CERN Accelerating science

002253531 001__ 2253531
002253531 003__ SzGeCERN
002253531 005__ 20191015171704.0
002253531 0248_ $$aoai:cds.cern.ch:2253531$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pINIS$$pcerncds:CERN
002253531 0247_ $$2DOI$$9IOP$$a10.1088/1742-6596/898/3/032028
002253531 037__ $$aCMS-CR-2017-039
002253531 035__ $$9Inspire$$a1638253
002253531 041__ $$aeng
002253531 100__ $$aAndre, Jean-Marc Olivier$$iINSPIRE-00405127$$jCCID-757230$$uFermilab
002253531 245__ $$aNew operator assistance features in the CMS Run Control System
002253531 260__ $$c2017
002253531 269__ $$aGeneva$$bCERN$$c16 Feb 2017
002253531 300__ $$a8 p
002253531 520__ $$aThe Run Control System of the Compact Muon Solenoid (CMS) experiment at CERN is a distributed Java web application running on Apache Tomcat servers. During Run-1 of the LHC, many operational procedures have been automated. When detector high voltages are ramped up or down or upon certain beam mode changes of the LHC, the DAQ system is automatically partially reconfigured with new parameters. Certain types of errors such as errors caused by single-event upsets may trigger an automatic recovery procedure.  Furthermore, the top-level control node continuously performs cross-checks  to detect sub-system actions becoming necessary because of changes in configuration keys, changes in the set of included front-end drivers or because of potential clock instabilities. The operator is guided to perform the necessary actions through graphical indicators displayed next to the relevant command buttons in the user interface. Through these indicators, consistent configuration of CMS is ensured. However, manually following the indicators can still be inefficient at times. A new assistant to the operator has therefore been developed that can automatically perform all the necessary actions in a streamlined order. If additional problems arise, the new assistant tries to automatically recover from these. With the new assistant, a run can be started from any state of the subsystems with a single click. An ongoing run may be recovered with a single click, once the appropriate recovery action has been selected. We review the automation features of the CMS run control system and discuss the new assistant in detail including first operational experience.
002253531 520__ $$aDuring Run-1 of the LHC, many operational procedures have been automated in the run control system of the Compact Muon Solenoid (CMS) experiment. When detector high voltages are ramped up or down or upon certain beam mode changes of the LHC, the DAQ system is automatically partially reconfigured with new parameters. Certain types of errors such as errors caused by single-event upsets may trigger an automatic recovery procedure. Furthermore, the top-level control node continuously performs cross-checks to detect sub-system actions becoming necessary because of changes in configuration keys, changes in the set of included front-end drivers or because of potential clock instabilities. The operator is guided to perform the necessary actions through graphical indicators displayed next to the relevant command buttons in the user interface. Through these indicators, consistent configuration of CMS is ensured. However, manually following the indicators can still be inefficient at times. A new assistant to the operator has therefore been developed that can automatically perform all the necessary actions in a streamlined order. If additional problems arise, the new assistant tries to automatically recover from these. With the new assistant, a run can be started from any state of the sub-systems with a single click. An ongoing run may be recovered with a single click, once the appropriate recovery action has been selected. We review the automation features of CMS Run Control and discuss the new assistant in detail including first operational experience.
002253531 540__ $$3publication$$9IOP$$aCC-BY-3.0$$uhttp://creativecommons.org/licenses/by/3.0/
002253531 595__ $$aCERN EDS
002253531 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002253531 6531_ $$9CMS$$aDataAcquisition
002253531 6531_ $$9CMS$$aSoftware
002253531 690C_ $$aINTNOTE
002253531 690C_ $$aCERN
002253531 690C_ $$aPUBLCMS
002253531 693__ $$aCERN LHC$$eCMS
002253531 700__ $$aBehrens, Ulf$$iINSPIRE-00170143$$jCCID-373651$$uDESY
002253531 700__ $$aBranson, James$$iINSPIRE-00319000$$jCCID-377820$$uUC, San Diego
002253531 700__ $$aBrummer, Philipp Maximilian$$iXX$$jCCID-778659$$uCERN
002253531 700__ $$aChaze, Olivier$$iXX$$jCCID-723020$$uCERN
002253531 700__ $$aCittolin, Sergio$$iINSPIRE-00318325$$jCCID-382670$$uUC, San Diego
002253531 700__ $$aContescu, Cristian$$iINSPIRE-00518280$$jCCID-736592$$uFermilab
002253531 700__ $$aCraigs, Benjamin Gordon$$iXX$$jCCID-778799$$uCERN
002253531 700__ $$aDarlea, Georgiana Lavinia$$iINSPIRE-00213029$$jCCID-667109$$uMIT
002253531 700__ $$aDeldicque, Christian$$iXX$$jCCID-585612$$uCERN
002253531 700__ $$aDemiragli, Zeynep$$iINSPIRE-00238076$$jCCID-694940$$uMIT
002253531 700__ $$aDobson, Marc$$iINSPIRE-00305748$$jCCID-451981$$uCERN
002253531 700__ $$aDoualot, Nicolas$$iINSPIRE-00535564$$jCCID-783752$$uFermilab
002253531 700__ $$aErhan, Samim$$iINSPIRE-00318963$$jCCID-390177$$uUCLA
002253531 700__ $$aFulcher, Jonathan F$$iXX$$jYY$$uCERN
002253531 700__ $$aGigi, Dominique$$iINSPIRE-00314000$$jCCID-395488$$uCERN
002253531 700__ $$aMichail Gładki$$iXX$$jYY$$uCERN
002253531 700__ $$aGlege, Frank$$iINSPIRE-00314039$$jCCID-395967$$uCERN
002253531 700__ $$aGomez Ceballos, Guillelmo$$iINSPIRE-00041199$$jCCID-488892$$uMIT
002253531 700__ $$aHegeman, Jeroen Guido$$iINSPIRE-00039022$$jCCID-609929$$uCERN
002253531 700__ $$aHolzner, Andre Georg$$iINSPIRE-00309602$$jCCID-483283$$uUC, San Diego
002253531 700__ $$aJanulis, Mindaugas$$iINSPIRE-00309711$$jCCID-669704$$uCERN$$uVilnius U.
002253531 700__ $$aJimenez Estupinan, Raul$$iINSPIRE-00573312$$jCCID-693972$$uCERN
002253531 700__ $$aMasetti, Lorenzo$$iINSPIRE-00318057$$jCCID-630493$$uCERN
002253531 700__ $$aMeijers, Franciscus$$iINSPIRE-00314177$$jCCID-414266$$uCERN
002253531 700__ $$aMeschi, Emilio$$iINSPIRE-00107072$$jCCID-475723$$uCERN
002253531 700__ $$aMommsen, Remigius$$iINSPIRE-00108459$$jCCID-448932$$uFermilab
002253531 700__ $$aMorovic, Srecko$$iINSPIRE-00310776$$jCCID-656878$$uCERN$$uFermilab
002253531 700__ $$aO'Dell, Vivian$$iINSPIRE-00319226$$jCCID-400884$$uFermilab
002253531 700__ $$aOrsini, Luciano$$iINSPIRE-00311140$$jCCID-419638$$uCERN
002253531 700__ $$aPaus, Christoph Maria Ernst$$iINSPIRE-00115190$$jCCID-420998$$uMIT
002253531 700__ $$aPetrova, Petia$$iXX$$jCCID-635861$$uCERN$$uISER, Sofia
002253531 700__ $$aPieri, Marco$$iINSPIRE-00116389$$jCCID-422674$$uUC, San Diego
002253531 700__ $$aRacz, Attila$$iINSPIRE-00318150$$jCCID-424755$$uCERN
002253531 700__ $$aReis, Thomas$$iINSPIRE-00270866$$jCCID-719752$$uCERN
002253531 700__ $$aSakulin, Hannes$$iINSPIRE-00311857$$jCCID-448336$$uCERN
002253531 700__ $$aSchwick, Christoph$$iINSPIRE-00314370$$jCCID-430783$$uCERN
002253531 700__ $$aSimelevicius, Dainius$$iINSPIRE-00445470$$jCCID-764811$$uCERN$$uVilnius U.
002253531 700__ $$aZejdl, Petr$$iINSPIRE-00340177$$jCCID-713540$$uCERN$$uFermilab
002253531 700__ $$aVougioukas, M.$$uCERN
002253531 710__ $$5PH
002253531 773__ $$c032028$$n3$$pJ. Phys.: Conf. Ser.$$v898$$wC16-10-14$$y2017
002253531 8564_ $$81286142$$s1136699$$uhttps://cds.cern.ch/record/2253531/files/CR2017_039.pdf
002253531 8564_ $$uhttp://iopscience.iop.org/article/10.1088/1742-6596/898/3/032028/pdf$$yIOP Open Access Article
002253531 916__ $$sn$$w20179
002253531 963__ $$aPUBLIC
002253531 960__ $$a13
002253531 962__ $$b2157890$$k032028$$nsanfrancisco20161010
002253531 980__ $$aINTNOTECMSPUBL
002253531 980__ $$aConferencePaper
002253531 980__ $$aARTICLE