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I. Introduction

Many attempts have been made to formulate a quantum theory of four-dimensional gravity
[1]. In this approach it is hoped that if gravity can be formulated as a renormalizable theory,
then this would improve the prospects of unifying gravity with the other known interactions.
The recent developments in three-dimensional gravity provide an excellent testing ground
for this program. There it was shown that by formulating three-dimensional gravity as a
topological gauge theory of the groups SO(1,3), S0O(2,2) or I150(1,2), the theory becomes
finite [2]. The main difficulty in advancing this program lies in introducing non-trivial matter
coupling. By “non-trivial” we mean couplings which, in the non-topological phase, reduce
to the familiar scalar, spinor and vector interactions. The difficulty arises because a basic
ingredient in this construction is not to use the metric, but rather the dreibein field which
is also a gauge field. The metric would arise in the non-topological phase as a product of
the dreibein fields: g,, = ejeq,. Any matter interaction must then be written using the
dreibein. This, being a part of a gauge multiplet, would necessarily break gauge invariance.
It is then inevitable that the gauge symmetries SO(1,3), SO(2,2) or I50(1,2) must be
broken to SO(1,2), the Lorentz group in three dimensions. It is preferable to break the
symmetry spontaneously, since our main interest is to investigate in a perturbative setting
the renormalization analysis of matter interactions.

The advantage of dealing with three-dimensional gravity is that the graviton propagator
can be obtained by expanding e? around zero, which is a great simplification over expanding
around a flat background. The disadvantage is that in order to gauge fix, a background metric
on the three-dimensional manifold must be specified. (This metric will be taken to be flat so
as to simplify the perturbative treatment.) In the pure gravity case it has been shown that the
quantum theory is independent of the background metric showing the topological nature of
the theory [2]. This independence on the background metric is, however, not guaranteed [3].
As will be seen, matter interactions will give rise to divergences that could not be cancelled
without using the background metric to construct counterterms. There shows that at the
quantum level the energy-momentum tensor is non-zero. We deduce that matter interactions
destroy the topological nature of the theory. With hindsight, it is possible to understand
this phenomenon by examining the partition function. The integration of the matter fields
produces determinants which are independent of the background metric but depend only on
eZ. For the gravity part one gets a ratio of determinants. In the absence of matter this ratio
is topological, the Ray-Singer torsion [2],[4]. In the presence of matter and the associated
breakdown of symmetry to SO(1,2), one loses a piece and the ratio of determinantis becomes
metric dependent. This phenomenon is similar to what happened in two dimensions where
the metric tensor appears at the classical level as a background metric. At the quantum level,
the metric becomes dynamical and governed by the Liouville action. This was referred to as
a gravitational anomaly, but in our case it is more appropriate io call it a metric anomaly.

In the perturbative analysis we shall try to cure the problem of divergences by introducing
supersymmetry. This, unfortunately, will turn out to be insufficient. It appears to us that
the best hope for such a program to work is to have both gravity and matter as part of a
large symmetry.

The plan of this paper is as follows. In Section 2 we give the coupling of three-dimensional
topological gravity to matter without using a background metric. In Section 3 the construction
is generalized to the supersymmetric case. The perturbative analysis and the arisal of the
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metric anomalies are given in Section 4. Some comments and the conclusion are in Section 5.

II. Matter coupling to three-dimensional topological
gravity

From the work of Witten it is now established that three-dimensional quantum gravity
becomes a finite theory when formulated as a gauge theory of SO(1,3), S0O(2,2) or 150(1,2)
depending on the cosmological constant [2]. The gauge invariant action is of the Chern-Simons
type '

2
S, = 2kg/ < AdA+ 24> (2.1)

where A is an $0(2,2) gauge field (the other two cases can be recovered by Wick rotation or
an Inénu-Wigner group contraction).
A= 31 A8 J,g, A=a3 a=0,1,2
and the quadratic form is defined by
< JapJop >= €4BcD (2.2)
The connection with gravity is made through the identification
A% =e?, A% =0 (2.3)

In terms of e and the spin connection w the action (2.1) takes the form

Sy =k / €t (dwh® + whws — %ebec) (2.4)
At the classical level, when €2 is restricted to the subspace of invertible fields, the action (2.4)
is equivalent to the Einstein-Hilbert action. However, this equivalence breaks down at the
quantum level, where the quantum theory of (2.4) is finite. The main disadvantage in this
formnulation is the difficulty of introducing matter. This stems from the fact that e is a part
of the gauge field A and cannot be used by itself without breaking gauge invariance. It is
then suggestive to break the gauge symmetry to SO(1,2) so that e} would correspond to the
broken generator J,3. To break the symmetry spontaneously some kind of Higgs mechanism
must be employed. However, because of the absence of a metric no potential for the Higgs field
can be introduced and a non-zero vacuum expectation value can only be obtained through a
constraint. At this point we introduce a Higgs field H,4 subject to the constraint [3]

HAH,-1=0 (2.5)

which can be easily imposed through a Lagrange multiplier in the action. The most general
Higgs interaction terms are [5]

Sy = _/EABCDHA[khl-D HBFCP 4 ky,D HPD H°D H”] (2.6)



where
D,H* = 8,H*+ Al°Hp
FAB — d AAB 4 AACA B
To understand the role of the H, field it is useful to go to a physical gauge where
H3=1, H*=0 (2.7)

which can always be reached by using the gauge parameter €22 associated with J,3 as well as
the constraint (2.5). In the gauge (2.7) the covariant derivative D, H 4 takes the simple form

D,H®=0, D,H®=¢" (2.8)

This shows that to formulate a covariant matter interaction the réle of the dreibein is replaced
by D,H* which in a physical gauge would take the familiar form. The interaction (2.6) also
takes a simple form in the gauge (2.7):

Sy = / capelkpy €“F + kpy €2ee”) (2.9)
where
F = o™ 4+ W) — e%e’ (2.10)
Combining (2.4) and (2.9) the sum reduces to
1
Sg+h = / 5abc[(kg -+ khl)eﬂ'(dwbc + wbewe") + (khg - khl - -51%)6“6666 (211)

After rescaling the field % we see that the action (2.11) is of the same form as (2.4)
and could differ only by the value of the cosmological constant. In other words, the gauge-
fixed action (2.11) has a resurrected symmetry of the form SO(1,3), 50(2,2) or 150(1,2)
depending on whether the combination 8kny — 3ky1 — k, 1s positive, negative or zero. In what
follows and for simplicity we are going to assume that the cosmological constant vanishes and
set 3kpa — 3kp1 — k, to zero.

The simplest matter interaction to construct is that of a scalar multiplet. Let X4 be a
scalar multiplet in the fundamental representation of SO(2,2) with the identifications X =
7°, X3 = . One possible action that reproduces the familiar form at the classical level is

S = ko f eascpH* DH? DHC(XP DX"Hp) (2.12)
In the physical gauge (2.7) this takes the form

S, = —km/daxe””peabceieﬁwc(apgo — eﬁwd) (2.13)

The action (2.13) is just the first-order formulation of a scalar field action. To see this,
assume the non-topological phase where e? is invertible, and substitute the equation of motion
of w,,

Ty = —eX0,p (2.14)



into the action (2.13) to get
kum
Sm=— ?fdasc e ele”d,p 0,0 (2.15)

Thus (2.13) reproduces the canonical form at the classical level.

The total action, the sum of (2.11) and (2.13), has only the SO(1,2) gauge symmetry.
The perturbative analysis of this action will be performed in Section 4. There we shall find
divergences that can be cancelled by counterterms proportional to the background metric
introduced in gauge fixing. One potential mechanism to cancel the divergences is to super-
symmetrize our construction. This will be the subject of the next section.

III. Topological supergravity and matter coupling

Since SO(2,2) = SO(1,2) x SO(1,2) and OSP(2|1) is the graded version of SO(1,2), the
supersymmetric analogue of the construction given in the previous section is achieved by

gauging OSP(2 | 1) x OSP(2}1) [6], [2].

We shall adopt the notation of 7] for the matrix representation of OSP(2 | 1). Let &
and @, be the gauge fields of the two OSP(2 | 1) gauge groups transforming as

@1 —r qu)lﬂ;l ‘|‘ QldQI_l
@2 s 92@292-1 ‘|‘ diﬂgl (31)

where €, and €3, are two elements of the two respective groups. These can be represented in

the matrix form 5
AO! Ilpa

Aaﬁ = Aﬁa-.- ¢cx = eaﬁr‘;ﬁ (33)

where

It is also convenient to write

Aaﬁ = Aa(Ta)aﬁ
where the 7, are the SO(2, 1)-generators

1/ 01 10 1 1{1 0
=z _1 0) T™T3l1 o) ™T3\o -1

Introduce now the Higgs field (7 transforming as

G— 0 GOt (3.4)
and the covariant derivative of G, transforming as G, is defined by
DG =dG+ &,G - GO, (3.5)
In order to distinguish the group indices of the second OSP(2[1) let us denote them by
&, B, . ... Then the matrix representation of G is
Hg Nes
ee (™) 56
& ¢



where both 5, and &; are Majorana spinors, and H, g and ¢ are real.

It will also be necessary to define the equivalent representation G transforming as

G— 0 Gt (3.7)
and whose matrix form is [ 7o) 3
“ HYe¢ ) =&
G = € ¢ & o 3.8
( T ) (3.8)

To break the symmetry spontaneously we must arrange for G to have a non-zero vacuum.
This can be done by employing the gauge invariant constraint

GG-1=0 (3.9)

where 1 is the unit matrix. This constraint can also be imposed through a Lagrange multi-
plier. The unconstrained G has nine components, four fermionic and five bosonic. With the
constraint (3.9) the independent components of G are reduced to five, two fermionic and three
bosonic. At this point, it is helpful to go to a physical gauge where some of the gauge sym-
metries are fixed. Using five components of the OSP(2 | 1) x OSP(2 | 1) gauge parameters,
two fermionic and three bosonic, we can set

G=1 (3.10)
This breaks the symmetry to the diagonal part of the product OSP(2 | 1) X OSP(2]1).

We first write the pure supergravity action [6]

ks
Spp = =22 [ [Str(@1d01+ %@i) —1=9] (3.11)
whose component form is
ks 1 -
Ssg = f [(Ala,dAg‘ - §€abcA?AiAi) + 4¢1D1¢1 -1- 2] (3]‘2)

where I; = d+ A;. The action in (3.12) can be put into a more familiar form by re-expressing
it in terms of [6]

1

o= g (AT AD
1
¢ = 5 (AT— A
1
Y = §(¢1 + ) (3.13)
Then
a 1 (4 1 [+
Ssg =k [ [ e?(dw, — Eegbcwbw - Eegbcebe )

20, (d 4w +20_(d + W), + 2petpy + 211;—6%5—] (3.14)

Using w® = $ew,, the bosonic part agrees with (2.4).



The most general expression for the Higgs interactions compatible with (3.11) and the
diagonalization in (3.13) is

k —_ .
S, = f 82’“ [Str(GDG(d®, + B2)] — Str(GdG(d®, + 82)))

+4k,Str(GDG DG DG) (3.15)

In the physical gauge (3.10) and in terms of the variables (3.13) the Higgs action (3.15) takes
the form

S.sh, = kshl [ea(dwa - %Eabcwbwc - %éabcebec)
+204 (d + w)tp- + 20_(d + W)ty + 69 _eb- + 2y ey ]
Hhns ] (eapecebes — 12¢5_etp_) (3.16)

One can recombine (3.14) and (3.16) to get

1
Ssg+sh = / {(ksg + kshl) [ea(dwa - _Eabcwbwc)

2
20 (d + w)tp_ + 2¢_(d + @)y + 2reipy]
—(kyy + 3kons —-6k3h2)[%eabce“ebec —2%p_ew_]} (3.17)

If we tune the coeflicients such that
ksg + Bkshl - 6ksh2 =0

then the cosmological constant vanishes and the Y_e_ also drops out. This is an indication
that there is a residual supersymmetry between e and ¥_. In this case the action (3.17)
simplifies to

e, | [e“(dwa - %eabcw"w°) + 204 (d + W) + 20 (d + Wiy + 2 e (3.18)

This action has the symmetry %%iﬂ%'ﬂ where § is the supersymmetric extension of the

I150(1,2) of pure gravity. The transformation properties are

de? = (d+w)é +e_ oYy +e 0%l

S = —Eoupy +(d+w)e +ec;
by = (dt+w)es
bw* = %€+Ua77b+ (319)

where the £, ¢_ extends SO(1,2) with gauge field w® to S, while e, extends the same SO(1, 2)
to OSP(2 | 1). The symmetries with £* and ¢_ gauge parameters are present only when there
are no matter interactions, and they would be broken in the presence of matter. As we
are mainly interested in matter interactions these symmetries will be lost and need not be
gauge fixed. Only the OSP(2 | 1) symmetry would survive. This would pose a problem for
evaluating the < v_1)_ > propagator since the kinetic operator ¥_dy_ is non-invertible and



no gauge fixing condition such as 9*y, = 0 is available. In this case we are forced to abandon
the physical gauge (3.10) and take instead H* =0, where H = H°1, + h. Then

1—1ing n )
G = 4 _ =140 3.20
( ] 1 %"’W (7?) ( )

which is obtained by solving (3.9). In this gauge, the action in (3.18) would be corrected by 7
terms and the gauge invariance associated with the fermionic parts of OSP(2 | 1) xOSP (2]1)
could be used to gauge fix both 1. and .

The matter interactions which reproduce the bosonic matter interactions (2.13) are now
Som = dks | str (DG DG G X)Str(GDX) (3.21)

where X is a multiplet transforming like G. The matrix representation of X is given by

X = ((so REh: wloali e xcx) (3.22)

In the physical gauge (3.20) the matter interactions (3.21) simplify to
Sem = —kom (eabceﬂebﬂ'C + 4o p_m® — dp_eX) (dp — erg — 2p_X) + 0(n) (3.23)

Although this action has the correct bosonic interactions for 7 and , however, S and x
decouples, and X does not acquire a propagator.

IV. Perturbative analysis

We now proceed to analyse perturbatively the quantum theory of (2.1), (2.6) and (2.12).
By choosing the physical gauge (2.7) the action reduces to (2.11) and (2.13) in addition to the
ghost part corresponding to this gauge fixing. It is easily seen that this ghost part decouples
and one can equivalently start by analysing the sum of (2.11) and {2.13). First we have to
gauge fix the remaining gauge degrees of freedom. These are S0(1,2) gauge invariance and
general coordinate transformations (GCT) on the space-time manifold M. It is well known
that for quantizing Chern-Simons theories in general and 3D pure gravity in particular one
has to pick a background metric on M. The partition function for such theories, although
expressed in terms of the background metric, is a topological invariant and is independent
of the metric. In general, it is not guaranteed that a theory which is metric independent at
ihe classical level would remain so at the quantum level [3]. Our purpose is then to examine
whether the matter interactions coupled to gravity as given in (2.11) and (2.13) would remain
metric independent at the quantum level.

For convenience we choose the background metric on M to be the flat Minkowski metric
M [8]. The SO(1,2) and GCT symmetries are fixed by the conditions

P uw? =0, 7*O,e, =0 (4.1)



where we defined w* = %e“b%)bc. The gauge fixing and ghost terms obtained through the
Fadeev-Popov procedure are:

1
- _ o voa\ i@ v_a % a
Ler = 5o (0°wi)(0"w)) 25 (5 e;)(0"€}) + 8¢, 0uc
+—QF%%Wq+W@ﬁ@+&@%ﬂ
+ [ eu0"c, + 0*(D,d el + d¥0,¢)] (4.2)

where ¢, d, ¢* and d* are the ghost fields.

A basic assumption of topological gravity is that any background satisfying the classical
equations of motion can be used in the perturbative expansion, including the topological
phase €2 = 0. In this unbroken phase of gravity, perturba.tlon theory will take its simplest
form. ThlS ability to expand around the ¢ = 0 phase is unique to three dimensions. In
the higher dimensional generalization of topological gravity [9], perturbation theory requires
expansion around a flat background e% = 6%, because otherwise the graviton cannot be given
a propagator,

Working in the topological phase, the only propagators come from the gravity and ghost
sectors. Defining k! = k, + ks, the £ + Ly + Lgr parts of the Lagrangian give [§]

]

< eZwi > = —]:;,n“bsuyp% (4.3)
<wlwl> = —anab% (4.4)
<%£>=-£W%? (4.5)
<o > = —nabz% (4.6)

It is most convenient to choose the Landau gauge where &, 8 — 0 so that in the gravity sector,
we are left only with the off-diagonal propagator < we >.

We are now ready to analyse renormalizability of three-dimensional gravity coupled to
matter in its topological form as given in (2.11) and (2.13). Let us first look at the one-loop
contributions coming from the matter part. We only have < we > and < ¢*c > propagators at
our disposal and so matter will enter as external lines. These can couple to internal dreibeins
e?. Simple power counting then indicates that the only dangerous diagrams are the two in
Fig. la,b. These may be expected to be linearly divergent. Including one more propagator
will make the integrand odd so that the diagram vanishes. Any additional propagator will
give finite diagrams.

The vertices appearing in Fig. la,b are

(Vuwee);"buc(ph . ’p4) = i(21r)35(3)(p1 +...+ p4) . ("—ka) Euweabc(_‘ipl);ﬂ (4'7)

(Vrreee)ire (o ps) = i(27r)35(3)(}91 Aot ps) - Ak Tare™ e (4.8)
(Ve )it (pr,paps) = 6(27)°6 (py+ pa + pa) - (=K )e* Pease (4.9)

To calculate the diagrams we introduce a Pauli-Villars regulator A — oo in the propagators
(4.3)-(4.6) by substituting
1 1

R By ¢ (4.10)




‘This allows us to calculate the diagrams of Fig.1 and (using here and in the following formulas
that can be found in [8]) the results turn out to be

e d*q ¢(g—p—k) +q"(¢g—p—k)*
Sla = i3 nabpuA4]
k, 27 ¢*(g® ~ A?)(g—p — k)*([g—p — K> — A?)
k. A
_ gm T amv —
= zk; Tor Nas(—1Dy) (4.11)
Gy = _ZEm o e Al dq ¢lg—p—k—0"+¢g-p- k-0
k, ) (27)° ¢4 (> —A)(g—p—k—-OX[g—p—k—{]? - A?)
k. A
— g aHv

as A — oo. Notice that there is a second, topologically inequivalent diagram contributing to
Fig. 1b. This is obtained by letting the 7-lines originate from the other vertex. It is easily
seen that this additional diagram doubles the divergence (4.12).

These results show the linear divergences that were expected from power counting. There
are no other diagrams to cancel these. Thus coupling bosonic matter in its topological form
leads to a system which is neither finite nor renormalizable. The surprising feature is that
the form of the divergences (4.11), (4.12) requires counterterms L£° that include the metric

A Ky

i, = “Tr " €L T Oy (4.13)
g
Ak

;b = +1_2-;k+7? n“vﬂ-aﬂ-aezeub (414;)
g

Using only fields of the originally topological Lagrangian, no counterterm can be written down
to cancel the divergences. Thus, we observe a new kind of gravitational anomaly, resulting in
a metric dependence appearing at the quantum level of a classically topological system.

Actually, adding matter terms (2.13) even destroys finiteness in the gravity sector. It
is highly instructive to understand the reason for these anomalies, since it may point to a
fundamental reason behind the non-renormalizability of Einstein-Hilbert gravity in dimensions
D > 3 and ways to cure it. The key réle is played by the ghosts coming from the gauge fixing
(4.1). These gauge fixing conditions are the same as for pure gravity [2],[8]. There, however,
they served to fix ISO(1,2)-invariance. Introducing the w-equation of motion as a constraint
so that the torsion vanishes, the 1SOQ(1,2) transformations coincided with GCT. Therefore it
was not required for pure gravity to fix the GCT separately because that would correspond
to over gauge-fixing. Having included the matter terms, the IS O(1,2)-symmetry is broken
down to an SO(1,2)-symmetry and GCT symmetry has to be fixed separately. The condition
8w = 0 fixes the SO(1,2)-invariance, while de = 0 fixes GCT invariance. Fixing GCT by
de = 0 leads to the ghosts d*,d in (4.2). Unfortunately, these are not propagating in the
e® = () phase, unlike the ghosts that arose when the gauge fixing condition de = 0 had to fix
the translation part of 750(1,2).

The linear divergent one-loop diagrams in the gravity sector are shown in Fig. 2a,b. Using
also the vertex

(V") (pr, pa, pa) = i(2)°6 (py + p2 + po)i P’ (4.15)
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the amplitudes turn out to be

Saa = 2%5/\4] (::rg;:” q”(q2f(z2;(g)i;)gz[(¢1q—_ ff])r— A?)

= 3%,% 7" Tab (10
Sa = 2k [ B e R

= z'lz% 7" Nab (4.17)

as A — oo. For pure gravity there would be a third diagram with internal d*,d ghosts giving
the same amplitude as (4.17) and therefore cancelling the total one-loop divergences [8].

Here, however, a counterterm
L= —=— n""wiw,, (4.18)

has to be introduced. This is again of the geometrical structure that was observed in the
matter sector. |

Notice that the decisive point in discussing the gravity sector was the loss of invariance
under the translationary part of ISO(1,2), leaving only the Lorentz-group SO(2, 1) and GCT
as symmetry. These are also the symmetries of Einstein-Hilbert gravity in dimension D > 3.
The vielbeins ef no longer come as gauge fields. However, in D > 3 it is not possible to see the
problem of non-renormalizability in terms of non-propagating ghosts since the perturbation
analysis has to be performed by expanding e, around a flat background. The problem must
be seen to arise because the Einstein-Hilbert action does not have enough gauge symmetry.

Having shown the occurrence of anomalous divergences, it is natural to look for an anomaly
cancelling mechanism. Examining Fig. la,b, one might think that by replacing the internal
¢ — w lines by fermionic ones then a cancellation between the anomalous diagrams might
be possible. Indeed the new diagrams with internal fermionic lines could be generated by
supersymmetrizing the bosonic construction. This was carried out in Section 3 where the
supergravity and matter actions have OSP(2 | 1) x OSP(2 | 1} gauge invariance, For the
supersymmetric case we want to fix the gauge by imposing

e =0, vt =0 (4.19)
H*=0, &%¢7=0 (4.20)
g el = 0 (4.21)

The conditions (4.19), (4.20) fix the OSP(1,2) x OSP(1,2), while (4.21) has to fix GCT. As
was mentioned already in Section 3 for the perturbative analysis (4.20) has to be used instead
of (3.10). This is due to the fact that otherwise the y*-kinetic terms cannot be inverted to
give a propagator. Using (4.20) instead of (3.10) léads to (3.20) and so the actions (3.18)
and (3.23) will be corrected by n7-terms. These corrections, however, would not change the
conclusions of this paper and will therefore be ignored in what follows. The gauge fixing and
ghost terms corresponding to (4.19)-(4.21) are
1

Loor= = o () (Pin) = 5(0TE) (003)

10



1 1 _— _ 1
—_— — 1L v o _{AH - voi=Y _ a\2
2ﬂ (a e,u) (a er) 2‘6;(8 Q'by,) (a Tvbr/) ,Yf(H )
+ 8c*d,c, + YOy
4+ €gte [C*“wza"“cc -+ d*“eia“ccl + QE;_'[C*(‘)”’}’ + B”C'y*]
+ 2 [d*c’)“"q + B“’c&*] i, By — e, 0y (4.22)

where ¢* = ¢*%1,,¢ = c®7, are scalar and 7*,7 are spinor ghosts. The ghost terms coming
from GCT have not been written down, since they decouple as for the non-supersymmetric
case.

Using k), = kg + kom and the gauge fixing terms, the propagators for the gravitinos turn
out to be

IOt N — _‘i a Ep_
< w# ¢uﬁ >= k! 6/-'3 Cuvp p2
59

< TFYt, >= ~2a/85 P
p
< Yoy >= 2863 Plv (4.23)
p
The graviton propagators are of the same form as in (4.3)-(4.5). Again, it is most convenient

to use the Landau gauge ay,...,4 — 0, leaving only off-diagonal propagators.

Working in the topological phase, there are no matter propagators. Matter can only enter
as external lines, like for the non-supersymmetric case. The vertices can be read off from

(3.18) and (3.23). For example,

(VT )88 (py oy paypa) = 4 (27)°60 (pL+p2 +ps + Pa)(— 4k )€ (72 )o(—iP1),

(VAT ) B (1 pg,pa,pa) = & (2m)°6 (o4 p2 + ps+ pa)dkome P (1a)5(—1p1),
(VT oy paps) = i (27)°89 (o1t P2+ po) 2K € ()
(VYR (o o pe) = i (27)°6@) (p + po + pa)2K, €0 (Ta)C (4.24)

It turns out that for example the diagram in Fig. 3a realizes our hope to cancel the diagram
in Fig. la (4.11):

k dq ¢(g—p—k)+g"g—p- k)"
-_— sm v & 4
SSa, - 47’ k,rsg (Tﬂ)a (Tb)")‘pVA j (27{)3 q2(q‘2 - A2)(q —D— k)?([q —P— k]2 - Az)
kem A
— am 11 Y
’ ki, 127 naon™ (—ip,) (1:25)

However, now there are new diagrams like the one shown in Fig. 3c with an amplitude

ke g s d°q ¢{g—p—k)* +q*lg—p— k)
Ss. = —i4g 0 (nnl, pf @) @ — ADg—p— K (lg—p — F? — A?)
. ksm A

_ [T N S
= —i 5 Talnmlr (—ip)

This is not cancelled by any other diagram and the divergency is again of the geometric
type. Thus, we conclude that not even supersymmetrization is able to cure the anomalous
behaviour resulting from including matter to three-dimensional topological gravity.
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V. Conclusions

In this paper we have constructed matter interactions coupled to gravity and supergravity
by spontaneously breaking gauge symmetries. The actions used are metric independent, and
the metric itself arises in the non-topological phase as a product of the dreibein fields % which
are gauge fields. Changing the matter action of a scalar boson to its second-order formulation
and projecting into the space of invertible % we arrive at the canonical action of a scalar
field. The main advantage of working with topological gravity in three dimensions is that
the graviton propagator can be obtained without expanding e? around a non-zero classical
background. This makes it easy to analyse the quantum theory. A background metric is,
however, needed to fix the gauge symmetries present. We have shown that the topological
interactions considered here are divergent. The divergences cannot be cancelled without using
the background metric. Thus, although the energy-momentum tensor T, was zero classically,
it is non-zero at the quantum level. This indicates that the theory loses its topological nature
at the quantum level. We examined supersymmetrization as a possible mechanism to cancel
the metric anomaly. Unfortunately, this was not enough to cure the problem.

From our study we can now extract the following lessons. Firstly, to construct non-trivial
matter interactions in a topological theory we must adopt the mechanisi of spontaneously
breaking the symmetry to liberate €% from the other gauge fields. Secondly, the external
matter although topological at the classical level, loses this property at the quantum level.
Finally, to cure the problem of metric anomalies it seems that the system of gravity and matter
must be protected by a larger symmetry. The difficulty is now that the gauge symmetries
cannot be used to unify scalars and spinors with the gravitational gauge sectors. Such a
unification, however, does occur in the Kaluza-Klein approach where the scalars and spinors
are produced as the components of gravitons and gravitinos in the extra dimensions. We
cannot judge without actually analysing such a mechanism whether the problems encountered
here would be avoided. The disadvantage in this case is that the perturbative analysis cannot
be performed in the topological phase and one must expand e around a non-zero classical
background. Another possibility of unifying scalars and spinors with the gravitational sector
may be an unconventional one, like finding the analogue of the construction of Connes [10].
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