (PHENIX)-+h+(h

)/2: Au+Au Min-bias (PHENIX)-+h+(h

Figure 1.11: Compilation [36] of RAA of collisions at
√
sNN = 200 GeV , measured by

the PHENIX and STAR experiments at RHIC [37, 38, 39, 40]. Panel a shows RdAu and
RAuAu for hadrons in minimum bias collisions. Panel b shows RdAu and RAuAu for η
and π0 at central collisions. Panel c shows RAuAu for direct γ, η, π and π± in central
collisions.

1.4 QGP signatures 15

gluon or quark

hadron

hadron

gluon or quark

Figure 1.12: Jet production by the leading back-to-back quark–anti-quark pair. A
hadronic shower is produced. [3]

 (radians)φΔ
-1 0 1 2 3 4

)φ
Δ

 d
N

/d
(

TR
IG

G
ER

1/
N

0

0.1

0.2
d+Au FTPC-Au 0-20%

p+p min. bias

Au+Au Central

)φΔ
 d

N
/d

(
Tr

ig
ge

r
1/

N

 (radians)φΔ
-1 0 2

)-
fl
o

w

φ
Δ

 d
N

/d
(

tr
ig

g
e
r

1
/N 0

0.1

0.2

 p+p
 Au+Au, in-plane
 Au+Au, out-of-plane

1 3 4

{STAR

 data

Figure 1.13: Dihadron azimuthal correlations of high-pT particles measured by the
STAR experiment at RHIC [13]. The left panel shows the near-side and away-side jets
in minimum bias p + p and central d + Au and Au + Au collisions. In the p + p and
d+ Au collisions, both jets are visible, whereas in Au+ Au collisions, the away-side jet
is almost completely suppressed. The right panel shows the suppression of in-plane and
out-of-plane jets in Au+ Au compared to p+ p.

absorbing the jet traversing it. In central Au+ Au, the near-side jets, close to the edge

of the fireball, will show no or little suppression, since it only has to traverse the QGP

for a short distance. The away-side jet, on the other hand, has to traverse most of the

fireball, and will be almost completely absorbed. In p+p, p+Au and peripheral Au+Au

collisions, the energy deposition in the collisions region does not allow for the creation

of a QGP, and both jets escape. The right panel of Figure 1.13 shows the suppression of

in-plane and out-of-plane jets in Au + Au compared to p + p. Because of the geometry

of the fireball, the jets have to traverse a longer distance inside it when they are emitted

out-of-plane than in-plane. Accordingly, the suppression is larger for out-of-plane jets.

16 Ultra-relativistic heavy ion collisions

* * *

The results from RHIC indicate that the matter found in central Au+Au collisions

is deconfined, but behaves like a perfect liquid, i.e. still shows strong correlations. The

collisions at higher energies (at LHC) might produce matter which is not only deconfined,

but also weakly interacting, i.e. an “ideal” QGP.

Both, flow studies and jet reconstruction and azimuthal correlations, require a well

calibrated tracking system. The TPC is the main tracking detector of ALICE. The DCS

continuously monitors the TPC operating parameters, e.g. temperature, pressure and

gas composition. These parameters are stored and used for the calibration of the TPC.

The two main foci of this thesis will be selected aspects of the TPC DCS and calibration:

(a) the software for maintaining and controlling the read-out electronics (the FeeServer)

and (b) the drift velocity calibration and its calibration framework.

Chapter 2

A large ion collider experiment

ALICE [42] is an experiment at the LHC dedicated to heavy-ion physics, residing in

the experimental cavern of the previous L3 experiment. It is aiming at re-creating

the conditions of the early universe before the on-set of confinement and to study the

properties of the QGP. Most of its sub-detectors are confined inside the L3-magnet. With

a magnetic field strength up to about 0.5 Tesla, it is the largest conventional magnet of

its size. The magnetic field is parallel to the z-axis. Figure 2.1 shows cut-through view

of the ALICE detector.

2.1 Large hadron collider

The LHC, Figure 2.2, is a 28-km circumference accelerator and storage ring for protons

and heavy ions, installed in the tunnel of the previous Large Electron–Positron Col-

lider (LEP) accelerator. It is buried approximately 100 m below surface and has eight

equally spaced caverns, of which four are utilised by the main experiments: A Toroidal

Lhc ApparatuS (ATLAS) (point 1), ALICE (point 2), Compact Muon Solenoid (CMS)

(point 5) and LHC-Beauty (LHCb) (point 8). The remaining points are used for Radio

Frequency (RF) system (point 4), beam dump (point 6) and beam cleaning (points 3

and 7). The RF system is responsible for accelerating the beam. Beam dumps are used

when disposing the beam, while the beam cleaning facilities are collimators that remove

particles which are either spatially or momentum-wise far away from the their particle

bunch.

Two particle beams are accelerated in opposite directions. In contrast to LEP, sepa-

rate beam pipes for each direction are required since LHC does not collide particles–anti-

particles. At the four experimental sites, the beam pipes cross each other, and the beams

of opposite directions are focused to collide with each other. The beams are not contin-

uous streams of particles, but divided into 2808 bunches of approximately 1.15 × 1011

protons each. At full energy, the bunch length is 7.55 cm.

17

18 A large ion collider experiment

�
�
�
��
�
�
	

�
�

��

�
�
�
�

��
�
�
�
�

�
��
�
�
��

��
�

�
��

�
��
�
��
	

�
�
��

�
��
��
�
�
	�
�
�

�
��
�

�
�
��
��
��

�
�
�
�
�

�
�
�
�

�
�
!

�
�
�

�
�
�

F
ig

u
re

2.
1:

S
ch

em
at

ic
v
ie

w
of

A
L
IC

E
.

2.2 ALICE sub-detectors 19

�
�����

�
	
�	�

�
	���

�
���

����������������������
������������������

������������� ���

��
�"������

#
$�%&

'
�������(

)
*+

,
�������(

���

�-�

��
�"������

Figure 2.2: Schematic view of the LHC.

For protons and lead the respective energies for each beam are 7 TeV and 2.76 TeV

per nucleon, giving total centre-of-mass collisions of
√
s = 14 TeV and

√
sNN = 5.5 TeV .

A luminosity of 1027cm−2s−1 is expected for Pb+Pb, and 1034cm−2s−1 for p+p, although

for ALICE the proton beams will be defocused to provide a luminosity of about 3 ×
1030cm−2s−1. The Protons are initially accelerated by LINear ACcelerator (LINAC) 2,

then through the Proton Synchrotron (PS) booster, PS, SPS, and finally injected into

the LHC. The sequence is slightly different for lead: LINAC 3, Low Energy Ion Ring

(LEIR), PS, SPS, LHC.

2.2 ALICE sub-detectors

2.2.1 Time projection chamber

The TPC [46] is the main tracking detector in the ALICE experiment. Apart from

tracking, measuring the charged particle momentum and having a good two-track sep-

aration, it also provides Particle IDentification (PID) via energy loss of particles going

through the TPC. The TPC is expected to perform well at multiplicities as high as

dNch/dη = 8000 in the particle momentum range [0.1, 100] GeV/c within |η| < 0.9.

20 A large ion collider experiment

Figure 2.3: Schematic view of the TPC. The MWPCs of one sector enlarged for visibility.
A person is shown to the scale of the TPC.

Tracking efficiency is required to be better than 90 %, and the dE/dx resolution better

than 10 %. Further, the TPC alone will have a momentum resolution of about 1 % at

2 GeV/c and 10 % at 50 GeV/c. For p + p collisions a read-out rate of about 1.2 kHz

is expected, while for central Pb+ Pb collisions about 0.3 kHz [47].

The TPC is shaped as a horizontal cylinder, divided by a 100 kV Centre-Electrode

(CE) in two 250 cm drift volumes along the length axis. The active radial region is 85 cm

to 247 cm.

The 90 m3 drift volume is filled with a counting gas composed of 85.7 % Ne,

9.5 % CO2 and 4.8 % N2. A cold, light gas is used to assure low diffusion and low

multiple scattering. Field distortions are minimised because of the high ion mobility and

few ionisation electrons per unit length. The electronics design noise figure is 1000 RMS

e− (700 actually achieved); not limiting the position resolution will require a signal/noise

ratio of at least 20. Given the pad sizes and the small ionisation energy, a rather strong

gas gain of up to 2 × 104 is needed. The electric drift field of 400 V/cm in combination

with the gas mixture gives a drift time of 92 μs. The drift velocity is non-saturated,

which in turn requires the temperature stability and homogeneity inside the TPC to be

within 0.1 K [46].

Data read-out is performed at the two opposing detector end planes, which are divided

in 18 azimuthal sectors. Each sector is again divided radially into two MWPC: the Inner

2.2 ALICE sub-detectors 21

occupancy [%]
-110 1 10 210

ra
te

 [e
ve

nt
s/

s]

0

100

200

300

400

500

600

700

da
ta

 ra
te

 [M
B

/s
ec

to
r/s

]

0

100

200

300

400

500

600

700

800

900

Figure 2.4: Event rate (black, left scale) and data rate (red, right scale) as function of
occupancy, for full TPC read-out. At 100 % occupancy the theoretical maximal data
rate of 770 MB/s is reached. At 0 % occupancy the data rate is 595 Hz, however
applying sparse read-out increases this to 1386 Hz (not shown, as it only significantly
departs at low occupancy). [43]

Read-Out Chamber (IROC) and Outer Read-Out Chamber (OROC). In total for the

TPC, the MWPCs have 557 568 read-out pads. Combined, the two sector chambers are

read out by six RPs: two for the IROC and four for the OROC. An RP is an electronic

entity, and consists of a Read-out Control Unit (RCU) with up to 25 Front-End Cards

(FECs). Eight ALice Tpc Read-Out (ALTRO) chips are mounted on a FEC, each is

capable of reading out 16 read-out pads. Data is forwarded from the RCU via a 1.25 Gb/s

optical fibre. A DCS board equipped with an embedded Advanced Risc Machine (ARM)

processor running Linux is attached to the RCU for control and monitoring. Radiation

tolerant electronics is needed to sustain the radiation from the collisions.

Data from the RPs are forwarded to the Data AcQuisition (DAQ) and the High

Level Trigger (HLT) using optical fibres. The geometrical organisation of the RPs gives

a total of 216 fibres, six per sector. Each fibre is capable of a data rate of 1.25 Gb/s,

corresponding to 160 MB/s. Depending on the radial position in the sector, a RP may

have 25 (innermost) to 18 (outermost) FECs. Reserving the same bandwidth for each

FEC, only the most populated RPs can utilise the full bandwidth.

Consequently, for the full sector, the maximum data rate is 770 MB/s. Benchmark

tests, Figure 2.4, show that this is indeed achievable for high-occupancy events where

zero-suppression has been applied. The test was conducted using 1000 time bins and all

channels filled with same data. Considering the case of low-occupancy events, read-out is

possible at an event rate of 595 Hz (0 % occupancy) using full read-out. The electronics

also supports sparse read-out, in which case empty channels are entirely stripped, includ-

ing headers. Applying this technique, the read-out rate more than doubles to 1386 Hz.

The data rate in these two cases are 70 MB/s and 927 kB/s, respectively. There is

ongoing effort to increase this rate even further by optimising the read-out firmware of

the RCU [48, 47].

22 A large ion collider experiment

 momentum p (GeV)
-110 1 10

 T
PC

 d
E/

dx
 s

ig
na

l (
a.

u.
)

210

310

dp

μ

e

Figure 2.5: A demonstration of particle identification by TPC with cosmic data (2008).
Particles can be identified by a few σ cut around the Bethe-Bloch function (black curves)
using the TPC signal dE/dx and momentum. [44]

 TPC signal (a.u.)
0 50 100 150 200 250 300

co
un

ts

1

10

210 μ

e

p

Figure 2.6: TPC dE/dx distribution within 500 < p < 600 MeV/c momentum bin,
shows good separation of low momentum electrons and muons. [44]

Maintaining the noise at a lowest possible level is important to achieve low data rates

applying zero-suppression. The noise figure is required to be less than 1000 e− Root Mean

Square (RMS) of base-line, corresponding to one Analogue–Digital Converter (ADC)

count. Noise levels are obtained from periodically taken pedestal runs, showing that

the noise figure is about 0.7 ADC count (700 e−), well within the requirement. They

are close to the natural limit, and do not change with time. Using sparse read-out, a

zero-suppressed empty event is less than 70 kB (noise); without zero-suppression 10000

times larger.

As mentioned above, the TPC requires the spatial temperature variations to be no

more than 0.1 K. Also the variations with time have to be minimised as this will

have impact on the drift velocity. An additional complication is the 27 kW of heat

generated from the FEE on the end planes. The cooling is accomplished by wrapping the

2.2 ALICE sub-detectors 23

Figure 2.7: The first collision event recorded by the TPC. The event is shown with the
ALICE event monitor. [45]

FEE in custom copper water-cooled envelopes, as well as water cooling of the chamber

bodies themselves. There is also heat-screening towards the other detectors and the

environment. The water flow is handled by about 60 independently adjustable circuits.

To protect the FEE from leaks, the cooling circuits are under-pressured. About 500

temperature sensors have been installed to monitor the temperature fluctuations inside

the TPC. Measurements during commissioning show temperature variations with σT =

0.1K and ΔTmax = 0.3K. At this time some cooling loops were not yet fully operational,

which caused out-liers in the temperature measurements. It is expected that the required

temperature homogeneity and stability of ΔTmax = 0.1 K is achieved with the cooling

system fully operational for all loops.

The TPC has currently a resolution of 5.7 % for dE/dx, determined from 7 × 106

cosmic events [46]. This is very close to the required resolution of 5.5 %, and will allow

for particle identification up to 50 GeV/c. Figure 2.5 shows the measured dE/dx signal

of cosmic tracks compared to the Bethe–Bloch equation for various particles, and in

Figure 2.6 the dE/dx distribution for the momentum range 500 < p < 600 MeV/c.

For space points, a resolution for rϕ in the range [300, 800] μm has been achieved

for tracks with high momentum, i.e. small inclination angles. This is in agreement with

results from simulations.

24 A large ion collider experiment

Momentum resolution is determined by tracking cosmic muons independently in the

upper and lower halves of the TPC, then comparing pT at the centre of the beam line.

Hence, pT resolution can be plotted as function of pT . Currently, the achieved resolution,

6.5 % at 10 GeV/c, is not yet in agreement with the requirement of 4.5 % at 10 GeV/c.

A problem has been identified in the software and is expected to be solved soon.

Construction of the TPC was completed in 2006. Pre-commissioning was carried

out at the assembly site on the surface, close to the underground experimental area.

Subsequently it was lowered into the experimental shaft to be integrated in the overall

experiment. Commissioning was going on until summer 2008, when beam was expected.

During this period the performance was gradually improved, and is now in accordance

with the requirements. On November 20th 2009 the ALICE TPC saw the first collisions.

Figure 2.7 shows the first collision recorded by the TPC. While the commissioning phase

is completed, there is still work ongoing to further improve and extend the software side,

both for calibration and analysis.

2.2.2 Photon spectrometer

PHOton Spectrometer (PHOS) [49] is a high resolution electromagnetic calorimeter. Us-

ing lead tungstate crystal PbWO4 scintillators (20 radiation lengths, X0) to absorb the

incoming photons, it achieves a very high energy resolution. For photons of 1 GeV/c,

σE/E = 0.04.

PHOS is designed to have five modules, of which three are installed so far. Most

likely only four will be installed. The modules are mounted in a “cradle” with a radius

of 4.6 m, designed to align the front of each module towards the centre of ALICE, where

collisions take place. In the φ direction, it covers the lowermost 100◦ (20◦ per module).

Along the z-axis, it covers about one metre; the total phase-space coverage is 3.7 %.

PHOS can measure π0 and η via γ-decay with a pT up to 100 GeV/c, which makes it

well-suited for RAA measurements for π0 and direct γ, as well as hadron correlations with

γ and π0. Measurements of initial temperature via direct photon spectra and searching

for signatures of chiral symmetry restoration are other areas where PHOS is designed to

perform well.

From an electronics point of view, there are very many similarities to the TPC elec-

tronics. Both rely on the same scheme of a DCS board and an RCU with two branches

of FECs. Also, the DCS software is similar. The main difference is the design of the

FECs. Although the FECs of PHOS also rely on the ALTRO for processing, it only has

half as many channels per FEC as TPC. Also, as PHOS uses Avalanche Photo-Diode

(APD) for detecting the scintillation light, the signal level and shape is different than

for the TPC, hence also a different amplifier and shaper is used. In addition, each APD

needs a unique voltage level in the range [300, 400] Volt. Dedicated hardware on the FEC

2.2 ALICE sub-detectors 25

supplies this individual electrical potential to each APD. The correct level is set from

the Board Controller (BC) of the FEC. PHOS has a special FEC, the Trigger Read-out

Unit (TRU), for fast read-out of the deposited energy to generate level 0 and 1 triggers.

2.2.3 Electro-magnetic calorimeter

Electro-Magnetic CALorimeter (EMCAL) [50] shares many similarities with PHOS: they

are both calorimeters, and rely heavily on the same electronics for data read-out and

software for both DCS and analysis. However, the coverage and resolution are different.

While PHOS is located underneath the TPC and Transition Radiation Detector (TRD),

EMCAL is located above the TPC; the phase-space coverage is 23 %. Since it relies

on plastic scintillators, the energy resolution is lower, and the measurable pT is limited

to 100 GeV/c. Also the spatial resolution is lower. Like PHOS, it has the ability to

generate level 0 and 1 triggers.

2.2.4 Di-jet calorimeter

Di-jet CALorimeter (DCAL) is a proposed new sub-detector, similar to EMCAL, but

underneath the TPC, where it will fill the space not already covered by PHOS.

2.2.5 Inner tracking system

Inner Tracking System (ITS) [51] is a silicon detector system for reconstructing the

primary collision vertex, as well as secondary vertices of decaying hadrons containing

heavy quarks. It has six layers, each of which is organised as a “shell” around the beam

pipe, the innermost has a radius of only 3.9 cm, the outermost 43 cm. Neighbouring

pairs of layers are organised as separate sub-detectors, with individual characteristics.

Starting from the beam-pipe, the Silicon Pixel Detector (SPD), Silicon Drift Detector

(SDD), and Silicon Strip Detector (SSD). The SPD has a resolution along the z-axis of

70 μm and 12 μm in the rφ-plane.

2.2.6 Transition radiation detector

TRD [52] is “surrounding” the TPC, and consists of six layers of plastics with varying

dielectric constants, altered with wire-chambers. Charged particles passing a boundary

between two media of different dielectric constants will emit transition radiation photons,

which are picked by the inter-leaved wire-chambers. The probability of generating tran-

sition radiation at a given medium boundary scales linearly with the Lorentz γ-factor of

the particle. Since this probability is relatively low, a large number of layers are required.

The inner radius of the TRD is 2.9 m, the outer 3.7 m.

26 A large ion collider experiment

The TRD is well-suited for distinguishing electrons from pions above 1 GeV/c. Like

the TPC, it is sectioned into 18 sectors. It can trigger on high-momentum electrons and

contribute to tracking. The resolution along the z-axis is 2.3 cm, and 400 μm in the

rφ-plane.

2.2.7 Time-of-flight

Time-Of-Flight (TOF) [53] is placed in the next “shell” outside the TRD, located at an

radius of 3.7 m to 3.99 m, divided into 18 sectors matching those of the TPC and TRD.

It is used to measure the time it takes a particle to traverse the ITS, TPC and TRD

from the interaction point. The particle mass can be calculated from the time of flight,

using track length from inner detectors. It also provides triggers for other detectors.

2.2.8 High momentum particle identification detector

The purpose of the High Momentum Particle Identification Detector (HMPID) [54] is

to extend ALICE’s separation capabilities for particles of very high momentum. For

π/K, the separation is increased to 3 GeV/c, for K/p, 5 GeV/c. It is a Ring-Imaging

CHerenkov (RICH) detector, based on detecting Cherenkov radiation, which is emitted

when a particle traverses a medium faster than the speed of light (for the medium). The

angle of the Cherenkov-shockwave relative to the particle track will depend on the speed

of the particle. Combined with momentum measurements from other detectors, this can

be used to determine the particle mass.

2.2.9 Muon spectrometer

The MUON spectrometer (MUON) [55, 56] is located only on the C -side of ALICE, and

measures quarkonia decaying in the di-muon channel, such as J/ψ, Υ, and their excited

states. Good mass resolution is required to separate these states. For Υ states, a resolu-

tion of 100 MeV/c2 is needed. Five cathode strip tracking stations are interleaved with

absorbers and bending magnets to successively measure momentum, deflection angles

and time-of-flight to allow identification.

2.2.10 Zero degree calorimeter

The Zero Degree Calorimeter (ZDC) [57] measures the number of spectator nucleons

for heavy-ion collisions, thus providing an estimate for the centrality. It is located on

both sides of ALICE, some 116 m away from the interaction point. There are separate

calorimeters for neutrons and protons. A level 1 trigger can be generated.

2.3 Trigger system 27

2.2.11 Forward multiplicity detector

The Forward Multiplicity Detector (FMD) [58] is made from five layers of silicon strips,

and is used for measuring the multiplicity at small angles relative to the z-axis. A large

fraction of the phase-space is covered: −3.4 < η < −1.7, 1.7 < η < 5.0, full azimuth.

2.2.12 Photon multiplicity detector

Photon Multiplicity Detector (PMD) [59, 60] is a forward detector for measuring the

multiplicity distribution of photons, covering the phase-space 2.3 < η < 3.7, full azimuth.

The photons are from decayed π0 and η. Two gas proportional chambers are used as

detectors.

2.2.13 Time-zero

Time-Zero (T0) [58] measures the time of the collision, “time-zero”, with high precision,

and serves as a reference for TOF. The resolution is 25 ps, and it is used to discriminate

potential primary vertices inside and outside the nominal collision region. A primary

vertex outside the collision region is taken as a beam–gas interaction, and is discarded,

whilst one on the inside is considered a beam–beam collision, initiating a level 0 trigger

for the other detectors.

2.2.14 Veto

Veto (V0) [58] has a larger acceptances than T0, making it more suited as a trigger for

p+p collisions. Also, charged particle densities in the range −3.6 < η < 1.6, 2.8 < η < 5.1

can be measured. Like T0, primary vertices, inside the nominal reaction region can be

identified.

2.3 Trigger system

ALICE is a triggered [61] experiment. That means the crossing particle bunches will

be focused to collide at a pre-determined time. Whenever this happens, there will be

a trigger signalling the sub-detectors to collect data. The triggers are organised in an

hierarchy: level 0, 1, 2, and 3. A level 0 trigger is issued for (almost) every collision.

Level 3 trigger is generated by the HLT on events that contain interesting physics. How

a given detector reacts to a trigger of a certain level, is defined by the detector itself.

The triggers are distributed to all relevant parts of the detectors as messages via the

dedicated fibre-optical links of the Timing, Trigger and Control (TTC) system.

28 A large ion collider experiment

The sub-detectors may choose to ignore a trigger if needed. For example, read-out of

data from the previous collision for a certain sub-detector may not have finished when

there is a trigger for a new collision; the sub-detector is busy when this happens.

2.3.1 TTCrx of DCS board

The DCS board is equipped with hardware for handling trigger messages. Specifically, it

has a receiver for the fibre-optically transmitted trigger messages and a custom designed

Application-Specific Integrated Circuit (ASIC) for processing them, the so-called TTC

Receiver (TTCrx) chip. The RCU will obtain the trigger messages from the DCS board.

Configuration of the TTCrx chip is done via an Inter-Integrated Circuit (I2C) bus inter-

nally on the DCS board. A command-line tool available on the DCS board, can be used

to manipulate the configuration registers. If verification of the ALTRO registers from

the FeeServer during the gaps of the read-out orbit is to be implemented, support for

the FeeServer to read the trigger messages from the TTCrx chip has to be implemented.

2.3.2 Busy-box

The only chance to capture data from a collision is at the very moment the produced

particles cross the detector. While it is possible to read out data at the FEC side at

a high event rate, one can not forward data to DAQ and HLT at the same pace; only

“interesting” events will be stored. However, at the time the FECs are gathering the

event data, it is not yet possible to tell if the event is interesting or not. This is only

the case if one or more of the trigger detectors triggered on it. To solve this, collision

data from up to four events are stored in an internal memory of the ALTROs, the event

buffers. Only after some trigger detector has marked the event as interesting (level 2

accept), the RCU will be told to retrieve the data from the FECs, and forward them

over the Detector Data Link (DDL) optical fibre to DAQ and HLT. Remaining events

are discarded as “uninteresting”.

An additional complication arises as each sub-detector has several RCUs that all

provide fragments of the complete event; it is necessary to know that all such fragments

have been received by DAQ and HLT before read-out of the next event begins. TPC,

PHOS, EMCAL and FMD rely on the Busy-Box for keeping track of the read-out status

of all DDL links. Specifically, the BusyBox is maintaining an event counter for each

individual RCU. Whenever an event is read into the buffer, the counter is incremented,

and opposite, when an event is read out or discarded, the counter is decremented. When

there are no more free event buffers, the detector is not ready for collecting data of a

new event; the detector is “busy”.

At the DAQ side, the DDL is terminated in a Destination Interface Unit (DIU) con-

nected to a Destination Read-Out Receiver Card (DRORC). A DRORC is a Peripheral

2.3 Trigger system 29

Component Interconnect (PCI)-Express extension card that allows the data from the

detector DDL to be transferred to servers. All DRORCs have a separate, dedicated link

(over a standard category 5 “Ethernet cable”, but with entirely different signalling) to

the Busy-Box, i.e., for the TPC the Busy-Box has as many as 216 links, while for FMD

only three, as the two extreme cases.

The Busy-Box uses these links to enquire the DRORCs of the status of the read-out.

As long as not all DRORCs have acknowledged that “their” RCU has at least one free

event buffer, the BusyBox will signal state busy to the Central Trigger Processor (CTP).

Once all have a free buffer, the Busy-Box will no longer be in state busy, and the

CTP may choose to trigger for a new event. The new event will increment the event

counter of all RCUs, once again causing the Busy-Box to go busy if no more free buffers

are available for at least one RCU.

For control and monitoring of the Busy-Box, a separate version of the FeeServer has

been developed. It is based on the same framework as the TPC FeeServer; the command

set and monitoring values of course are adapted to the needs and requirements of the

Busy-Box.

2.3.3 Central trigger processor

ALICE relies on a set-up called the CTP to generate triggers to the FEE. It can be

seen as a hub that accepts triggers from trigger detectors, processes them, and generates

triggers for the FEE. The basis of all triggering is the 40 MHz bunch-crossing clock.

However, this is a mere theoretical limit. The actual collision rate will be far below this

for ALICE. The different sub-detectors can be triggered at different rate. Fast detectors,

like PHOS, might operate at a few kHz; slow ones, like TPC, will stay below one kHz.

2.3.4 PHOS trigger

PHOS has properties that make it very well suited as a triggering detector. Specifically,

it can be used to trigger on photon energy. However, specialised hardware support is

needed for this. Standard event analysis of PHOS data would require data to be read

out and analysed in software on computers. To be used for triggering, this process is too

slow. Rather, a simplified scheme has been developed. From every ordinary FEC there

is a direct link to a special FEC, the TRU. There is one TRU per RCU branch. The

direct link is used to transfer information of the energy captured by the APD from the

PbWO4 crystals, although not at full resolution. This information is collected by the

TRUs, which in turn forward them to the Trigger-OR (TOR). While the TRU can only

see the energy collected by one branch, the TOR can see the “full” picture from all five

modules. The TOR can issue triggers to the CTP based on programmable criteria. The

30 A large ion collider experiment

information gathered by the TRUs are also read out by the RCU as part of the event

data.

Also for the TOR a specialised FeeServer has been developed, based on the standard

FeeServer framework shared with all other FeeServers. Control and monitoring of the

TRUs are handled as an integral part of the PHOS FeeServer. EMCAL is also using the

a similar TOR and TRUs for generating triggers on energetic events.

2.4 High-level trigger

The over-all purpose of the HLT [61] is to reduce the overwhelming amount of data

produced by ALICE to a manageable level. A data rate of approximately 1.5 GB/s can

be written to disk. The detectors are capable of producing data at a rate one to two orders

of magnitude higher. The challenge is to determine which events to keep. The approach

of HLT is to reconstruct all events in real time, using less accurate, however much

faster, reconstruction algorithms. Although dedicated trigger detectors exist to generate

triggers from for example very energetic events, HLT allows implementing much more

sophisticated triggers based on physics, such as jets or D0s, found in reconstructed data.

The reconstruction is sufficiently accurate to analyse the events for interesting physics

that can justify permanent storage. In that case, the reconstruction and a trigger decision

output will be forwarded to DAQ.

Some analyses require very high statistics, and should be run on largest possible data

sets. HLT allows such analyses to be included in the real-time processing of the events,

so that they can utilise the full statistics of events not being stored as well.

The sub-detectors need to be calibrated before the data collected can be used for

accurate reconstruction off-line. For example, the drift velocity of the TPC has to be

calculated to obtain an accurate position measurement so that the tracks will match those

of ITS and TRD. This typically requires a calibration-object to be calculated from data,

either normal collisions or under special conditions, henceforth written to the Condition

DataBase (CDB). Such objects can be gradually refined as data is being processed in

several off-line passes. The first pass to generate the initial calibration objects is called

pass 0. However, these objects can be calculated by HLT, eliminating the need for pass

0.

2.5 Data acquisition

DAQ [61] is responsible for collecting and storing data forwarded from the various de-

tectors. The data is received from detectors via one or more DDL, terminated at a

Local Data Concentrator (LDC), which again will forward the data to a Global Data

2.5 Data acquisition 31

���

���

���

	
����

�	�

���

���

	
����

�	�

���������������������

����

���

	

��

!
����

	
����

�	�

"	�

#���$��������������

����	

������

����

��������	

����

����������

���

���

"	�

!��

�������

Figure 2.8: Overview of DAQ, including HLT and CTP Also shown is the integration of
the BusyBox. [62]

Concentrator (GDC), where complete events are built from data from multiple detec-

tors. Detectors are grouped into partitions. The partitions are handled independently.

A detector may only participate in one partition at any given time. However, a detector

outside the partition may be used as trigger detector.

HLT and DAQ are receiving the data in “parallel”, i.e. they both receive identical

copies. DAQ has different modes of operation concerning permanent storage of events:

store events selected by HLT, flag events or store all events. For production runs, HLT is

expected to select the events to store. However, at low collision rates, it may be desirable

to keep all events, irrespective of HLT output.

Figure 2.8 shows the overall overview of DAQ, HLT, CTP and some other compo-

nents.

Chapter 3

Front-end electronics components

3.1 DCS hierarchy overview

The FEE is the electronics which is integrated on the detector itself, i.e., that is not

located in the Counting Room (CR) or other areas surrounding the detectors. It can be

considered as an integral part of the detector.

Being part of the detector, there are requirements that apply to the FEE more than to

other electronics: sustain higher levels of radiation, fail-safe (physical access blocked for

up to a year), compactness (limited space inside detector), dispatch little heat (cooling

complicated inside detector, also temperature gradients undesirable), and little noise

(weak analogue signals from the detector are not yet digitalised). And of course, this

has to be done without compromising performance. These constraints have to be taken

into account when designing the FEE.

The detector and the FEE is controlled and monitored by a DCS [61]. As shown

in Figure 3.1, a distributed three-layer hierarchical DCS has been devised to control

and monitor the TPC: field layer is defined as the FEE itself; control layer is the soft-

ware, FeeServer, running on the FEE of each RP, as well as the lower part of the ICL;

and supervisory layer is the upper part of the ICL and the ProzessVisualisierungs- und

Steuerungs-System (PVSS)-based [63] Graphical User Interface (GUI) the shifter is op-

erating. Configuration of the FEE is accomplished by sending binary configuration data

blocks to the FeeServer, which will interpret and execute them accordingly. Values of

registers of special importance, such as FEC temperatures, voltages and currents are

being monitored and published. The state from the integrated state-machine, indicating

the overall system state, is also published. Upon receiving a high-level configuration

command from the GUI, ICL assembles configuration blocks for the FeeServer by re-

trieving all relevant configuration parameters from the database. ICL also collects all

data points published by FeeServer, and forward them to the GUI. There is a full inte-

gration with the Experiment Control System (ECS), enabling operation of the TPC by

33

34 Front-end electronics components

FED Server

FEE Client

InterComLayer

108 readout partitions on TPC A side

S
e

rv
ic

e
s

FED Client

SCADA (PVSS II)

S
e

rv
ic

e
s

Acknowledge,

Commands,

Messages

S
u

p
e

rv
is

o
ry

 la
ye

r
C

o
n

tr
o

l l
a

ye
r

F
ie

ld
 la

ye
r

Operator

RCU RCU

ControlEngine

FeeServer

ControlEngine

FeeServer....

Acknowledge,

Commands,

Messages

CommandCoder

FED Server

FEE Client

InterComLayer

108 readout partitions on TPC C side

S
e

rv
ic

e
s

S
e

rv
ic

e
s

FED Client

SCADA (PVSS II)

S
e

rv
ic

e
s

Acknowledge,

Commands,

Messages

RCU RCU

ControlEngine

FeeServer

ControlEngine

FeeServer....

Acknowledge,

Commands,

Messages

Acknowledge,

Commands,

MessagesS
e

rv
ic

e
s Acknowledge,

Commands,

Messages

CommandCoder

....

Config.

DB

Figure 3.1: TPC DCS working principle. PHOS is similar, but with fewer partitions.
[43]

the ALICE shifter.

For optimisation of performance, the two detector sides are handled by separate

systems. Throughout the following chapters, the individual sub-systems shown in the

figure will be described in detail. Although the TPC and other sub-detectors sharing

the same electronics will have the main focus, the general concepts also apply to other

sub-detectors.

3.2 Front-end electronics for TPC and PHOS

For the TPC, a scheme for the FEE based on a DCS board connected to a RCU with a

bus connecting several FECs was designed [64, 65]. The same scheme, with only a few

changes, was also chosen for PHOS and later EMCAL. The DCS board is shared with

TRD, though TRD does not have the concept of separating the RCU and FECs.

The DCS board can be seen as a computer controlling and monitoring the overall

system. It does not directly participate in the data read-out. The RCU can be compared

to a motherboard. It has one bus which connects to the DCS board, and two buses for

reading out the FECs, In addition, it has an interface to the SIU card, which has a

1.25 Gb/s fibre-optical transceiver for forwarding the data from the detector to DAQ

and HLT.

A FEC is the entity that performs the actual data collection. Weak, analogue signals

3.2 Front-end electronics for TPC and PHOS 35

�
�

�

�
�

�

�
�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�
�

�
�

�

�
�

�

�����	
��

�������	������	�	�������	������

��

��

�������

���

����

�
!"

��������	������������

�#$����	%�� !������&
�����	'��

��	(���� ��&	�����������

���)�$�&

�'�

!��
�
!"

������
�'�

������

*��#	�����	�������

�$�$	$�+��������	������

� !,!�

* !,!�

�
��

��
	

�
�
�
.

(�
�	

��
$
&
 �

�
�

�
#
$
�
�
��

	%
�
�

Figure 3.2: TPC trigger and data read-out working principle. Adapted from [62].

36 Front-end electronics components

Figure 3.3: Picture of a DCS board (top) and a SIU (bottom) mounted on an RCU
(largest, lowermost).

are taken as input. Henceforth, they are amplified, shaped, digitalised before they are

finally presented to the bus to the RCU. Figure 3.2 shows a schematic view of the trigger

and read-out system for the TPC, while a picture of the setup of an RCU, DCS board

and a SIU connected together is shown in Figure 3.3.

3.3 DCS board

The DCS board can be considered the “heart” of the configuration and monitoring

of the FEE. Essentially, it is a small computer, with Central Processing Unit (CPU),

memory, “hard disk” (actually a flash disk) and network. The FEE may be thought of

as “peripheral” electronics in this context. Via the bus to the RCU, it has full access

to the hardware of the FEE, including registers for configuration and monitoring. The

communication with the outside world is achieved through network connectivity. In

Figure 3.4, a picture of a DCS board is shown, while Figure 3.5 shows a block diagram

of the communication of the DCS board with the RCU and via the network.

3.3 DCS board 37

Figure 3.4: Picture of a DCS board. The optical trigger receiver upper right, just below,
the TTCrx chip. The large chip in the middle is the main FPGA. On the top, the
connectors for the DCS bus can be seen.

���

�����	
��

��������	�����

����

���	

������

������

���	

������

��

���

�
�	

�
��

�
�

��

��
�

�����

���

��	�������	���	�����
���������

���

���	

�������

��������������������

 	����������
���

�	 �!
��

���!
��

����"�������

��������

��������

�����

���
�����

���
�����

���

�� ���	�	�	�

�
�

�
��

��
��

��

%
�
�

������	��
%��

Figure 3.5: Block diagram of DCS board communication. The embedded computer
running Linux is shown in the middle. Above, the communication with the ICL via DIM
is shown. Below, the communication with the RCU, and further the registers of the
FECs are shown. [62]

38 Front-end electronics components

3.3.1 Hardware components

The hardware design of the DCS board is centred around a FPGA with an ARM CPU

core. The FPGA is manufactured by Altera. The CPU core runs at 40 MHz, has a

Memory Management Unit (MMU) and 32-bit wide registers. It is capable of running

a minimalistic Linux system. Also, there is 32 MB of Random Access Memory (RAM)

and an 8 MB flash disk.

The DCS board is also used to receive trigger messages from the CTP. For this

purpose, it is equipped with a fibre-optical receiver, as these messages are transferred

optically. A custom-made ASIC processes trigger messages. The fibre also provides

the system with a 40 MHz clock signal, which is used by the FEE as the system clock,

though it can also be switched to use an internal clock for stand-alone applications. This

is particularly useful in stand-alone test setups where the trigger is not available. The

trigger information and clock is available to the RCU and henceforth the FECs via the

RCU bus between the RCU and the DCS board.

The DCS board is equipped with a simple Recommended Standard (RS)-232 serial

interface. 1 It only provides send and receive data lines; all flow control is expected

to take place in software. The main purpose is to enable direct console access from a

regular computer during development and testing. In this case, no network is required to

interact with the Linux system console. If the DCS board for some reason (for example

update of the network configuration fails) is no longer accessible via network, it provides

a last resort for access. During normal operation in the underground experimental area,

the DCS boards are impossible, or at least very hard, to access for up to a year. Hence,

if network access fails, the serial interface can not easily be connected to a computer for

debugging. One option that was considered, but unfortunately not been implemented, is

to connect the serial interface of two neighbouring DCS boards. If one of the DCS boards

were to become inaccessible, this would allow log-in from the other linked DCS board

via the serial console. Although such failure is not expected to happen, the severity of

not being able to utilise the partition controlled by said DCS board for the remainder of

the period still makes such interconnect intriguing.

3.3.2 Firmware

The firmware, including software, of the DCS board is stored on a flash disk. It is divided

into four partitions. The first partition contains the boot environment. This is a simple

boot loader that will set up the basic environment before it loads and passes control to

the Linux kernel. Most importantly, it will set the Media Access Control (MAC) address

of the Ethernet interface. The 32 Most Significant Bit (MSB) is a fixed value. However,

1The parameters of the serial interface are: 57600 baud rate, eight data bits, no parity, one stop bit,
and no flow control.

3.3 DCS board 39

the 16 Least Significant Bit (LSB) correspond to the board number (the serial number

of the board). Since this number is encoded into the flash, it is important to take care

not to program a DCS board with a firmware prepared for a different board. In that

case it will be programmed with a wrong board number.

The second partition is the Linux kernel just mentioned above. It will keep control

of the board for the remainder of the time while it is still powered on.

The third partition is the root file system mounted and used by the Linux system.

It is based on ROM File System (ROMFS), a file system specially designed for use

on flash disks, exploiting the advantages of flash storage whilst trying to minimise the

disadvantages. One feature is compactness, i.e. there is little overhead. Although the file

system is mounted Read–Write (RW), the system is configured to only open files Read-

Only (RO) for normal operation. This is important as the DCS board is usually powered

off simply by cutting the power, without any proper shutdown procedure. Hence, there

is no chance to flush file caches to disk, and partially written files will be left in an

inconsistent state. It should also be noted that there is another compelling reason for

not writing to the flash disks as part of normal operation: flash disks generally have a

limited number of write cycles before they are “worn out”. When this limit has been

exceeded, the frequency of read failures will gradually increase, and the system will no

longer be reliable. However, it is often necessary, or at least desirable, to make temporary

files. To facilitate this, but at the same time prevent writing to flash, a 1-MB RAM disk

is used for casual temporary files that are not to be kept, whilst persistent temporary

files will be stored on network-provided storage.

The fourth and final partition contains the firmware for the FPGA itself. The design

it contains will allow the Linux system to utilise and communicate with the hardware.

The contents of the flash is fully accessible to the Linux system via a standard device

file in the /dev directory. Hence, the DCS board can be used to update itself, typically

by accessing a new version of the firmware via network, and write it to the device file.

The firmware may be updated remotely using the remoteupdate4.sh script, which relies

on Secure CoPy (SCP) and Secure SHell (SSH) to transfer and install the firmware.

After a reboot, the DCS board is running the new firmware. Alternatively, it can also

be reprogrammed using the Joint Test Action Group (JTAG) interface.

3.3.3 Operating system — Linux

As already briefly mentioned, the DCS board is equipped with a CPU that is used to run

Linux. The resources, such as memory and computing power available on an embedded

computer is rather limited compared to what is found on larger computers. Hence,

the configuration is optimised with respect to limited resource utilisation. The kernel

is compiled to only include necessary modules. Likewise, only applications needed for

40 Front-end electronics components

managing the FEE, directly or indirectly, are included. Often, software include a rich

feature set that can be useful in very specific scenarios. For an ordinary computer, the

size of the executable versus functionality balance is not a consideration. However, for

embedded systems it may be desirable to reduce the functionality of the software to a

minimum to save disk space, as well as RAM and CPU cycles. A scaled-down version,

called BusyBox, of the most popular command-line tools for Linux is available. It is not

to be confused with the Busy-Box used by some detectors to keep track of the state of

the data read-out. Whereas each command on a ordinary Linux system corresponds to

a distinct executable, all BusyBox commands are in reality one single executable. The

distinct commands are defined as aliases to the main BusyBox executable, with special

parameters to indicate which command to invoke. Also, the reduced executables are less

resource demanding, both in terms of memory and computing power.

For the overall configuration, it is important to limit the number of processes loaded.

Firstly, loading the processes takes time, and will delay the boot sequence. Secondly, if

they remain loaded, they will consume valuable resources.

All these methods are utilised by the DCS board Linux system. The result is a “full”

Linux system on less than 8 MB of flash disk space [66]. However, the quest to save

space by reducing functionality can also have unfortunate side effects, particularly if any

of the removed functionality at some point is needed. The Linux systems obtain Internet

Protocol (IP) addresses via Dynamic Host Configuration Protocol (DHCP) on boot. For

the TPC this means 216 DCS boards will send DHCP requests almost simultaneously. If

the DHCP servers are not able to handle this flow fast enough, some of the DCS boards

will fail to obtain an IP address, and become non-functional. To mend this problem,

it was necessary to increase the number of times the DHCP client would try to obtain

a lease before giving up. Unfortunately, this was one of the features that had been

removed from the BusyBox DHCP client. Consequently, it was necessary to compile and

distribute the full version of the client to the DCS boards.

Matching kernel modules and software have been written to communicate with the

custom hardware and firmware of the DCS board. Through these, full access to the

hardware is possible, thereby enabling the desired monitoring and control of the FEE.

The FeeServer is designed to perform this task; it may be considered a relay station

utilising the Ethernet as a bridge between the hardware and the outside world.

3.3.4 Tools

The FeeServer is the main software tool for performing the remote FEE configuration

and monitoring during production runs. However, for debugging and development at

the hardware level, encoding commands to the FeeServer for reading or writing a given

register requires an infrastructure that may not be desirable in such cases. Rather, this

3.3 DCS board 41

is done much more conveniently by using standalone command-line tools.

One of the main tools is the RCU shell, rcu-sh. It is a simple command-line tool

giving access the FEE by writing to registers of the RCU (or other boards connected to

the DCS board via the same bus). The main operations are to read and write to memory.

This is done using the r and w parameters, respectively. The default action is to read

or write one word. For example, rcu-sh r 0x8000 will read the word located at address

0x8000 and write it to the screen. Like-wise, rcu-sh w 0x8000 0x1 will write the value

0x1 to address 0x8000. It is also possible to read a range of addresses from memory in

one operation by indicating the range as the third parameter: rcu-sh r 0x8000 64 will

read 64 words, starting at address 0x8000.

If it is desirable for RCU shell to perform a number of sequential operations, they

may be listed in a text file, in which each line contains the parameters one would pass

to rcu-sh on the command line (without rcu-sh itself). This file is passed to RCU shell

in batch mode, which is toggled by the b parameter. Assuming we call the file batch-

commands.txt, the full command is rcu-sh b batch-commands.txt.

There are some more parameters understood by RCU shell. The wait statement will

make RCU shell halt for the specified time. Perhaps not very useful in interactive mode,

it is mainly intended for batch operation, where it for example can be necessary to wait

for the electronics to stabilise or return a result. The driver reset keyword will try to

reset the driver used to access the RCU.

Many standard Unix and Linux tools are used by the DCS board. Most of them are

available in the simplified BusyBox version. The two main exceptions are Micro DHCP

Client Daemon (UDHCPCD) and SSH Daemon (SSHD). UDHCPCD is a client for the

DHCP. A BusyBox version is available, but did not have functionality needed for setting

time-out. SSHD is the server daemon for the SSH protocol. It is used for gaining remote

access to the DCS board. Both interactive log-in and file transfer is possible. For SSHD,

no BusyBox version is available at all.

3.3.5 File system layout and scripts

A partition of the DCS board firmware flash holds the root file system for the Linux

system, enabling standalone operation without network if needed. A small RAM-disk

holds a file system for temporary files in the /tmp directory. The flash disk has a limited

number of write cycles before it wears out; thus it is not suited for the frequent creation,

deletion and change typically experienced by temporary files. Since the DCS boards are

turned off by cutting power, writing to files on the flash is only expected to take place

exceptionally.

Network File System (NFS) is used to provide server-side storage to the DCS boards.

Normally, two shared directories are mounted: one RO, and one RW. They are mounted

42 Front-end electronics components

on sub-directories of /mnt, dcbro and dcbrw respectively. The first part, dcb implies the

share is in fact for DCs Board (DCB). The second part, ro and rw, reflects the access

nature of the shared resource.

The RO file system is intended for files that there is no need to — and indeed should

not — be changed from the DCS board side. Most important among them are start-up

scripts and the FeeServer binary. Also, various tools, libraries, scripts, updates, etc.

which may need to be accessed from the DCS board either as part of normal operation

or dedicated debugging, is preferably stored here as they share the requirement of not

being modifiable from the DCS board.

The RW file system is used for files that the DCS boards have to be able to modify.

Since all DCS boards have permission to write and in principle also over-write or delete

any file, it follows that the presence or contents of these files may not be critical to

the functioning of the DCS boards. Typically, log files and other temporary files of

no “profound” importance are stored here. In addition, output files from updates and

debugging of the DCS boards may be kept here. All DCS boards mount same shared

directories.

The motivation for storing such temporary files on server-side storage is two-fold.

Firstly, as mentioned the flash storage has a limited number of write cycles, hence tem-

porary files have to be written to a RAM-disk. This will cause the files to be lost on

every power cycle or reboot. While this clean-up might have certain operational ad-

vantages, it also means it will not be possible to inspect “old” logs in case of failures

or other problems. Secondly, server-side storage makes it possible to examine the logs

without logging into the board itself. Taken into account the large number of boards,

checking the logs of all boards would be very time consuming. Using this approach, it is

possible to employ shell scripts or other types of software on the server to analyse and

extract useful information from all DCS boards in a single operation. In addition, the

vast storage available on the server makes it possible to keep logs for longer period of

time. In case of problems, it will be possible to go back and check when a certain error

started occurring.

The main start-up script of the DCS boards is the /etc/init.d/rcS file. It is executed

just after the kernel has finished loading, and is responsible for setting up a working sys-

tem. Tasks are such as loading kernel libraries and setting up networking. The last task

is to load other start-up scripts located either in /etc/init.d/boot and /mnt/dcbro/boot,

located on the local and the remote file systems, respectively. This allows easy changes to

the DCS board configuration on the server side, with no need to modify the DCS board

itself. Apart from easy modifications to the boot process with no need to distribute the

updates to the DCS boards, the main advantage is the fail-safeness. Any change to the

DCS board itself can in principle make the DCS board to not boot properly and become

inaccessible, which leads to a situation where the error can not be corrected. In such

3.3 DCS board 43

cases, the only method of recovery is to re-program them from scratch via JTAG. This

would be extremely unfortunate as it requires physical access to the boards. On the

other hand, in case of problems due to errors in the server-stored configuration files, the

mistakes can still be corrected on the server side. At most, a reboot would be required

on the DCS board side.

3.3.6 Start of FeeServer

The FeeServer is the main software tool of controlling the FEE remotely. The binary is

located in, and run from, a directory shared from the server: /mnt/dcbro/bin/feeserver.

Hence, an upgrade can be performed simply by replacing this file with a newer version on

the server. The previous sub-section discussed how start-up scripts are invoked on boot.

The FeeServer is loaded using such script. The name of the script is S49StartFeeserver.sh,

and is located on the server-side boot script directory /mnt/dcbro/boot. In case the

FeeServer for some reason unexpectedly fails and exits, the script has provisions for

automatic restarts of the FeeServer. Output from the FeeServer are redirected to log

files under /mnt/dcbrw/fee-logs/. The log files are named according to the DIM name

of the relevant FeeServer. For the FeeServer located on side A, sector 00 and partition

0, the name is TPC-FEE 0 00 0.txt. Other FeeServer are named in a likewise manner.

3.3.7 Network

The DCS board is equipped with a modified Ethernet interface. According to the Eth-

ernet standard, an electric transformer should be used between the Ethernet lines and

the electronics to decouple the potential of the electronics from the potential of the lines.

However, as the DCS board is exposed to the very strong magnetic field inside the L3

magnet, this is not possible. Instead the decoupling is done through a purely electron-

ical circuit. Such modified Ethernet interface is sometimes referred to as Easynet. Full

duplex is supported. The electronical decoupling used can not achieve the frequency

bandwidth needed for 100 Mb/s data rate. As a consequence it is caped at 10 Mb/s

even though the rest of the hardware fundamentally can support 100 Mb/s. This is not

considered as a limitation, because the Ethernet is only used for monitoring and config-

uring the FEE, not data read-out. The only exception may be the case of transferring

pedestal values for the ALTROs. For assembling binary configuration data blocks, the

ICL is used. Currently it configures the RPs sequentially, implying only 10 Mb/s of the

server’s 1000 Mb/s bandwidth can be effectively be utilised. However, a new version of

the ICL, Java ICL (JICL) is expected to be able to do such configuration in parallel for

all RPs it serves. For the case of the TPC, the ICL has to serve 108 RPs (separate ICLs

for each of the two barrel ends). The maximal combined data rate will be 1080 Mb/s,

only slightly exceeding the data rate of the server. Hence, it should not represent a

44 Front-end electronics components

limiting factor.

As network protocols, standard IP is employed on top of the Ethernet connection.

Consequently, standard Linux and Unix network tools can be used. In particular, this

applies to NFS for file sharing, SSH for interactive remote log-in, SCP for file transfer,

DHCP for assignment of IP addresses, etc. based on hardware MAC addresses, Domain

Name System (DNS) for host name look-up and Network Time Protocol (NTP) for

synchronising local time to global time. In addition, the custom software, the FeeServer,

is designed to rely on network for communication with the outside world.

Network is loaded by the /etc/init.d/rcS start-up file. There are two main scenarios

for obtaining network parameters such as IP address, net mask, broadcast address, gate-

way and time server. The primary strategy is to obtain them from DHCP. Since this

is the method used in the experimental setup, the timeouts are rather generous. The

reply-timeout is 3 s. If no reply has come within this time, a new request is sent. This

procedure is repeated ten times before giving up; hence total timeout is 30 s.

If DHCP fails, it falls back to the configuration given in /etc/init.d/network.txt. The

IP address stored in this file is 10.0.x.y, where the 16 MSB in x.y is the board number,

and, henceforth, the 16 LSB is the MAC address. The net-mask is 255.255.0.0, and

broadcast address is 10.0.255.255. Neither gateway nor time server is configured. It is

possible to access the board configured with these parameters by configuring a computer

in the same physical network with compatible parameters. 2

3.4 DCS bus

The DCS bus is the main extension bus of the DCS board. In most cases it is used to

connect to an RCU, however other devices have been designed for use with the DCS

board as well. From the hardware design, the bus is very versatile. The exact usage of

the pins is determined by the firmware of the DCS board and the other device sharing

the bus.

For communication with the RCU, the bus can at any given time be in one of three

modes of operation: message buffer, flash, or select map. The mode refers to the target

device of the communication, and the same physical bus lines are used in all modes.

The mode of the bus is set on the DCS side. In practice, it is done via an Input–Output

ControL (IOCTL) system call to the Linux device driver for the bus. Care must be

2 However, in practice this is difficult to do in the ALICE experimental setup. The link to the
switch of the DCS boards goes through routers where only addresses in the IP-ranges assigned to the
networks are passed through. Hence, the computer must be connected directly to the switch of the DCS
boards. For each of the two stacks of switches serving the two TPC sides, there is a spare Ethernet
cable (the other of the pair of cables going to the outlet used by each stack) to the network starpoint.
However, gaining physical access to this will involve the Information Technology (IT)-department. Most
likely, this option is reserved for last resort attempts when the experimental area is inaccessible and one
suspects DHCP might have failed for a DCS board.

3.4 DCS bus 45

taken to assure that only one application tries to set the mode of the bus at any given

time. It is possible for a process to change the mode of the bus whilst another process is

accessing it. The result is almost destined to be some sort of malfunctioning, including

possibilities of corrupting the firmware.

Although this bus arrangement is valid for RCU, it may not be the case for some of

the other systems that relies on the DCS board for control and monitoring, such as the

trigger BusyBox. The BusyBox has neither flash nor Actel, and the programming of the

FPGAs is expected to always be done from software. The BusyBox may have one or

two FPGAs. For the two-FPGA version, it has two select-map devices. Since there is no

Actel, the select map is accessible directly from the DCS board. As the overall number

of lines of the DCS bus is limited, the message buffer bus width is limited to 16 bits, in

contrast to the 32 available for the RCU. The select map bus is always eight bits wide.

3.4.1 Message buffer-operation

Communication between the DCS board and the main FPGA takes place via the message

buffer. This is the only memory that can be used for bi-directional communication; the

flash and select map memories are only for programming firmware of FPGAs. The

memory is laid out by the firmware of the FPGA; it defines a communication interface.

Instructions or configuration of the RCU by the DCS board is done by writing to specific,

predefined registers. Likewise, the FPGA firmware will write results and messages to

registers for the DCS board to read. Since the memory is located on the RCU, the DCS

board is the “active” part of the communication in the sense that the responsibility for

transferring data over the bus lies on its side. The RCU has no means of “pushing” data

to the DCS board, or writing to it. There is an interrupt line to the DCS board that

can be utilised to notify the DCS board of events requiring attention on the RCU.

Parts of the FPGA memory is used to expose values of particular interest. This

is typically counters and other values that can be used to assert the operation of the

firmware and FEE. These registers are set by the RCU, and may only be read by the

DCS board.

Other parts of the memory is used for configuring the behaviour of the firmware or

the FEE; they may be considered as “input-parameters” to the operation. For example,

the FECs can be turned on and off by writing to a register.

3.4.2 Flash-operation

The RCU is equipped with a flash device to store the firmware of the main FPGA of

the RCU. FPGAs are either based on flash or RAM. The firmware of flash-based are

persistent, in contrast to RAM-based, which has to be reprogrammed after a power-

cycle. RAM-based are also more prone to single-even upsets from radiation. However,

46 Front-end electronics components

at the time on design, flash-based FPGAs of the size needed were not available, hence

one based on RAM had to be used despite these issues. The external flash is used to

program the main FPGA on power-on. A smaller flash-based FPGA, manufactured by

Actel, is used to read the configuration from the flash and program the main FPGA.

This procedure is optional, and may be disabled if desired.

To recover radiation induced errors in the design loaded into the RAM of the main

FPGA, the Actel can be programmed to scrub the main FPGA. This is a technique

supported by the FPGA, where blocks of the firmware can be read from and written to

the FPGA (shown in Figure 3.6) whilst it is operating. Hence, the Actel can read the

same frame of firmware design from both the FPGA and the flash and compare them. If

they differ, it will update the FPGA with the frame from the flash, without disturbing

data-taking. This process will loop continuously over all frames [67].

3.4.3 Select map-operation

The select map operation mode of the DCS bus allows for direct access to the FPGA

firmware memory from the DCS board. In particular, this makes it possible to program

the firmware to the FPGA directly from the DCS board in software. If automatic

programming of the FPGA by the Actel is not desired, it can be done by the Linux boot

scripts, or whenever needed at a later stage instead.

3.5 RCU

In the introduction, the RCU was described as the motherboard where everything is

connected together. As the name implies, it is in control of the data read-out. The

firmware of the embedded FPGA will read out data from the FECs, and forward it to

the SIU module and henceforth to the DDL. Read-out can be performed autonomously

without interaction with the DCS board, except for the trigger messages received through

the DCS board and the initial configuration. The RCU is designed to allow the DCS

board to carry out monitoring without disturbing data read-out. In firmware, this is

facilitated by a separate module of the RCU firmware, the Safety and Monitoring module

(SM). In hardware, there are two buses to the FECs; one for data read-out, and one for

monitoring. Hence, also monitoring of the FECs is possible without interrupting data

read-out.

An FPGA made by Xilinx is used as the core of the RCU. Its main task is to read out

data from the FECs, decode it, then re-encode it by a data format used to transfer data

to DAQ and HLT via the DDL optical fibres. The firmware can either be loaded from

a flash disk with the aid of an auxiliary FPGA, made by Actel, or by software from the

DCS board. Implementing functionality in the FeeServer to allow remote, central update

3.5 RCU 47

�

�������	

����

�
�������	

���������	���	

������

��	�
�����	�

����
��������
��

���
	�����

�������

��������
��
�!��"#
#

��!�� �

$��%&

$��%'

$��%(

$��%)

���
�

����*���
�

����

�����	

)(����+&�",

-���������%
(����

.
�
���	/���	��

�0��
#

.�����1 �������

�0��
#

2�*
	�
�

'&����

�	���2��/�	��

�
!
3
�
-
�

�
$

!
4
�'�	�55
	

�
	���$�*���
�

)(���� �

33/	�

���/

3	�55
	

�0��
#

-���������%

�
�
�������

���
�

����*$��
�

����
����63��
	����

�!��"
�
#�	0

����63��
	����

����4
��	�����
���7�5 	�������� ����

�
/
�

�
$

�
!
3
�
-
�

�
�

�
/
�

�
�

�	����� �	�����
'
8
�
��
�

�

�
2
/

�
2
/

�
2
/

�
2
/

�
2
/

�
2
/

�
2
/

�
2
/

Figure 3.6: Dataflow of the RCU. Connections to the DAQ, CTP, DCS board and FECs
are shown. [62]

of the firmware is being considered. If enabled, the auxiliary FPGA can automatically

load the firmware to the Xilinx FPGA on power-on. Alternatively, it can be also be

loaded automatically by the DCS software. For debugging and development, it might

be preferable to load it manually through software when needed. The firmware for the

Xilinx FPGA controls the behaviour of the RCU, and is based on a modular design

[68, 69]. Figure 3.6 shows the dataflow for the RCU and to related sub-systems.

GTL and I2C buses

The DCS board can access the FECs via the RCU. There are two “parallel” access buses:

the Gunning Transceiver Logic (GTL) bus and the I2C bus. The names reflect the bus

standards they are based on, they are both very common in commercial applications.

Both the FEC BC and the ALTRO registers are accessible via the GTL bus, through

the I2C bus only the BCs can be reached. For performance, the buses are split into two

independent branches; that is, functionally two buses. Each branch has a theoretical

limit of 16 FECs, i.e. 32 for the two branches together.

The GTL is a fast bus running at 40 MHz to transfer data collected by the ALTROs

48 Front-end electronics components

to the RCU, where it can be forwarded via the optical fibre. It is commonly referred to

as the ALTRO bus since it transfers data collected by the ALTROs.

However, during data-taking, the GTL bus is fully occupied by reading out data; any

attempt by the DCS board to use it for accessing FEC registers, such as monitoring,

will ruin this process. The slow control bus was designed specifically for this purpose —

allowing access to the BCs for monitoring and control without interfering with the data

read-out. For this purpose, a high transfer rate is not required. Its slow transfer rate

and control purpose has earned it the common name Slow-Control (SC) bus.

Since the ALTROs are only reachable via the GTL bus, their initial configuration has

to be done via this bus. This is, however, not in conflict with data taking, as this can

only begin once the ALTROs and other parts of the FEE are completely configured. In

some cases, there might be some performance gain in configuring the BCs via the GTL

bus as well, since it operates at higher speed. One such example can be the PHOS APD

voltages.

One use case, however, where access to the ALTRO via the I2C bus would be very

useful, is verification of the ALTRO registers during runs. Radiation may change the

contents of the registers at a very low rate. Implementing verification by utilising the

GTL for read-back and reconfiguration during gaps of the read-out orbit, i.e. when the

bus is not used for read-out between two events, is being considered depending on the

experience gained during first Pb+ Pb data. Reading and writing the ALTRO registers

through the I2C bus would be trivial compared to intercepting the read-out orbit without

disturbing data taking.

Both the GTL bus and the I2C bus are accessible to the DCS board through message

buffer memories. For the GTL bus, sequence of specially encoded instructions are written

to the Instruction Memory (IM). When the DCS board has given the RCU the execute

signal by writing to another, specific register, the RCU starts executing the content of

the IM. The instructions are commands to read or write given registers on the FECs,

both ALTRO and BC. There are also instructions for flow-control, though they are in

practice not used. Results from the instructions are written to the Result Memory (RM),

where the DCS board can collect them. For read commands, the value read is encoded

and stored here. If errors occurred, they can be accessed from dedicated registers.

A similar procedure exists for the I2C bus, In contrast to the GTL bus, only one

read or write command can be issued at a time. One message buffer register is used

for addressing the BC register, for writing another holds the data to be written as well.

After giving the execute signal (different register than for ALTRO IM), the FEC BC is

accessed. In case of read operation, the result is available in a register. Possible errors

are flagged in the error register.

For the TPC, a variable number of FECs are used, depending on the radial location

of the RP in the sector. The innermost RCUs have 25 (13 and 12 for the two branches),

3.6 TPC and PHOS FECs 49

Figure 3.7: Picture of a TPC FEC. The widest connector on the top is for the GTL bus,
the narrower for the I2C bus. On the bottom are connectors for cables to the read-out
pads. The Altera chip on the top is the FPGA containing the BC. The four large chips
in the middle is the ALTROs, with the corresponding, slightly smaller PASA chips just
below. Opposite side of the FEC looks similar.

the outermost have 18 (nine for each branch). Higher particle track densities close to the

interaction point demands higher spacial resolution for the innermost partitions; hence

the “counter-intuitive” arrangement of more read-out channels for less area covered.

PHOS has 14 FECs for data read-out and one special FEC for trigger decision for each

branch, giving a total of 30 FECs.

3.6 TPC and PHOS FECs

Both TPC and PHOS have a similar arrangement of FECs for collecting data. Input to

the FECs is a weak analogue signal. For TPC, this signal comes from a read-out pad, onto

which charge from the particle track is induced. For PHOS, it comes from an APD that

measures photons from a scintillating crystal. Though there are some implementation

differences, the signal from both detectors goes through a shaping amplifier before it is

digitised, then digitally filtered, in the ALTRO chip. Here it is temporarily stored in the

event buffers for read-out by the RCU through the GTL bus, if a trigger is given.

A TPC FEC is shown in 3.7, while Figure 3.8 shows a PHOS FEC.

50 Front-end electronics components

Figure 3.8: Picture of a PHOS FEC. The widest connector on the bottom is for the
GTL bus, the narrower for the I2C bus. On the top are connectors for cables to the
read-out pads. The two uppermost chips are the ALTROs. Opposite side of the FEC
looks similar.

3.6.1 Board controller

The BC is responsible for controlling the parts of the FECs which is not directly related

to data read-out. In particular, this means monitoring. The FEC has sensors for en-

vironmental parameters like temperature, voltages and currents. If the values of these

parameters are not within a certain range, the functioning and lifetime of the FEC may

be severely hurt. The BC has registers where the values are accessible for read-out via

the I2C bus. Also, if the values are beyond a configurable threshold, the BC may sig-

nal an interrupt to the RCU, requesting action to be taken. The BC has configuration

registers for setting the threshold, turning continuous monitoring on or off, etc.

The BC is very tied to the hardware design of FEC. Hence, the design is different for

TPC, PHOS, FMD and TRU FECs.

3.6.2 PASA

The PASA chip is designed specifically for the needs of the ALICE TPC. As the name

implies, it amplifies and shapes the analogue signal from the read-out pads. Afterwards,

the signal is forwarded to the ALTRO chip for further processing. It features a gain

3.6 TPC and PHOS FECs 51

of almost 13 mV/fC. Each chip has 16 parallel, completely independent channels for

processing read-out signals. The ability to process multiple channels per chip is crucial

to achieve the high number of read-out channels of the TPC.

3.6.3 ALTRO

After passing through a shaping amplifier, the pad signal is processed by the ALTRO,

which will digitise and digitally filter it. The ALTRO is using a 10-bit ADC capable of

10 million samples per second. The digital filtering is performed in four stages. The first

stage removes systematic effects and low frequency perturbations as part of a base-line

correction for tail-cancellation, which is the next stage. Tail cancellation removes the

tail of the pulses within 1 μs of the peak. Fully programmable filter coefficients allow for

removal of a wide range of tail shapes. Next, non-systematic perturbations of the base-

line superimposed on the signal are removed by applying a base-line correction moving

average filter. The full chain is performed completely for each channel independently.

After filtering, the signal base-line is constant within one ADC count. This will

allow for very efficient zero-suppression, greatly reducing the data size, while preserving

interesting signals.

Configuration registers accessible via the GTL bus determines the behaviour of the

ALTRO.

3.6.4 Interrupt

Each branch of FECs has a shared interrupt line for all FECs. If an error happens on one

of the FECs, the FEC BC will signal this by pulling the interrupt line low. The FEC BC

will continue pulling it down until the RCU has cleared the error on the FEC concerned.

There are two kinds of errors, soft and hard. Soft errors are defined as not potentially

physically harmful to the FEC. Hard errors may physically damage the board. Too high

temperatures, voltages or currents are all examples of hard errors. In case of hard error,

the RCU will immediately shut down the concerned FEC as a pre-emptive precaution.

This will not cause the run to stop, but data from the specific FEC will of course be lost.

When the board has been switched off, the interrupt line will be cleared automatically,

as it is not possible for the FEC to continue asserting the interrupt line when it is off.

For soft errors, the error register has to be cleared manually. This will not be performed

by the RCU autonomously, rather it has to be done in software from the DCS board.

There is an interrupt line from the RCU to the DCS board. When the RCU senses an

interrupt from the FECs, it will poll the error register of the FEC and write this to its

own error registers. The DCS board will access this register to determine which FEC

caused the interrupt, and handle it accordingly. If the interrupt register on the FEC is

not cleared by software, the FEC will not release the interrupt line.

52 Front-end electronics components

During commissioning, it was noticed that a design error in the FEC BC firmware

occasionally led the BCs to read out erroneous values from the monitoring ADCs. For

example, temperatures of 127◦C were reported. While obviously wrong, it would cause

the RCU to turn off FECs reporting such temperatures, hurting data taking. For this

reason, all errors are currently set as soft errors. The values of the FEC BC registers that

can cause the BCs to trigger an interrupt are monitored by the FeeServer, and forwarded

to PVSS. The frequency of values that are over the threshold that will actually cause

an error interrupt, is monitored. Hard errors might be enabled once these results, under

real running environment, are determined to be at an acceptable level. Until then, error

conditions are monitored in PVSS, where action will be taken manually by shifters.

Chapter 4

FeeServer software

Particles traversing the sub-detectors generate analogue signals in the dedicated sensors.

The number of sensors is very large, for example, the TPC alone has more than half

a million channels. Also, transferring the signals over long distances will lower the

signal-to-noise ratio; hurting detector performance. Both these issues dictate that the

electronics for digitalising and processing the signals has to be embedded as an integral

part of the detectors. This is the FEE. One of the main challenges of such embedded

system is the inaccessibility — access to the electronics may require partly dissembling

the detector, rendering physical intervention impossible for up to a year during a run

period. As a consequence, the electronics must be highly controllable and configurable

remotely. The inaccessibility also implies broken electronics may not be replaced until

the end of the run period. Hence, monitoring of parameters, such as voltages, currents

and temperatures, that may indicate a pending fault, has to be in place. Combined with

the complexity of the electronics, this puts demanding requirements to the system for

configuring and monitoring the electronics.

A setup based on a small Linux computer system embedded into the FEE was chosen.

On top of this, control and monitoring are handled by a custom software, the FeeServer.

Although the same requirements may also have been fulfilled by a system implemented

entirely in hardware, it would be difficult to make it as flexible as the software-supported

solution. For example, the embedded computer allows DCS and FEE experts to log into

a Linux system where direct access to all hardware is possible via device files. Command-

line tools may be used for development and debugging. Also the firmware of the RCU

card and the DCS board is accessible as device files, allowing remote update. Another

advantage of the software approach is the ease of implementing complex control and

monitoring logic. New versions of the FeeServer is deployable by distributing a single

file.

The FeeServer is relying on the DIM protocol for communication over network. DIM

provides essentially two functionalities: messages and services. The FeeServer is using an

derived version of DIM, called the FEE protocol. Here, the message is used for relying

53

54 FeeServer software

������������

	����������
�� �����

������
�������������������

�����
���

���

	��������������� �!������!�������������

���������������
����

��������"�#
�$�����
��

Figure 4.1: Block diagram of the communication between the RCU, DCS board,
FeeServer CE, FeeServer Core and client software connecting to the FeeServer via net-
work.

commands to the FeeServer, whereas the services are used to forward values published

by the FeeServer.

The FeeServer is divided into two parts: a general part, and a specific part. The in-

terface between them consists of functions declared by the general part and implemented

by the specific part. Finally, the parts are linked as a single executable. Figure 4.1 shows

a block diagram of the communication between the different components.

4.1 FeeServer Core

The general part is called the FeeServer Core. It provides the core framework for pub-

lishing and updating services, and receiving commands via the DIM and FEE protocol.

It knows however nothing about what is published, or how to interpret the received com-

mands. This is the responsibility of the specific part. There are several versions of the

FeeServer, all adapted to a specific usage. However, the Core is shared by all. Further

details on the FeeServer Core are given in [70].

4.1 FeeServer Core 55

���������	
���

����������������	
��	
���

��������������	
��	
���

���

���

�����������	
��	
���

����������	
��	
��� �����

����������

����������

��������

������

������

�����

��������

��������

���������

��������

�����

����������

������

�����

����������

��������

�����

������

������

������

�����

��������

��������

���������

���������

������������	�

Figure 4.2: Inheritance diagram of the main FeeServer CE classes. Note that the frame-
work prepared for TRD and FMD are not used, since they choose to develop separate
CEs.

56 FeeServer software

4.2 FeeServer ControlEngine

The specific part is called the FeeServer CE. It is responsible for providing the specific

implementation for updating of published services, and interpreting commands received

by the Core. Originally, the interface between the Core and the CE was devised as the

starting point for developing FeeServers for different purposes, such as for TPC, PHOS,

BusyBox, etc.; i.e. the CE would be completely different for all species of the FeeServer.

However, the functionality and complexity of the CE has increased much. Most of the

CEs share very similar requirements for state machine, defining devices and handling

of commands and services. This has made it possible to develop a common framework,

shared by all CEs, on top of the Core–CE interface. Using this, a FeeServer for a new

appliance can be created simply by implementing a few virtual classes from the CE

framework.

The relation of the most important classes are given in Figure 4.2, showing the class

diagram.

The framework of the FeeServer CE is based is based on the following entities:

• control engine — the main part of the FeeServer CE, user of the other classes;

• device — represents a particular part of the FEE of particular interest, also hard-

ware access;

• service — interface for publishing values via FeeServer Core;

• issue — command handling;

• state machine — customisable to specific requirements.

The FeeServer CE has gone through several development iterations. Most impor-

tantly, the current version is object oriented and based on the C++ programming lan-

guage. In the past, the CE was implemented in plain C [71, 72].

4.2.1 Control engine

As already mentioned, there are many versions of the FeeServer, adapted to different

sub-detectors and auxiliary systems. The framework provides the Ctr class as the base

for implementing new CEs, providing common functionality needed by all. It is in turn

based in the ControlEngine class, which implements the basic interface to the FeeServer

Core. By also inheriting from the CEStateMachine and CEIssue, a state machine and

command handling are provided as well. The state-machine is used for the overall MAIN

state of the FeeServer. All CE commands sent to the FeeServer are received by the CE;

it is the responsibility of the CE to dispatch the commands to the right devices.

A new CE is made by inheriting from the Ctr class and over-riding the needed

functions. If an (almost) completely different CE is needed, it is possible to derive a CE

for the FeeServer of a given appliance directly from the ControlEngine base class, however

this will disable most of the framework; essentially requiring a full re-implementation.

4.2 FeeServer ControlEngine 57

There can only be one instance of the ControlEngine class; the type of the class

determines the identity of the FeeServer. This should be obvious; the very same instance

of a FeeServer can not have both, say, TPC and PHOS identity!

4.2.2 Device

A device is the FeeServer CE’s representation of hardware. It can be a whole card,

like an RCU or a FEC, a bus, a specific chip, like the Actel, a full system, like the

Busy-Box, or just a module of a firmware design, or any other entity that it makes

sense to distinguish physically or logically. The framework provides a base class, Dev,

to simplify the creation of new devices for the FeeServer. The Dev -class already inherits

from CEStateMachine and CEIssue, which will provide any new sub-class of Dev with

a framework for a state machine and command handling. In addition, the Dev class

provides default implementations of a state machines that is always in state ON, and a

command handler without any commands defined. Either or both can be used directly

by trivial devices that does not need this functionality, but only wishes to take advantage

of the Dev framework, or as a starting-point for more complex devices that will over-ride

the needed functions.

Some of the most important virtual functions that can be over-ridden by Dev sub-

classes:

• ArmorDevice() — initialisation (armour) of the device;

• EvaluateHardware() — determine the state of the device (usually the hardware)

at start-up;

• ReEvaluateHardware() — determine the state of the device at run time;

• EnterStateNAME() — executed when device entering state NAME ;

• LeaveStateNAME() — executed when device leaving state NAME ;

• SwitchOn(. . .), Shutdown(. . .), Configure(. . .), Reset(. . .), Start(. . .), Stop(. . .)

— executed when corresponding transition occurs;

• GetGroupId() — return the group IDentification (ID) for command handling;

• issue(. . .) — implementation of binary command handling;

• HighLevelHandler(. . .) — implementation of high level command handling;

• PreUpdate() — executed before a (service) update cycle;

• PostUpdate() — executed after a update cycle.

In addition, a number of other function exists. A complete list can be found in the

Dev.hpp file [73].

It is also possible to define devices outside of the Dev framework provided. Either a

completely stand-alone class can be made, or just inheriting from either CEStateMachine

of CEIssue. However, this is in general not recommended, as they can not be used along

other Dev -objects in the framework, but exists as an option for very special cases.

58 FeeServer software

4.2.3 Service

A service is a data-point published by the FeeServer via the DIM protocol. Hence-

forth, a FeeClient can subscribe to this service. Whenever the value of the data-point

is changed, the FeeClient will receive an update from the FeeServer. The opposite is

also possible; a FeeClient can use the service channel to set the value of the data-point.

Obviously, this will only work if the FeeServer supports this for the given channel, and it

is physically possible. For example, trying to set the value of a data-point representing

the temperature measured by some sensor will not change the temperature. Since the

FeeServer procedure for getting and setting a data-point is completely independent, it

is also possible to define a service that can only set a value, but not get it. A typical

example would be a hardware register that can only be written, i.e., writing a value will

give an instruction to the firmware, but the instruction can not be read back.

From the DIM protocol, a service is identified by its name. The combination of

FeeServer name and service should be unique.

There are two ways of publishing a service from the CE: either using the low-level

RegisterService(. . .) function; or the high-level framework from the Ser class. In general,

the later option is preferred for general numeric register values, and the former for

complex services that can not easily be generalised.

Publishing a service is a two-step process. First, at FeeServer start-up the services

to be published has to be registered. This is done by calling the RegisterService(. . .)

function from the ArmorDevice() function of every class wishing to publish services. The

second part is the FeeServer update cycle, where it will check for all services whether

an updated value is available. There is a one second break after the update cycle has

finished before the next begins. To check for updated values, a user-specified function

is called. There is also a user-specified function to call if a FeeClient is trying to set

the value of a service channel. Either (or both) can be NULL, disabling the set or get

functionality.

A service can have one of three data types: float, integer or string. The two first are

considered numeric and are treated slightly differently than the strings. Every numeric

service can have deadband. If the change of the value of the data-point is within this, it

will considered not to have changed, hence not updated to the FeeClients. 0 is a valid

value for the deadband.

In some cases, like hardware registers, the code for obtaining the values from many

data-points is identical; the only change is the address of the register. The RegisterSer-

vice(. . .) allows registration of three free parameters that will be passed the call-back

functions. Using these to identify the specific service, for example as indices to arrays

or object pointer, the same call-back functions can be used for several similar services.

This scheme is also used for the call-back functions setting values.

4.2 FeeServer ControlEngine 59

Parameter listing of RegisterService(. . .):

• enum ceServiceDataType type — the type of the service, float, integer or string ;

• const char* name — service name;

• float defDeadband — deadband width;

• ceUpdateService pFctUpdate — get call-back function;

• ceSetFeeValue pFctSet — set call-back function;

• int major, int minor, void* parameter — free parameters that will be passed to

the call-back function, typically used when same function handles several similar

services and needs to identify the specific service, for example they may constitute

indices to arrays or pointer to object.

Using the RegisterService(. . .) function directly requires every service to have its own

static call-back functions. However, more often than not, this task can be off-loaded to

the framework. Most of the services being published are “verbatim” hardware registers

of either the DCS or the I2C buses. The CE provides a framework for publishing such

“general” services, the Ser base class. Every service is represented by an instance of a

sub-class of Ser. The constructor of such object will automatically register the service

using the RegisterService(. . .) function.

The DCS bus has several modes of operation, depending on hardware and firmware

configuration, each giving access to a pre-defined memory on the auxiliary board to

which the DCS bus is connected. For the RCU, the DevMessagebuffer class mode 1

gives access to the message buffer, mode 2 to the select map, and 3 to the flash.

The constructors of the general service types defined so far:

• SerMbAddrS(std::string name, unsigned int address, signed int convfactor, signed

int deadband, DevMsgbuffer* msgbuffer, unsigned int mode=1) — signed integer

from DCS bus;

• SerMbAddrF(std::string name, unsigned int address, float convfactor, float dead-

band, DevMsgbuffer* msgbuffer, unsigned int mode=1) — float from DCS bus;

• SerFecRegS(std::string name, unsigned int fec, unsigned int reg, signed int con-

vfactor, signed int deadband, DevFecaccess* fecaccess) — signed integer from I2C

bus;

• SerFecRegF(std::string name, unsigned int fec, unsigned int reg, float convfactor,

float deadband, DevFecaccess* fecaccess) — float from I2C bus.

Parameters for the constructors, in order of appearance:

• std::string name — service name;

• unsigned int address — register address of DCS bus;

• signed int convfactor — conversion factor, can be 1 ;

• signed int deadband — deadband, can be 0 ;

• DevMsgbuffer* msgbuffer — pointer to DevMessagebuffer object to use;

• unsigned int mode=1 — DCS bus mode, as used by DevMessagebuffer ;

60 FeeServer software

• unsigned int fec — hardware number of the FEC;

• unsigned int reg — register address on the FEC;

• DevFecaccess* fecaccess — pointer to DevFecaccess object to use.

For both float and integer services, the values are read as integers from the hardware

registers, then multiplied by the conversion factor specified in the constructor; enabling

publishing of for example “real” temperatures. The services of float data type is con-

verted to floats as part of the multiplication.

The Ser framework provides standard call-back functions for both getting and setting

data-points for all the currently defined service types. Whether an attempt to read or

write a given register actually succeeds, will depend entirely on the hardware read–write

nature of the register; trying to set a temperature sensor register will not change the

temperature!

It is of course possible to extend the Dev class with sub-classes for more data types, if

so should be needed. In general, the extra overhead of extending the framework will only

be worthwhile for general types of data-points that will occur multiple times, preferably

in multiple classes. For exceptional types only used once, it might be more efficient to

use the RegisterService(. . .) function directly without going through the ControlEngine

framework.

4.2.4 Issue

Commands are received by the FeeServer Core via the command-channel. After deter-

mining the command is destined for the CE and not itself, the command is forwarded to

the CE. Any class, like Dev, wishing to be able to receive commands, have to inherit from

the CEIssueHandler class, and implement the functions issue(. . .) and GetGroupId(. . .).

The first function will contain the actual implementation of the commands the class can

handle. Every class has to be assigned a command group ID, which should be return by

the last function.

When a command is received by the framework, the header is inspected, and the

command group ID is extracted. The ID is compared to the ID of all registered classes.

Henceforth, the command is forwarded to issue(. . .)-function of the class with matching

ID. If none is found, an error message is returned. Each command group has a set of

defined commands. The unique combination of a command group ID and command gives

the command ID. Both are defined in the file rcu issue.h, with corresponding command

names. Any application wishing to send commands will typically include this file for

easy mapping from named to command codes.

Each class is in principle free to implement the issue(. . .)-function as it sees fit.

However, the typical implementation will be based on a switch for the command ID.

The issue(. . .)-function will return the number of bytes processed. The data sent via the

4.2 FeeServer ControlEngine 61

command channel may contain several commands concatenated. When an issue(. . .)-

call returns, the number of bytes processed is subtracted. If the framework finds another

header, the new command ID is extracted, and the corresponding issue(. . .) function is

called. This process is repeated until there are no further commands.

The Ctr class use a “special” command, FEE CONFIGURE 32, to initiate a config-

uration sequence. This command will contain “ordinary” commands. During the con-

figuration, the FeeServer MAIN state will be DOWNLOADING ; when it has finished,

CONFIGURED.

In addition, there are high-level commands, which are “human-readable” commands,

in contrast to the ordinary commands, which are purely binary. For example, by send-

ing <fee>CE SET LOGGING LEVEL 0</fee> via the command channel, the logging

level of the FeeServer is set to 0 (debug). Support for such commands is enabled by im-

plementing the HighLevelHandler(. . .) function. A typical implementation will involve

searching for a text string matching the name of the command. Such search has to be

explicitly implemented for a command; the framework will not attempt to automatically

convert high-level commands to commands found in the rcu issue.h file. Since their are

no IDs to identify, the framework will call the HighLevelHandler(. . .) function of all

classes until a match is found.

In addition, there is a special group of high-level commands for triggering certain

state transitions for the FeeServer, which are identified by action rather than fee. As

an example, <action>GO STANDBY</action> will make the FeeServer enter the state

STANDBY.

4.2.5 State machine

The framework provides a state machine for classes that need this functionality. Any

class deriving from the CEStateMachine base class will have its private state machine.

The Dev -class, base of all devices, already inherits from this class.

The behaviour of the state machine can be customised for each class individually. This

is done by over-riding functions from the base class, and defining transitions between

states. All states are identified by a unique numerical ID, with a corresponding name.

The number can not be changed, however, the name can. By default, a set of states are

provided, most of them corresponding to states used by PVSS, in addition to a number

of user states. Both types of states can be re-defined, however, this should only be done

exceptionally for the PVSS states. Since both IDs and names are matching those used

by PVSS, a re-definition will give a state with the same ID as a PVSS state, but with

a different name. In addition the PVSS states have certain pre-defined transitions; this

should be considered if re-defining such states. For consistency, PVSS states should be

used whenever possible, however, in some cases additional states are needed.

62 FeeServer software

The framework allows for defining new transitions between any states. A transition

will have a name, and will take the state machine to a specific state. However, the

transition may be allowed to start from any of a specified list of states. Additional

checks may be specified before allowing the transition to take place.

By overloading functions of the base class, it is possible to specify logic to be executed

whenever the state machine enters or leaves a state. Code can also be executed in

conjunction with the transition itself, i.e., not tied to the specific state that is entered

or left, but by the actual triggering of the transition. This is useful as several transitions

may start or end at a certain state, but depending on the purpose of the transition, not

always the same code should be executed. For example, if the state machine is modelling

the some underlying hardware, the code related to entering and leaving a state may set

the hardware in a “physical” state corresponding to the state machine state, while the

instructions for the transition will represent a higher level configuration. If the states

are on and off, the hardware will be turned on when the state on is entered, and turned

off when state off is entered. A transition configure might end in state on, but also

configure the electronics as part of the transition.

The meaning of each state of a given state machine, is to a very large extent de-

termined by the class itself. In some cases, it may represent real hardware. This is in

particular the case of the Dev -class and derivatives. In other cases, it may represent

the abstract state of software. The state of certain classes may influence the state of

other classes. The MAIN state machine represents the “overall” state of the FeeServer.

However, this does not necessary imply that all other state machines are in the same

state as the MAIN. Rather, the logic of how the MAIN state machine reacts to the

state of some other state machine has to be programmed explicitly, where a high-level

understanding of the overall system is paramount. Typically, the MAIN state machine

will enter state error if any of the sub-ordinate state machines is in this state. However,

this does not have to be the case. It is possible to imagine cases where the state of a

given state machine is determined not to be of any, or at least not sufficient, importance

to the overall system. Optionally, the MAIN state might be mixed, to signal not all

state machines are in a state that trivially can be translated to state running, but still

the overall state is not error. Any state machine might take the state on other state

machines into account.

The inter-dependence of state machines, and that the individual state machines can

have different sets of states, transitions, and criteria for allowing a given transition,

arguably makes the state machines the overall most complex part of the FeeServer, even

though the basic “building blocks” are fundamentally simple.

4.2 FeeServer ControlEngine 63

4.2.6 Base classes and inheritance

Creating a CE for a new appliance is done by implementing a few derived classes from

the framework base classes, Ctr, Dev and Ser. The Ctr -derived class can be considered

the CE itself, and is the only “required” class for a new FeeServer CE (however, not very

useful since it would not be able to interact with hardware without Dev -classes). Classes

based on Dev are representing the various pieces of hardware the CE needs to control

and monitor. Most importantly, the command handling is implemented (the issue(. . .)-

function) and services registration. In principle, all hardware of a certain CE can be

supported in a single class derived from Dev, however, it is considered “good practice”

to split physically or logically distinct functionalities into separate classes. For “simple”

appliances, like the BusyBox, all functionality will fit into the BusyBox “container”,

whereas more complex systems, like the TPC and PHOS several Dev -classes are needed.

The instances of the classes derived from Dev is created and destroyed by the Ctr class.

Typically, all instances live for the entire life-time of the FeeServer.

It is rarely necessary to derive new classes from the Ser class, as the default provided

types are sufficient. For “one-of-a-kind” services, it is most likely easier to use the

FeeServer Core framework directly rather than deriving a new Ser -class. However, for

types that will be used several times, the overhead of implementing a new class can be

justified.

The framework has been designed to make creating a new CE easy. Both the Ctr

and Dev base classes are designed to provide meaningful default implementations of most

functions, for example state machine and command handling, so that appliances that do

not need some of this functionality do not have to make an effort implementing it. It is

possible to create a new, basic CE prototype literally within minutes.

4.2.7 Interrupt handling

The DCS bus has interrupt lines that may be used by the RCU and other users of the

bus to gain the attention of the FeeServer. Specifically, the FeeServer listens to the

SIGUSR1 interrupt, which is mapped to one of the DCS bus interrupt lines. Other lines

may also be used. The device file of the interrupt driver is /dev/irq/irq.

The main use case for the interrupt is the RCU. If one of the FECs experiences an

error, it will send an interrupt to the RCU, which in turn will signal an interrupt to

the DCS board and the FeeServer. The FeeServer is then expected to read an error

register on the RCU to determine the cause of the interrupt, both which FEC and the

type of error. After decoded the contents of the error register, the FeeServer will clear

the register. Depending on the error, the FeeServer will determine what action to take.

For less serious incidents, it may choose to inform upper layers, or in some case, ignore

the error completely. For more serious errors, direct intervention on the FEE may be

64 FeeServer software

needed. If the error is also defined as an hard error, the RCU will automatically turn

of the FEC in question. In that case the FeeServer may try to turn the FEC on again,

if it is considered safe. This will also require re-configuration of both ALTRO registers,

including pedestal memories, and BC registers, since they are cleared when turned off.

Such re-configuration will require both the IM instructions for setting the ALTRO and

BC registers, as well as the pedestal values to be stores in the FeeServer (same as for

verification).

So far, interrupts have not been enabled in the RCU firmware, as it is desirable to

collect real-world statistics for the frequency hard errors that will turn off FECs, and the

ratio of actual errors over erroneous errors. Turning off FECs unnecessarily will make

the event data incomplete, though it will not stop data taking. Consequently, only the

basic support for interrupts has been implemented in the FeeServer so far, not the actual

handling of interrupts outlined above.

The gate pulser FeeServer is planed to be a “test bench” for interrupt handling. The

gate pulser will use interrupts for a different purpose than the RCUs.

4.3 Versions

A number of variations over the FeeServer exist for the different sub-detectors using it,

as well as other auxiliary equipment. In addition to the FeeServer described below, TRD

and FMD relay on different implementations of the FeeServer, that to some extent are

compatible with this FeeServer.

4.3.1 TPC and PHOS

The PHOS and TPC FeeServers are closely related, as they both relay on the RCU

and ALTRO, and uses identical bus structure with FECs for data read-out. Hence, the

command set is almost identical. The only exception is functionality that only exists on

either type of FECs. Mainly, this is related to the different design of the BCs, as well as

presence of APDs and TRUs for PHOS. To support this, the PHOS FeeServer has some

additional commands. So far, there has been no need for TPC-specific commands.

Among the FeeServers, the TPC and PHOS FeeServers have the most extensive

command set.

A major part of the TPC and PHOS FeeServers is related to the FECs. In particu-

lar, the FeeServer requires access to them. This is handled by the DevFecAccess class.

Originally, it was based on the Dev base class, but has later become an independent

class since none of the functionalities provided by the Dev class was needed. As the

class is currently only used for monitoring and control of the BCs, it can only access the

FECs via the I2C bus, but can easily be extended to also support access of both BCs and

4.3 Versions 65

ALTROs via the GTL bus. Access via the GTL bus will interrupt data taking, hence

limiting the usage to periods of time when data is not taken, i.e. before data taking.

The exception is if ALTRO verification during the read-out orbit gaps is implemented.

For this case, information from the TTCrx chip will be used to determine when the GTL

bus is not busy. The class is also used for monitoring and publishing BC registers, such

as temperatures.

Configuration of ALTRO and BC registers before data taking is done via binary in-

structions written to the IM of the RCU. A Binary Large OBject (BLOB) of instructions

is assembled by the CommandCoder (CoCo) and sent via the RCU EXEC INSTRUCTION

FeeServer command, which will write the BLOB to the IM and execute it. In addition,

the FeeServer supports storing IM instructions in memory or on local disk for faster con-

figuration. The RCU ALTRO INSTRUCTION STORE instruction will store the IM

instructions BLOB to local FeeServer memory rather than immediately executing it.

Issuing RCU ALTRO INSTRUCTION EXECUTE will cause IM instructions stored in

memory to be written to the IM and executed. RCU ALTRO INSTRUCTION READ FILE

and RCU ALTRO INSTRUCTION WRITE FILE will read and write the BLOB to a

file, respectively. To clear the memory, RCU ALTRO INSTRUCTION CLEAR can be

used. Utilising this scheme, IM instructions can be sent to the FeeServers only once,

then re-executed for every start of a run. This is particularly important with the current

ICL, which only permits configuring the FeeServers sequentially. The IM instructions

stored in memory will also be needed for ALTRO verification, if implemented. Storing

the BLOB to a file makes the configuration persistent even in case of FeeServer restart.

The pedestal memories of the ALTROs are used for baseline noise subtraction. Each

channel has a ten-bit memory matching the width of the ADC. In the past, the RCU

firmware was aware of this, and had functionality in the form on a dedicated mem-

ory area to aid setting these values. However, in the current implementation of the

firmware, this memory no longer exists. Rather, this is now handled by the FeeServer.

The RCU WRITE ALTRO PEDMEM command will write 1024 pedestal values for a

given channel. Since writing the pedestal values to the ALTROs has to go through IM

instructions, the FeeServer will embed the pedestal values into proper IM instructions

internally. To save bandwidth when transferring the values, as well as memory when

processing them, three ten-bit words are truncated into the first 30 bits of a 32-bit word,

giving a total of 342 words as payload to the command. Storing the pedestal values to

memory or file, like the IM instructions above, has been considered. However, since the

data size for pedestals is vastly larger than those typically expected for configuring the

ordinary ALTRO registers, some additional care is needed. If verification of the ALTRO

pedestals is desired, having a copy of the pedestal values in memory is needed.

66 FeeServer software

TPC

The TPC is historically the “original” user for which the FeeServer CE was developed.

Later the CE was generalised and extended to other appliances. With instances running

on 216 DCS boards, it may also be considered the “main” user. Besides the TPC

FeeServer itself, many of the other FeeServer species, like the laser, etc., is part of the

TPC ecosystem.

PHOS

The PHOS APDs need individual bias voltages for optimal performance. These voltage

values are written to dedicated registers in the BCs, which again control embedded

voltage regulators. A command, PHOS APD INIT, implemented by the DevFecPhos,

is responsible for setting the APD voltage settings for a given FEC. The payload is

organised as 32 words, one for each APD, of 32 bits. Each word consists partly of the

actual APD voltage value, and partly of the corresponding Hamming-code for the value.

The Hamming code has to be calculated in advance by the CoCo, and will be used by the

BC to verify the integrity of the APD voltage settings. If it is not set, i.e. zero, it will

not be used. Simple errors may be corrected by the BC. Non-correctable errors will be

signalled in a BC register, monitored by the FeeServer. The FeeServer is keeping a copy

of the APD values in memory, thus enabling re-programming of the register. Currently,

the APD values are not being written to file recover from restarts. However, this can

easily be implement if needed.

Each PHOS FEC branch has a special FEC, a TRU, for quickly detecting particularly

energetic event to trigger other detectors. Since the register lay-out of the TRU is

different from the ordinary FECs, it is also implemented as a separate class, DevFecTru.

So far, EMCAL is using the same FeeServer as PHOS, as the requirements are very

similar. If the requirements at some point should diverge, a separate version can easily

be made.

4.3.2 Trigger-or

The TOR is used in conjunction with the PHOS TRUs to provide level 0 and 1 triggers.

This FeeServer is not very complex, and mainly supports basic commands for setting

configuration registers, as well as publishing relevant services.

4.3.3 Busy-box

The Busy-Box is used to determine whether a sub-detector is ready to be triggered for

a new event. The main command, implemented by the DevBb class, is BB INIT, which

will configure the Busy-Box with a typical, pre-defined, configuration set. If further

4.4 General DCS infrastructure 67

customisation of the configuration is needed, it also provides a set of instructions to

configure each configuration parameter individually. For each FPGA, a string of 128

characters, each representing the state of a given DDL link, as read from the status

memory is published. The characters are either 0, 1, 2, 3 if these values are indeed

read from the status memory; if some other value is read, the character U (unknown) is

published; if reading fails entirely, F (f ailure) is published.

4.3.4 Laser synchronisation

The laser system generates 336 laser tracks inside the TPC, providing a very accurate

and valuable tool for calibration. The FeeServer of the laser system is currently the most

complex of the FeeServers for “auxiliary”, non-detector appliances. Apart from providing

a set of both high- and low-level commands for explicit configuration, it mainly utilises

implicit configuration via states. By externally triggering the transition to a certain

state, a corresponding set on configurations is applied. The functionality is implemented

in the DevLaser class.

4.3.5 Gate pulser

The gating grid can “open” and “close” the TPC read-out chambers for drifting electrons.

Similarly to the FeeServer of the laser system, the FeeServer of the gate pulser will change

the configuration when transacting to certain states, in addition to provide high- and

low-level configuration commands. As for most FeeServer, a set of relevant services

is published. The gate pulser FeeServer is likely to be the first to take advantage of

interrupts. The class of the gate pulser is DevGpulser.

4.3.6 Calibration pulser

The calibration pulser is for calibrating the read-out electronics of the TPC. So far, the

FeeServer for this device has not been implemented.

4.4 General DCS infrastructure

The FeeServer is part of a larger over-all DCS framework, the main parts of which will

briefly be introduced in the following.

4.4.1 InterComLayer

It has been mentioned that there is a software, the FeeServer, running on the DCS

board whose purpose is to relay communication between the FEE and the network.

68 FeeServer software

The main client for this server is the ICL. It can best be described as a hub in the

DCS. Downwards contact is maintained with all DCS boards of the sub-detectors (TPC,

PHOS and EMCAL). Also, it is connected upwards to PVSS. Horizontally, it accesses

the configuration database.

The purpose of the configuration database is twofold. Firstly, it contains the layout

of the FeeServers it is connecting to: base name, X, Y and Z dimensions, and list of

all services provided by the FeeServers. For TPC, X is side, Y the sector and Z the

partition. For PHOS, X is always 0, Y is the module, and Z the RCU of the module.

Secondly, it contains sets of configurations for all FEE. All registers of all RCUs and FECs

can be configured individually. Several configurations are allowed; each identified by a

configuration number. When the FEE is to be configured, PVSS sends the configuration

number and a list of FeeServers to receive the configuration. An integrated part of the

ICL, the CoCo, is responsible for retrieving the relevant parameters from the data base

and assemble binary data blocks the FeeServers can interpret. The CoCo is unique for

each sub-detector relying on ICL.

ICL is subscribing to the services published by the FeeServer. The complete name

of the services is constructed from the base name and the coordinates, onto which the

individual service names are appended for each FeeServer. The services will again be

exported from the ICL as a single channel containing name–value pairs. PVSS will sub-

scribe to this channel for display on the operator GUI and for logging. It is in principle

possible for PVSS to subscribe to the service channels directly from the FeeServer. How-

ever, PVSS can at most receive name–value pairs at a rate of approximately one kHz.

The FeeServer will update those channels whose values have changed every second. Es-

pecially at start-up, when the temperatures have yet to stabilise, it is realistic to expect

most of the channels to indeed be updated every second. Depending on the number of

FECs, and the number of enabled services, each FeeServer may typically publish 100–

150 services. For 216 FeeServers, this will total to about 30000 updates per second; i.e.

about 30 times the limit of PVSS. Also, consider that the actually published services is

just a sub-set of the exhausted list of available registers to monitor. Hence, filtering is

needed. ICL will buffer the service values received from the FeeServer internally. If ICL

receives an update for a service before the already buffered value has been forwarded to

PVSS, the previous value will be overwritten by the new one. This can be thought of as a

low-pass filter; the update rate is reduced to a level that is feasible for PVSS to monitor.

However, values will only be discarded if the actual update rate from the FeeServers

combined exceeds one kHz over longer periods of time. At stable running conditions the

monitored registers will not change very frequently; it is realistic to expect the update

rate to fit comfortably within one kHz.

Also from the FeeServer point-of-view, this relay mechanism is positive. Any addi-

tional client wishing to subscribe to the FeeServer channels can do so via the ICL; without

4.4 General DCS infrastructure 69

inducing further load on the comparatively computing power limited DCS board.

To further increase the performance configuring and service updates to PVSS, each

TPC side is handled by separate servers for ICL and PVSS.

4.4.2 ICL interaction

The main user of the FeeServer is the ICL. Other users, like Dim Information Display

(DID) and feeserver-crtl are mainly casually used as debug tools. The ICL has a list

over all FeeServers and services it wishes to subscribe to. It also assumes there are

standard communication channels, most importantly for commands and messages, which

the FeeServer is expected to provide. The communication relies on the DIM protocol,

which will set up the low-level communication channels.

As the name hints, the command channel is used by the ICL to send commands to the

FeeServer. All commands are wrapped in global headers and trailers to identify them as

valid commands to the FeeServer. Further, all commands are organised with a command

ID. The ID tells the FeeServer which function will handle handle said command. A

command, for example for reading a register, might return data via the communication

channel.

The message channel is relying casual messages from the FeeServer to the ICL. These

messages are divided into several classes of severity, for example debug, info, warning

and error. The ICL in turn will forward the messages to PVSS where they may be

displayed or logged. Typically, the messages will inform on various incidents happening

during the course of FeeServer command handling or service update.

The ICL is configured to subscribe to a set of FeeServer services. Whenever the

FeeServer detects there is a change in the underlying data the services points to, it will

update the value of the service via functionality of the DIM framework. Henceforth, the

ICL will be notified of the updated values, and can retrieve and forward it to PVSS.

4.4.3 Configuration database

The configuration database contains all parameters for configuring the FEE, as well

as information needed by the ICL to determine the logical layout of the sub-detector.

All registers of all RCUs and FECs can have individual values. There is also a need

to maintain several complete sets of configuration parameters, tailored for the intended

use. For example, many parameters will be different for beam events and cosmics events.

Another example is the case of calibration runs, such as pedestals, where the level of

background noise in the detector is determined. Each such configuration is identified

with a “configuration number”.

Upon configuration, PVSS will send a command containing the configuration num-

ber and a list of FeeServers to receive the configuration. The CoCo will retrieve the

70 FeeServer software

FEE-Controller
- DIM-Client

Name-Server
- DIM_DNS_NODE

RCU with Linux on DCS-FPGA
- DIM-Server

Register Service

Request Service

Service Info

Subscribe
to
Service

Service
D
ata

Commands

DIM @ ALICE-TPC (overTCP/IP)

Figure 4.3: The interaction between FeeServer, DIMNS and FeeClient (e.g. ICL) in the
DIM framework.

corresponding information from the database and assemble binary blocks, containing

the configuration parameters, the FeeServers can interpret.

4.4.4 PVSS

PVSS is the high-level part of the DCS. It has two main parts. Firstly, it provides the

infrastructure for forwarding monitoring and control of all sub-detectors to “central”

DCS, the ECS. As part of the framework, DCS monitoring values are also being logged.

Secondly, it provides the GUI used by the shifters to operate the detectors. PVSS is a

CERN sanctioned standard framework, common for all detectors and experiments part of

the LHC. It provides a relatively user-friendly point-and-click GUI usable for relatively

inexperienced shifters, who by no means are experts on all parts of the system they

control.

4.4.5 DIM

DIM [74, 75] is a high-level network protocol running on top of IP/Transmission Control

Protocol (TCP) for exchanging commands and short messages between nodes, developed

by CERN as the standard protocol for this purpose. It is based on the client–server

model. Practically speaking, the FeeServer is the server, and the ICL the client. However,

the ICL is the server in the communication with PVSS, where PVSS is the client. These

two communication interfaces are independent, though. It is possible to build more

4.5 DCS operation and performance 71

Description 18 FEC 20 FEC 25 FEC Sector TPC

Configuration size [B] 39 284 43 664 54 512 — —
Create file from database and CoCo [s] 0.47 0.48 0.51 — —
Transfer file to FeeServer and execute [s] 2.67 2.67 2.67 — —
Total time configuration via file [s] 3.14 3.15 3.18 — —
Time till running in PVSS, file [s] ≈ 7 ≈ 7 ≈ 7 — —
Time till running in PVSS, ICL [s] ≈ 8 ≈ 8 ≈ 8 ≈ 10 ≈ 67
Reconfigure from FeeServer memory [s] ≈ 5 ≈ 5 ≈ 5 — ≈ 15
Pedestal configuration data size [MB] — — ≈ 4.7 — —
Pedestal configuration time [s] — — ≈ 120 — —

Table 4.1: DCS configuration performance

specific protocols on top of DIM. The communication FeeServer–ICL is based on the

FEE protocol, while the ICL–PVSS communication is based on the Front-End Device

(FED) protocol; two derivative DIM protocols. For the FEE protocol, each service has

its separate channel. In contrast, for the FED protocol, all channels are “multiplexed”

into one channel as a stream of name–value pairs. This allows a large number of services

to be transferred without having to create individual channels for them.

A central part of the DIM framework is the DIMNS. Whenever a DIM server starts,

it will connect to the DIMNS to register the services it provides, as well as the command

channels. Likewise, when a client starts, it will connect to DIMNS to obtain lists of

services and command channels available from the registered servers. This will allow

automatic reestablishment of the client–server interaction if one of them should tem-

porarily be unavailable. Figure 4.3 shows the interactions between the FeeServer, DIM

and ICL.

4.5 DCS operation and performance

The FeeServer has been used for configuring and monitoring the TPC and some other

sub-systems under real conditions since the start of the LHC last year. The commission-

ing period has seen numerous changes and improvements since the initial tests of the

DCS.

Table 4.1 shows the performance measurements for configuring the TPC via the

FeeServer. The same data are displayed graphically in Figure 4.4, except for the mea-

surements for a full sector and the full TPC. The standard method of configuration is

by PVSS sending a command to the ICL to configure a certain set of partitions. This

process has been described in detail in previous chapters. In short, the ICL will ask the

CoCo to obtain the relevant parameters from the configuration database and assemble

binary configuration BLOBs to be executed by the FeeServer. The FeeServer will notify

the ICL, which in turn will notify PVSS when this is done. From Table 4.1, this takes

72 FeeServer software

Number of FECs
18 19 20 21 22 23 24 25

Ti
m

e
[s

] o
r d

at
a

[1
0

kB
]

0

1

2

3

4

5

6

7

Configuration size [10 kB]
Create file from DB and CoCo [s]
Transfer file to FeeServer and execute [s]
Total time configuration via file [s]
Time till RUNNING in PVSS, file [s]
Time till RUNNING in PVSS, JICL [s]

DCS configuration performance

Figure 4.4: DCS configuration performance. Measurements are done for RCUs with
18, 20 and 25 FECs, with straight lines between. The black line shows the size of the
configuration sent to the respective FeeServers. The red line shows the time needed by
the CoCo to retrieve the data from the configuration database, and encode it in a format
understood by the FeeServer, and store it in a file. The green line shows the time spent
by feeserver-ctrl to transfer the data to the FeeServer, and the FeeServer to execute it.
The blue line shows the combined time for the two previous steps, i.e., total time for
configuration via a file. The yellow line shows the time before the state of the RCU
changes to running in PVSS when configuring from a file. Finally, the purple line shows
the same, but with configuration done via JICL.

about seven seconds for a single partition, and 67 seconds for the whole TPC, where each

side is served by separate ICLs. Currently, the CoCo can only configure the partitions

sequentially, although the newly introduced JICL, in contrast to the old ICL, also allows

for parallel configuration. The overall configuration time is expected to improve when

this scheme has been implemented.

For measuring the performance of individual components, it can be useful to step

outside the ordinary configuration method. Rather than being initiated by PVSS, the

CoCo is manually stimulated to retrieve the configuration data from the database, and

write it to a file. Through the use of the feeserver-ctrl tool, the command blocks are

sent to the FeeServer, and the combined transfer and execution time is measured. Table

4.1 gives the time it takes for the CoCo to retrieve and assemble the configuration

blocks to approximately half a minute, with a slightly higher value for the more FEC-

4.5 DCS operation and performance 73

Figure 4.5: A PVSS panel showing graphically the FEC temperatures.

dense partition. Thereafter, 2.67 seconds are needed for the transfer to the FeeServer

and execution. Despite the data size is increasing with the number of FECs, no time

difference is noted for the transfer and execution time. In total, slightly more than three

seconds are needed for retrieving the data from the database and for the FeeServer to

execute it, for a single partition.

However, it takes about seven seconds from the file containing the configuration

BLOB is sent till PVSS notices that the partition has been configured. At the end of the

configuration, the FeeServer will change state to running, which ICL and in turn PVSS

will notice from the published state channel. This overhead must be shared between the

propagation of the state channel through ICL and PVSS and possibly the PVSS state

machine. By comparison, running the ordinary configuration chain from PVSS via the

ICL, is not much slower, giving an increased configuration time by one second to a total

of eight. The FeeServer can store the configuration data locally in the memory of the

DCS board. This allows for very fast reconfiguration of 15 seconds, where the ICL only

has to tell the FeeServer to re-apply the previous configuration.

The measurements presented above is for configuration without tail parameters and

pedestal memory, although the FeeServer can configure these as well. A configuration of

74 FeeServer software

Figure 4.6: A PVSS panel showing numerically the FEC data-points.

a partition with 25 FECs takes about two minutes.

Configuration and monitoring of the TPC and the other sub-systems is done by the

shifter via the GUI of PVSS. Figure 4.5 shows the PVSS panel for the TPC. The two

barrels are graphical representations of the respective two end-planes of the TPC. In this

case the colour represents the temperature of the FEE, as measured by the FeeServer.

Although the temperature is measured for each FEC, such level of detail is not needed

by the TPC shifter. Rather, the colour shows the highest temperature of the FECs of

the partition. To the right, a scale shows the meaning of the colour-code. The scale is

chosen so that the temperature of normal operation is green, while a lower temperature

is indicated as blue. If the temperature is higher than expected, the partition will turn

red. This may be an indication of problems with either the electronics or the cooling. A

number of tabs are seen to the top, allowing the shifter to choose which parameters to

display, for example the currents and voltages for the analogue and digital electronics of

the FEE.

Figure 4.6 shows the values of the data-points the FeeServer is publishing for a specific

FEE. This panel can be seen by clicking on the partition corresponding to the FeeServer

on Figure 4.5. When the FeeServer detects a change of the value of hardware registers

4.5 DCS operation and performance 75

Figure 4.7: A PVSS panel showing graphically the BusyBox data-points.

underlying the data-point, it will update the ICL with the new value. ICL in turn,

will update PVSS, and the new value will be displayed in the panels. The name of the

columns in Figure 4.5 correspond to the names of the tabs in Figure 4.6.

Figure 4.7 shows the busy status of the BusyBox (BB) of the TPC. Since the BB

has to keep track of the busy status of all the TPC partitions, the same barrel-display

is used. Also here, the colours indicate the status.

Chapter 5

FeeServer refactoring outlook

Throughout the commissioning of the detector, a large number of modifications have

been carried out on the FeeServer CEs. Some features that at the design phase were

considered useful were in the end not quite as useful as envisioned. Likewise, new

features initially not foreseen have been added. Changes to the firmware has required

re-thinking of the inner workings of the FeeServer. Also, experience in interacting with

it has provided a much more fine-grained picture of how to best control and monitor the

FEE.

Overall, the CEs have become much more feature-rich and complex than initially

foreseen. In particular, functionality for automatic fault handling has been added, as

not to disturb the upper layers of DCS and shifters with recovering from faults that are

not critical, and may be experienced from time to time as part of normal operation. The

CE contains the parts of the FeeServer specific to the appliance, whilst the Core contains

common functionality. The interface between the CE and the Core is at a relatively low

level to allow for great flexibility when designing the CE. Initially, the relatively few

features of the CE also made this interface the natural branching points for the various

CEs. However, with increased levels of functionality and complexity, this may no longer

be true. Large fractions of the CE code base is now shared between the various CEs. In

particular, framework for service and command handling, state machine and hardware

access. Creating a new species of the CE is now done by implementing new derived

classes from the CE framework base classes.

The CE framework is currently working well, and is in a stable state. However,

the class hierarchy and structure still carries some heritage from more simplistic past.

Although it supports the current use cases well, there are features foreseen for the future

that may be difficult to implement using the current framework. A refactorisation of the

class structure will give a more flexible and configurable framework that will support

future extensions better. For example, a fully configurable state machine will make it

easier to deploy custom states and behaviour to the individual CEs. In particular, this

will be very useful for implementing automatic reconfiguration of FECs, as this requires

77

78 FeeServer refactoring outlook

�������

���	

�	��	

��������

�������	

����	�����	

����
���

����	

�	
����	

Figure 5.1: Simplified collaboration diagram for a possible refactorised FeeServer CE.

more advanced state handling.

The main task of refactorising the framework is not the coding involved. Rather,

it is the testing and verification associated with asserting the CEs converted to the

refactorised framework will behave identical to the old. Most importantly this applies

to the complex behaviour of states and configuring.

Five main classes (Access, Resource, Statemachine, Device, Control) and a few “helper”

classes (Hardware, Datapoint, State, Transition) are foreseen, as show in Figure 5.1.

5.1 Access class

A wide range of FEE hardware may be accessed by the FeeServer. This may be buses,

interfaces, registers, memory, devices, files, etc. The fundamental purpose of the Access

class is to provide a uniform interface for writing and reading, accessing, these different

types of hardware. Each type of hardware will correspond to a mode of operation to

the Access class. Typically, a mode will utilise a bus or interface directly accessible from

the DCS board, although more complex scenarios exist. It is also possible to make a

mode for accessing specific files, for example containing firmware to be loaded. In some

cases the access to a bus or interface has first to go through another bus. This class will

provide access to physical hardware by creating instances of classes representing them.

Since there is only one unique instance of the physical hardware or file, it follows there

should also only be one instance of the classes representing them; i.e. singletons. The

iAccess class will enforce this by being a singleton itself, with the instances of hardware

5.1 Access class 79

as static members.

Functions available from the Access class:

• Access::Access() — private constructor;

• static signed int Access::GetInstance(Access* access) — return only instance;

• signed int Access::GetModeInstance(Hardware* hardware, const unsigned int mode=1)

— get pointer to singleton for specific

• signed int Access::Read(const unsigned int address, unsigned int* data, const un-

signed int words=1, const unsigned int mode=1);

• signed int Access::Write(const unsigned int address, const unsigned int* data, const

unsigned int words=1, const unsigned int mode=1).

Parameter listing:

• address — to access;

• data — pointer to data buffer;

• words=1 — number of words to read or write;

• mode=1 — the access mode;

Since the class is a singleton, the constructor is private. The only instance can be

obtained through the GetInstance()-function. The words and mode parameters are both

assumed to be 1 ; i.e. accessing 1 word from the message buffer, which both should by

far be the most frequently used parameters. In general, a positive return value indicates

success; a negative failure. Additional information may or may not be encoded in the

return value.

A pointer to the singleton objects representing a specific mode can be accessed via

the GetModeInstance(. . .). This useful when the are functions available for that type

of class, for example for setting the device file or sending IOCTL commands, for which

there are no corresponding function available in the Access class.

The Read(. . .) and Write(. . .) functions operates with a native word size of 32 bits.

However, the exact behaviour may depend slightly on the mode. For physical hardware,

the address may refer to a physical register, per the addressing scheme employed by

the particular hardware in question. The actual number of bits read or written may be

less than 32 bits, determined by the width supported at hardware level. For Read(. . .),

the words will be zero-padded up to 32 bits; for Write(. . .), superfluous bits will be

discarded. The typical use for this is where a particular address points to a hardware

register with a specific meaning, not just somewhere in a continuous data storage.

For devices that may be considered “true continuous storage”, the data should be

organised as 32 bit words, regardless of the underlying width. In particular, this applies

to files, memory and firmware storage devices. In practical use, this distinction should

be rather “natural”, and not be a source of confusion.

The Access class should also provide external read and write commands through

the Resource class, based on the above functions, that can be used by ICL to access

80 FeeServer refactoring outlook

the hardware directly. The two first four-byte words of the payload should be used to

specify the address and the number of words, the mode should be passed as the command

parameter.

Hardware class

As mentioned above, the Access class uses classes to represent the hardware which is

being accessed. This will be the Hardware class. It is intended as a base class, with

multiple sub-classes, each representing a particular piece of hardware. So far the following

classes, with corresponding modes, are defined:

0. HardwareDcs — DCS bus;

1. HardwareMessagebuffer — message buffer via DCS bus;

2. HardwareSelectmap — select map via DCS bus;

3. HardwareFlash — flash via DCS bus;

4. HardwareTtcrx — TTCrx chip;

5. HardwareFeci2c — FECs via I2C bus;

6. HardwareFecgtl — FECs via GTL bus;

- HardwareFile — “dummy” file;

- HardwareMemory — “dummy” memory.

The HardwareDcs gives access to the RCU or similar appliances. The exact utilisation

of the bus depends on the firmware of the DCS board and the appliance connected to

it. For the RCU, it can be in one of three different modes at any time, giving access to

either the message buffer, select map or flash of the RCU. The mode is set using IOCTL

commands to the device driver. This class is used as a basic access class; the access to

the specific modes should be done in separate classes utilising this class. As far as this

class is concerned, the current mode is unknown, hence it is not meaningful to use it

directly, except in very low-level application. Rather, the specific classes will take the

appropriate steps of asserting the bus is in the correct mode before use.

The HardwareMessagebuffer is used to communicate with the RCU firmware. Con-

figuration of the FEE is done by writing to message buffer registers. The HardwareSe-

lectmap gives access to the firmware of the main FPGA of the RCU. The main use case

is programming the RCU, but also read-back for verification can be done. The flash of

the RCU is used for storing the firmware externally from the FPGA. The HardwareFlash

allows manipulation of the firmware contents of the flash similar to how the Hardware-

Selectmap can manipulate the firmware contents of the select map. The TTCrx is the

trigger chip of the DCS board. Configuration of it will be possible via HardwareTtcrx.

The RCU FECs can be accessed either via the HardwareFeci2c or the HardwareFecgtl

buses. In addition, defining modes for accessing the DCS board firmware is possible,

but can be unwise, as frivolous write is very likely to render the DCS board unusable,

5.2 Resource class 81

requiring reprogramming via JTAG. This should be considered very carefully if it is to

be implemented.

The HardwareFile and HardwareMemory are slightly different than the other classes.

Their main purpose is to be general classes that can substituted for the real classes for

the purpose of testing and debugging. This allows the data intended to be read and

written by, say the I2C bus class to be written to a file or memory instead. The former is

useful in case of debugging where it is useful to be able to inspect the contents of the file

contain the full transaction, the later for testing when real hardware is not available, for

example a DCS board without FECs or a PC without any RCU at all. When using these

classes, care should be taken not to exhaust the file system or memory space available

on the system, as the potential memory span can be huge. For the file, the addressing

should correspond directly to that of the file, for the memory, a std::map should be used

to save memory. The HardwareFile class may also be used for developing further modes,

for example for loading firmware from files, or editing configuration files via commands.

Hardware classes representing physical hardware should only have one instance, i.e.

being singletons. Specifically, this is the HardwareDcs, HardwareMessagebuffer, Hard-

wareSelectmap, HardwareFlash, HardwareFeci2c and the HardwareFecgtl. On the other

hand, HardwareFile and HardwareMemory may exist in several instances pointing to

different files and memory areas, one for each class they substitute.

The common public functions for the Hardware class and its sub-classes are analogous

to those of the Access class, of course without the mode parameter, as it indicates to

which instance of a Hardware class the call should be mapped:

• virtual signed int Access::Hardware::Read(const unsigned int address, unsigned int*

data, const unsigned int words=1)=0 ;

• virtual signed int Access::Hardware::Write(const unsigned int address, const un-

signed int* data, const unsigned int words=1)=0 ;

As seen in the listing above, the Hardware class is defined inside the Access name-

space, as they are considered a property of, and only to be used by, the Access class.

It is possible to define further functions. These will of course not be directly available

through the Access class, but users with very specialised needs may access such functions

through the Access::GetModeInstance(. . .) function. Before using an extended function,

tests should be performed to assure the object in fact is of the expected type, and not

substituted for a file or memory class.

5.2 Resource class

One of the main functionalities of the CE is to manage the FEE resources, hence the

Resource class. The class organise the resources as a set of data-points ; a generalised,

high-level view of the resources available. Typically it will be a hardware register, or

82 FeeServer refactoring outlook

the result of more complex logic. A data-point may be published as a service via a

separate DIM channel, issued as a command via the command DIM channel, or both.

Both method will allow values of a data-point to be read and written.

The class should be a singleton with private constructor, but two functions for reg-

istering data-points:

• private Resource::Resource() — private constructor;

• static signed int Resource::RegisterDatapoint(const std::string name, const unsigned

int type, const unsigned int id, const unsigned int address, const unsigned int

mode=1, const double deadband=0, const double conversion=1, const signed int

publish=true, const signed int service=true) — “simple” data-point;

• static signed int Resource::RegisterDatapoint(const std::string name, const unsigned

int type, const unsigned int id, ResourceCallback* callback, const unsigned int ser-

vice=true, const unsigned int command=true) — “complex” data-point.

Parameter listing:

• name — of data-point;

• type — specifies the data type of the data-point, for publish, 0, 1 or 2 for signed

int, float or char*, respectively;

• address — of register;

• id — for command handler;

• mode=1 — mode for accessing the register, as used by Access class;

• deadband=0 — how much new value may deviate from previously published value

before an update is deemed necessary;

• factor=1 — conversion factor between register value and data-point value;

• service=true — make service channel;

• command=true — make command handler;

• callback — pointer to external function to call when service value is to read or

written, or command is received.

There are two types of services: for publishing the numeric value of single registers;

and for publishing complex values such as char, or numeric values that require compu-

tation beyond a simple multiplication factor. The first type of service can be handled

by the Resource class simply by specifying the details of the register to publish. For the

later, a call-back function has to be specified.

For the call-back function pointer, this type should be defined:

• typedef signed int (*ResourceCallback)(unsigned int id, unsigned int parameter,

void* data, unsigned int size, std::vector<unsigned int>* result, unsigned int* pro-

cessed).

Callback function parameters are listed below:

• parameter — arbitrary information as specified by command;

• data — payload, to be processed;

5.2 Resource class 83

• size — of data, 32-bit words;

• result — std::vector where eventual result may be appended to the end;

• processed — number of 32-bit words of data processed.

The call-back function will return a positive value on success, and a negative value

for failure; optionally, extra information may be encoded. In case of failure, the processed

parameter should be filled with the number of words the command is expected to process,

or if this can not be determined, a lower limit for the number of words processed. This

number may be used as input for attempting to recover processing the remaining data.

It is entirely up to the implementation of the call-back function to determine how to

treat the incoming parameters.

Since the simple data-points can only consist of a single 32-bit value, the framework

can automatically make command service channels and command handlers. For the

services, both high- and binary commands should be provided. Both types of commands

should take the name of the data-point. The value of the data-point may be both gotten

and set using the same command. For a low-level command received with a parameter

of zero, the data-point is set to the value of the first 32-bit word of the payload, whose

length is also assumed to be 1. If the parameter is non-zero, the current value is returned.

No changes are made to the register. For a high-level command with an empty payload,

the current value is returned. If a value is found in the payload, the register is set to this

value. Nothing is returned. This slightly inverse approach for the two types of commands

is taken to assure backwards-compatibility with the set commands of existing CEs, where

there in general would be separate commands for getting and setting registers.

Datapoint class

The list of data-points maintained by the Resource class contains objects of the Datapoint

class. There are two sub-classes: one for the case of simple data-points, and another one

for the complex case involving call-back functions. All involved parameters are stored in

the respective classes.

Public functions:

• Resource::DatapointAuto::DatapointAuto(const std::string name, const unsigned int

type, const unsigned int address, const unsigned int mode=1, const double dead-

band=0, const double conversion=1, const signed int publish=true, const signed

service=true) — “simple” Datapoint ;

• Resource::DatapointManual::DatapointManual(const std::string name, const unsigned

int type, ResourceCallback* callback, const signed int service=true, const signed int

command=true) — “complex” Datapoint ;

• virtual signed int Resource::Datapoint::Call(unsigned int id, unsigned int parame-

ter, void* data, unsigned int size, std::vector<unsigned int>* result, unsigned int*

84 FeeServer refactoring outlook

processed)=0 — call a Datapoint.

The class is defined inside the name-space of the Resource class, as it is not supposed

to be used outside the scope of this class. Also, the parameters are the same as for the

RegisterDatapoint(. . .), without the id parameter, as this is handled by the Resource

class as key to a std::map containing all Datapoint objects. The two first functions are

the constructors for the two sub-classes. After that follows the function for passing a

call to a data-point: Call(. . .); of course over-ridden by the two sub-classes. When

a binary command is received, the framework should pass this to the Call(. . .) of the

Datapoint object with an id matching that of the command. The parameters as given by

the command. When a high-level command is received, the framework should pass this

too the Call(. . .) of the Datapoint object with a name matching that of the command.

The framework should find the corresponding id of the command, parameter should

be empty, data should be the parameter passed to the command, with a size of one.

When a service get is received, the framework should pass this to the Call(. . .) of the

Datapoint object with an id matching that of the service. The framework should find the

corresponding id of the service, parameter should be empty, data should be empty, with a

size of null. The returned value is expected to be the first word of result. When a service

set is received, the framework should pass this to the Call(. . .) of the Datapoint object

with an id matching that of the service. The framework should find the corresponding

id of the service, parameter should be empty, data should be the parameter passed to

the service, with a size of one.

This should be the case for both simple and complex Datapoints. There will be

complex Datapoints which do not make sense to publish as services, for example writing

the RCU IM. Such Datapoints should be created with service=false. If a data-point will

not be monitored by ICL, it should also be created with service=false as not to waste the

resources of the DCS board on updating unnecessary services. If for some reason it is

not desirable to have a command handler for a given Datapoint, it should be constructed

with command=false.

For the simple Datapoints, a complete framework for publishing services and han-

dling commands should be provided. Typically, a simple Datapoint will be limited to

hardware registers, however, it is expected that the majority of Datapoints will fall into

this category.

For complex Datapoint, the user has to provide a call-back function. Although every

complex Datapoint has to be registered separately, the same call-back function may be

specified to handle more than one Datapoint by implementing an internal id switch in

the call-back function.

5.3 State machine class 85

5.3 State machine class

A state machine is based on the idea that an entity must at any time be in one of a

finite set of states. The Statemachine class should provide a framework for this.

Statemachine functions:

• Statemachine::Statemachine(const std::string name) — constructor;

• signed int Statemachine::AddState(const std::string stateName, const unsigned int

stateId, StatemachineCallback* enterCallback=NULL, StatemachineCallback* leave-

Callback=NULL) — add state;

• signed int Statemachine:.AddTransition(const std::string transitionName, const un-

signed int transitionId, const unsigned int transitionStateId, const unsigned int

endStateId) — add transition;

• signed int Statemachine::AddTransitionStart(const unsigned int transitionId, const

unsigned int startTransitionId) — add start state of a transition;

• signed int Statemachine::GetStateId(unsigned int* stateId) — get the ID of current

state;

• signed int Statemachine::GetStateName(std::string* stateName) — get the name

of current state.

Parameter listing:

• name — of state machine, to be used as name of the state service channels;

• stateName — name of state, will be displayed state name service channel;

• stateId — ID of state, used internally and displayed in the state ID service channel;

• enterCallback=NULL, leaveCallback=NULL, — call-back functions called when a

transition leaves a state and enters another, if NULL not called;

• transitionName — name of transition, for external transition triggering;

• transitionId — ID of transition, used internally;

• transitionStateId — ID of state used during transition;

• endStateId — ID of end state;

• startStateId — ID of start state.

For an entity wishing to create a state machine, the first step should be to create

an object of type Statemachine. Henceforth, the desired states should be created indi-

vidually using the AddState(. . .) function, then the transitions through the AddTran-

sition(. . .) function. Since a transition may have several starting stated, they may be

specified with the AddTransitionStart(. . .) function.

Once the transition starts, the state should be changed to the transitionStateId, and

the corresponding enterCallback called. Then the leaveCallback of startStateId, then

enterCallback of endState, then leaveCallback of transitionStateId. Finally, the state

should be changed to endStateId.

For the call-back function pointer, this type should be defined:

86 FeeServer refactoring outlook

• typedef signed int (*StatemachineCallback)(const unsigned int startStateId, const

unsigned int endStateId, const unsigned int transitionId).

The framework should call the call-back functions with parameters indicating which

state is left, entered, and the transaction. This will make it possible to make tailor the

logic to the specific case.

The Statemachine class should use the Resource class to automatically register two

service channels for the state machine: one channel bearing the name of the Statema-

chine, publishing the numeric stateId ; and a second channel with the same name ap-

pended NAME, publishing the stateName of the StateMachine.

It will be the responsibility of the entity creating the StateMachine to decide how

to utilise it, and what can trigger a transition. Some instances of Statemachine may

only mirror the state of actual hardware, and only have a few states, like ON, OFF,

RAMPING UP and RAMPING DOWN. Other instances, like for the Control class, the

state may be determined from a wide range of inputs, like the state of other Statema-

chines, various error conditions during configuration, the state of verification, and ex-

ternal state transitions. The variations are too wide and complex to make a “one-size-

fits-all”-interface.

State class

The State class is used by the Statemachine class to store the states. Each state should

correspond to one instance of the State class.

Functions:

• Statemachine::State::State(const std::string stateName, StatemachineCallback* en-

terCallback=NULL, StatemachineCallback* leaveCallback=NULL) — constructor;

• signed int Statemachine::State::GetStateName(std::string* stateName) — return

name of state.

The parameters mostly match those of Statemachine::AddState(. . .), except for stateId,

which should be used by Statemachine as a key to a std::map containing the States.

Transition class

An instance of the Transition class is used by the Statemachine to define a single transi-

tion. The Transition object will maintain a list of states from which the transition may

start.

Functions:

• Statemachine::Transition::Transition(const std::string transitionName, const un-

signed int transitionStateId, const unsigned int endStateId) — constructor;

• signed int Statemachine::Transition::AddStart(const unsigned int startTransitionId)

— add ID of start state;

5.4 Device class 87

• signed int Statemachine::Transition::GetTransitionName(std::string* transitionName)

— return name of transition.

Also in this case, the transitionId is used as a key by the Statemachine class to a

std::map containing all defined states. Otherwise, the parameters are as in Statema-

chine::AddTransition(. . .).

5.4 Device class

A device can be any physical or logical entity it is considered meaningful to distinguish.

For this purpose, the Device class should be provided. Typically, this may be a firmware

module, a chip, a bus, a circuit board, or even a complete system. It should be possible

to have a layered hierarchy of devices: one Device may represent the complete system,

which again “owns” some circuits boards, which again has chips with firmware modules.

A rather wide flexibility is foreseen in the framework; a Device may pick only the

parts needed. If needed, a Statemachine can be included. The Resource class can provide

easy creation of services and command handlers, while the Access class will give physical

access to the hardware.

Since a Device can represent a wide variety of entities, the interface should be flexible.

The Device class is intended as a pure virtual base class, from which the actual Devices

are derived.

The following pure virtual functions so far for seen for the base class:

• virtual signed int Device::IsOk()=0 — check whether Device is functioning prop-

erly;

• virtual signed int Device::Recover()=0 — try to recover if not functioning properly;

• virtual signed int Device::DispatchTransitionId(const unsigned int transitionId)=0

— trigger transition;

• virtual signed int Device::GetStateId(unsigned int* stateId)=0 — get ID of current

state.

The IsOk() function is intended as high-level “good” or “not good” “state” for the

framework, without having to know the details of the Device. In case the Device is not

“not good”, the Recover() function should implement a procedure to try ro recover to

“good”. A transition can be triggered externally using the DispatchTransitionId(. . .).

The Device may ignore the transition, or map it to some other transition if it is not

meaningful for the Device. Preferably, the owner of the Device should have sufficient

knowledge of the low-level workings of it to not try to trigger a transition it does not

support. The GetStateId(. . .) can be used to obtain the current state of the device. If

needed, it may be mapped to another state.

88 FeeServer refactoring outlook

5.5 Control class

The Control class should be initiated from the FeeServer Core, and be the main class,

the owner of all other objects. It carries certain similarities with the Device class in the

way it owns other Devices and utilises the Statemachine, Resource and Access classes.

However, the Control class is for controlling the overall system.

The FeeServer of different appliances will have different CEs. Different CEs can be

made by deriving different sub-classes of the Control class. Since the FeeServer can have

the identity of a given appliance, it follows there can only be one instance of the Control

class, making it a singleton.

The base class should implementing the interface to the Core. For commands, it

should forward them from the Core framework to the Resource class. For services,

it should facilitate publishing from the Resource class to the Core. It will create a

Statemachine for the overall MAIN state.

The handling of FEE CONFIGURE commands should be done by the Control class

(but through the Resource class).

The derived classes should create Devicess and Resources according to their needs.

5.6 Outlook

The framework described above shows how the existing framework can be further gen-

eralised as a platform for supporting FeeServers for multiple appliances. Although only

minor parts of it have been implemented so far, it can serve as a long-term guide when-

ever changes have to be made to the CE.

In addition, there are plans for implementing verification of the ALTRO registers

during the empty slots of the data read-out orbit on the GTL bus. Single-event upsets

are caused by radiation changing the contents of ALTRO and the RCU FPGA Static

RAM (SRAM) registers. This can introduce logic errors in the firmware, or changing the

configuration parameters. For the FECs such verification can be achieved by monitoring

the trigger messages received by the DCS board to determine when the read-out orbit

gaps will be. Whenever the bus is not busy with data read-out, the FeeServer can

read back parts of the configuration data from the ALTRO registers, and compare it

to the configuration stored in its memory. If an error is detected, the register will

be automatically reconfigured. This scheme can easily be extended to automatic full

reconfiguration of FECs which have been turned off either by the RCU after a hard

error, or after a manual shutdown.

Chapter 6

Calibration overview

Before any new detector can be expected to fulfil its design goals, it has to be cali-

brated. Calibration is the process of converting the “raw” signals from the detector into

meaningful physical measurements with units and well-defined error-bars.

When the detector is designed using Computer-Assisted Drawing (CAD), everything

is “perfect”. All parts have exact dimensions, they fit perfectly together, there is neither

twisting nor bending, everything is perfectly aligned to each other. All fields are known,

all subsystems are working as designed, there is no noise, the material budgets are

perfect. The length of the detector does not change with magnetic fields. One might

even assume external conditions, like temperature and pressure, are not changing with

time. And so on. This is the ideal detector. When we implement a physical detector

based on this idea, it will not be as perfect. This is well known, and is indeed taken into

account during the design process. The Technical Design Report (TDR) of a detector

gives estimates and limits for how far from the ideal detector the physical detector may

be.

Since it is not possible to build an ideal detector, the imperfections of the physical

one has to be corrected. Figure 6.1 shows the process from raw data, via corrections

and calibration, to reconstructed data. When correcting a detector, various tools and

�������� ���	
���������� �����������������

��	�

�	�������

��	��������	��

�����������

�����������	���	�����	���

��	������

�������������������

 !������������������

 �"������������
�������!���!��

#������
��

#������

#����	��������	�����	��

��������������

 !���������	�������
��������������	�

����������	��

��$��

#���	�������%������

Figure 6.1: Simplified process from raw to reconstructed data for the TPC.

89

90 Calibration overview

methods are used to determine how the imperfections of the detector manifest themselves

in the data it produces, and what kinds of inverse transforms have to be applied to the

data to make them appear like they were collected by a perfect detector.

Some of the deviations of the physical detector from the ideal one may be so small

it is not worthwhile to correct; they may “drown” in other effects, or they are not very

critical to the resolution of parameters of interest. Some may be impossible, or at least

too difficult to correct.

In general, the corrections are done after the calibration to account for the distortions.

However, the picture can be more blurred. For example, the drift velocity variations with

time of the TPC may be considered both a calibration and a correction effect. In the

first case, it can be argued that the time-dependence of the drift velocity variation is an

intrinsic ”feature” of a TPC, thus is part of the calibration. On the other hand, as in the

later case, it can be argued that for the ideal detector, there should be no variations of

the parameters influencing the drift velocity. Hence, the drift velocity variations should

be corrected. Often, practical consideration can heavily influence whether a given effect

will be considered as a part of the calibration or the correction for computing purposes.

There are two main categories of calibration:

• static — constant with time;

• dynamic — changing with time.

. It is possible to argue that all effects are changing with time over sufficiently long time

intervals. For example, alignment may be static for years, but once the sub-detectors

have been moved, it is changed. However, the distinction is important since it discrim-

inates between effects where a fixed transformation can be used, and effects where the

transformation has to be recalculated in given time intervals.

A general challenge with calibration is to determine the order to apply the corrections

of different effects, i.e., to factorise the calibration tasks. Very often, more than one

effect will influence the resolution of a given parameter. Likewise, one effect might

influence more than one parameter. Sometimes a specific order might be better for a

given parameter, but another order is preferable for some other parameter. Generally,

it is desirable to apply the corrections in the order that gives the best overall result.

Sometimes cyclic dependencies are encountered. An illustrating, simplified scenario

can be the case where the resolution of parameter A is influenced by correction for effect

I, which depends on parameter B, which is influenced by correction for effect II, which

again depends on parameter A. The way out is to insert uncorrected values for some

parameters in this circle. Care must be taken to choose the parameter so as to minimise

the overall effect. Most of the time this can be determined from physics arguments,

though considerable insight in the matter is needed. Since the order of the corrections

can change the net values of some parameters, hence the resolution of the physics results,

care must be taken if changing the order.

6.1 The electron drift vector 91

The TPC has a laser system for calibration of Read-Out Chamber (ROC) alignment,

electric field distortions, E × B effect, gain and drift velocity. A Nd : Y AG 266 nm

laser is used to generate four planes parallel to the beam axis, using 168 tracks on each

side of the CE. The CE will emit photo electrons from scattered laser light. After a

characteristic drift time, the read-out pads will receive this signal. Hence drift velocity

and gain can be calculated.

The drift velocity depends on a number of parameters, most importantly variations

in gas pressure and temperature, as well as slow changes in the gas composition. A

number of sources are available for determination of drift velocity: matching tracks

passing through the CE, both from cosmic events and beam collisions; laser events;

matching TPC–ITS tracks; and a dedicated drift velocity monitor. These approaches

may be combined to improve accuracy. For high-statistics methods, the obtained drift

velocity value may be used directly for correction. In other cases it will be necessary to

correct for changes in gas pressure and temperature at an event level. However, in all

cases correction for top-bottom arrival time offsets, caused by pressure and temperature

gradients in the TPC, is needed.

6.1 The electron drift vector

It is possible to derive a Langevin equation for the drift vector of the electron in a mag-

netic and electric field, as in Equation 6.1 [76], in which vDrift is the drift velocity vector,

μ is the electron mobility, related to the drift velocity as μ = eτ/me = vDrift/|E|. The

electrical field and magnetic field are E and B, respectively. The cyclotron frequency is

defined as ω = e|B|/me and τ is the average time between collisions.

vDrift =
μ|E|

1 + ω2τ 2
(Ê + ωτ(Ê × B̂) + ω2τ 2(Ê · B̂)B̂) (6.1)

Electrons in the TPC will experience both an electric field E and a magnetic field B.

E originates from the TPC itself, which is set up between the CE and the end planes.

Like any electric field, it will exercise a force on the electron in the direction of the field.

E is needed as an integral part of the TPC design; electrons from the ionised counting

gas along the tracks of the produced particles have to drift towards the MWPCs of the

end planes for detection.

B originates from the L3 magnet, in which the TPC is installed. Except for minor

deviations, it is parallel to E. A B field will exercise a force normal to both the direction

of movement of the electron — resulting in a circular movement.

92 Calibration overview

Figure 6.2: E ×B correction as function of field strength [78]. An almost linear depen-
dence is observed.

6.2 Effects influencing the electron drift

Correction of the electron drift effects is essential to obtain accurate position measure-

ments with the TPC.

6.2.1 Mechanical distortions

The mechanical distortions can stem from both minor manufacturing imperfections and

the mounting of the TPC in the experimental area. Small offsets in the location of the

mounting points may introduce twisting or other forms for distortions to the read-out

chambers. Such distortions are constant until the TPC is physically moved.

6.2.2 Electrostatic distortions

The electrostatic electron drift field between the CE and the end planes is homogenised

by resistor rods along the z-axis. Despite the resistor rods, it is not possible to create a

completely distortion-free drift chamber, e.g. from the finite widths of the equipotential

strips, errors in resistor chain values, ordering of the resistors, shorted strips, mismatch

of the field cage cylinder ground end voltage with the pad plane, deformations of the

pad plane, etc. [77]. The minor inhomogeneities of the field will influence the drift of

the electrons. The mechanical distortions of the TPC, discussed above, will deform the

drift chambers, which in turn can also contribute to a inhomogeneous drift chamber.

6.2.3 E × B

An electron in presence of E and B fields, will be exposed to a force in the direction of

E × B causing it to drift in a helix movement along E. However, for the special case

where E and B are perfectly parallel, the radius of the helix movement will be zero, and

the electrons drift is reduced to a movement only along E. Unfortunately, E and B are

6.2 Effects influencing the electron drift 93

not perfectly parallel in the TPC due to inhomogeneities in both fields. For the volume

occupied by the TPC, the deviations are approximately 1%. The displacement of the

track caused by the angle between E and B is proportional to zωτ , where z is the drift

distance of the electrons, ω is proportional to B, and τ is a characteristic time constant

of the counting gas. For the full TPC drift length of 250 cm, the track deviation is the

order of one cm. Considering that the spatial resolution of the TPC is up to 300 μm,

the E × B effect has to be corrected.

E × B correction is performed using laser tracks. The TPC is equipped with a

laser system generating 336 laser beams inside the TPC. The start and end points of the

lasers are carefully surveyed. Hence, correction maps can be produced from the distortion

measured by comparing reconstructed laser tracks to surveyed laser tracks. By repeating

the measurements of the laser tracks for varying strengths of B, a correction map as

function of B is obtained. The correction map can be used to fit ωτ . Typical values

are B = {−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}T . The values of displacement at B = 0 is

subtracted to reduce the effect of misalignment.

Currently, the resolution of the correction map is approximately 350 μm. The cor-

rection data are generated by multiple laser events at varying field strengths, then mea-

suring Δrϕ for each track. As shown in Figure 6.2 [78], Δrϕ < 0.7 cm for longest drift

in nominal field.

6.2.4 Gain

For calibration of the gain, radioactive krypton isotopes are mixed into the counting gas.

The gain is very constant with respect to time; it is only necessary to re-calibrate after

work on the electronics or the end-plates. The pad–pad gain variations are highly related

to geometrical imperfections. The calibration is performed by injecting radioactive 83Kr

into the drift gas, then measure the decays at three different gain levels. The decay will

be recorded by the TPC. Figure 6.3 is a typically obtained gain map. The achieved

resolution is 4.2 % for OROC and 4.0 % for IROC.

6.2.5 Electron attachment

Oxygen present in the counting gas will capture drifting electrons. Practically speaking,

it may be considered a negative gain, since it removes drifting electrons from the detector.

Although oxygen is not a part of the counting gas mixture, there will be contaminations

from the air, which is abundant with O2. Oxygen removal is a constant process in the

cleaning facility for the counting gas.

94 Calibration overview

��

 ����
�����

	����
�����

	�
��
������

	�
��
�������

��
������

	����
����

	����
����

�
�
�
��
�	

�

���
�
�
�
	

���

Figure 6.3: TPC electron attachment calculation principle. The signal is measured at
two positions with a constant distance Δx (but different in the two cases of cosmics and
physics tracks). The change in signal relative to the varying distance Δz is taken as a a
result of electron attachment.

6.2.6 Space charge

Ions drifting towards the CE represent charge present in the drift regions, and will distort

the drift path of the electrons [79]. The impact of the effect increases with the density of

the charges. Such distortions may be hard to correct for. The gating grid is designed to

prevent the ions from drifting back into the drift chambers, but at high collision rates,

it will be open most of the time to accept the incoming electrons. Fortunately, the

effect does not appear to be the limiting factor of the TPC; simulations show more than

10 000 interleaved events may be present in the TPC simultaneously, at which stage

event disentangling is already becoming an issue.

6.2.7 Drift velocity

The drift velocity specifies how fast the electrons drift through the TPC. It can be

affected by a number of influencing parameters, in particular temperature and pressure.

The details will be treated in details in Chapter 8.

Chapter 7

TPC AliRoot calibration framework

7.1 Off-line classes

A dedicated framework for the calibration of the TPC exists within AliRoot [80]. Each

calibration task is implemented in a separate class, derived from a common base class

AliTPCcalibTimeBase. The base class defines the framework, and provides a common

interface to the various calibration tasks. Currently, these functions are defined, and can

be over-ridden by the derived calibration classes as needed [80]:

• virtual void Process(AliESDEvent* event) — whole event ;

• virtual void Process(AliTPCseed* track) — only tracks ;

• virtual void Process(AliESDtrack* track, Int t runNo=-1);

• virtual Long64 t Merge(TCollection* li) — merge sub-results from other instances;

• virtual void Analyze() — analyse raw data and extract fits;

• virtual void Terminate() — called before saving data;

• virtual void UpdateEventInfo(AliESDEvent* event) — update global variables;

• virtual Bool t AcceptTrigger() — exclude events with inappropriate trigger mask;

• virtual void SetTriggerMask(Int t accept, Int t reject, Bool t rejectLaser) — set

masks of triggers to be accepted and rejected.

The Process(. . .)-functions are the entry-point for the calibration; the framework will

push data to the calibration tasks using these functions. Since different tasks might need

to be processed either at event level or track level, alternative interfaces are provided.

Process(. . .) may be called multiple times for each instance of the calibration class; the

results are accumulated in internal data structures. It is often desirable to process data

in parallel, in multiple instances of the same class. In that case Merge(. . .) can merge

the results stored in another instance into this instance. Analyze() can be used to request

the data to be analysed. When all data has been processed, and the results are to be

stored, Terminate() is called to allow the class to perform the necessary post-processing

before terminating. The global variables of the calibration classes can be set via the Up-

95

96 TPC AliRoot calibration framework

dateEventInfo(. . .) function, which takes an event object as one of the parameters. The

corresponding variables are copied from the object. Events are associated with trigger,

indicating what triggered the event to be read from the sub-detectors. AcceptTrigger()

determines whether to process events that do not fit a pre-set trigger mask. Finally, Set-

TriggerMask(. . .) can be used to set the mask of triggers to accept, reject, and whether

to reject laser events regardless of mask.

A number of derived classes have been made so far, Figure 7.1 shows the inheritance

hierarchy graphically:

• AliTPCcalibAlign — internal TPC chamber alignment;

• AliTPCcalibCalib — re-application of calibration at cluster level;

• AliTPCcalibLaser — drift velocity, unlinearities, E × B from laser tracks;

• AliTPCcalibCosmic — performance studies;

• AliTPCcalibMaterial — material calibration;

• AliTPCcalibPID — PID from dE/dx;

• AliTPCcalibTime — time-dependent drift velocity;

• AliTPCcalibTimeGain — time-dependent gain;

• AliTPCcalibTracks — cluster shape and error parametrisation;

• AliTPCcalibTracksGain — gain from tracks;

• AliTPCcalibTrigger — trigger calibration;

• AliTPCcalibUnlinearity — unlinear effects;

• AliTPCcalibV0 — V0 calibration.

The two classes of importance for the drift velocity calibration [45] are AliTPC-

calibTime and AliTPCcalibLaser. The framework will push events to AliTPCcalib-

Time::Process(. . .). Here, a switch is implemented to distinguish events from cosmics,

beam and laser, which are treated accordingly. The two former types will be handled

by the drift velocity calibration class internally, while events of the later type will be

pushed to AliTPCcalibLaser::Process(. . .), and the drift velocity results read back.

AliTPCcalibCalib will re-apply the calibration at cluster level, and refit the tracks.

The calibration framework is invoked from the AliRoot analysis framework via the

AliTPCAnalysisTaskcalib class, inheriting from the AliAnalysisTask analysis base class.

During development it might be useful to process multiple runs together to get a

feeling of the fluctuations over a longer time span. In the production system, however,

every run will typically be processed individually, since the calibration objects will be

stored per run in the CDB.

7.2 Order of calibration

As mentioned in previous chapter, the order of the calibration is in general not arbitrary.

For the ALICE TPC, the following order is implemented in AliRoot [80]:

7.3 Condition database 97

�������	��
�	��

�������	��
����

�������	��
�	��

�������	��
������

�������	��
�	���

�������	��
�	����	�

�������	��
���

�������	��
����

�������	��
�����	��

�������	��
��	���

�������	��
��	����	��

�������	��
�����

�������	��
������	����

�������	��
��

Figure 7.1: Inheritance diagram for TPC calibration classes. The AliTPCcalibBase is
the base class for all calibration classes.

• time zero correction;

• transformation to local coordinate frame;

• drift velocity correction;

• transformation to global coordinate frame;

• E × B correction;

• time-of-flight correction;

• transformation to local tracking system;

• orthogonal alignment correction.

7.3 Condition database

The CDB is a database containing objects representing the conditions present during the

data taking. This can be any time-dependent piece of information deemed relevant to

the later calibration, reconstruction and analysis, collected from any of the sub-systems.

98 TPC AliRoot calibration framework

Typical data points are the detector configuration, e.g. magnetic field, gas temperature.

From the CDB framework point-of-view, the objects are stored with a granularity of

at most one run, or a range of several runs. However, the objects may contain more

fine-grained samples. Often a default object with run range zero to infinity is provided

for fall-back if more specific objects do not exist for certain runs. The objects are also

versioned. This is in particular useful for calibration objects, since they are typically

refined over several consecutive passes. If several versions are available, the latest version

available for a specific run is chosen by default.

Drift velocity calibration object

For the TPC drift velocity calibration, the primary CDB calibration object is a TO-

bjectArray. Currently, three types of objects are foreseen to be stored in the array:

THnSparseset<TARRAYF>, TGraph and AliSplineFit. The first one is a four-dimensional

sparse histogram of time, run number, drift velocity correction and environment pressure–

temperature ratio. The middle one is a two-dimensional graph of time and drift velocity

correction, from the histogram. This is the object to be used for the drift velocity correc-

tion during reconstruction. The last one is a two-dimensional spline fit from the graph.

Initially, this was intended to be the object which is to be used by the reconstruction,

however, since there is currently no named version of this object, it is for practical

purposes not possible to include it in the array.

In addition, several statistical quantities may be stored: mean, sigma and gain.

Although the drift velocity corrections may be obtained from several sources, only

the sources processed by the AliTPCcalibTime are stored in this array of calibration

object; for example the values produced by Goofie and the CE detector algorithms are

processed elsewhere, and stored in separate CDB objects.

There are a number of different trigger classes. Separate histograms and graphs are

produced for the separate triggers, given sufficient statistics. Besides the conventional

triggers as retrieved by the GetFiredTriggerClasses(), a “special” trigger, all, contains

the data points from all triggers. This can be used in cases where there is too low

statistics for a specific trigger class.

In most cases, the difference of drift velocity corrections are obtained from the two

sides of the TPC with errors cancelled, therefore there is no need to distinguish between

them. However, in the case of laser tracks, the precision is sufficiently high that it is

possible to measure the difference.

The objects are retrieved from the array through their names ; ROOT objects in-

heriting from TNamed base class have a name property. Unfortunately, AliSplineFit

does not. A naming convention has been established for this. It consists of six fields,

as shown in Table 7.1, separated by ‘ ’. For simplicity, the names are all capitalised.

7.4 HLT production of calibration objects 99

Type Quantity Variable Source Trigger Side

THNSPARSESET<TARRAYF> MEAN VDRIFT BEAM ALL
TGRAPH SIGMA GAIN LASER C0ASL-ABCE-NOPF-CENT A
ALISPLINEFIT ERROR . . . COSMICS C0OB3-ABCE-NOPF-CENT C
.

Table 7.1: Drift and gain calibration object naming convention.

���

�����	
�

��

���

��	���	�
������� ��	���	�
�������

���

��	���	�
�������

��

��	���	�
�������

Figure 7.2: Collaboration diagram for TPC calibration objects. Both HLT and off-line
can produce calibration objects to be stored in the CDB. HLT will use the object of the
previous run for calibration of the current run.

Most of the fields have been outlined above. The variable field is to make the distinction

between gain and drift velocity calibration objects clear, since they otherwise share the

same naming conventions, though stored in separate CDB objects. The trigger field is

the unmodified text string returned by the GetFiredTriggerClasses() function. It may

contain several trigger classes. The last field, side, is optional.

7.4 HLT production of calibration objects

The calibration objects can be produced by off-line and HLT (on-line). Figure 7.2 shows

the data flow. Both off-line and HLT have access to the data produced by the TPC, and

can use this as input for the calculation of calibration objects. The objects are thereafter

stored in the CDB, where they can be retrieved by off-line for reconstruction.

There are however, as will be shown, some differences in the calculations and what

information is available to the on- and off-line systems. HLT, being an on-line system,

can only make use of information — physics data and corresponding CDB objects —

100 TPC AliRoot calibration framework

which are available at the time the collisions take place. Off-line, on the other hand, can

also take advantage of information collected later. For example, none of the methods for

obtaining the drift velocity correction value can, for various reasons, provide an updated

value more frequently than every halve an hour hour. Thus, HLT can only use the

past drift velocity value to extrapolate the current drift velocity. Off-line, in contrast,

can interpolate the past and future values to obtain the current value. Also, an on-line

system typically trades accuracy for performance when reconstructing, further decreasing

the precision to some extent.

However, the calibration objects provided by HLT are sufficiently accurate to be used

as initial values for off-line. Off-line is expected to perform two reconstruction passes on

the data, also producing refined calibration objects. Without the HLT calibration, an

extra pass zero would have to be performed to create such initial values.

HLT is utilising the same calibration classes as off-line, making it easier to extend

the HLT calibration to include further types of calibration.

Though the HLT and off-line calibration object share the same data format and are

completely compatible, the procedure for writing them to the CDB is different, as they

for practical reasons have different ways of accessing the CDB. While off-line may write

them “directly”, HLT has to go through the shuttle, which is responsible for collecting

CDB objects from HLT and other sub-systems and “physically” store them in the CDB.

Chapter 8

Drift velocity calibration

Particles produced in the collisions traverse the TPC, leaving tracks of ionised gas and

electrons along their paths. A strong electric field is set up along the z-axis, from the

end planes to the CE, which causes the ions in the two volumes to drift to the CE, while

the electrons drift towards the respective end planes for detection. For the full drift

length of 250 cm, the nominal drift time is approximately 90 μs. However, there are

variations, depending on counting gas composition, density, pressure, temperature, and

electric-magnetic fields.

From a practical point of view, drift velocity variations correspond to a scaling of the

TPC length along the z-axis. If the real drift velocity is higher than the velocity used

for reconstruction, the TPC will appear “shorter” than it is, i.e. the track spacing will

be truncated. And oppositely, a too low drift velocity will make the TPC appear longer,

which leads to track spacing increasing. When plotted, Figure 8.1, a overly high drift

velocity will cause the track segments on each side of the CE to overlap; the tracks of side

A will extend into side C, and vice versa. Figure 8.2 shows the effect of a negative Δz on

the track reconstruction, as seen in the on-line event monitor; the track segments overlap

around the CE. On the other hand, a too low drift velocity will leave some volume on

both sides of the CE on unpopulated with tracks. Figure 8.3 shows Δz variations as

measured over a period of five weeks during the commissioning.

8.1 Influencing parameters

The drift velocity is a time-dependent function of a number of variable parameters:

• B — electric field;

• E — magnetic field;

• T — temperature;

• P — pressure;

• CCO2 — concentration CO2;

• CN2 — concentration N2.

101

102 Drift velocity calibration

�����

�����

��

��

Figure 8.1: A positive Δz around the TPC CE, schematic view. The gap Δz between
track segments is caused by incorrect drift velocity.

Figure 8.2: A negative Δz of approximately 5 cm (horizontal distance between two doted
lines) around the TPC CE, as seen in the on-line event display. The negative value causes
a overlap. The tracker fails to take the clusters on the left side into account, producing
an extrapolated track into the left side based on only the clusters on the right side.

8.1 Influencing parameters 103

Figure 8.3: Drift velocity correction as function of time for the most frequent trigger
classes. The COSMICS ALL entry is produced by all classes combined. Both raw data
and a spline-fit is shown. For sections without data-points, a fit is produced from the
end-points.

Equation 8.1 [47] shows this:

vd = vd(E,B, N(P, T), CCO2 , CN2) (8.1)

The influence of electric and magnetic fields were discussed in Chapter 7, and can

be obtained with high precision. For the drift velocity calibration, they are considered

static. Rather, the primary concern are the comparatively fast change of counting gas

temperature and pressure, and the slow change of counting gas composition. Gas pressure

and temperature may change at a minute level. These parameters are known with high

resolution from monitoring by dedicated sensors, and their theoretical influence on the

drift velocity is known.

Since the TPC is not “pressurised”, the pressure of the counting gas composition will

follow the atmospheric pressure, hence the weather. The temperature in the experimental

cavern where ALICE, including the TPC, is situated, is very stable once it has been closed

for physics runs. However, heat produced by the detectors, especially the FEE, as well

as the corresponding cooling systems, give rise to minor temperature gradients — both

temporally and spatially. Although every effort has been made to minimise temperature

variations, both by water cooling directly on the electronics enclosures and heat shielding

towards the environment and other detectors, the 27 kW of heat generated by the FEE

104 Drift velocity calibration

is destined to make an impact on the environment. Also, the five-metre diameter of

the TPC gives room for top–down temperature gradient. The TDR specifies the total

temperature variation to be within 0.1 K [46].

The counting gas composition variations, in contrast, will require days to make a

notable impact on the drift velocity.

Since the time constant of these two factors differ by orders of magnitude, it is

practical to treat them separately, as in Equation 8.2.

vd(t) = vdP/T
(t) + vdC

(t) (8.2)

vdP/T
(t) is the relatively fast changing pressure and temperature component of the

drift velocity, while vdC
(t) is the slowly changing gas composition variations. Most of

the methods of obtaining the drift velocity will provide updated values about every 30

minutes. This applies to laser tracks, Goofie and cosmics track matching. However, it is

possible to utilise the continuous measurements of temperature and pressure to produce

“corrected” drift velocity corrections.

Further, for off-line correction, which can see future calibration values, it will be

possible to combine the pressure and temperature corrections with interpolation of the

consecutive values of base drift velocity corrections to form a smooth function. This

obviously not possible for on-line calibration, though it might be possible to make pre-

dictions from the drift velocity trend. This will require careful investigation to limit the

impact of false predictions.

In addition, there are factors that do not influence the drift velocity per se, but may

influence the measurements of it:

• trigger time offset ;

• alignment ;

• internal gradients ;

• statistical fluctuations.

The trigger time offset is the time offset from the collision took place to the detector

receives the trigger. An inaccurate value causes an effect that is similar to incorrect

drift velocity. For some of the methods, incorrect relative alignment of the sub-detectors

can influence the measurements for drift velocity. Internal temperature and pressure

gradients can be hard to map accurately in all three dimensions, and can give rise to

local distortions that are not accurately taken into account.

8.2 Correction sources

The drift velocity correction can be obtained from several sources:

• track matching (cosmics and beam tracks):

8.2 Correction sources 105

– TPC side A–TPC side C;

– TPC–ITS;

– TPC–TRD;

– TPC–TOF; and

• laser tracks;

• Goofie — dedicated drift velocity monitor;

• distribution of last time bin.

Each method has both advantages and drawbacks. It is possible to combine the

results from several sources in the over-all drift velocity calibration strategy.

8.2.1 Track matching

A particle traversing the detector might leave track segments in several sub-detectors.

For a well-calibrated detector, the segments recorded by the different sub-detectors will

match, making it possible to reconstruct the particle’s path through the combined de-

tector. The basis of obtaining the drift velocity correction from track matching is to

exploit the mismatches to calculate a correction factor that will eliminate them.

If the drift velocity used for reconstruction is correct, the track of the particle passing

through the CE will be reconstructed as a continuous track through both drift volumes,

otherwise the mismatch at the CE will cause them to be considered two independent

tracks. The track will have no other discontinuities beyond those usually experienced in

track reconstruction. However, if the drift velocity is not correct, the tracks of the two

sides will either overlap or leave a gap in the track along the z-axis. In the rφ-direction,

there should be no distortions caused by incorrect drift velocity.

Initially, the drift velocity of the TPC is assumed to be a nominal value close to

average, corrected for currently measured gas pressure and temperature. The TPC

tracks are reconstructed using this value. Then, the TPC tracks are attempted to be

matched to the tracks recorded of the same particle, either by the other TPC side, or

by some neighbouring sub-detector: ITS, TRD or TOF. The measured offset between

track segments left in two neighbouring sub-detectors by the same particle is taken as

the drift velocity correction value, Δz. If the track density is high or the error of the

initial estimate for the drift velocity is large, it can be challenging to select the correct

segments to match.

The method implicitly assumes that all other potential causes for the mismatch

have already been corrected for, and that the incorrect drift velocity of the TPC is

the only contributor to track mismatches. The TPC is the only detector needing drift

velocity calibration; all other detectors are “fixed”, and will in general not be influenced

by the changing environment (temperature, pressure, etc.). I.e., their relative track

alignments will not change much with time, except for physical intervention, and they

106 Drift velocity calibration

can be matched using static transformations. Hence, the condition for utilising the

track-matching method should be fulfilled.

There are two sources of tracks: cosmic events and beam events. Most of the tracks

will be produced in particle collisions. Since the statistics is very high, calculating the

drift velocity correction as a running average might be an option for HLT. The cosmics

tracks are from high-energy cosmic particles from outer space colliding with atmospheric

particles, producing particles traversing the atmosphere before leaving a track in the

TPC. Such events are not as frequent as beam collisions, hence it is not possible to use

running average. However, since the tracks traverse the entire TPC, they can produce

individual measurements of higher resolution. Collecting sufficient statistics for cosmics

will take about 30 minutes. The track matching algorithms can utilise both types of

tracks.

For matching the track segments in different sub-detectors, an optimised track match-

ing algorithm is used. Conservative cuts assure that incorrect tracks are not matched;

mismatched tracks will give the wrong drift velocity, and the ordinary track reconstruc-

tion will not see the track segments in different sub-detectors as parts of the same track.

TPC A–TPC C

This method [80] is based on matching tracks crossing the CE of the TPC. The track

may come from cosmics or beam collisions, though the algorithms will treat the two cases

slightly differently. Initially, a nominal average value for the drift velocity is assumed.

Initially, the track passing through the CE will be reconstructed as two separate

tracks for each of the two halves of the TPC. The TPC track matching algorithms will

try to search for potential matching tracks on each sides of the CE, which is done by

searching for tracks with the same “direction” in some vicinity of the track on one side.

The algorithm applies slightly different assumptions in the case of cosmics tracks and

beam tracks. In particular, it is assumed that cosmics particles are coming from outside

the TPC, traverse it, and exit again. Particles from beam collisions, on the other hand,

are assumed to originate approximately from the interaction point.

Figure 8.4 shows the drift velocity variations as function of time, measured by match-

ing cosmics tracks from the two TPC sides, without any corrections. In Figure 8.5 the

same measurements are plotted as function of ΔT/P . Corrections for T/P has been

applied in Figure 8.6. To the right, a time-dependent offset, ascribed to either a change

of gas composition or trigger timing is observed. In Figure 8.7, this is corrected for as

well.

The typical relative resolution of the TPC counting gas temperature and pressure

is shown in Figures 8.8 and 8.9, respectively. For the pressure it is 6 × 10−5, and for

the temperature 1 × 10−5, giving a total contribution to the uncertainty of 6.1 × 10−5,

i.e., 150 μm for a drift chamber of 250 cm. Maintaining this resolution will require

8.2 Correction sources 107

Time
28/09 05/10 12/10

d0
/v dvΔ

-0.015

-0.01

-0.005

0

0.005

0.01

Figure 8.4: TPC uncorrected drift velocity as function of time. [80]

T/P
T/PΔ-0.015 -0.01 -0.005 0 0.005 0.01

d0
/v dvΔ

-0.015

-0.01

-0.005

0

0.005

0.01

Figure 8.5: TPC uncorrected drift velocity as function of ΔT/P . A close to linear
dependence is observed. [80]

Time
28/09 05/10 12/10

 P
/T

 c
or

re
ct

ed
d0

/v dvΔ

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

Figure 8.6: TPC drift velocity corrected for P/T . A time-dependent offset is seen to the
right. [80]

108 Drift velocity calibration

Time
28/09 05/10 12/10

fit
te

d
)

d0
/v dvΔ

)-
(

d0
/v dvΔ(

-0.002

-0.001

0

0.001

0.002

Figure 8.7: TPC drift velocity corrected for P/T and time-dependent offset. [80]

Mean -0.001663
RMS 0.948

)-5(10
0T/Tσ

-5 -4 -3 -2 -1 0 1 2 3 4 50

10

20

30

40

50
Mean -0.001663
RMS 0.948

Figure 8.8: Relative resolution of TPC counting gas temperature. [80]

Mean -0.005154
RMS 6.499

)-5(10
0P/Pσ

-50 -40 -30 -20 -10 0 10 20 30 40 500

5

10

15

20

25

30

35

40

45
Mean -0.005154
RMS 6.499

Figure 8.9: Relative resolution of TPC counting gas pressure. [80]

8.2 Correction sources 109

Figure 8.10: The laser tracks of the TPC. [47]

about 60 minutes to acquire sufficient statistics [80], but improvements in the calibration

algorithms should bring this down to 30 minutes.

TPC–TRD, –ITS and –TOF track matching

This method is fundamentally not very different from that of TPC side A–C matching,

which relied on matching tracks crossing the CE, i.e, a plane perpendicular to the z-axis.

The drift velocity correction was obtained by calculating the overlap or gap of the tracks

in the z-direction. For the matching of tracks from the TPC to those of ITS, TRD

and TOF, tracks crossing some surface parallel to the z-axis are used. Once again, the

correction is obtained from the mismatch in the z-direction. Here, however, there is no

overlap or gap since the mismatch is along the axis crossed by the tracks. Rather, there

is an offset along the z-axis between the corresponding tracks in the TPC and the other

detectors. For this method, it is important that all involved detectors are well aligned.

8.2.2 Laser tracks

The tracks, see Figure 8.10, created in the TPC by laser beams can be used to correct

the drift velocity [80, 81, 82]. A series of laser runs is expected to be taken approximately

every 30 minutes. From a drift velocity calibration point of view, laser runs every five

minutes would be desirable. At this time scaling the parameters influencing drift velocity

should be sufficiently constant to allow direct use of the drift velocity correction factors

110 Drift velocity calibration

obtained. The frequency of the laser runs is limited by the life time of the crystals

generating the laser beams; they should only be replaced every LHC shutdown, which is

expected to be once a year.

Laser runs is the source of drift velocity correction values with highest resolution.

Hence it can be used for calibrating the other correction methods. This can be done by

comparing the correction values from the laser runs to the correction values obtained

from other methods at the time of the laser runs. Hence, a new base line for the correction

is obtained.

8.2.3 Goofie

Goofie is a dedicated drift velocity monitor for the TPC [83]. It consists of a gas chamber

where the TPC counting gas is circulated at a slow rate. A known electric field is applied

to the gas volume, and the drift time of electrons is measured over a fixed distances. It is

approximately one meter long; the measured drift velocity has to be scaled to the TPC

drift length, causing some loss of resolution. There can also be a temperature offset

between the gas in the Goofie and the TPC, which has to be taken into account. Goofie

requires about 30 minutes to collect sufficient statistics for an updated drift velocity

value. The drift velocity value is exported via the DCS, and made available in the CDB.

8.2.4 Time-bin distribution

The signals from the TPC read-out pads are collected by the ALTROs, and stored in

time-bins. It is possible to use the distribution of the last time bin (i.e. the bin of the

longest drift distance) to estimate the TPC drift velocity. It is implemented in the CE

Detector Algorithm (DA), and is processed on-line on DAQ, from where it is stored into

the CDB.

8.3 Systematics of effects

Figure 8.11 shows the perfectly calibrated TPC tracks. This can be compared to the

situation of incorrect drift velocity, which will manifest itself as a gap, Figure 8.12,

or overlap, Figure 8.13, with length Δz between the two TPC drift volumes around

the CE. There are, however, other effects that can have a similar manifestation. It is

important to disentangle these effects, and correct them in the right order. Otherwise,

new inaccuracies will be introduced.

The first effect is misalignment. Although every possible care is taken to produce

and align the sub-detectors physically, there will always be minor discrepancies that will

have to be corrected for in software. Figure 8.14 shows the result of incorrect alignment

of the TPC with respect to the ITS. From the perspective of the ITS, the whole TPC

8.3 Systematics of effects 111

����� �����

���

��

���	
�����	
��

��������

Figure 8.11: Perfectly calibrated TPC tracks.

����� �����

���

��

���	
�����	
��

��������

Figure 8.12: Impact of uncorrected positive Δz scaling on TPC tracks. Note the TPC
end-planes are unmoved. The situation looks very similar to the case of t0 shift, except
the chambers appear shortened (scaled), not shifted. Negative Δz shown in Figure 8.13.

����� �����

���

��

���	
�����	
��

��������

Figure 8.13: Impact of uncorrected negative Δz scaling on TPC tracks. The TPC end-
planes are unmoved. Again, the situation is similar to that of a negative t0 shift, except
the chambers appear stretched (scaled).

112 Drift velocity calibration

����� �����

���

��

���	
�����	
��

��������

Figure 8.14: Impact of uncorrected TPC–ITS shift on TPC tracks. The whole TPC,
including CE, has been shifted left-wards with respect to the ITS. A negative shift is
right-wards.

����� �����

���

��

���	
�����	
��

��������

Figure 8.15: Impact of uncorrected t0 shift on TPC tracks. Each chamber appears to
have been shifted away from the CE, leaving a gap. If the t0 shift is negative, the shift
is towards the CE, resulting in overlapping chambers.

���

��

����� �����

��	
�����	
���

��	�����

Figure 8.16: Impact of uncorrected t0, TPC–ITS shift and Δz scaling on TPC tracks.
All positive.

8.3 Systematics of effects 113

has been shifted to either side. Since the TPC is affected “globally”, misalignment will

not contribute to Δz, but since the positions of the TPC end planes are shifted, it will

affect the algorithms for correcting Δz if not corrected beforehand. The alignment does

not change with time, except when there has been physical intervention that may change

the alignment.

The time of the collision, time-zero, has to be known to match tracks crossing the CE

and read out from the two end planes. Otherwise, the two drift volumes will be shifted

in opposite directions relative to the CE, in either direction, creating a gap or overlap

similar to that produced by an incorrect drift velocity, contributing to the initially overall

measured Δz. The time-zero may depend on the trigger type, as the different triggers will

detect the collision at different time offsets. Ideally, the triggers should be calibrated to

the same offset. The time-zero offset is not time-dependent, although the trigger offsets

can change.

Incorrect drift velocity will scale the TPC drift chambers, i.e., the effect will have

its maximum at the CE, and linearly decrease towards the end planes, where it is zero.

Incorrect time-zero offset, on the other hand, will shift the chambers, i.e., the effect

will be constant over the full drift length, Figure 8.15. Since both effects contribute to

the measured Δz, they can be hard to separate, fortunately, only the drift velocity is

changing with time. Although the apparent effect is the same, the different nature of

scaling versus shift means they have to be corrected differently; time-zero is corrected

by shifting the chambers according to the contribution of effect to Δz as measured at

CE, drift velocity is corrected by obtaining a scaling factor that can be distributed over

the full drift length. The time-zero offset has to be corrected for before drift velocity

correction, otherwise the shift of the time offset will be interpreted as a drift velocity

variation, hence wrongly “corrected” for. For the part of the TPC volume close to the

CE, the effect of this misinterpretation will be small, for the volume close the the end

planes it will however be large; without correction for time offset shift, large errors will

be introduced to the track matching with other detectors.

In principle, it may be possible to distinguish between all these effects by attempting

to match tracks from other sub-detectors to the TPC tracks, then compare the distance

of the mismatch close to the CE and the end planes, hence obtaining a global and a

relative shift component, and one scale component.

Figure 8.16 shows all effects present simultaneously. A challenge with such approach

is the much lower density of tracks crossing both the TPC and the other detector close to

the end planes. In reality the situation is simplified, since the alignment and time-zero

calibration is constant, and drift velocity is the only time-dependent variable.

114 Drift velocity calibration

8.4 Strategy

Currently, the three main methods for obtaining the drift velocity correction are:

• TPC side A–B track matching ;

• laser tracks ;

• TPC–ITS track matching.

.

All methods provide updated values approximately every 30 minutes. It is possible

to combine the results, for example, the high-precision measurements by the laser system

can be used to calibrate the track matching methods. The results from all methods are

calculated and stored to the CDB, and may be compared to determine which will give

the best result. The main strategy is to use the HLT to generate drift velocity calibration

objects to be used by off-line reconstruction, however, there is still work ongoing.

If other methods should prove to generate better results, the strategy may be revised.

The flexibility of the framework allows for easy change of calibration method.

8.5 Impact of uncalibrated TPC drift velocity on

physics

The TPC drift velocity calibration is the mapping of the measured particle trajectories

to the “true” trajectories, taking into account, and correcting for, distortions that may

disturb the measurements. If the calibration is not well done, the particle tracks will

not appear at the correct spatial location. This will mainly have an impact at the

borders between different detectors, both TPC side A–TPC side B as well as TPC–ITS,

–TRD and –TOF, where it will be difficult, if not impossible, to perform efficient track

matching. Track matching is to merge the track segments the same particle leaves in

multiple sub-detectors when traversing them. Since the TPC drift velocity depends on

the environment variables gas pressure and temperature, the track matching efficiency

would literally depend on the weather if not done properly.

If the track matching fails, the different track segments will be interpreted as being

created by different particles. This can have several consequences. There will appear to

be more particles with shorter tracks. Most importantly, though, it will be impossible

to trace the same particle through several sub-detectors. This also means it will not

be possible to compile information of the properties of the same particle from several

sub-detectors. The overall impact on the performance will depend on the physics to be

studied. For example high-pT -measurements, depend on good track-matching, and will

suffer significantly, as well as the detection of tracks emerging from a secondary vertex,

i.e. tracks with a large impact parameter. Flow measurements, on the other hand, might

suffer less.

8.6 TPC performance 115

 (GeV/c) z
p

momentum / charge

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

d
E
/d

x
 i
n

 T
P

C
 (

a
.u

.)

0

200

400

600

800

1000

1200

p
+

K

+π

d

t

d

e

p

-
K

-π +e

pp @ 900 GeV

ALICE performance
work in progress

Figure 8.17: TPC dE/dx p+ p resolution. [84]

Figure 8.18: TPC pT cosmics resolution. [84]

8.6 TPC performance

Before the LHC start-up last winter, the TPC was collecting cosmics data. After the

start-up, p + p data have been collected. Based on these sets of data, thorough perfor-

mance studies have been carried out, and a number of plots showing the performance

have been released.

The dE/dx resolution of the TPC for p + p collisions is shown in Figure 8.17. The

coloured dots indicate data points, while the red lines are Bethe-Bloch fits for various

116 Drift velocity calibration

charged particles. Figure 8.18 shows the TPC pT resolution for cosmics data. Work is

in progress for p+ p data.

Chapter 9

Conclusion and outlook

The ALICE experiment is now commissioned, and is currently collecting data from

p+ p collisions, while waiting for Pb+ Pb collisions later this year. Although ALICE is

optimised for Pb + Pb collisions, the p + p data are useful for the detector calibration,

and also as a reference for the Pb+ Pb collisions.

The detector is performing close to the design goals, and work is in progress to

improve the performance further. Although the LHC programme has begun, and ALICE

is taking data, there are still upgrades foreseen. For some of the sub-detectors, like PHOS,

EMCAL and TRD, further modules are to be installed. Other upgrades, like the new

DCAL sub-detector, are yet to be installed. In addition, further sub-detectors, like a

forward calorimeter, are in the planning stage.

The ALICE TPC is performing well. From data collected so far from cosmics and

p+ p collisions, it shows good PID and tracking capabilities.

A DCS has been developed around networked computers embedded on the FEE of

the detector itself. The computers are running a software called FeeServer, which allows

remote clients to connect to it via the network. The client software will send binary

blocks configuration data and instructions to the FeeServer, which will interpret the

commands, and configure the electronics accordingly. Also, monitoring values from the

FEE are published by the FeeServer and subscribed to by the client software. The data-

points are give information of the operation status of the FEE or the FeeServer software

itself, and will be displayed visually in a GUI where the shifter can easily inspect the

status of the detector. The FeeServer is also used by auxiliary systems like the BusyBox,

the gate pulser, the laser pulser, the trigger-or, and by other sub-detectors like the PHOS

and EMCAL.

The FeeServer is performing well, and it has been shown that the processing time for

the FeeServer of the configuration data is of the same order as the time for assembling

the data blocks on the client side, and can not be considered a bottleneck. However,

there is still room for improvement. Extensions for the FeeServer command set that

will allow for more efficient and robust configuration is being considered. In particular,

117

118 Conclusion and outlook

this applies to the implementation of monitoring and correction of single-event upsets

in the ALTROs and the SRAM of the RCU FPGA. Also, searching for and identifying

situations where the FeeServer may not function properly has to continue.

Much effort has gone into the different aspects of the drift velocity calibration. Sev-

eral methods for obtaining the various calibration parameters are utilised to provide

independent measurements that can be compared for consistency. A time dependent

variation of the drift velocity is intrinsic to a TPC detector. The drift velocity depends

on a number of factors, with very large variations of the time constant. The most impor-

tant parameters are the fast changes of gas temperature and pressure, as well as the slow

gas composition variations. There are several methods for obtaining the drift velocity;

the methods based on various types of track matching and laser tracks are the most

important. It is possible to combine or augment the different methods to obtain a better

overall result. Initial calibration values for the off-line reconstruction can be provided

by the HLT, eliminating the need for a pass 0 reconstruction.

Overall, the ALICE experiment is living up to the expectation, and with the arrival

of the Pb + Pb collisions later this year, ALICE will have the chance to prove its real

strengths.

Publications

Primary author

1. ALICE TPC commissioning results

D. T. Larsen for the ALICE TPC Collaboration

Nuclear Instruments and Methods in Physics Research A617, 35–39 (2010),

doi:10.1016/j.nima.2009.07.002

2. ALICE TPC control and read-out system

D. T. Larsen for the ALICE TPC Collaboration

CERN Reports 006 (2009),

http://cdsweb.cern.ch/record/1185010

Co-author

3. DCS Communication Software for the ALICE TPC Front-End Electronics

M. Richter et al. [ALICE TPC Collaboration]

CERN Reports 011 (2005),

http://cdsweb.cern.ch/record/921200

4. A Distributed, Hetrogeneous Control System for the ALICE TPC Electronics

[ALICE TPC Collaboration]

Parallel Processing (2005),

http://cdsweb.cern.ch/record/914454

5. The control system for the front-end electronics of the ALICE time projection

chamber

M. Richter et al. [ALICE TPC Collaboration]

IEEE Trans. Nucl. Sci. 53, 980 (2006),

doi:10.1109/TNS.2006.874726

6. The ALICE Experiment at the CERN LHC

K. Aamodt et al. [ALICE Collaboration]

I

II Publications

JINST 0803, S08002 (2008)

doi:10.1088/1748-0221/3/08/S08002

7. First proton–proton collisions at the LHC as observed with the ALICE detector:

measurement of the charged particle pseudorapidity density at
√
s = 900 GeV

K. Aamodt et al. [ALICE Collaboration]

European Physical Journal C65 (2010),

arXiv:0911.5430

8. The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-

high multiplicity events

J. Alme et al. [ALICE TPC Collaboration]

Submitted to Nuclear Instruments and Methods in Physics Research A (2010),

arXiv:1001.1950

Including all publications as ALICE collaboration member co-author, a total of 59

publications.

Bibliography

[1] A. Lygre, Eld av steinar (Gyldendal, Oslo, 1948). b

[2] C. Salgado, (2009), arXiv:0907.1219. 2, 5, 11

[3] L. McLerran, Lect. Notes Phys. 583, 291 (2002), arXiv:hep-ph/0104285. 3, 15

[4] F. Karsch, Nucl. Phys. A698, 199 (2002), arXiv:hep-ph/0103314. 1, 6

[5] F. Karsch et al., Quark–gluon plasma III (2003), arXiv:hep-lat/0305025. 1, 6

[6] B. Holzman et al., Nucl. Phys. A698, 643 (2002), arXiv:nucl-ex/0103015. 1

[7] C. Ogilvie, Nucl. Phys. A698, 3 (2002), arXiv:nucl-ex/0104010. 1

[8] BNL, AGS web page, 2010, http://bnl.gov/rhic/AGS.asp. 1

[9] M. Gazdzicki, Eur. Phys. J. ST. 155, 37 (2008), arXiv:0801.4919. 1

[10] NA49-Collaboration, Phys. Rev. C79, 044904 (2009), arXiv:0810.5580. 1

[11] CERN, SPS web page, 2010, http://cern.ch/ab-dep-op-sps/. 1

[12] I. Arsene et al., Nucl. Phys. A757, 1 (2005), arXiv:nucl-ex/0410020. 1

[13] J. Adams et al., Nucl. Phys. A757, 102 (2005), arXiv:nucl-ex/0501009. 1, 13, 15

[14] BNL, RHIC web page, 2010, http://bnl.gov/rhic/. 1

[15] J. Rafelski et al., J. Phys. G35, 044011 (2008), arXiv:0801.0588. 1

[16] X.-N. Wang, Nucl. Phys. A750, 98 (2005), arXiv:nucl-th/0405017. 1, 11, 12, 13

[17] I. Arsene et al., Phys. Rev. Lett. 91, 072305 (2003), arXiv:nucl-ex/0307003. 1, 11,

12, 13

[18] L. Landau, Izv. Akad. Nauk SSSR Ser. Fiz. 17, 51 (1953). 3

[19] J. Bjorken, Phys. Rev. D27, 140 (1983), doi:10.1103/PhysRevD.27.140. 3

[20] B. Povh et al., Particles and nuclei (Springer-Verlag, 1995), isbn:3540594396. 4

III

IV BIBLIOGRAPHY

[21] R. Debbe et al., J. Phys. G35, 104004 (2008), arXiv:0805.0780. 5

[22] H. Caines, Proceedings for the Rencontres de Moriond 2009 QCD session (2008),

arXiv:0906.0305. 5

[23] J. Letessier et al., Hadrons and QGP (Cambridge University Press, 2002),

isbn:0521385369. 5

[24] K. Eskola et al., Nucl. Phys. A713, 167 (2003), arXiv:hep-ph/0205048. 5

[25] Z. Xu, J. Phys. G30, 927 (2004), arXiv:nucl-ex/0404034. 7

[26] R. Snellings et al., Eur. Phys. J. C49, 8790 (2007), arXiv:nucl-ex/0610010. 7

[27] J.-Y. Ollitrault, Phys. Rev. D46, 229245 (1992), doi:10.1103/PhysRevD.46.229. 7

[28] R. Lacey et al., PoSCFRNC 021 (2006), arXiv:nucl-ex/0610029. 7

[29] A. Chaudhuri, (2010), arXiv:0910.0979. 7

[30] J.-Y. Ollitrault, Nucl. Phys. A638, 195 (1998), arXiv:nucl-ex/9802005. 7

[31] S. Voloshin et al., Z. Phys. C70, 665 (1996), arXiv:hep-ph/9407282. 8

[32] A. Poskanzer et al., Phys. Rev. C58, 1671 (1998), arXiv:nucl-ex/9805001. 8

[33] K. Ackermann et al., Phys. Rev. Lett. 86, 402 (2001), arXiv:nucl-ex/0009011. 9

[34] J. Adams et al., Phys. Rev. Lett. 95, 122301 (2005), arXiv:nucl-ex/0504022. 9, 10

[35] S. Shi et al., Nucl. Phys. A830, 187c (2009), arXiv:0907.2265. 9, 10

[36] R. Nouicer, Submitted to Eur. J. Phys. (2009), arXiv:0901.0910. 12, 14

[37] B. Abelev et al., Phys. Let. B655, 104 (2007), arXiv:nucl-ex/0703040. 12, 14

[38] S. Adler et al., Phys. Rev. Lett. 91, 072303 (2003), arXiv:nucl-ex/0306021. 12, 14

[39] S. Adler et al., Phys. Rev. Lett. 96, 202301 (2006), arXiv:nucl-ex/0601037. 12, 14

[40] S. Adler et al., Phys. Rev. Lett. 98, 172302 (2007), arXiv:nucl-ex/0610036. 12, 14

[41] A. Accardi, CERN reports 009, 81 (2004), arXiv:hep-ph/0212148. 12

[42] ALICE-Collaboration, Technical Proposal for A Large Ion Collider Experiment at

the CERN LHC, CERN, 1995, http://cdsweb.cern.ch/record/293391. 17

[43] C. Lippmann, private communication. 21, 34

[44] A. Kalweit et al., WSPC proceedings (2009). 22

BIBLIOGRAPHY V

[45] A. Kalweit, private communication. 23, 96

[46] ALICE-Collaboration, ALICE Technical Design Report of the Time Projection

Chamber, CERN, 2000, http://edms.cern.ch/document/398930. 19, 20, 23, 104

[47] J. Alme et al., In press, NIM A (2010), arXiv:1001.1950. 20, 21, 103, 109

[48] A. Rehman, private communication. 21

[49] ALICE-Collaboration, ALICE Technical Design Report of the Photon Spectrometer,

CERN, 1999, http://edms.cern.ch/document/398934. 24

[50] ALICE-Collaboration, ALICE Addendum to the Technical proposal Electromagnetic

Calorimeter, CERN, 2006,

http://aliceinfo.cern.ch/Collaboration/Documents/EMCal.html. 25

[51] ALICE-Collaboration, ALICE Technical Design Report of the Inner Tracking Sys-

tem, CERN, 1999, http://edms.cern.ch/document/398932. 25

[52] ALICE-Collaboration, ALICE Technical Design Report of the Transition Radiation

Detector, CERN, 2001, http://edms.cern.ch/document/398057. 25

[53] ALICE-Collaboration, ALICE Technical Design Report of the Time of Flight Sys-

tem, CERN, 2002, http://edms.cern.ch/document/460192. 26

[54] ALICE-Collaboration, ALICE Technical Design Report of the High Momentum Par-

ticle Identification Detector, CERN, 1998, http://edms.cern.ch/document/316545.

26

[55] ALICE-Collaboration, The Forward Muon Spectrometer of ALICE Addendum to

the Technical Proposal for ALICE at the CERN LHC, CERN, 1996,

http://edms.cern.ch/document/316523. 26

[56] ALICE-Collaboration, ALICE Technical Design Report of the Dimuon Forward

Spectrometer, CERN, 1999, http://edms.cern.ch/document/470838. 26

[57] ALICE-Collaboration, ALICE Technical Design Report of the Zero Degree

Calorimeter, CERN, 1999, http://edms.cern.ch/document/398933. 26

[58] ALICE-Collaboration, ALICE Technical Design Report on Forward Detectors:

FMD, T0 and V0, CERN, 2004, http://edms.cern.ch/document/498253. 27

[59] ALICE-Collaboration, ALICE Technical Design Report of the Photon Multiplicity

Detector, CERN, 1999, http://edms.cern.ch/document/398931. 27

VI BIBLIOGRAPHY

[60] ALICE-Collaboration, ALICE Addendum to the Technical Design Report of the

Photon Multiplicity Detector, CERN, 2003, http://edms.cern.ch/document/575585.

27

[61] ALICE-Collaboration, ALICE Technical Design Report of the Trigger, Data Acqui-

sition, High-Level Trigger and Control System, CERN, 2004,

http://edms.cern.ch/document/398931. 27, 30, 33

[62] J. Alme, A trigger based readout and control system operating in a radiation

environment, PhD thesis, University of Bergen, Bergen, 2008,

http://cdsweb.cern.ch/record/1141616. 31, 35, 37, 47

[63] ETM, PVSS web page, 2010, http://www.etm.at/index e.asp?id=2&%3Bm0id=6.

33

[64] L. Musa et al., IEEE NSS Conference Record 5, 3647 (2003),

doi:10.1109/NSSMIC.2003.1352697. 34

[65] D. Larsen, CERN reports 006, 586 (2009),

http://cdsweb.cern.ch/record/1185010. 34

[66] T. Krawutschke, DCS board web page, 2010,

http://frodo.nt.fh-koeln.de/˜tkrawuts/dcs.html. 40

[67] K. Røed, Single event upsets in sram fpga based readout electronics for the time

projection chamber in the alice experiment, PhD thesis, University of Bergen,

Bergen, 2009, http://cdsweb.cern.ch/record/1244467. 46

[68] L. Musa et al., TPC FEE web page, 2010, http://cern.ch/ep-ed-alice-tpc/. 47

[69] C. González-Gutiérrez et al., IEEE NSS Conference Record 1, 575 (2005),

doi:10.1109/NSSMIC.2005.1596317. 47

[70] S. Bablok, Development and implementation of a safe and efficient communica-

tion software in a heterogeneous system environment of a major research project,

Master’s thesis, Fachhochschule Worms, Worms, 2004. 54

[71] D. Larsen, Utvikling av feilsøkingsverktøy for alice tpc forende-elektronikk via

detektorkontrollsystemet, Master’s thesis, University of Bergen, Bergen, 2006,

http://web.ift.uib.no/˜dagtl/dag-master.pdf. 56

[72] M. Richter et al., IEEE Trans. Nucl. Sci. 53, 980 (2006),

doi:10.1109/TNS.2006.874726. 56

BIBLIOGRAPHY VII

[73] D. Larsen et al., FeeServer source code, 2010,

http://web.ift.uib.no/kjekscgi-bin/viewcvs.cgi/. 57

[74] C. Gaspar et al., Proceedings for CHEP (2000). 70

[75] C. Gaspar et al., DIM web page, 2010, http://cern.ch/dim/. 70

[76] T. Lohse et al., Advanced series on directions in high energy physics 9, 81 (1993),

isbn:9810214731. 91

[77] D. Vranic, CERN-ALICE-INT 22 (1997),

http://cdsweb.cern.ch/record/689328. 92

[78] D. Larsen et al., NIM A617, 35 (2010), doi:10.1016/j.nima.2009.07.002. 92, 93

[79] S. Rossegger, Simulation & calibration of the alice tpc including innovative space

charge calculations, PhD thesis, Graz University of Technology, Graz, 2009,

http://cdsweb.cern.ch/record/1217595. 94

[80] M. Ivanov et al., AliRoot TPC calibration documentation, 2010,

http://alisoft.cern.ch/AliRoot/trunk/TPC/doc/calib/. 95, 96, 106, 107, 108, 109

[81] ALICE-Collaboration, AliRoot documentation, 2010,

http://aliceinfo.cern.ch/static/aliroot-new/html/roothtml/. 109

[82] ALICE-Collaboration, AliRoot TPC source code, 2010,

http://alisoft.cern.ch/AliRoot/trunk/TPC/. 109

[83] D. Antończyk et al., GSI Scientific Report , 348 (2004),

http://www.gsi.de/informationen/wti/library/scientificreport2004/PAPERS/

INSTMETH-20.pdf. 110

[84] ALICE-Collaboration, Validated figures for ALICE presentations, 2010,

http://twiki.cern.ch/twiki/bin/viewauth/ALICE/ConferenceCommitteeFigures.

115

Glossary

ADC Analogue–Digital Converter. 22, 51, 52, 65

AGS Alternating Gradient Synchrotron. 1

ALICE A Large Ion Collider Experiment. iii, II, 16, 17, 19, 23, 24, 26, 27, 29, 30, 34,

44, 50, 96, 103, 117, 118

ALTRO ALice Tpc Read-Out. 21, 24, 28, 43, 47–51, 64, 65, 88, 110, 118

APD Avalanche Photo-Diode. 24, 29, 48, 49, 64, 66

ARM Advanced Risc Machine. 21, 38

ASIC Application-Specific Integrated Circuit. 28, 38

ATLAS A Toroidal Lhc ApparatuS. 17

BB BusyBox. 75

BC Board Controller. 25, 47–52, 64–66

BLOB Binary Large OBject. 65, 71, 73

BNL Brookhaven National Laboratory. 1

BRAHMS Broad Range HAdron Magnetic Spectrometer. 1, 12, 13

CAD Computer-Assisted Drawing. 89

CDB Condition DataBase. 30, 96–100, 110, 114

CE Centre-Electrode. 20, 91, 92, 94, 98, 101, 105, 106, 109, 110, 112, 113

CE ControlEngine. 54–60, 63, 66, 77, 78, 81, 83, 88, 102

CMS Compact Muon Solenoid. 17

CoCo CommandCoder. 65, 66, 68, 69, 71, 72

IX

X Glossary

CPU Central Processing Unit. 36, 38–40

CR Counting Room. 33

CTP Central Trigger Processor. 29, 31, 38, 47

DA Detector Algorithm. 110

DAQ Data AcQuisition. 21, 28, 30, 31, 34, 46, 47, 110

DCAL Di-jet CALorimeter. 25, 117

DCB DCs Board. 42

DCS Detector Control System. iii, 16, 21, 24, 25, 28, 33, 34, 36–48, 51, 53, 54, 59, 63,

67–73, 77, 78, 80, 81, 88, 110, 117

DDL Detector Data Link. 28–30, 46, 67

DHCP Dynamic Host Configuration Protocol. 40, 41, 44

DID Dim Information Display. 69

DIM Distributed Information Management. 37, 43, 53, 54, 58, 69–71, 82

DIMNS DIM Name Server. 70, 71

DIU Destination Interface Unit. 28

DNS Domain Name System. 44

DRORC Destination Read-Out Receiver Card. 28, 29

ECS Experiment Control System. 33, 70

EMCAL Electro-Magnetic CALorimeter. 25, 28, 30, 34, 66, 68, 117

FEC Front-End Card. 21, 24, 25, 28, 29, 33, 34, 37, 38, 45–52, 57, 60, 63, 64, 66, 68,

69, 71–74, 80, 81, 88

FED Front-End Device. 71

FEE Front-End Electronics. iii, 22, 23, 29, 33, 34, 36, 38, 40, 41, 43, 45, 48, 53, 54, 56,

63, 67–69, 71, 74, 77, 78, 80, 81, 103, 117

FMD Forward Multiplicity Detector. 27–29, 50, 55, 64

FPGA Field Programmable Gate Array. 37–39, 45–47, 49, 67, 80, 88, 118

Glossary XI

GDC Global Data Concentrator. 30

GTL Gunning Transceiver Logic. 47–51, 65, 80, 88

GUI Graphical User Interface. 33, 68, 70, 74, 117

HBT Hanbury-Brown Twiss. 7

HLT High Level Trigger. 21, 27, 28, 30, 31, 34, 46, 99, 100, 106, 114, 118

HMPID High Momentum Particle Identification Detector. 26

I2C Inter-Integrated Circuit. 28, 47–50, 59, 64, 80, 81

ICL InterComLayer. 33, 37, 43, 65, 68–73, 75, 79, 84

ID IDentification. 57, 60, 61, 69, 85–87

IM Instruction Memory. 48, 64, 65, 84

IOCTL Input–Output ControL. 44, 79, 80

IP Internet Protocol. 40, 44, 70

IROC Inner Read-Out Chamber. 20, 21, 93

IT Information Technology. 44

ITS Inner Tracking System. 25, 26, 30, 91, 105, 109, 110, 112, 114

JICL Java ICL. 43, 72

JTAG Joint Test Action Group. 39, 43, 81

LDC Local Data Concentrator. 30

LEIR Low Energy Ion Ring. 19

LEP Large Electron–Positron Collider. 17

LHC Large Hadron Collider. iii, 1, 4, 6, 16, 17, 19, 70, 71, 110, 115, 117

LHCb LHC-Beauty. 17

LINAC LINear ACcelerator. 19

LO Leading Order. 5

LQCD Lattice QCD. 2, 6

XII Glossary

LSB Least Significant Bit. 39, 44

MAC Media Access Control. 38, 44

MMU Memory Management Unit. 38

MSB Most Significant Bit. 38, 44

MUON MUON spectrometer. 26

MWPC Multi-Wire Proportional Chamber. 20, 21, 91

NFS Network File System. 41, 44

NLO Next-to-Leading Order. 5

NTP Network Time Protocol. 44

OROC Outer Read-Out Chamber. 21, 93

PASA PreAmplifier ShAper. 49, 50

PCI Peripheral Component Interconnect. 28

PDF Parton Distribution Function. 5, 11

PHENIX Pioneering High-Energy Nuclear Interactions eXperiment. 1, 11, 12, 14

PHOS PHOton Spectrometer. 24, 25, 28–30, 34, 48–50, 56, 57, 64, 66, 68, 117

PID Particle IDentification. 19, 96, 117

PMD Photon Multiplicity Detector. 27

pQCD perturbative QCD. 5, 6, 11

PS Proton Synchrotron. 19

PVSS ProzessVisualisierungs- und Steuerungs-System. 33, 52, 61, 68–75

QCD Quantum Chromo-Dynamics. 1, 2, 4–6

QED Quantum Electro-Dynamics. 5

QGP Quark–Gluon Plasma. iii, 1–5, 7, 9, 11, 13, 15–17

RAM Random Access Memory. 38–42, 45, 46

Glossary XIII

RCU Read-out Control Unit. 21, 24, 28–30, 34, 36–38, 41, 44–54, 57, 59, 63–65, 68, 69,

72, 80, 81, 84, 88, 118

RF Radio Frequency. 17

RHIC Relativistic Heavy Ion Collider. 1, 5, 7, 9–16

RICH Ring-Imaging CHerenkov. 26

RM Result Memory. 48

RMS Root Mean Square. 22

RO Read-Only. 39, 41, 42

ROC Read-Out Chamber. 91

ROMFS ROM File System. 39

RP Read-out Partition. iii, 21, 33, 43, 48

RS Recommended Standard. 38

RW Read–Write. 39, 41, 42

SC Slow-Control. 48

SCP Secure CoPy. 39, 44

SDD Silicon Drift Detector. 25

SIU Source Interface Unit. 34, 36, 46

SM Safety and Monitoring module. 46

SPD Silicon Pixel Detector. 25

SPS Super Proton Synchrotron. 1, 19

sQGP Strongly coupled QGP. 5, 7

SRAM Static RAM. 88, 118

SSD Silicon Strip Detector. 25

SSH Secure SHell. 39, 41, 44

SSHD SSH Daemon. 41

STAR Solenoidal Tracker At Rhic. 1, 9–15

XIV Glossary

T0 Time-Zero. 27

TCP Transmission Control Protocol. 70

TDR Technical Design Report. 89, 104

TOF Time-Of-Flight. 26, 27, 105, 109, 114

TOR Trigger-OR. 29, 30, 66

TPC Time Projection Chamber. iii, 16, 19–26, 28–30, 33–36, 40, 43, 44, 48–51, 53, 56,

57, 64, 66–69, 71, 72, 74, 75, 89–99, 101–115, 117, 118

TRD Transition Radiation Detector. 25, 26, 30, 34, 55, 64, 105, 109, 114, 117

TRU Trigger Read-out Unit. 25, 29, 30, 50, 64, 66

TTC Timing, Trigger and Control. 27

TTCrx TTC Receiver. 28, 37, 65, 80

UDHCPCD Micro DHCP Client Daemon. 41

V0 Veto. 27

ZDC Zero Degree Calorimeter. 26

