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Abstract

This Analysis presents the measurement of the time reversal asymmetry in the decay B0 → Λpπ+ based on a triple
product given by

O = sΛ · (pΛ × pπ+) ,

where sΛ is the Λ spin vector, pΛ and pπ+ are the momentum vectors of the Λ and π+, respectively. The triple
product is evaluated in the B0 rest frame. The Time reversal asymmetry is determined to be

AT = (7.6± 27.0 (stat)± 1.1 (syst))% .

Allowing for CP violation in the Λ decay, the asymmetry is determined to be

ACPV
T = (4.3+22.1

−22.0 (stat)± 1.2 (syst))% .

Both are in agreement with the theoretical predictions [1, 2] but also with AT = 0.

The decaysB0
s → ΛpK+ andB0

s → ΛpK− are observed for the first time and their combined statistical significance
corresponds to 17.2 Gaussian standard deviations. The branching fraction for the sum of B0

s → ΛpK+ and
B0
s → ΛpK− is measured to be

B(B0
s → ΛpK+) + B(B0

s → ΛpK−) =
[
4.75+0.53

−0.49 (stat)± 0.20 (syst)± 0.28(fs/fd)± 0.44(B)
]
× 10−6 .

For each result the first uncertainty is statistical and the second systematic, further additional external uncertainties
are labelled accordingly. In addition to these results, the Dalitz plot for B0 → Λpπ+ and B0

s → ΛpK+ has been
studied and shows the familiar behaviour with a pronounced enhancement at the threshold of the invariant baryon
antibaryon mass.

Finally, the angular distribution for the proton from the B0 and Λ decays have been studied. For the B0 → Λpπ+

the first shows a large asymmetry not expected from naive meson pole models. The angular distribution for the
B0
s → ΛpK+ and B0

s → ΛpK− exhibit no significant asymmetry. The angular distribution of the proton from the
Λ decay allows to determine the Λ polarisation in these decays and its dependence on the Λ energy in the B0 rest
frame was investigated. No significant polarisation was found for either decay mode.

Kurzfassung

In der vorliegenden Arbeit wird die Messung der Verletzung der Zeitspiegel-Symmetrie im Zerfall B0 → Λpπ+

präsentiert. Diese wurde mit Hilfe des folgenden Spatproduktes bestimmt,

O = sΛ · (pΛ × pπ+) ,

wobei sΛ den Λ Spinvektor und pΛ sowie pπ+ die Impulsvektoren des Λ and des Pions darstellen. Die Zeitspiegel-
Symmetrie wurde bestimmt zu

AT = (7.6± 27.0 (stat)± 1.1 (syst))% .

Unter Vernachlässigung der CP-Erhaltung im Λ-Zerfall wird die Asymmetrie bestimmt zu

ACPV
T = (4.3+22.1

−22.0 (stat)± 1.2 (syst))% .

Die Ergebnisse stimmen im Rahmen der Unsicherheiten sowohl mit der theoretischen Erwartung als auch der
Hypothese einer verschwindenden Asymmetrie überein.
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Desweiteren wurden die baryonischen B0
s-Zerfälle B0

s → ΛpK+ und B0
s → ΛpK− zum ersten Mal beobachtet

und deren Summenverzweigungsverhältnis bestimmt zu

B(B0
s → ΛpK+) + B(B0

s → ΛpK−) =
[
4.75+0.53

−0.49 (stat)± 0.20 (syst)± 0.28(fs/fd)± 0.44(B)
]
× 10−6 .

Dabei stellt die erste Unsicherheit die statistische Unsicherheit, die zweite die symstematische Unsicherheit und
die verbleibenden Unsicherheiten die externen systematischen Unsicherheiten dar. Zusätzlich wurden die Dalitz-
Verteilungen der untersuchten Zerfälle studiert. Sie zeigen eine ausgeprägte Anhäufung nahe der m(Λp)-Schwelle.

Zum Abschluss wurden die Winkelverteilungen für die Protonen aus den B0
(s) Zerfällen und den Λ-Zerfällen

bestimmt. Die Winkelverteilung der Protonen aus dem B0 → Λpπ+-Zerfall zeigt eine starke, unerwartete
Asymmetrie, wohingegen die Winkelverteilung für B0

s → ΛpK+ mit der Erwartung aus Mesonpol-Modellen
übereinstimmt. Die Winkelverteilung der Protonen aus den Λ-Zerfällen erlaubt es, die Polarisierung der Λ-
Hyperonen zu bestimmen. Keine signifikante Polarisierung konnte gemessen werden.
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Preface

Over the course of history the role of time in physics has changed. In Newtonian physics time was an external
parameter upon which the kinematic functions such as the momentum p depended. In the classical electrodynamics
the equations of motion for electromagnetic waves contain partial derivatives in both time and space. Time governed
the evolution of any physical system and allowed setting references to before and after, similar to the understanding
of the common man. In classical mechanics time was not only an external parameter but it had no direction.
Changing the direction of time does not impede a game of snooker, the equations of motion for two rolling balls do
not change when time is moving backwards. This in in stark contrast to the experience of the common man, to him
time is only moving forward, people grow older rather than younger. Time seems to have a fixed direction. This
contradiction is now understood within the scope of Statistical Physics and its influence on Thermodynamics. The
concept of entropy gave time its direction. Behind the scenes, however, nothing changed. The ideal gas model is
still applicable to a lot problems using nothing more than elastic collisions of point like particles moving randomly
through a volume, thus it is basically a random game of snooker using very small balls and a three dimensional
snooker table. It should be noted that, once the players start to pot the balls, this analogy breaks down.

The 20th century saw two major revolutions in physics, some of them changed how we perceive time itself. The
first major change came with the Theory of Relativity. Time is no longer separated from space but both are part of a
four dimensional space time and the flow of time depends upon the relative motion between two objects and on the
distribution of mass near an object. Relativistic effects allow particles with life times at the order of pico-seconds to
travel macroscopic distances due to their large momenta. The particles analysed in this thesis have mean life times
of nano-seconds but pass the whole LHCb detector, a distance of roughly 20 m. In addition to that, an observer at
a geostationary orbit measures time differently compared to an earthbound observer. Time passes slower in the
vicinity of a massive object. This behaviour is described by the laws of General Relativity.

The other revolution was the theory of quantum mechanics. Elementary particles are described within Quantum
Field Theories such as Quantum Electrodynamics, complementing the classical theory of electrodynamics, or
Quantum Chromodynamics, the theory describing the strong interaction between quarks. A fundamental principle
of all these theories is the CPT theorem upon which Lorentz invariance is based, the principle of Special Relativity.
This means that the any experimental result is independent with respect to any Lorentz transformation. The CPT
theorem requires the theory to be invariant with respect to the product of charge conjugation C, parity operation P,
and time reversal T. The first two can be combined to describe the transformation of a particle to its antiparticle.
Time reversal involves changing the sign of time thus running time backwards. As mentioned before, classical
mechanics is invariant with respect to T, thus CP must be conserved as well. The discovery of CP violation in the
weak interaction in 1964 [3] required T violation in order to conserve CPT. Similar to Thermodynamics time has a
preferred direction in weak processes. This allows a definition of before and after depending on the asymmetry
between the directions of time. Due to the CPT theorem, the asymmetry between the directions of time must have
the same size as the asymmetry between particle and antiparticle.

From an experimental standpoint, measuring T violation is quite challenging. The peculiar nature of the T operator
in Quantum mechanics leaves us without eigenvalues to be measured. Many T violation measurements depend on
CPT conservation, thus they often measure CP violation indirectly. However, it took until 1998 before the first
experimental evidence for T violation was claimed by the CPLEAR experiment [4] and took another 14 years until
the BABAR collaboration claimed a CPT independent measurement [5]. In recent years measuring T asymmetries
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based on triple products became popular. These, however, are not fully CPT independent and usually are constructed
using momentum vectors and, therefore, are not exclusively sensitive to T violation but also to P violation. Theorists
C.Q. Geng and Y.K. Hsiao [1, 2] proposed using the spin vectors of baryons in the construction of these triple
products making them only sensitive to T violation. This thesis is based on an analysis using such a triple product
and searches for T violation in the decay B0 → Λpπ+.
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Chapter 1

Theoretical introduction

Three of the four known fundamental forces are described within the “Standard Model of elementary particle
physics”. This excludes gravity, as approaches towards quantum gravity have been in vain so far. Gravity, however,
can be neglected at the energy scale of today’s experiments due to its very small coupling constant.

The remaining three – strong, electromagnetic and weak interaction – are included. The mathematical concept
behind those three is very similar, which would imply a common mechanism and thus a unification at a higher scale.
Weak and electromagnetic forces have been unified into the Quantum Flavour Dynamics. This was a major success
in theoretical physics. A further unification into a Grand Unified Theory (GUT), which would be a single model for
those three fundamental forces is still on the agenda. Within the Standard Model the combined electro-weak and
strong interactions are represented by a direct product between the fundamental symmetry groups. A GUT would
make use of a single group and the three forces are represented as one broken symmetry.

The next step. the unification with gravity, would lead to a so called “Theory of Everything”. There are several
attempts to realise that, most notably String Theories. But the effect of gravity should stay negligible until the
Planck scale is reached, i.e. at ≈ 1019 GeV.

Since much of the standard model is based on symmetries, within the next sections the general concept will be
introduced before the Standard Model is summarised shortly. Afterwards the properties of the decays at hand will
be presented in detail. Finally, the theoretical predictions and the experimental extraction for the time reversal
asymmetry are introduced.

1.1 Symmetries in Physics

In the description describing of physical systems symmetries play a vital role. The usage of symmetries is even more
pronounced in modern day physics ranging from lattice symmetries in solid state physics to proposed symmetries
between elementary particles up to GUT-scale. A system S is said to be symmetrical with respect to a transformation
T, if

T(S) = S . (1.1)

In contrast to the geometrical properties in the lattice of a solid, one of the foci body we are interested in the
symmetries of the laws of Physics. Connected to these is Noether’s theorem, which relates the symmetry of a system
to a conserved current. In classical mechanics rotational symmetry results in the conservation of angular momentum
and the independence of the laws of physics on the orientation of the coordinate system.

In general we distinguish two different kind of symmetries, space-time symmetries, also known as external
symmetries, and symmetries of the fields representing the elementary particles, also known as internal symmetries.
Furthermore, we can distinguish between continuous and discrete symmetries.

1



2 1. Theoretical introduction

1.1.1 Space-time Symmetries

In special relativity, the laws of physics are described in the four-dimensional pseudo-euclidean Minkowski space.
Transformations in this space are translations in space and time, rotations and boosts referred to as Lorentz
transformations. These operations form the Poincaré group. In order to be invariant under these transformations,
physical objects need to fall into representations of this group. Neither energy nor the momentum are invariant, but
the momentum four-vector pµ = (E,p) is invariant with respect to the Poincaré group. As a result, it is not sensible
to use the Hamiltonian, since it transforms like the time-like component of a four-vector, but instead to look for a
scalar quantity with respect to transformations of the Poincaré group. One such scalar can be found by using the
scalar product of two four-vectors, such as1

m2 = pµpµ = E2 − p2 , (1.2)

which is the invariant mass of the particle described by pµ and is independent of the frame of reference chosen to
measure its properties. In a similar way it is useful to require the action S to be a scalar as well. Thus we get

S =

∫
dtL =

∫
dtdrL =

∫
dxµL . (1.3)

Here L is the Lagrangian and L the Lagrangian density. From eq. (1.3) one finds, that L needs to be a scalar if
the action is a scalar. Therefore, it is adequate to describe the properties of a physical system using the Lagrange
formalism.

Apart from continuous symmetries, there are the discrete space-time symmetries parity P and time reversal T .
Parity inverts the space like coordinates. For the position vector this leads to

Pr = −r . (1.4)

Since the mass of a particle is a scalar we find for the momentum vector

Pp = −p . (1.5)

The angular momentum, however, does not change its sign under parity. It is an angular vector defined by the outer
product of two polar vectors namely the position and momentum vectors. Parity is a multiplicative operation, since
both r and p change sign, the product does not. A similar difference exists between scalars and pseudo scalars. A
classical example would be the magnitude of the momentum

p2 = p · p , (1.6)

which transforms like a scalar with respect to parity. The helicity, a commonly used quantity in latter measurement,
is defined as

h =
s · p
|s||p| . (1.7)

The spin s is an angular momentum, and therefore an angular vector. Since parity is multiplicative, the helicity is
odd with respect to parity transformations.

The time reversal changes the sign of time
Tt = −t . (1.8)

Similar to parity, time reversal is also multiplicative. The position vector is even with respect to T , but the momentum
is odd since

p = m
dr

dt
. (1.9)

This can also be easily understood when taking into account, that the momentum describes a directed motion instead
of just a point in space, so that it naturally needs to flip its direction with respect to time reversal. The same is true
for the angular momentum.

1Throughout the theoretical introduction natural units are used, i.e. ~ = 1 and c = 1
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1.1.2 Symmetries of Fields

In addition to space time symmetries, physical objects also have internal symmetries. A simple example is the
Lagrangian of the free fields of the QED, the theory of Quantum Electrodynamics,

L = ψ̄(iγµ∂µ −m)ψ − 1

4
F µνF µν , (1.10)

with ψ being the electron spinor, F µν the electromagnetic field tensor, and γµ the Dirac matrices. Since it only
contains the electron spinor ψ in bilinear terms ψ̄ψ, it is invariant under a global phase transformation of ψ → ψeiφ.
This, however, is not true for local phase transformations ψ 7→ ψeiφ(xµ) since ψ̄∂µψ 7→ ψ̄∂µψ + iψ̄(∂µφ(xµ))ψ.
These are more physical and do not require any observer in the universe to make the same choice for an arbitrary
phase. The gauge potential is not unambiguously defined either. The equations of motion for the electromagnetic
field are invariant with respect to the transformation Aµ 7→ Aµ + 1

e
∂µφ(xµ). Modifying the Lagrangian to read

L = ψ̄(iγµ(∂µ − ieAµ)−m)ψ − 1

4
F µνF µν (1.11)

leads to a cancellation of these extra terms. Furthermore, an additional term appears,

LInt = −ieψ̄γµAµψ , (1.12)

which describes the electron-photon interaction. By demanding invariance with respect to a local gauge transforma-
tion it is possible to introduce interaction terms. In a formal approach Yang and Mills have developed a formalism
to introduce interaction terms by requiring local gauge invariance [6]. Starting from a global symmetry of the
Lagrangian it is required to be a local symmetry as well. These symmetries are usually represented by SU(N)
groups. The number of generators of these groups corresponds to the number of gauge particles. The QED is a
Young-Mills theory with a U(1) symmetry. The U(1) group has one generator, therefore, there exists only one gauge
field, the photon field. Another special property of the U(1) is its abelian nature, i.e. it is commutative. Non-abelian
groups such as the SU(N) are not commutative, which means that the generators do not commute with each other
and leading directly to self-interaction between the gauge fields. Examples for these are the colour SU(3) of QCD
in which the gluons interact with each other or the weak isospin SU(2) in which the W± bosons can couple to each
other.

1.1.3 Parity, Charge Conjugation, Time Reversal, and the CPT Theorem

The parity and time reversal operations have been introduced as space time symmetries in sec. 1.1.1. It is also
interesting to study the behaviour of the elementary particles with respect to P and T.

For any field holds true,
Pφ(x) = φ′(x′) . (1.13)

The parity operator changes the location as well as the spatial orientation of the fields. Scalar or pseudo scalar fields
have no spacial orientation, so that the transformation is simply

Pφ(x) = ±φ(x′) . (1.14)

The pseudo scalar changes its sign, the scalar does not. Other fields, like spinors, vectors and tensors behave in a
more complicated manor. Spinors, for example, have a spin orientation in space and vector fields are represented by
a spatial four-vector. The parity transformation turns a covariant four-vector into a contravariant four-vector. The
parity of a fermion is not given by first principles, however, the parity of a fermion needs to be opposite to that of an
anti-fermion. As a result, the parity of a fermion is defined to be positive and negative for an anti-fermion. From
that we can deduce the parity for bound states as well. The π+ is a bound state of an up quark and an anti-down
quark. So its parity should be negative since

Pπ+ = Pu Pd = (+1)(−1) = −1 . (1.15)
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In addition to the intrinsic parity of quarks or leptons it is necessary to look at the spacial wave function. The parity
of the spherical harmonics depend on the orbital angular momentum L of the two particles with respect to each
other. An odd orbital angular momentum is odd with respect to the parity transformation, even values for L are even
with respect to parity. Eq. (1.16) needs to be modified

Pπ+ = Pu Pd (−1)L = (+1)(−1)(−1)0 = −1 . (1.16)

This formula is true for all fermion anti-fermion bound states.

Noether’s theorem implies that any symmetry of the Lagrangian leads to a conserved current and charge. This is
also true for local gauge theories. The generators are the charges conserved in these theories, again for the QED,
the electric charge is the generator of the U(1) symmetry and it is conserved in all interactions. Only fields, that
carry a specific charge can interact with each other. Neutrinos have no electric charge and therefore do not couple to
photons. It is now interesting what happens when the sign of the charge is changed. This operation is denoted C.
In general, the charge conjugation changes the sign of all additive quantum numbers. It turns an electron into a
positron. Charge conjugation on fermions leads to peculiar things. In contrast to P 2 = 1 there is C2 = −1. This
behaviour leads to an additional term when calculating the eigenvalue of C of a system of fermions

C|qq, S, L〉 = (−1)L+S|qq, S, L〉 , (1.17)

L being the orbital angular momentum and S the spin of the particle. This allows to use charge conjugation to
distinguish between pseudo scalar and vector particles.

The operation T is more complicated than parity or even charge conjugation and this can already be seen on the
level of classical mechanics and classical electrodynamics. In classical mechanics time reversal is considered an
anti-canonical transformation since the Poisson brackets change sign. In general, a system is considered time reversal
symmetric in case xT (t) = x(−t) is also a solution of HT with H(x,p) 7→ HT(xT,pT). Most Hamiltonians are
quadratic in p and thus time reversal invariant. The Hamiltonian of classical electrodynamics introduces terms
linear in p in a quadratic Hamiltonian

H(x,p) = 1/2m (p− eA)
2

+ eφ , (1.18)

A being the vector potential and φ the scalar potential. For electrodynamics to be time reversal invariant the vector
potential needs to transform likeA(x, t) 7→ −A(x,−t) and sinceB = ∇×A the magnetic fieldB needs to be
odd with respect to time reversal as well. This can easily be understood since the magnetic field is generated by a
moving charge and a similar argument as for the momentum holds true.

The definition of the time reversal operator in quantum mechanics leads to several complications. First of all it is
desirable to have correspondence to classical physics. This, however, leads to a contradiction in the commutator
relation [x,p] and in the definition of the momentum operator p = −i~∂x. Furthermore, the time reversed
eigenstates |n 〉 of a Hamiltonian would have negative eigenvalues. In order to solve these problem, the time reversal
operator needs to include complex conjugation and needs to be an anti-unitary operator such as

Tψ(x, t) = ψT (x, t) = ψ∗(x,−t) . (1.19)

Additional complications arise in quantum field theory, due to the operator nature of the fields. The T operator needs
to transform the creation and annihilation operators as well. In general T time-reverses field operators and complex
conjugates complex numbers and leads to the following transformation behaviour

S(x, t) 7→ +S(x,−t) (Scalar)
P (x, t) 7→ −P (x,−t) (Pseudo-Scalar)
V µ(x, t) 7→ +Vµ(x,−t) (Vector) (1.20)
Aµ(x, t) 7→ +Aµ(x,−t) (Axial-Vector)
T µν(x, t) 7→ −Tµν(x,−t) (Tensor)
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1.2 Standard Model - an Overview

1.2.1 Theory of the Standard Model

The Standard Model is a combined theory of strong and electro-weak interactions between the known elementary
particles. The Standard Model is represented by local gauge invariant quantum field theories and the fundamental
gauge group is given by

F = SU(3)⊗ SU(2)⊗U(1) , (1.21)

and includes both strong and electro-weak forces. But as this group is created by a direct product, it offers no further
physical insight, as there is no linkage between those two interactions.

The electro-weak interaction is the unified theory of electromagnetism and weak processes as the neutron decay. It is
represented by a local gauge invariant quantum field theory called Quantum Flavourdynamics (QFD), whose gauge
group is given by SU(2)⊗U(1). The SU(2) of the weak isospin has three and the U(1) of the weak hypercharge has
one generators. This results in four gauge boson fields, threeW i

µ andBµ, for the weak isospin SU(2) and weak
hyper-charge U(1) gauge groups, respectively. In order for the Lagrangian to be gauge invariant the fields need to be
arranged in representations of the gauge group. Due to the (V −A) structure2 of the coupling, the weak interaction
only couples to left handed fermions and right handed anti-fermions. As a result, the left-handed particles form
iso-doublets with respect to the SU(2) group and the right handed particles form iso-singlets. All in all there are
three quark and three lepton doublets.

In general it is useful to introduce ladder operators W±
µ in order to transform one doublet state into the other,

i.e. an u quark into a d quark. These are constructed by using two linearly independent combinations ofW 1
µ and

W 2
µ. TheW 3

µ andBµ fields mix with each other. This mixing can be described by a 2× 2 rotation matrix with
the mixing angle θW. The rotated fields are the Zµ and the Aµ. The W±

µ, the Zµ, and the photon Aµ are the
observable states.

So far all fields have zero masses, thus the weak currents couple only to fields from the same iso-doublet. Introducing
ad-hoc mass terms for the gauge fields into the Lagrangian breaks the gauge invariance. The same reason requires
the fermions to be massless due to the (V–A) structure. In order to achieve massive W± and Z bosons, a mass-less
photon, as well as massive fermions, the concept of a spontaneously broken symmetry can be applied. This
mechanism requires two additional scalar fields, Φ = (φ+, φ0), which break the SU(2)⊗U(1) symmetry down to
the U(1)EM and thus apply masses to the W± and Z bosons. In a generalized approach of the Yukawa coupling the
fermions couple to the Higgs field. It is desirable to express the Lagrangian with the mass eigenstates. To achieve
that, it is necessary to introduce matrices to diagonalize the fermion coupling matrices. This can be found for the
coupling to the weak neutral and electromagnetic currents, but not for the charged weak current, i.e. the coupling to
the W± bosons. As a result, the weak neutral and the electro-magnetic current conserve the fermion flavour. The
charged current is not diagonal and changes the flavour of the fermions. The amplitudes of these interactions are
given by a non-diagonal, unitary 3× 3 matrix, the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This matrix can be
interpreted as a rotation matrix that transforms the mass eigenstates into the flavour eigenstates. By definition the
up-type quarks mass eigenstates are also the flavour eigenstates whereas the down-type quark mass eigenstates are
rotated by the CKM matrix. Therefore, the charged weak current is also diagonal using the flavour eigenstates and
is given by

JCC
µ = (ū, c̄, t̄) γµ(1− γ5)



d′

s′

b′


 = (ū, c̄, t̄) γµ(1− γ5)VCKM



d
s
b


 , (1.22)

with

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (1.23)

2In contrast to the vector coupling of the QED, the weak charged current contains a vector (γµ) and an axial vector component (γ5) which
projects the left handed components of a spinor. This leads to a suppression of meson decays into a pair of leptons as well, due to the helicity
suppression
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The elements of the matrix being arbitrary complex numbers, it is not possible to derive the values of the matrix
elements within the theory of the Standard Model, but they can be determined by experiments [7].

The strong interaction is described by Quantum Chromodynamics (QCD), a local gauge invariant quantum field
theory, whose symmetry group is the colour-SU(3). The SU(3) has eight generators, therefore, one finds eight
corresponding gauge fields called gluons. Compared to the electromagnetic charge, the colour charge is more
complicated. There are three different colour charges, red, green and blue. Only quarks couple to the strong
interaction and each quark forms an SU(3) triplet. Since leptons do not carry colour charge, they are described as
colour singlets. The QCD is a textbook example of a strong interacting non-abelian local gauge theory. Compared
to the SU(2)⊗U(1) symmetry of the QFD the colour-SU(3) is an unbroken symmetry. The non-abelian nature of
the SU(3) leads to terms in the Lagrangian in which the gauge fields couple to each other. This does not appear in
the QED since the U(1) of electromagnetism is an abelian group. In general, the strength of the coupling depends
on the energy scale. Compared to the electromagnetic interaction, where the coupling strength increases with the
energy scale, the coupling strength of the strong interaction decreases. In the limit of a vanishing momentum transfer
the coupling diverges and in the limit of infinite momentum transfer the coupling vanishes. This effects are called
confinement and asymptotic freedom. Due to confinement there are neither free quarks nor free gluons, physical
states are colour-SU(3) singlet states.

The pretence of QCD is to be able to describe all interaction between quarks and gluons. The hadrons, which
are observed in collider experiments, are bound states of the strong interaction and colour singlets. There is,
however, no closed theory to describe the masses and spectra of hadrons using the QCD. Due to the large coupling
at small energy scales it is impossible to use perturbation theory, that has been applied to both QED and QFD
very successfully. Calculations on processes in which hadrons appear have to either rely on effective descriptions
such as the operator product expansion or QCD sum rules or on numerical calculations performed by the lattice
QCD. At high energies, perturbative calculations are reasonable and have shown that QCD can be very successful
in describing the interaction between quarks and gluons. The weak decays of hadrons containing heavy b and c
quarks are the main interest of the field of Flavour physics and QCD corrections play a vital part in these studies.
For example, the absolute values of CKM matrix elements and its complex phase are difficult to extract from the
experimental data without a deep understanding of the underlying QCD effects.

The fermions of the Standard Model, i.e. the quarks and leptons, can be arranged in the following representations of
the gauge groups,

`iL =
(
1,2

)
−1

i = 1, 2, 3 (1.24)

νR =
(
1,1

)
0

ν = νe, νµ, ντ (1.25)

`iR =
(
1,1

)
−2

i = e−, µ−, τ− (1.26)

qiL =
(
3,2

)
1
3

i = 1, 2, 3 (1.27)

uR =
(
3,1

)
4
3

u = u, c, t (1.28)

dR =
(
3,1

)
− 2

3

d = d, s, b , (1.29)

` and q represent the lepton and quark generation, respectively, and L(eft) and R(ight) denote the handedness of the
fields. The first number is the representation with respect to the colour-SU(3), the second the representation with
respect to the weak isospin, and the subscript is the weak hypercharge of the states.

There are three left handed leptons, three left handed quarks. Due to the electro-weak symmetry breaking the
degeneracy of the fermion doublets is removed. The right handed fermions are singlets with respect to the electro-
weak symmetry. Quarks are triplets with respect to the colour-SU(3). Each quark appears in three different colour
states. Leptons do not interact strongly and are, therefore, put into singlets.
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1.2.2 Charmless BaryonicB-Decays within the Standard Model

Charmless B decays in general are defined as rare decays, whose final states contain neither open charm, i.e. there
is final state particle with either a c or c, nor hidden charm, i.e. a final state particle comprised of a cc pair. For
example, the decays B0 → D0K0

S and B0 → J/ψK0
S are an open charm and a hidden charm B decay, respectively.

Decays such as B0 → K+π− are charmless decays, whose dominant amplitudes are usually given by a b→ u tree
and a b→ s penguin diagram, cf. the diagrams in 1.1.

As mentioned in the previous section, reactions involving quarks and gluons are difficult to calculate within the
usual perturbation framework. In case a hadron decays into a pair of leptons or into a hadron and a pair of leptons,
the latter case is referred to as a semi-leptonic decay, the theoretical framework is working quite well making use
of different formalisms to describe the QCD effects. The decays of heavy quarks, however, are dominated by
non-leptonic modes due to the (V−A) coupling and the resulting helicity suppression. In order to describe hadronic
decays new methods have been developed. A successful and widely used method is the Operator-Product-Expansion
(OPE). The OPE is an effective theory. Instead of describing the system at all energy scales, effective theories
only describe the physics at a certain low energy scale. A prime example would be nuclear physics, where it is
sufficient to describe the interaction between hadrons not the interaction of the quarks within the hadrons. An
effective Lagrangian is introduced and new Feynman rules are derived to model the low energy behaviour whereas
the high energy effects are absorbed by separate coefficients or functions.

In the OPE formalism low energy dynamics are described by effective four quark operators and the high energy
effects are described by the Wilson coefficients. By a factorisation ansatz the short distance interactions, i.e. the
high energy component of the interaction, and the long distance, i.e. low energy energy part, are separated. This
approach is very similar to the effective Fermi theory for the weak interaction. The relevant operators for the b→
u tree amplitude are shown in Fig. 1.1(a). The W− propagator can be reduced to a point in case the momentum
transfer qµqµ = q2 is small compared to the W mass squared m2

W , the result is identical to the Fermi theory for
weak decays. The coupling is described by the two operators O1,2. Both operators contain the CKM coupling
elements, in this case VubV ∗us, and information on the colour structure of the final state. Since the final states have to
be colour singlets there are two different ways to match the colour charges for the quarks, coupling the u and the s
is referred to as an external graph, as the quarks produced by the W− decay are grouped together, this behaviour is
described by O1. Coupling the uu together leads to a different colour structure, often referred to as internal graph,
and is described by O2.

a)

b

s

u
W−

u

	 bL

sL

uL

uL

O1,2

b)

u u

b su, c, t

W−

	
bL

sL

sL

g

bL uL

uL

O1,...,6

Og8

Figure 1.1: Feynman diagrams for the Standard Model process b → suu and the diagrams in the reduced theory assuming
q2 � m2

W . The subscript L denotes, that the vector currents are left-handed following the Fermi theory of the weak interaction.
The Operators Oi denote the interactions in the effective low energy regime.

As the weak neutral current conserves the fermion flavour, the b→ s penguin amplitude needs to be loop diagram.
These are expected to be suppressed due to the GIM mechanism [8]. But since mt � mu,mc and |Vtb| �
|Vub|, |Vcb| the GIM suppression almost cancels and the contribution of the penguin amplitude to the overall decay
rate is usually larger than the contribution from the b→ u tree diagram. The OPE reduction for the b→ s penguin
with a gluon coupling to a uu pair is shown in Fig. 1.1(b).

This easy picture, however, is misleading, due to loop corrections. In these the W boson is part of the internal loop
and its momentum is integrated out in accordance to the Feynman rules and its momentum q can have arbitrarily
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large or small values. The assumption of q2 � m2
W is no longer valid and the theory cannot be expanded in terms of

q2
/m2

W
. The full theory needs to be split into an infra-red regime (mW →∞) and an ultra-violet regime (mq → 0).

Both are calculated with respect to a renormalisation scale µ at which both regimes diverge.

Unfortunately the quark transitions are not observable at the experiments, but rather the hadronic decays of mesons
and baryons governed by hadronic matrix elements that pose an additional difficulty to the calculation of the decay
rates. Popular methods to calculate the hadronic matrix elements are QCD sum and counting rules [9, 10] as well
pole models or similar power series expansions [11]. Additional approximations are often made as well, one that is
frequently used in the calculation of mesons decaying into baryons is the factorisation ansatz. Hereby it is assumed,
that the whole amplitude can be factorised into two independent matrix elements, each of which can be calculated
independently. Usually, one amplitude describes the decay of the initial particle in one ore more final state particles
while the other amplitudes describes the creation of the remaining final state particles from the vacuum.

Before any factorisation is applied it is useful to write down and look at each leading order Feynman diagrams for
B0 → Λpπ+. In Figure 1.2 the leading order diagrams are for B0 → Λpπ+ are shown, the gluon lines have been
omitted to improve readability. This is the main decay of interest for this analysis. There are two major classes, there
are four b→ u tree amplitudes and two b→ s penguin amplitudes. The diagram in Fig. 1.2(d) is related to the operator
O1 described before, the other three correspond to internal graphs. It is obvious that the structure of baryonic decays
is more complicated than decays into mesons. Normally, the internal graphs are colour suppressed with respect to
the external graphs since the quarks produced by the W need to match the colour charges of the quarks contained in
the initial state particle. Due to the additional quark pairs produced, this effect is less pronounced than in two body
meson decays, cf. decay rates for D0 mesons such as Γ(D0 → K0

Sπ
0)/Γ(D0 → K−π+) = (30.5 ± 0.9)% [12].

Recent results on the search for B− → Λ+
c p̄`

−ν̄` [13] suggest, that the external graph is suppressed with respect to
the internal graphs.
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Figure 1.2: Leading order diagrams for the B0 → Λpπ+ decay. Gluon lines are omitted. The amplitudes are proportional to
VubV

∗
us (a,b,c,d) and VtbV ∗ts (e,f).

The B0 → Λpπ+ penguin amplitudes are shown in Figs. 1.2(e) and (f). As for Figs. 1.2(a) to (c) the diagrams differ
in the fragmentation into the final state particles. Assuming the uu pair is produced first in the fragmentation, there
are two different initial states possible,

(bd) → (su)(ud) (1.30)
(bd) → (su)(ud) , (1.31)

the first leading to an initial state of two mesons quite similar to the decay B0 → K−π+, the latter consists of
a pair of diquarks, a pair of two quarks or antiquarks, each initial state leading to different dynamics in the final
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fragmentation step. For the initial state Eq. 1.31 the pion is on-shell (a physical pion), and the kaon is off-shell (a
virtual kaon), further fragmenting into the Λp pair. This picture directly corresponds to the pole model formalism.
The B meson decays into a pair of mesons, one space-like the other time-like, and the space-like meson further
decays into a baryon antibaryon pair. This should lead to an interesting phenomenon, as the invariant baryon
antibaryon mass distribution should be centred at the threshold due to the virtual meson pole [14–17].

For the diquark initial state, a different behaviour is expected. While a quark and an antiquark can combine to form
a colour singlet, an (anti-)diquark cannot be in a colour singlet state, only in combination with another (anti-)quark
thus producing a baryon antibaryon pair, both of which can be virtual or physical. In case the dd pair is produced
first in the fragmentation, the following final state can be found,

B0 → ΛN̄ with N̄ → pπ+ , (1.32)

N̄ being any nucleon resonance decaying into pπ+. Within the theoretical framework diquark initial states can
be described using baryon poles. Since both processes lead to different dynamics the Dalitz plot for B0 → Λpπ+

should yield evidence which process dominates the fragmentation, an enhancement at the threshold of the invariant
m(Λp) mass supports the meson pole hypothesis and the appearance of resonances in either m(Λπ+) or m(pπ+)
support the baryon pole hypothesis. Similar arguments allow to categorise the b→ u tree amplitudes in a similar
fashion.

In contrast to the first and second generation e+e−B factories DORIS II, CESR, PEP-II, and KEKB operating
predominantly at the Υ (4S) resonance producing only B0 and B− mesons, the LHC produces B0

s mesons in a
similar order of magnitude as B0 mesons. Naively, swapping the d from the B0 with an s, one would find the
baryonic B0

s decay B0
s → ΛpK+. This is more of an experimental concern, because the channel B0

s → ΛpK+ is a
possible source of background to the B0 → Λpπ+ decay mode due to kaon-pion misidentification. Since both the
d and s are the spectator quarks, one would assume the decay rates and dynamics to be very similar between the
B0 → Λpπ+ and B0

s → ΛpK+ decay modes [18, 19]. However, a detailed look at the diagrams for B0
s → ΛpK+

reveals several key differences compared to the B0 → Λpπ+ decay, cf. Fig. 1.3.
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Figure 1.3: Leading order diagrams for the B0
s → ΛpK+ decay. Gluon lines are omitted. The amplitudes are proportional to

VubV
∗
us (a,b,d,e) and VtbV ∗ts (c).

The internal graph in Fig.1.3(a) yields an initial state of

B0
s → ΛΛ

∗
with Λ

∗ → pK+ , (1.33)
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fitting into the baryon pole model model. The decayB0 → ΛΛ(1520) was observed by the LHCb collaboration [20]
as a resonant decay of B+ → ppK+, and an observation of this mode in B0

s → ΛpK+ would support the baryon
pole model. The external graph in Fig.1.3(b) clearly supports the meson pole hypothesis,

B0
s → K+K−

∗
with K−

∗ → Λp . (1.34)

It should be pointed out that the notation K−∗ is misleading, as in general there are several meson poles possible.
Basically any charged kaon can contribute to the overall decay rate and needs to be taken into account. Theoretical
analyses often assume a pole at m(Λp) = 0 in order to avoid the influence of several different poles interfering with
each other. The penguin amplitude in Fig.1.3(c) supports both hypotheses depending on the choice of the leading
fragmentation process. As can be seen, the number of b→ u tree and b→ s penguin amplitudes for B0

s → ΛpK+

is only half the number of B0 → Λpπ+ diagrams and, depending on the strong phases, this can lead to a larger or
smaller overall decay rate compared to B0 → Λpπ+. An additional contribution to the B0

s → ΛpK+ decay mode
is due to two W exchange diagrams, cf. Figs.1.3(d) and (e). The influence of these two amplitudes is difficult to
asses. Theorists often claim these to be negligible while experimental results for D0 → K0

Sφ dominated by the W
exchange amplitude reveal a surprisingly large decay rate [21]. In general, the W amplitudes are difficult to assess
theoretically since they are not factorisable and therefore usually not included.

Finally, another decay mode needs to be considered, due to the presence of an ss pair in B0
s → ΛpK+ it is possible

to rearrange the final state particles to find the CP conjugated decay modeB0
s → ΛpK− with similar penguin andW

exchange diagrams. For the external graph in Fig.1.4(a) the fragmentation is reversed with respect to B0
s → ΛpK+,

here the meson is produced in the W decay and the B0
s decays into the Λp pair but still supporting the meson pole

hypothesis, while the internal graph should be dominated by baryon poles. Experimentally, it is not possible to
distinguish between B0

s → ΛpK+ and B0
s → ΛpK− without explicitly tagging the B0

s flavour, which is not part of
this analysis, therefore, only a sum of both decay modes will be measured. The appearance of both B0

s → ΛpK+

and B0
s → ΛpK− is interesting for another reason, as it allows to measure time dependent CP violation in a future

dedicated analysis. CP violation in general in the Standard Model will be discussed in more detail in the following
section.
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Figure 1.4: Leading order diagrams for the B0
s → ΛpK− decay. Gluon lines are omitted. The amplitudes are proportional to

VubV
∗
us (a,b,d,e) and VtbV ∗ts (c).

Within the factorisation and meson pole framework predictions are made for the branching fraction for B0 → Λpπ+

and B0→ Σ0pπ+ [16]. The latter shares the quark content and amplitudes with B0 → Λpπ+, but instead of the Λ
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isospin singlet the Σ0 isospin triplet state is produced. One finds,

B(B0 → Λpπ+) ∼ 0.5× 10−6

B(B0→ Σ0pπ+) ∼ 0.9× 10−6 .
(1.35)

The predicted branching fraction for the B0 → Σ0pπ+ mode is larger than for the B0 → Λpπ+ mode. The
B0 → Λpπ+ decay mode was observed by the BABAR and BELLE collaborations [12], for the B0→ Σ0pπ+ decay
mode the BELLE collaboration determined an upper limit [22],

B(B0 → Λpπ+) = (3.14± 0.29)× 10−6

B(B0→ Σ0pπ+) < 3.8× 10−6
(1.36)

The experimental branching fraction is significantly larger than the theoretical prediction, which indicates the
limits of the factorisation approach and hints to large non-factorisable contributions. The inference between the
penguin and tree amplitude scales with the CKM angle γ, therefore, larger values for γ increase the decay rates
for the B0

(s) → pΛ(Σ0)π− decays. While not being of interest in this analysis, B0
(s) → Σ0ph+ events need

to be considered as a background to both the B0 → Λpπ+ and B0
s → ΛpK+ decay modes. The predicted and

experimental dependence of the branching fraction on the invariant baryon antibaryon mass is shown in Fig. 1.5.
The appearance of an enhancement near the threshold indicates a dominance of the meson pole like dynamics.C.-K. Chua, W.-S. Hou: Three-body baryonic B → Λ p̄ π decays and such 31
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Fig. 1. a dB(Λ p̄ π+)/dmΛp̄ spectrum, where a solid (dashed) line is for using the fitted (asymptotic) gP of d̄2 = f̄2 =
−952 GeV6 (0); b dB(Σ N̄ π+)/dmΣN̄ spectra, where the solid (dotted) line is for Σ0p̄ (Σ−n̄). The plots for π+ replaced by π0

are expected to be similar but a factor of 2 lower

fect is still of order 10−7, and is insufficient to account for
the measured Λ p̄ π+ rate. The effect of GE − GM is not
likely to fill the gap between BV(Λ p̄ π+) and the measured
B(Λ p̄ π+).

We thus need to turn to the axial and pseudoscalar
contributions. Let us start by using only the d̄1 and f̄1

terms of gP determined by the asymptotic relation of (16),
i.e. taking d̄2 = f̄2 = 0. It is remarkable that, as given in
the first case for BA in Table 2 (column three), the 1/t2

terms of DP and FP alone give B(Λ p̄ π+) ∼ 8 × 10−6,
overshooting the experimental value by a factor of two!
This is striking compared with the previous calculation
using the ansatz of (10), which gave results an order of
magnitude too small [10,9].

Now, we know that the sign of the xi and yi alternate;
hence GM gets reduced as higher power (in 1/t) terms are
included. We expect a similar effect for gP by allowing for
non-zero d̄2 and f̄2. We determine these coefficients (the
1/t3 terms) by fitting to the central value of the measured

Λ p̄ π+ rate. We obtain −(d̄2 + 3 f̄2)/
√

6 = 1554.6 GeV6,
which is displayed as the second case for BA in Table 2.
By assuming d̄2 ∼ f̄2, we have d̄2 ∼ −952 GeV6, which
has a sign opposite to d̄1, and is about twice the size of
d̃2 = f̃2 = −478 GeV6, the 1/t3 coefficients for the axial
vector form factor.

We show in Fig. 1a the Λ p̄ π+ decay spectrum. It is
interesting that the predicted spectra in both the d̄2 =
f̄2 = 0 and d̄2 = f̄2 = −952 GeV6 cases are close to the
data. The data suggest a curve between these two, which
conforms with our expectation that the third, 1/t4, term
would have the same sign as the 1/t2 term. In the future
as the measured spectrum is improved, one may in turn
use it to extract baryon time-like form factors.

While B(Λ p̄ π+) is enhanced from the previous results
[10,9] by using our new approach to the pseudoscalar gP

form factor, the enhancement in B(Σ0 p̄ π+) turns out to
be rather mild. This can be understood from the relative
weight of Λ versus Σ0 in (A.5) of Appendix A. We expect
B(Σ0 p̄ π+) = 1.6×10−6, which is within the present Belle
limit of B(Σ0 p̄ π+) < 3.8 × 10−6 at 90% confidence level
[11]. Furthermore, the SU(3) predictions of B(Σ− n̄ π+) ∼

2 B(Σ0 p̄ π+) and B(Ξ0 Σ+ π+) ∼ 2 B(Ξ− Σ0 π+) given in
Table 2 are easy to verify.

In Fig. 1b we plot the Σ0 p̄ π+ and Σ− n̄ π+ decay spec-
tra. The Σ0 p̄ π+ spectrum is close to our previous calcula-
tion in [10]. Since the corresponding SU(3) decomposition
for these two modes is DP −FP, the rates are not sensitive
to d̄2 and f̄2 being zero or finite, so long as they are not
too different from each other.

We show in Fig. 2 the Ξ0 Σ+ π+, Ξ− Σ0 π+ and
Ξ− Λ π+ decay spectra with d̄2 and f̄2 zero or finite.

We expect Figs. 1 and 2 to give also the spectra of the
modes with π+ replaced by π0, but with a factor of two
reduction in the rate from the isospin factor.

In these three-body modes quite often we have a Λ hy-
peron produced, which is well known to self-analyze its
spin upon decay and to provide useful information for
possible CP - and T -violation and chirality studies in B
decays [6,26]. Following [26], the angular distribution of
the cascade B → Λ p̄ π → π− p p̄ π decay can be written
as

d2Γ

dEΛd cos θ
=

1

2

dΓ

dEΛ
[1 + αΛ(EΛ) cos θ], (18)

where EΛ is the Λ energy measured in the B rest frame
and θ is the supplementary angle between the emitted pro-
ton momentum and the B momentum in the Λ rest frame.
We have αΛ(EΛ) = PΛ(EΛ) αΛ, where the Λ polarization
PΛ(EΛ) is given in Appendix B and αΛ = 0.642 ± 0.013
[21] is the well-measured Λ decay asymmetry parameter.

We show in Fig. 3 the asymmetry αΛ(EΛ) and the
dB(Λ p̄ π+)/dEΛ spectrum. The αΛ(EΛ) plot is similar
to the plot shown in [26] obtained by using some gen-
eral arguments. The negative αΛ(EΛ) corresponds to a
left-handed helicity dominated Λ in B decay. It is inter-
esting to note that although the decay rate is dominated
by the pseudoscalar term, we still have a polarized Λ. This
can be understood by noting that the ratio of scalar and
pseudoscalar contributions is roughly given by the aver-
aged f2

S/g2
P, which is about 0.1, while the polarization PΛ

is roughly given by the averaged −2fS gP/(f2
S + g2

P) ∼
−2fS/gP, which can be as large as −0.6. The sharp turn
of αΛ(EΛ) towards a much more negative value for EΛ >

Figure 1.5: Dependence of the branching fraction for B0 → Λpπ+ and B0→ Σ0pπ+ on the invariant baryon antibaryon mass.
The left plot shows the prediction from [16] for different number of colours, The dashed, solid, and dot-dashed lines correspond
to Nc = 2, 3,∞, respectively. The right plot shows two extreme cases for the dependence calculated in [23] overlaid with the
BELLE data from [22].

1.2.3 Discrete Symmetries within the Standard Model

The standard model is a collection of two Yang-Mills-theories, namely the QCD and QFD, and as such conserves
CPT, the product of parity, charge conjugation and time reversal. Since particles are described by field operators,
each can be categorised according to its behaviour with respect to the discrete symmetries, cf. Section 1.1.3.

Quantum chromodynamics conserves in addition to CPT each symmetry on its own. There is no difference between
a coloured quark and an anti-coloured antiquark. The QCD is left-right symmetric as well. Quantum flavour
dynamics consists of three different currents, the electro-magnetic, the neutral, and the charged current. The
electro-magnetic current conserves CPT as well as each discrete symmetry on its own. The neutral and charged
current, however, only conserve CPT.

1.2.4 Time Reversal Asymmetry within the Standard Model

The time reversal symmetry is only violated in the weak interaction and arises due to the existence of at least three
families of fermions. As a consequence of the Higgs mechanism, the weak down-type quarks are a mixture of the
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mass eigenstates of the down-type quarks. The mixing between the down-type quarks is described by the CKM
matrix, cf. Eq. (1.23). The CKM matrix is a unitary 3× 3, matrix with four physical parameters, three Euler angles
and one complex phase, the standard parametrisation leaving Vud and Vcb real is given as

VCKM =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−δ13

0 1 0
−s13e

iδ13 0 c13





c12 s12 0
−s12 c12 0

0 0 1


 , (1.37)

with cij = cos θij , sij = sin θij , and θij ∈ [0, π/2]. For the CKM matrix to be unitary twelve unitarity relations
between the matrix elements have to be fulfilled. These can be used to construct two unitary triangles, leading to
the introduction of six angles describing the unitarity triangles together with six edges. These unitary triangles
are a measure for CP and T violation, hence it is useful to express Eq. (1.37) in terms of the edges, i.e. the quark
transition probabilities, and the angles to read

VCKM =




|Vud| |Vus| |Vub|e−iγ̃
−|Vcd|eiφ̃4 |Vcs|e−iφ̃6 |Vcb|
|Vtd|e−iβ̃ −|Vts|eiφ̃2 |Vtd|


 . (1.38)

Using the definition of Eq.1.38 CP and T violation for the decay B0 → Λpπ+ can be explained. Taking the b
→ uW− transition from Figs. 1.2(a) to (d) the decay rate depends on Vub and can be simplified to the Feynman
diagram shown in Fig. 1.6(a) since Vus contains no phase information in this parametrisation. The time reversed
process is shown in Fig. 1.6(b), where the u quark picks up the W boson to form the b quark in the final state. The
important point is the complex conjugation of the CKM matrix element Vub into V ∗ub for the time reversed process.
In the absence of an additional amplitude no T violation will be seen since the decay rate is proportional to the
square of the matrix element Vub.

b

u

W

∝ Vub

(a)

u

b

W

∝ V ∗
ub

(b)

b s
t

∝ V ∗
ts∝ Vtb

s b
t

∝ Vts ∝ V ∗
tb (d)

(c)

Figure 1.6: Decay of a b quark into a u quark by emission of a W boson (a), and the time reversed process (b). The diagram in
(c) shows the b→ s penguin decay and (d) its time reversed process.

The picture changes with the existence of the second b→ s penguin amplitude. The two decay amplitudes interfere
and the interference is given as

|ATotal|2 = |Ab→u|2 + |Ab→s|2 + |Ab→u||Ab→s| cos(γ′ + ∆δ) (1.39)
|ATotal

T |2 = |Ab→uT |2 + |Ab→sT |2 + |Ab→uT ||Ab→sT | cos(−γ′ + ∆δ) (1.40)

for the decay and its T reversed process where γ′ is the weak phase difference between the amplitudes and ∆δ the
difference between the strong phases. Under time reversal the weak phases flip their sign, while the strong phases
remain unchanged. Subtracting both rates yields

|ATotal
T |2 − |ATotal|2 = |Ab→u||Ab→s| sin γ′ sin ∆δ . (1.41)

In the case of non vanishing phase differences the violation of the time reversal symmetry can be observed. However,
the whole argument is also true for CP violation, the weak phase changes its sign with respect to CP as well, which
is based on CPT invariance. So any such measurement of T violation is also a measurement of CP violation. The
dependence of the branching fraction on the CKM angle γ′ is shown in Fig. 1.7. The theoretical predictions used
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Figure 1.7: Dependence of the branching fraction for B0 → Λpπ+ and B0→ Σ0pπ+ on the CKM angle γ, here noted as
φ3 [16]. The current value of γ is γ = 73.2+6.3

−7.0
◦ [7]. The notation is the same as in Fig. 1.5.

γ′ ≈ γ = 54◦, however, even using the most recent results for γ from the CKM fitter [7], the predictions deviate
significantly from the experimental results [22, 24, 25].

The measurement of time reversal violation without measuring CP violation as well is experimentally quite
challenging. First, since the time reversal operator is an anti-unitary operator, there are no observable eigenvalues
to measure, second in contrast to classical mechanics the decay of a particle cannot be time reversed in the sense,
that the mother particle can be produced by colliding two beams of the decay products. The particles produced in
the decay of a particle are in a coherent state, whereas two colliding particles are in an incoherent state. Therefore,
T violation can only be measured under additional assumptions. A popular method is to construct triple products
using the momentum of the daughter particle of a decay meson. In recent years there have been several analyses of
D meson decays [26] using this approach. Several theoretical analyses proposed probing B decays as well using
these triple products to measure CP and T violation [27, 28]. Usually the triple products are constructed as

O = p1 · (p2 × p3) . (1.42)

Since p is odd with respect to T, the triple product itself is odd with respect to T as well. In order to measure T
violation it is useful to define the following asymmetry,

AT =
Γ(O > 0)− Γ(O < 0)

Γ(O > 0) + Γ(O < 0)
, (1.43)

counting the number of events with a positive and negative sign. A non vanishing expectation value for the
asymmetry is a sign of T violation. These triple products, however, are also odd with respect to parity and as a result
sensitive to CP violation as well. So in order to be only sensitive to T violation, a different kind of triple product can
be constructed containing the spin vector of at least one daughter, such as

O = sΛ · (pΛ × pπ+) (1.44)

for the B0 → Λpπ+ decay. The Λ is chosen instead of the proton, because its spin vector can be estimated in its
decay. Since the angular momentum is even with respect to parity but odd under T reversal the asymmetry defined
in Eq. (1.43) is only sensitive to T violation. This approach was suggested by C.Q. Geng and Y.K. Hsiao [1, 2].
Experimentally, there are several challenges using the operator defined in Eq. (1.44), which will be subject of the next
section. There remains an additional problem in interpreting the measured asymmetry. A non-vanishing expectation
value for the asymmetry defined in Eq. (1.43) is only a sign for T violation in absence of final state interaction
between the daughter particles. Final state interaction is QCD rescattering and can mock a fake asymmetry. Using
an additional assumption allows to circumvent this issue. The QCD is CP invariant and, therefore, the final state
interaction should be CP invariant as well. Calculating the asymmetryAT only for the particle, a separate asymmetry
for the CP conjugated decay and then taking the difference between these should cancel the QCD contributions, in
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case for the B0 → Λpπ+ the asymmetries take the form of

AT =
NB0→pΛπ+

(O > 0)−NB0→pΛπ+
(O < 0)

NB0→pΛπ+(O > 0) +NB0→pΛπ+(O < 0)
(1.45)

ĀT =
NB0→pΛπ−(O > 0)−NB0→Λpπ+

(O < 0)

NB0→Λpπ+(O > 0) +NB0→Λpπ+(O < 0)
(1.46)

AT = 1/2(AT − ĀT ) . (1.47)

The asymmetry AT refers to the b quark in the B0 meson and ĀT to the b quark of the B0 meson. The difference
between the two asymmetries AT depends on the weak and strong phase difference

AT ∝ sin γ′ cos ∆δ , (1.48)

and is maximal for a vanishing strong phase difference in contrast to the asymmetry given in Eq. (1.41) which is
null for a vanishing strong phase difference. The predictions for AT , ĀT , and AT given in [1, 2] are list in Tab. 1.1.

Table 1.1: Prediction for AT , ĀT , and AT given in [1, 2]. The calculations have been performed assuming γ′ ≈ γ = 57◦ for a
vanishing and non-vanishing strong phase difference.

AT , ĀT ,AT γ = 57◦

∆δ 6= 0 (12.0,−8.4, 10.2)%
∆δ = 0 (10.4,−10.4, 10.4)%

1.3 Experimental Determination of the Triple Product

Usually, analyses only use momentum vectors to construct triple products and measure the CP or T asymmetry,
cf. the previous section. This is usually caused by the choice of the decay under investigation. Decays such as
B− → K−π+π− consists only of pseudo scalar particles in the final state and using the momentum vectors is the
only option to construct the triple product. In contrast to pseudo scalar mesons, baryons such as the Λ baryon have
spin, which can be used to construct the triple product. The determination of the spin, however, is experimentally
very challenging. Only intermediate baryons can be utilised in such analyses. The theorists C.Q. Geng and Y.K.
Hsiao proposed using Λ baryons in the charmless B decay B0 → Λpπ+. The advantage of using Λ baryons instead
of protons is that the Λ decay will be utilised to estimate the spin vector of the Λ.

The triple product defined in Eq. (1.44) is calculated in the B rest frame. The momentum vectors are determined
in the lab frame, i.e. the LHCb detector, and the Λ spin vector in the Λ rest frame. Making use of Lorentz
transformations these vectors are boosted into the B0 rest frame. This is trivial for the momentum vectors, since
the energy of each daughter is well known and can be used to construct the momentum four vector, which is
then boosted to the B0 rest frame. In order to transform the Λ spin vector, the polarisation four vector has to be
constructed. Any polarisation four vector εµ needs to fulfil

εµpµ = 0 . (1.49)

Since pµ = (m,0) in the rest frame of any massive particle, the time like component of εµ is given by

ε0 = 0 . (1.50)

For the space like components of εµ the direction of the proton from the Λ decay is taken. The Λ polarisation vector
is then given by

εµ = (0, s) =
(
0,pp/2|pp|

)
(1.51)
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in the Λ rest frame. Unfortunately this assumption is only correct for some Λ decays. The Λ decay rate is given by

Γ ∝ 1 + γω̂f · ω̂i + (1− γ) [ω̂f · n̂] [ω̂i · n̂]

+ α ([ω̂f · n̂] + [ω̂i · n̂]) + β (n̂ · [ω̂f × ω̂i]) ,
(1.52)

where α, β, and γ are the Λ decay parameters, n̂ is the unit vector in the direction of the proton momentum, and ω̂i
and ω̂f are unit vectors in the direction of Λ and p baryon spins, respectively.

σ

y

x

z

π

p

θ

φ

Figure 1.8: Illustration of the Λ rest frame,
σ being the Λ spin p the proton momentum.

Since a single Λ baryon is always polarised, the equation can be simplified
to read

Γ ∝ 1 + α (ω̂i · n̂) . (1.53)

The scalar product ω̂i · n̂ product is equivalent to the cosine of the angle
between the Λ spin and the proton momentum, cf. Fig. 1.8, one finds

Γ ∝ 1 + α cos θ . (1.54)

The decay parameter α describes the parity violation in the Λ decay. The
decay parameters for the Λ and Λ are known [12],

α(Λ→ pπ−) = +0.642± 0.013 (1.55)
α(Λ→ pπ+) = −0.71± 0.08 (1.56)

and agree within the uncertainty, which means CP is not violated by the Λ
decay. In the final fit, both hypotheses, CP conservation and CP violation
in the Λ decay will be tested.

The expectation value for cos θ is given by

〈cos θ〉 =
1

2

∫ +1

−1

cos θ(1 + α cos θ)d cos θ = +
α

3
. (1.57)

This angular dependency results in a large dilution factor that needs to be taken into account when calculating
the triple product asymmetry. A final remark has to be made on the CP behaviour of the spin. For any angular
momentum vector one finds

CPs = +s , (1.58)

whereas for the momentum vector one finds
CPp = −p . (1.59)

As a result the Λ flavour needs to be taken into account and an additional minus sign needs to be applied for the CP
conjugated decay. Additional dilution factors arise from the experimental determination, these will be discussed in
detail later. Since only the sign of the triple product is relevant, it is calculated using the unit vectors instead of the
full momentum and spin vectors.

1.4 The Dalitz Plot

The Dalitz plot, first introduced by R.H. Dalitz [29], allows studies of the dynamic structure of three body decays.
For a pseudo scalar particle decaying into three final state particles the partial decay width can be expressed by

dΓ =
1

(2π)332
√
s3
|M|2dm2

12m
2
23 , (1.60)

with s being the mass of the mother particle, m2
ij = pµ(i)pµ(j) the invariant two body daughter masses, and |M|2

is the quantum mechanical matrix element for the decay. The scatter plot between m2
ij and m2

ik (j 6= k) is called the
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Dalitz plot and can be used to visualise the matrix element |M|2. Resonant intermediate states appear as bands in
the corresponding two body invariant mass and the density distribution allows to determine the angular quantum
numbers of the intermediate state. In its relativistic invariant formulation the Dalitz plot appears in a triangular
shape in case all daughter particles are massless and its edges are determined by the mass of the mother particle. In
case the daughter particle are massive, the shape of the Dalitz plot changes accordingly. In Fig. 1.9 the kinematically
allowed Dalitz plot for the B0 → Λpπ+ decay is shown, the maximum values are indicated and the overall allowed
range is also shown. The kinematic borders can be calculated using

m(pπ+)2
± = m2

π+ +m2
p +

1

2m(Λp)2

[
(m2

B0 −m(Λp)2 −m2
π+)(m(Λp)2 −m2

Λ +m2
p)

±
√
λ(m(Λp)2,m2

B0 ,m
2
π+)
√
λ(m(Λp)2,m2

Λ,m
2
p)
]

(1.61)

with the kinematic function λ(x, y, z) defined as,

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx . (1.62)
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Figure 1.9: Shape of the kinematically allowed Dalitz plot for the B0 → Λpπ+ decay. The edges of the Dalitz plot are
determined by the B mass and the individual daughter masses.

In general, the Dalitz plot of three body baryonic B0
(s) decays can have a multitude of interesting structures. These

include the known threshold enhancement (cf. Fig. 1.5) and intermediate baryon resonances like ∆ or nucleon
resonances decaying in to pπ−. A recent LHCb analysis [20] revealed the Λ(1520) resonance decaying into pK−

as an intermediate resonance. Contribution from charmed decays can also appear in the Dalitz plot, for example
the decay Λ+

c → Λπ+ can be found. In contrast to the broad resonances, charm decays appear as very small bands
due to their long lifetimes. Finally, there are more exotic states such as glueballs, bound states of gluons, which
can appear in decays containing two baryons of identical flavour. Another, possible explanation of the threshold
enhancement is a bound state of two baryons, the baryonium. Neither glueballs nor baryonium states have been
found experimentally. Apart from all these intermediate decays, there is usually also a contribution from non
resonant decays, i.e. true three body decays.

For the decays at hand, possible structures to be found in the B0 → Λpπ+ Dalitz are the threshold enhancement,
the Λ+

c → Λπ+ contribution from B0 → Λ+
c p, and the ∆ or nucleon resonances decaying in to pπ+. According to

the previous measurements of B0 → Λpπ+ the only contribution seen is the threshold enhancement, there is no
evidence for any other resonant structures and even the non resonant decays are suppressed [24, 25]. The Dalitz
plot for B0

s → ΛpK+ should also contain a pronounced threshold enhancement, as the decay is quite similar to
the B0 → Λpπ+ decay. Instead of ∆ or nucleon resonances, the Λ(1520) and similar resonances can contribute to
the overall decay rate. The Λ+

c could also appear through the decay Λ+
c → ΛK+, this mode, however, is Cabibbo

suppressed. For both decays the Λ+
c contribution is due to the b→ c tree decay B0 → Λ+

c p, which is a different
process than the penguin and b→ u contribution for B0

(s) → Λph+, it is, therefore, vetoed in the selection and
only contributions from charm less decays are considered.



Chapter 2

The LHCb-experiment

The LHCb (LHCbeauty) experiment consists of the LHCb detector and the Large Hadron Collider (LHC). The
LHCb experiment is a dedicated heavy flavour experiment whose goal is to search for effects of new physics in
decays of beauty and charm quarks. The LHCb experiment is a third generation B factory. The first generation were
the ARGUS and CLEO experiments and the second generation the BABAR and Belle experiments. All of these were
e+e− machines operating at the Υ (4S) resonance corresponding to a centre of mass energy of

√
s = 10.58 GeV.

Experimentally there are a lot of advantages in doing so. A significant disadvantage of these B factories is the low
bb production cross-section of only σ(e+e− → bb) = 1.09 nb [30]. During the lifetime of the BABAR experiment
about 470 million BB pairs were produced. At pp interactions at

√
s = 7 TeV the bb cross-section in the geometric

region of the LHCb detector is σ(pp→ bbX) = (75.3± 5.4± 13.0)µb. Together with the luminosity of the LHC,
about 1012 bb pairs are produced per year. In addition to that, all kind of b hadrons are produced compared to only
B0 and B+ at the Υ (4S) resonance. This leads to a higher sensitivity compared to the previous experiments and
allows to probe the Standard Model with unprecedented precision.

17
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2.1 Large Hadron Collider

Figure 2.1: Layout of the LHC accelerator complex. The layout shows the four major experiments. The energy of the protons is
ramped up through several smaller accelerators. Additional experiments also receive their protons from these.

The Large Hadron Collider (LHC) is a pp storage ring located in the former LEP tunnel at CERN, the European
Organisation for Nuclear Research. At the LHC two proton beams collide each with a design energy of 7 TeV,
however, during the 2011 and 2012 data taking periods the beam energy was limited to 3.5 TeV and 4 TeV,
respectively. The design luminosity of L = 2× 1032 cm−2s−1 was superseded during most of the 2011 and 2012
data taking. Most of the data taking took place at L = 3.5× 1032 cm−2s−1 and L = 4× 1032 cm−2s−1 in 2011 and
2012, respectively. In 2011 a luminosity scaling procedure was introduced. Its goal was to keep the instantaneous
luminosity constant during a fill of the LHC. This minimised the luminosity decay usually observed during a fill
and allowed to maintain the same trigger configuration during the whole fill.

Another problem that all LHC experiments had to cope with was pile-up. Pile-up is the average number of visible
pp interactions per bunch crossing. During Run I the average bunch spacing was 50 ns instead of the planned 25 ns.
In order to achieve the designated luminosity the number protons per bunch was increased. This also lead to an
increased pile up rate. Fig. 2.2(a) shows the variance of the instantaneous luminosity and the pile-up over a time
period from July 2010 till December 2012.

The data sample available for physics analyses contains L = 38 pb−1 (7 TeV), 1.11 fb−1 (7 TeV), and 2.08 fb−1

(8 TeV) for 2010, 2011, and 2012, respectively. Fig. 2.2(b) shows the integrated luminosity during Run I of the
LHC.

(a) (b)

Figure 2.2: (a) Distribution of the average number of visible interactions (top) and the instantaneous luminosity over Run I at
the LHCb interaction point. The dotted lines show the design values. (b) Integrated luminosity of the LHCb experiment taken
during the Run I of the LHC.
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2.2 LHCb Detector

The LHCb detector is a single arm spectrometer that covers the range from 15 mrad to 300 mrad in the bending
and from 15 mrad to 250 mrad in the non bending plane. The detector geometry is dictated by the production of the
bb pairs which are produced predominately into a small forward or backward cone along the pp beam axis. In order
to measure the momentum of the charged particles a magnetic field is necessary. The spectrometer magnet provides
an integrated field of about 4Tm deflecting charged particles in the horizontal plane. The magnet influences the
proton beams and three dipole magnets are dedicated to compensate the effect and stabilise the beams.

The LHCb tracking system consists of the Vertex Locator (VELO) placed around the interaction region inside a
vacuum tank and four planar tracking stations, one, the TT, located upstream and three Tracking stations T1-T3
downstream of the magnet. Silicon strip detectors are employed in the TT and the inner sections of T1-T3. The
outer sections of T1-T3 consist of straw tubes. Charged particle require a minimum momentum of 1.5 GeV/c to
pass the magnet and reach the tracking stations T1-T3. Downstream of the tracking system are the electromagnetic
and hadronic calorimeters whose main task is to contribute to the trigger system followed by the muon system.
Particle identification is performed by two Cherenkov detectors. The individual detector components are introduced
in the next sections followed by a description about the track reconstruction, the trigger system and the data structure
of the LHCb experiment.

The LHCb coordinate is an orthogonal right-handed system defined as follows, ẑ along the z axis, the x parallel to
the cavity ground and the y axis perpendicular to the x-z plane, cf. Fig. 2.3.

A detailed review of all components and their operational status can be found in [31] and [32].

Figure 2.3: Schematic representation of the LHCb detector. The coordinate system is indicated.

2.2.1 Vertex Locator – VELO

The Vertex Locator, short VELO, is designed to provide precise measurement of tracks near the interaction point
and designated to use these to identify primary, i.e. from pp interactions, and secondary vertices originating from
long lived beauty and charm hadrons. This task requires a high signal-to-noise ratio in each element to ensure
an efficient trigger performance as well as a high efficiency of each channel. An excellent spatial resolution is
needed as well in order to achieve the required impact parameter resolution allowing to distinguish tracks originating
from secondary vertices from those from the primary vertex. The impact parameter is the perpendicular between
the path of the particle, i.e. the track, and the centre of the interaction, i.e. the pp interaction. The design of
the LHCb detector places geometrical constrains on the VELO, detecting charged particles with a pseudorapidity
η ∈ (1.6, 4.9) emerging from primary vertices within |z| < 10.6 cm, a polar angle coverage of 15 mrad for a track
with z = 10.6 cm, a minimum distance of 7 mm to the beam axis. In general any track in the angular acceptance of
300 mrad should pass through at least two VELO modules.
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Figure 2.5: Layout of the two VELO halfes and the individual modules in the x-z plane [31].

Figure 2.4: Layout of the VELO modules in
the x-y plane in the closed state [33].

The VELO consists of two 21 back-to-back silicon strip detector
modules. Fig. 2.4 shows the layout of two VELO modules in
the x-y plane. The VELO uses a cylindrical coordinate system
with r̂, φ̂, ẑ. The modules provide a measurement of the r and
φ coordinates at a fixed value of z. The choice of cylindrical
coordinates allows for the fast track reconstruction needed in the
software stage of the trigger (sec. 2.5). The pitch between the
silicon modules increases with r so that the spatial resolution is
best near the interaction point and decreases towards the edge
of the modules.
The modules are placed along the pp beam axis. Fig.2.5 shows
the assembly of the VELO modules. The VELO modules need
to be very close to the interaction region to fulfil the geometric
requirements, however, the aperture of the LHC increases during
the injection of a new fill requiring the VELO modules to retract
by 3 cm. This is achieved by retracting both halves during the
injection of a new fill and once a stable beam is declared the
halves are closed again.

In the closed state the two detector halves overlap providing full azimuthal coverage and aiding the alignment
process. The distance needed to be smaller than 5 cm in the central region reducing the average extrapolation
distance between the first hit in the detector and the vertex. The distance of the modules increases with z. Upstream
of the interaction point there are two additional modules perpendicular to the pp beam axis. This is the pile-up-veto
system designed to veto events with multiple primary vertices. The VELO modules are mounted in a vessel in order
to maintain a vacuum around the sensors. It is separated from the machine vacuum by a thin aluminium foil. This
arrangement was chosen to minimise the amount of material traversed by the charged particles before interacting
with the sensors.

The spacial resolution of the VELO has been determined using data taken in 2010. The resolution depends on the
pitch between the silicon strips as shown in Fig. 2.6 [32].

2.2.2 Planar Tracking Stations

The planar tracking stations consist of three different detectors arranged in one station upstream of the magnet, the
TT station, and three stations downstream of the magnet, the T1-T3 stations (see Fig.2.7).
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Figure 2.6: The VELO hit resolution as a function of the pitch between the silicon strips for the R sensors. Results are shown for
two angle ranges and a single-hit binary system [32].

2.2.2.1 Silicon Tracker

The Silicon Tracker (ST) consists of the TT the Inner Tracker IT, which are the sections close to the beam axis of
the T1-T3 stations. Both detectors are made of silicon strip detectors with a pitch of about 200µm. This allows for
a single-hit resolution of about 50µm. The TT is located upstream of the magnet and covers the whole acceptance
of the LHCb experiment. The IT covers a 120 cm × 40 cm cross shaped area at the centre of the downstream
tracking stations. Each of the four ST stations consists of four detection layers in an (x-u-v-x) pattern. The x layers
are made of vertical strips. In the u and v layer the strips are rotated by a stereo angle of −5◦ and +5◦, respectively.
The momentum resolution is dominated by multiple scattering, so that it is necessary to keep the material budget as
small as possible.

The three IT stations consist of four individual detector boxes. The right hand side of Fig. 2.7 shows the arrangement
of the IT detector modules. Each box consists of four sections with seven detector modules each. The silicon
sensors used in the modules have a pitch of 198µm between each other.

The hit resolution in data was found to be 52.6µm and 50.3µm for the IT and TT detectors, respectively.

Figure 2.7: Layout of the planar tracking stations (left). Arrangement of the IT around the beam pipe covering the more active
central region [31].
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2.2.2.2 Outer Tracker

The Outer Tracker OT is designed as an array of gas tight straw tube modules. The hits are determined by
measurement of the drift time of the elections from the ionised gas molecules to the wire located at the centre of
the straw tube. The recorded drift time is proportional to the distance of the particle trajectory to the wire and can
be used to reconstruct the trajectory of the charged particle. The gas mixture is chosen to be Argon (70%) and
CO2 (30%). The detector modules are arranged in three stations (T1-T3, cf. Fig. 2.7). Each station consists of four
modules, arranged in a (x-u-v-x) pattern similar to the TT. The maximum drift-time is about 35 ns but in order to
account for variations in the time of flight of the particles, signal propagation through the wire and offsets in the
electronics three consecutive bunch crossings are read out of a positive L0 trigger on the first bunch crossing. This
time window is approximately 75 ns. The drift time distributions are shown in Fig. 2.8. Using data the single hit
resolution was determined to be 205µm which is close to the design value of 200µm.

Figure 2.8: Drift-time distribution for the modules closest to the beam for three different bunch crossing rates (left). Drift time
versus distance (right). The dotted lines indicate the centre and the edge of the wire, corresponding to a drift-time of 0 ns and
36 ns, respectively [31].

2.2.3 Rich Imaging Cherenkov (RICH) Detectors

The Cherenkov effect is used to identify the charged tracks in the LHCb detector. The unique layout of the LHCb
detectors poses special conditions on the RICH detector. At large polar angles the momentum spectrum is softer
than at small polar angles. It is difficult to cover the whole momentum range from a few GeV to 100 GeV, hence the
particle identification (PID) system consists of two detectors covering different momentum ranges. The upstream
detector, RICH1, covers the low momentum of ≈ 1 GeV/c up to 60 GeV/c using aerogel and C4F10 radiators. The
downstream detector, RICH2, covers the high momentum range from ≈ 15 GeV/c up to and beyond 100 GeV/c
using a CF4 radiator. The RICH1 located upstream of the magnet covers the whole angular acceptance of the LHCb
detector. The RICH2 located downstream of the magnet covers a limited angular acceptance from ±15 mrad to
±120 mrad (x-z plane) and ±100 mrad (x-y plane). In both detectors a combination of flat and spherical mirrors
are used to focus the Cherenkov light out of the detector acceptance into Hybrid Photo Detectors (HPD). The HPDs
are covered by an external iron shield in order to reduce the influence of the field created by the bending magnet.

Charged particles originating from or near the pp interaction point are followed through the radiator. Cherenkov
photons are emitted uniformly along each track in the aerogel and gas radiators.The Cherenkov photons are ray-
traced through the optical system and the impact points in the plan of the HPDs are recorded. The Cherenkov angle
is reconstructed assuming the photon emission occurred at the centre of the RICH detector.

Aerogel is the ideal radiator in the range of refractive indices between gas and liquid. Silica aerogel is made of
quartz and is solid but has a very small density. The refractive index n can be tuned in the range of n ∈ [1.01, 1.10]
and is ideally suited for particle identification of particles with a momentum of a few GeV/c. The refractive index
of the aerogel in the RICH1 was chosen to be n = 1.03 at λ = 400 nm. The number of detected photo-electrons
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for a particle with β = 1 passing through the aerogel is ∼ 6.5. After the first run it was decided to remove the
aerogel from the RICH1. The flourocarbon gases were chosen because their refractive indices match the momentum
spectrum of particles in the LHCb detector. The refraction indices are n = 1.0014 and n = 1.0005 at λ = 400 nm
for C4F10 and CF4, respectively, and the estimated number of photo-electrons is ∼ 30 and ∼ 22 for particles with
β = 1. The layout of the RICH detectors can be found in Fig. 2.9.

Figure 2.9: Layout of the RICH detectors, on the left hand side the RICH1 and on the right hand side the RICH2 [31].

2.2.4 Calorimeters

The calorimeter-system consists of four elements, the Scintillating Pad Detector (SPD), the Preshower Detector
(PS), the Electromagnetic Calorimeter (ECAL), and the Hadronic Calorimeter (HCAL) and fulfills several functions.
The main purpose is selecting transverse energy hadron, electron and photon candidates for the first trigger level. In
addition the calorimeters provide single photon and π0 reconstruction and electron identification capabilities.

The SPD and PS are both made of a plane of scintillator tiles separated by a thin lead layer. The ECAL and HCAL
have shashlik and sampling constructions. All four detectors follow the same principle, light from the organic
scintillators is transmitted via optical fibers to photo multipliers. Since the hit density varies over the calorimeter
surface, a variable lateral segmentation is adopted. The calorimeter segmentation is illustrated in Fig. 2.10.

Figure 2.10: Lateral segmentation for the SPD, PS, and ECAL (left) and the HCAL (right). A quarter of the detector front face is
shown and the dimensions are given for the ECAL and HCAL [31].
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2.2.5 Muon System

Muons are of special interest for the LHCb experiment. Muons cannot be produced in strong processes that dominate
the hadronic environment of the LHC so that any event in which a muon appears is interesting. Muons are present in
the final states of many CP sensitive decays, e.g. B0 → J/ψK0

S and B0
s → J/ψφ with J/ψ → µ+µ−. Muons from

semileptonic B decays provide a tag for the initial B flavour for oscillation and CP analyses. In addition, muons
appear in rare flavour changing neutral currents, which probe physics beyond the Standard Model. Because of these
arguments a high muon detection efficiency is demanded of the LHCb detector.

The layout of the muon system is shown Fig. 2.11 and it is composed of five stations M1-M5 placed along the beam
axis.

Figure 2.11: Layout of the muon
system [31].

The angular acceptances of the muon system are 20 mrad (16 mrad) and
306 mrad (258 mrad) in the bending (non-bending) plane. This allows for
an acceptance of about 20% for muon from semileptonic beauty hadron de-
cays. The stations M2-M5 are placed downstream of the calorimeters and are
interleaved with iron absorbers in order to prevent non muon particle to pass
through the stations. The minimum momentum for a muon to pass all stations
is 6 GeV/c. The first station M1 is placed in front of the calorimeter system in
order to improve the transverse momentum measurement in the trigger. All
stations of a projected geometry, i.e. all transverse dimensions scale with the
distance from the interaction point. Stations M1-M3 have a high spatial resol-
ution along the bending plane and are used to define the track direction and
calculate the transverse momentum of the muon candidate with a resolution
of about 20%. The remaining stations have limited spatial resolution, as their
main purpose is identification of penetrating muons.

Mutli-wire proportional chambers are used throughout the station except for the centre region of station M1 in which
the expected particle flux exceeds the safety limits for ageing and, therefore, triple gas electron multiplier (GEM)
detectors are used.

2.2.6 Dipole Magnet

The LHCb uses a warm magnet with a saddle-shaped coil design in a window frame yoke with sloping poles. The
constraints of the LHCb detector pressed for this design. It has to have an integrated field of 4Tm for a track with a
length of 10 m but the magnetic field inside the RICH1 needs to be smaller than 2mT yet the field between the
VELO and the TT should be as high as possible for a precise momentum measurement. The layout of the magnet is
shown in the left hand side of Fig. 2.12.

The magnetic field may have two configurations,B(z) = ±B(z)ŷ. Any single choice results in charge asymmetries
in the detector and in order to prevent these, each magnet configuration is used and the data taking is split equally
among the magnet polarities. The Polarities are defined as

B(z) = +B(z)ŷ (Magnet− Up)

B(z) = −B(z)ŷ (Magnet− Down)

and the z dependence of both configurations is shown in Fig. 2.12.
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Figure 2.12: Layout of the LHCb magnet (left); z dependence of the magnetic field (right) [31].

2.3 Event Reconstruction

2.3.1 Track Reconstruction

Charged particles traversing the tracking system are reconstructed from hits in the VELO, TT, IT, and OT detectors.
Depending upon their interaction with these detectors the following track types are defined, cf. Fig. 2.11

Long tracks pass trough the complete tracking system having hits in both the VELO and the T stations, and
optionally in the TT station. Long tracks have the most precise momentum estimate and are the most
important set of tracks for physics analyses.

Downstream tracks pass only through the TT and T stations. These are important for the reconstruction of
long-lived neutral V 0 particles such as K0

S mesons and Λ baryons. Due to the long lifetimes most K0
S and Λ

particles decay outside the VELO.

Upstream tracks pass only through the VELO and the TT station. In general those tracks’ momentum is too
low to transverse the magnet but they can generate Cherenkov photons in case p > 1 GeV/c. As a result they
can be used to understand backgrounds in the particle identification algorithms of the RICH1.

T tracks have only hits in the T station and are usually caused by particles produced n secondary interactions.
Similar to upstream tracks these are useful for the particle identification with the RICH2.

VELO tracks pass only through the VELO and are typically large-angle or backward tracks, that are useful for
the reconstruction of the primary vertices.

Figure 2.13: Illustration of the various track types, the z coordinate position is also indicated [32].
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The long track reconstruction starts in the VELO. The track finding algorithm searches for straight line trajectories
with at least three hits in R and φ sensors. Afterwards two additional algorithms take over, the first algorithm, the
forward tracking, combines the VELO tracks with information from the T stations. The VELO information
and a singe hit in the T stations fully determine the trajectory and momentum of a particle. The algorithm then
searches for additional hits in the T stations along the trajectory in order to find the best combination of hits to
define the long track. The second algorithm, called track matching, combines the VELO tracks with track
segments from the T stations provided by a standalone track finding algorithm. A T track segment needs at least one
hit in the x layers and one in the stereo layers in each T station. The long tracks created by both algorithms
are then combined and duplicates are removed. Finally, hits in the TT station consistent with the trajectories of each
track are added in order to improve the momentum measurement.

The downstream tracks are reconstructed by starting with T track segments which are extrapolated through
the magnetic field into the TT station. The algorithm then searches for corresponding TT hits.

In a final step, all tracks are refitted with a Kalman filter [34]. The fit accounts for multiple scattering and
energy loss effects. The quality of the fit is determined by the χ2 per degrees of freedom. Due to the large
extrapolation distance between the tracking stations, it is inevitable to have false combinations of track segments
called ghost tracks. The fake rate is typically 6.5% but can increase up to 20% in events with high multiplicities.
The fake rate is significantly reduced by application of neural network classifier (cf. sec. 3.1.6.3) using the results of
the track fit, the track kinematics and number of measured hits with expected hits. The classifier output is called
Ghost probability.

2.3.2 Momentum and Mass Resolution

As a preliminary study being part of a service task the momentum resolution for long tracks was investigated.
In a data driven method J/ψ → µ+µ− decays are used. Due to the small lifetime of the J/ψ the invariant dimuon
mass resolution is defined by the momentum resolution of the two muons. In addition to that, the J/ψ → µ+µ−

offers a very good signal-to-background ratio increasing the statistical precision. Since the invariant J/ψ mass is
given by

m2(µ+, µ−) = p2(µ+)p2(µ−)(1− cos θ) , (2.1)

assuming ultra-relativistic muons, the momentum resolution of the muons is given by
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Eq. (2.2) is used to determine the absolute momentum resolution δp/p by fitting the invariant µ+µ− mass in a grid
of 22× 22 bins in order to determine σm/m. The mass resolution for p(µ+) ≈ p(µ−) is shown in the left plot of
Fig. 2.14. For each bin the values for σcos θ/1− cos θ are determined by using the mean value its distribution in each
bin. The values of σcos θ are determined by the track fit. The right hand side of eq. (2.2) is calculated for each bin
and a binned two-dimensional likelihood fit is used to determine δp/p. The resulting momentum resolution is shown
in the right plot of Fig. 2.14. The momentum resolution is about 5h for momenta below 20 GeV/c and increases to
about 8h for momenta ∼ 100 GeV/c.

2.3.3 Vertex Reconstruction

In the context of the LHCb experiment two kinds of vertices need to be distinguished, primary vertices (PVs)
and secondary vertices (SVs). Primary vertices correspond to the pp interaction; secondary vertices are the decay
vertices of b and c hadrons or interactions of charged particles with the detector. Vertices with at least 5 tracks are
considered primary vertices. The pile-up VETO stations located upstream of the pp interaction in the VELO
are used to determine the number of tracks in each primary vertex and are used to veto events with more than one
primary vertex. A primary vertex with 25 tracks has a resolution of 13µm in x and y and 71µm in z. Closely



2.4. Particle Identification 27

p(µ)(GeV/c)
10 100

σ
m
(
M
eV
/c

2
)

10

12

14

16

18

20

22

p(GeV/c)
10 100

δp
/p

(%
)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Figure 2.14: Mass (left) and momentum (right) resolution for J/ψ → µ+µ− decays. The momentum resolution is about 5h for
momenta below 20 GeV/c and about 8h for momenta about 100 GeV/c.

related to the primary vertex is the impact parameter (IP). The IP of a track is defined as the distance between
a PV and the point of closest approach (POCA). A track originating from a PV should have IP = 0 within the
uncertainties. Tracks from SVs, on the other hand, should have a non-zero IP with respect to the PV. This fact is used
heavily in LHCb data analyses including the current one and it is therefore vital to have an optimal IP resolution.
The IP resolution in dominated by the effects of multiple scattering of particles with the detector components, the
resolution of the position of the track, and the extrapolation distance of the track, i.e. the distance from the first
measured hit to the interaction point. The overall VELO layout was designed with these points in mind. The IP
resolution depends linearly on 1/pT due to multiple scattering and the VELO geometry and is 13µm for a particle
with an asymptomatically high transverse momentum.

Secondary vertices are constructed by fitting the decay products of b or c hadrons. In a decay chain like B0 → Λpπ+

this is done for the Λ and B0 decay individually. As an alternative it is useful to fit the whole decay chain in a single
fit. This done by the Decay Tree Fitter (DTF) algorithm [35]. Using a Kalman filter algorithm the whole decay tree
is fitted with the mass hypothesis of each daughter particle. Unlike usual vertex fit algorithms, the DTF also uses
information upstream of a given vertex by fitting the whole decay chain instead of individual decays. This improves
the invariant mass resolution. In addition the DTF package allows the usage of mass and vertex constrains that further
improve the resolution and help suppress background candidates. The decays of V 0 particles such as Λ→ pπ− and
K0

S → π+π− pose additional challenges. With lifetimes at the order of 10−10 s and momenta of about 30 GeV/c
only one third of the V 0 particle decay in the VELO, i.e. the decay products are long tracks, the other two thirds
decay before the TT station, i.e. the decay products are downstream tracks. In general, the invariant mass
resolution for long track V 0 particles is about a factor of two smaller compared to downstream track V 0

particles.

2.4 Particle Identification

Particle identification (PID) is crucial in flavour experiments. Identifying a track as an electron, kaon, muon, or a
proton allows to calculate the energy of the given particle rather than relying on the measurement of the energy
deposition in the calorimeters. This greatly improves the resolution of the invariant mass of intermediate particles
such as B and D mesons. In addition to that, particle identification allows to determine the flavour of decaying
hadrons. At the large track momenta of the LHCb experiment it is impossible to distinguish between kaons and
pions in the decay B0 → K−π+ and, in order to measure the direct CP violation in this decay, it is vital to be
able to tag, i.e. identify the flavour, the B meson decay. Measurements of time dependent CP violation also need
information on the B flavour at its production, which can be provided by a kaon or pion in the jet close by the b
hadron, again being able to identify the pion or kaon is crucial.

At the LHCb experiment PID is provided by four detectors, the calorimeters, the RICH detectors, and the muon
system.
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2.4.1 Calorimeter and Muon System Based Particle Identification

The role of the calorimeter in terms of particle identification is to provide information on electrons, photons and
neutral pions. Neutral particles are distinguished from charged particles by searching for the absence of a track
in front of the energy disposition. The shape of the energy cluster is used to differentiate between photons and
π0-mesons. In case the energy cluster is associated with a charged track, the electron hypothesis is constructed to
allow separation of electrons and hadrons.

Muon identification is based on the extrapolation of trajectories found in the tracking system into the muon system
and searches for hits in the muon system within rectangular intervals around the extrapolation points. The intervals
depend on the momentum and their parameters are tuned to maximise the muon efficiency while still provide low
misidentification rates. Likelihoods for the muon and non-muon hypotheses are calculated for each muon candidate
based on the average squared distance of hits closest to the interpolation points.

2.4.2 RICH System Based Particle Identification

The primary role of the RICH system is to identify charged hadrons, i.e. pions, kaons, and protons, and it is used on
the the analysis level and the software trigger stage, cf. Sec. 2.5. Apart from hadron identification, the RICH system
also provides additional information for the lepton identification.

The identification procedure follows a likelihood based approach. The observed hits in the photo-detectors are
compared to the expected pattern for a given particle hypothesis. The likelihood is constructed by calculating the
effective emission angle for all hit-track combinations and maximised by varying the particle hypotheses. The
likelihood includes all tracks of the event and all radiator simultaneously.

The performance of the RICH detector is governed by the resolution σ(θC) with which the Cherenkov angle of the
emitted photons can be reconstructed. Using isolated high momentum tracks the resolution is determined to be
σ(θC) = (1.618± 0.002) mrad for the RICH1 and σ(θC) = 0.68± 0.02 for the RICH2, respectively [32]. Since
the opening angle of the Cherenkov cone depends on the refractive index and the velocity of the passing object
distinctive bands are formed when plotted as a function of the momentum, which can be used to determine the mass
of the passing particle. Figure 2.15 shows the distinctive bands for the Cherenkov angles for different particles.

Figure 2.15: Reconstructed Cherenkov angle for isolated tracks as a function of the track momentum for the C4F10 radiator [32].

2.4.3 Combined Particle Identification

The PID information gathered in the sub-detectors is combined in order to provide a single powerful variable. This
combination follows two different approaches, the first implements a log likelihood approach and the second is
based on an artificial neural net.
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The log likelihood approach sums the individual likelihoods of each sub-system linearly into a combined log
likelihood ∆L(X), where X represents either the electron, muon, kaon, or proton hypothesis. It is useful to
compare these individual likelihoods with the pion likelihood as a reference value by calculating the difference,

∆ logL(X − π) = logL(X)− logL(π) , (2.3)

that offers a measure how likely the X-mass hypothesis for a given track is compared the the π-mass hypothesis.
The neural net approach is designed to improve the upon the likelihood approach by taking into account correlations
between the individual sub-detectors and including additional information from the event. The neural net variables
are usually denoted as ProbNNX, where X again represents either the electron, muon, kaon, or proton hypothesis.

An important aspect of the particle identification is the calibration of both the likelihood and the neural net variable.
In order to determine the exact behaviour of kaon, pions, and protons clean sources of these particle are needed.
These should be obtained via kinematic selections only in order to avoid any biases due to PID preselections.
Naively there are several easy choices, but each comes with own challenges.

Samples with a high kaon purity can be obtained from excited D+ meson decays. The D0 → K−π+ candidates
from the D∗+ → D0π+ decay are very clean and the π+ can be used to tag the D0 flavour and therefore determine
which track belongs to the kaon without any PID requirement. The cross feed from the double Cabibbo suppressed
D0 → K+π− is negligible. Since the D∗+ mesons are produced in charm jets as well as b hadron decays, the
coverage of the (p, η) spectrum for tracks coming from both charm and beauty hadron decays is good.

A good source for charged pions are K0
S meson decay into a pair of oppositely charged pions. Due to the long

life-time and the secondary vertex the purity of the sample is very high. The long life-time is reduced the efficiency
as usually only the K0

S candidates reconstructed from Long tracks are used. The statistics are sufficient and the
coverage is good as well.

The natural choice for protons are Λ baryons with the decay Λ → pπ−. The long life-time and the clean vertex
separation reduces the number of background events to a negligible level. Using the Armenteros-Podolanski
plot [36], described in detail in Sec 3.2.4, it is possible to distinguish Λ, Λ, andK0

S candidates on merits of kinematic
variables only and no PID information need to be applied beforehand to distinguish between the proton and the pion.
However, as mentioned earlier, the long life-time of the Λ baryons is problematic and usually only the Λ candidates
reconstructed from Long tracks are used. Another, more serious issue, is the coverage of the large (p, η) spectrum
observed in hadronic b and c decays. The Λ→ pπ− decays cover only the low momentum region sufficiently. In
order to overcome this problem, an additional source for protons is used, the decay Λc → pK−π+. Using the same
technique as for the D∗+ candidates, i.e. using the Σ++/0

c resonance decaying into Λcπ±, the background is reduced
but remains sizeable compared to the other control modes. Therefore, additional selection criteria need to be applied
in order to reduce cross feed from related decays of charged D+ and D+

s mesons including a PID selection on the
kaons. Adding this reference channel improves the coverage, but does not solve the problem entirely. As a result,
the systematic uncertainty on the proton PID is larger than for pions or kaons.

A final issue rests with the simulated events, the simulated data underestimate the amount of tracks produced in the
pp collisions and as a result overestimate the PID performance since more tracks increase the difficulty to match
each track to the correct Cherenkov ring.

2.5 LHCb Trigger Ensemble

For any hadron collider experiment the trigger is a crucial component selecting interesting events compared to noise
events. As mentioned before, the LHCb experiment is dedicated to study weak decays of b and c hadrons as well as
τ leptons. In general, events without one of these characteristics is considered a noise event. Due to the high data
rates it is not feasible to collect all events and the trigger should filter all interesting events while rejecting the noise
events. The LHCb trigger consists of two dedicated stages, the Level-0 (L0) and the High Level Trigger (HLT).
During the first run of the LHC the trigger reduced the data rate from 20 MHz based on a proton-proton bunch
crossing every 50 ns to 2 – 5 kHz [32]. These triggered events are the basis for the physics analyses.
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The L0 trigger is hardware based and uses information from the calorimeters and the muon system to reduce the
event rate below 1 MHz, at which the whole detector can be read out. The HLT is software based. It is run on a
dedicated event filter farm. During 2012 a fraction of L0 accepted events was deferred to disk to be analysed by the
HLT during the inter-fill times thus optimising the usage of the available resources. After being accepted by the
HLT the events are saved to disk and later fully reconstructed using a more accurate alignment and information
from all sub-detectors.

2.5.1 Level-0 Hardware Trigger

The L0 trigger system is divided into three independent systems, the L0 calorimeter trigger, the L0 muon trigger, and
the L0 pile up trigger. The latter is only used for the determination of the luminosity. The L0 trigger is synchronous
with the proton-proton bunch crossing of the LHC.

The L0 calorimeter trigger builds three types of candidates based on the deposited transverse energyET. L0Hadron
is the highest ET HCAL cluster, L0Photon is the highest ET ECAL cluster with one our two hits in the pre shower
detector and no hits in the silicon pad detector in front of the HCAL. The L0Electron share the requirements
with the L0Photon with an additional condition of at least on hit in the silicon pad detector. The transverse energy
is compared to a fixed threshold and events with at least one candidate above the threshold fire the L0 trigger.

The L0 muon trigger looks for the two muon tracks with the highest pT in each quadrant and either triggers on the
largest transverse momentum of a single muon ore the product of the two largest transverse momenta.

2.5.2 High Level Trigger

Events accepted by the L0 trigger are analysed by a software application similar to the overall LHCb software
framework. The HLT application considers several independent trigger lines each applying a specific selection
based on a specific event class, e.g. b hadron decays. The high level trigger consists of two stages. During the first
level, the HLT1, a partial event reconstruction is performed, whereas in the second stage, the HLT2, a complete
event reconstruction is employed.

The VELO plays a central role during the HLT1 stage. The full offline VELO track reconstruction is applied and
vertices are reconstructed from intersection VELO tracks as well. Based on the L0 decision several track based
trigger lines are employed. Relevant for the analysis at hand is the inclusive beauty and charm trigger line. It is
based on the properties of one good quality track candidate and its selection is based on the transverse momentum
(about 1.6 GeV/c) and the displacement with respect to the primary vertex (IP > 0.1 mm). The output rate is about
58 kHz and is the largest contributor to the overall HLT1 bandwidth. It is overall the most efficient trigger line not
requiring a lepton in the event.

The HLT1 reduces the data rate to about 80 kHz, which is low enough to allow forward tracking for all VELO tracks,
however, in 2011 only long tracks were considered lowering the efficiency to trigger V 0 particles significantly. The
topological inclusive beauty lines make up a significant portion of the HLT2 output rate. These lines cover all b
hadron decays with at least two charged tracks in the final state and a displaced secondary vertex motivated by
the long life-time of the b quark. The track selection is based on the track fit quality, the impact parameter and
lepton identification. Vertices are reconstructed using either two-, three-, or four-body decays based on the distance
of closest approach between the individual tracks. The pseudo n-body b hadron candidates are selected using
the transverse momentum of the daughters, the minimal transverse momentum among all daughters, the n-body
invariant mass, the distance of closest approach, the IP χ2, and the χ2 of the flight distance. The overall output rate
of the inclusive topological trigger lines is 2 kHz. During the 2012 data taking the trigger performance for V 0 was
increased significantly, however, during the start of the 2012 run, there was a bug in the trigger software, and it was
fixed during the technical stop during June 2012. This, however, complicates matters for any analysis containing
K0

S or Λ particles need to split their data into three independent samples according to the trigger conditions, namely
2011, 2012 pre-June, and 2012 post-June.
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2.6 LHCb Software Environment

The LHCb software environment is comprised of different program environments suited to perform their individual
purpose. In line with current approaches on software design the LHCb software contains several framework layers
each providing a basic functionality for its designed purpose.

The basic framework is called Gaudi and is shared with the ATLAS experiment and provides elemental functionality
for reading data, booking histograms and tuples, and provides a lot of mathematical operations and objects such as
matrix multiplication or four-vectors. The latter are generally based on the CERN ROOT software package, which is
heavily used in the LHCb software.

All other LHCb software applications are based on Gaudi, the most widely used are Gauss, implementing the
simulation of specific decay modes, Brunel, implementing the basic reconstruction of tracks and vertices, Moore,
implementing the trigger, and DaVinci implementing the reconstruction and analysis of reconstructed particles.

The raw data passing the L0 trigger stage are analysed by Brunel and Moore in order to decide whether the
events pass the software stage of the trigger. Afterwards DaVinci generates lists of reconstructed particles. Each
element in these lists contains a track together with PID information to form a particle candidate. Additional
DaVinci algorithms then use these lists to reconstruct unstable composite particles such as the Λ baryons and
later the B mesons.

Due to the large amount of data collected with the LHCb detector the whole reconstructed data is not accessible
for the common LHCb user. Instead a preselection is run on dedicated computing farms. The working groups
provide a set of algorithms containing the reconstruction of interesting decays and certain selection criteria designed
to limit the necessary computing and storage resources. This process is called stripping and each individual
preselection algorithms is called a stripping line.

Depending on the analysis, two different data formats are available. In case the analyst needs information on the
whole event the DST format is chosen, in which each event is completely stored including all charged particles and
vertices. Examples are analyses which need to tag the flavour of the individual b hadron. The more common case
is, that the analyst is only interested in the particles contained in the decay chain listed in the stripping line.
In this case the data are stored in µDST files. Here, only the particles contained in the decay and the corresponding
vertices are stored.

Since µDST files use less amount of storage space compared to the DST files, the users are discouraged to use DST
files. In general, stripping lines implementing DST files are have to meet narrow bandwidth requirements
usually limiting the available statistics due to the tight preselection necessary.

The B0
(s) → Λph+ decays can be tagged by their decay products, therefore, the information from the remain-

ing event is not needed, therefor, the StrippingLb2V0hhLLLine and StrippingLb2V0hhDDLine, see
sec. 3.1.2, use the µDST format.

Afterwards, additional DaVinci algorithms are used to refine the preselection, improve the vertex fit and substitute
particle hypotheses. The refinement of the event selection is done via multivariate analysis (MVA) techniques using
the TMVA package of ROOT. The selected candidates are written into RooDataSets, which is a tuple based format
of the RooFit package of ROOT. These are used to plot variables such as the invariant Λph mass and finally to
extract the number of signal decays by means of fits.

2.7 LHCb Recorded and Simulated Data

This analysis makes use of the combined 2011 and 2012 data samples comprising of an integrated luminosity of
L = 3 fb−1 taken at

√
s = 7 TeV and

√
8 TeV, respectively. The data taken in 2011 of about L = 1 fb−1 is not

further split into individual runs, as no major changes were implemented during the year. The recorded data have
been restripped using the Reco14 version of the reconstruction software also employed in the 2012 data set
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including several small changes compared to the original reconstruction. In contrast the technical stop in June 2012
saw several changes to the trigger configuration increasing the V 0 reconstruction efficiency. Therefore, the 2012
data sample is split in two, a pre-June sample (2012a) and a post-June sample (2012b). The luminosities for the two
2012 sample are

L(2012a) = 0.641 fb−1

L(2012b) = 1.359 fb−1 ,
(2.4)

and this split will be used when the efficiencies for the different 2012 samples are combined. In the final fit the data
is not split into two different samples as all effects are accounted for beforehand.

Since it is often necessary to study the behaviour of signal events without background contributions, having
simulated events is very important. The events are generated using Monte Carlo (MC) methods [37]. The event
generation is a three step process. The first step includes the simulation of the primary pp interaction. This step
is done by Pythia8 [38] with a dedicated LHCb configuration [39]. The most recent version contains the most
recent updates on the parton distribution function of the proton, Pythia simulates the parton-parton interactions in
which the b quarks are produced and hadronise into the different b hadrons. As a result Pythia is responsible for
the generation of the underlying event as well as well the kinematic distribution if the b hadrons. The second is the
simulation actual b hadron decay performed by EvtGen [40]. Dedicated decay files allow the analyst to configure
decays into almost any final state include intermediate particles. A global EvtGen data base allows for generic
decays to occur as well. In addition, EvtGen allows using different decay models. For example, the Dalitz plot
for D0 → K0

Sπ
+π− is included allowing for a realistic generation of this D0 decay. The most general option is to

use a constant matrix element. This model is called phase space and it is used in this analysis. As an example the
Dalitz plot for phase space simulated events of B0 → Λpπ+ is shown in Fig. 2.16. Additional radiative processes
are simulated by PHOTOS [41].
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Figure 2.16: Dalitz plot for the B0 → Λpπ+ decay mode assuming a constant matrix element across the Dalitz plane before the
application of the DecProdCut.

The third and final step includes the detector simulation based on a dedicated configuration [42] of the Geant4
detector simulation tool kit [43]. Due to disk space limitation, only decays, whose daughters are located with
the active detector volume are saved. This option is called DecProdCut and all analysts are encouraged to use
it. Roughly four out of five events are discarded. These has several implications for the analyst, first he has to
correct for the number of discarded events when calculating the overall efficiencies. This loss of events is referred
as generator efficiency. The second effect is, that despite having the events generated flat across the Dalitz plot,
the Dalitz plot for the generated events already includes these geometric acceptances. There are several ways to
account for these effects. The method chosen for this analysis is to calculate the initial number of events before the
DecProdCut and constructing the initially generated Dalitz plot by hand.
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In general, there are three relevant official MC sample available. For given decay file 2011, 2012a, and 2012b MC
data set can be generated each simulating a trigger condition that fit closely to the average conditions in each run.
Usually having 2011 and 2012b samples is sufficient for analyses without V 0 particles but due to the changes during
the technical stop in June 2012 simulated samples are available using the conditions before and after June 2012,
referred to as 2012a and 2012b samples.

2.7.1 Differences between Recorded Data and Simulated Data

The simulation of both the physics taking place at a centre of mass energy of
√

8 TeV and the detector response for
up to two hundred tracks is challenging and cannot be expected to match the data perfectly.

Beginning with the aspect of event generation, compared to an e+e− machine operating at lower energies, the
environment on a pp machine is quite different. The cross section for e+e− into a pair of fermions can be calculated
within Quantum Electrodynamics down to the angular distributions. The following hadronisation into b and c
hadrons is also well known. The same is true for the average multiplicity in typical events. This allows the simulated
events to match the physical distributions quite well and differences between the recorded and simulated data are
usually second order effects. At the LHC the picture is different: the initial state is not a pair of point like fermion
interacting at an energy scale, where only one process is dominant, but rather the interaction between two hadrons
comprised not only of three valence quarks each but an infinite number of gluon and virtual qq pairs. The energy
regime between the interactions also covers a wide range, collisions between valence quarks usually have a large
centre of mass energy, whereas collision between sea quarks or gluons typically cover a wide range of energies
from a few GeV up to 100 GeV or from the non-perturbative QCD up to scales that allow perturbative calculations.
It is very challenging to cover both ranges sufficiently well. As a result, the pT and η distributions of the produced
hadron do not fully match the data and have to be modified. The spectra of B0 and B0

s mesons are modelled quite
well, however, for Λ0

b baryons the distributions are not well matched. These problems propagate into other related
variables and require modifications to the simulated samples. In addition to the properties of individual particles,
the overall events is not matched well to the data. The simulation in general underestimates the number of tracks
per events which is related to the limited knowledge of the small angle QCD scattering that dominate the LHCb
environment. This has far reaching consequences, the most relevant for this analysis is an overestimation of the
PID performance in the simulated data. The more tracks pass through the RICH detectors, the more difficult it is
to match the Cherenkov rings to each track. This has an impact on the trigger as well. It is not possible to select
any trigger in data and be sure the simulation predicts the correct trigger efficiencies. It is common practise to only
apply the trigger to the tracks from the signal decay at hand.

Another aspect is the detector simulation itself. Basically, the simulated detector is the ideal LHCb detector, whereas
the real detector has deficiencies, that need to be addressed within the simulation as well to have a reliable prediction.
An example would be the absolute momentum scale, due to the misalignment of the tracking detectors and an
incorrect gauge of the magnetic field the absolute momentum scale is incorrect in both data and the simulation. This
is a major source for systematic uncertainties for absolute mass measurements. Unfortunately, the scales between
the data and the simulation are also different from one another requiring the analyst to introduce a global shift
parameter to their fits if they cannot establish the signal shapes in data directly. The simulation often overestimates
the invariant mass resolution as well, again this can be mitigated in case the statistics are large enough, if not a
systematic uncertainty on the incorrect shape predicted by the simulation needs to be applied.

Combining these flaws many analysis rely on a high statistic calibration channel, which can be used to train their
selection and determine the signal shape. There are also many data driven methods to calculate the PID efficiencies
using large control samples are use data tables to determine the trigger rates.

2.7.2 Available Simulated Data Sets and Their Relative Normalisation

In order to conclude the section on simulated events, the simulated samples used in this analysis are listed. These are
used to perform four main tasks of the analysis: to determine the relative efficiencies between the B0

(s) → Λph+
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Table 2.1: Scaling factors for the simulated datasets; each mode is scaled according to the number of generated B0→ Λpπ+ and
B0
s→ ΛpK+ events, to the production ratio relative to B0→ Λpπ+ and B0

s→ ΛpK+, and finally to the different branching
fraction. Decays marked with (∗) indicate that the branching fraction is not known and a value guessed from a similar decay was
used. The different PID efficiencies between data and simulations is accounted for as well.

Mode Total number of MC events Prod. B PID corr.
2011 2012a 2012b fract. (×10−6) π K

B0→ Λpπ+ 4076761 2070550 8012691 fd 3.14 0.978 1.3

B0
s→ ΛpK+ 4036546 1022711 8006536 fs 3.0(∗) 1.03 0.998

B0→ Σ0pπ+ 779748 1092787 1522745 fd 3.0(∗) 0.98 1.2

B0
s→ Σ0pK+ 1555852 1015741 3029707 fs 3.0(∗) 1.02 1.0

B0→ Λpρ+ 1549166 – 3023124 fd 3.0(∗) 0.96 1.52

B0
s→ ΛpK∗+ 1551639 – 3077618 fs 3.0(∗) 1.05 0.998

Λ0
b→ Λpp 506500 – 2057993 fΛ 0.05(∗) 1.56 0.93

signal modes and the B0
(s) → Σ0ph+ background modes. The relative efficiencies are used in the final fit to allow

using physical constraints to stabilise the global fit and reduce the number of free parameters. Furthermore, the
simulated data takes the role as the signal sample source in the multivariate selection during the training process.
The fit function are also based on the predicted line shapes from the Monte Carlo simulations. These choices are
based on the lack of a high statistic reference decay mode and the differences between the data and MC simulation
are investigated and assigned as systematic uncertainties.

Finally, the simulated samples are investigated to estimate the contributions of the various charmless background
modes in comparison to the signal modes. In order to compare the different contributions, each mode has to be
scaled according to number of generated events, the relative branching fractions, and the hadronisation fractions.
Due to the difference between the PID selection efficiency for simulated and recorded data an additional correction
factor is applied to correct for that difference.

Each mode was generated with a different number of candidates, so, as a first step, the number of generated events
is scaled to the number of generated B0 → Λpπ+ and B0

s → ΛpK+ events, respectively.

Since the background modes contain not just B0 modes but B0
s and Λ0

b modes as well, it is necessary to include
the different fragmentation probabilities in the scale factor. Again this is done with respect to the corresponding
B0

(s) → Λph+ mode. The values for the hadronisation probabilities of B0 mesons, fd, B0
s mesons, fs, and

Λ0
b baryons, fΛ, have been measured by the LHCb experiment [44, 45] and a detailed listing can be found in

Appendix D.

Finally, the relative branching fractions are included in the scale factor. OnlyB0 → Λpπ+ has been measured before
by BABAR [25] and Belle [22, 24]. There is a limit B0→ Σ0pπ+ set by the Belle experiment [22], the latter being
consistent with the assumption of B(B0→ Σ0pπ+) = B(B0 → Λpπ+). There are predictions for B0→ Σ0pπ+

[46] and Λ0
b → Λpp [47]. In case of B0 → Σ0pπ+ the limit will be used to estimate the background and for

Λ0
b→ Λpp the theoretical predictions will be used. For all other modes assumptions based on the other known modes

are made. Altough B0 → Λpπ+ and B0
s → ΛpK+ having different contributing diagrams the branching fraction

should be at the same order of magnitude, so it is assumed that B(B0 → Λpπ+) = B(B0
s → ΛpK+). There is no

differentiation made between B0
s → ΛpK+ and B0

s → ΛpK− since only the sum is measured here. Assessing the
branching fraction for B0

s→ Σ0pK+ the following assumption is made, B(B0→ Σ0pπ+) = B(B0
s→ Σ0pK+).

The resulting scale factors are listed in Tab. 2.1 and applied to the simulated datasets. The overall size is also listed
and split into the three main data periods, 2011, 2012a, ans 2012b. Dedicated 2012a MC samples have been only
generated for the relevant samples used in the fit in order to extract their efficiencies.



Chapter 3

Analysis ofB0
(s)→ Λph+

As mentioned in the detector chapter only stable particles such as pions, kaons, protons, electrons, muons, and
photons can be measured in the LHCb detector1. The Λ baryons as intermediate hadrons2, however, need to be
reconstructed. In the context of experimental particle physics an intermediate particle is reconstructed by combining
several charged tracks searching for a common origin, i.e. the decaying mother particle, and calculate the invariant
mass of the combination. Each combination is referred to as a candidate. In case of the Λ baryons, a Λ (Λ) candidate
is any combination of two oppositely charged tracks, one being associated with a proton (antiproton) the other with
a π− (π+) meson. Furthermore, due to the statistical nature of the approach, it is impossible to distinguish a true
Λ candidate from a random pπ− combination. By making use of the properties of the Λ baryon the probability
of finding a true Λ baryon compared to a random combination can be increased. As a next step, all Λ candidates
found in an event are combined with two additional tracks of opposite charge, again one should be consistent
with the p hypothesis, the other either with a pion or a kaon. Most combinations are background candidates, i.e.
either random combinations referred to as combinatorial background or different decays incorrectly associated with
B0

(s) → Λph+ decays3.

Both the Λ and B reconstruction is performed during the stripping (cf. sec. 2.6). The selection applied during
the stripping is not sufficient to isolate B0

(s) → Λph+ decays from the remaining combinatorial background
candidates. The following chapter describes the selection criteria necessary to isolate the B0

(s) → Λph+ candidates
from the remaining background. The first step includes the selection of the event triggers followed the application
of a DecayTreeFit (cf. sec. 2.3.3) and additional cuts to prepare the data samples for the multivariate analysis
designed to maximise the separation between signal and background. After applying the selection the number of B
signal candidates in each event is checked to exclude multiple candidates.

The selection is followed by studies of sources of non-combinatorial background and afterwards the methods of
extracting the number of signal events and the T-Asymmetry are described.

1In the context of this document stable particles are particles, that do not decay within the LHCb detector.
2Throughout this document the charge conjugated decay is always included if not stated otherwise.
3Throughout this document the notation B0

s → ΛpK+ always refers to the sum of the decays B0
s → ΛpK+ and B0

s → ΛpK− and their
charge conjugated decays if not stated otherwise.
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3.1 Event Selection

This analysis investigates the data collected by the LHCb experiment during the years 2011 and 2012. Due to the
different centre-of-mass energies and detector conditions during these years the data is split per year. An additional
split is necessary due to the Λ baryons. Due to the long life-time of the Λ baryon, some Λ baryons decay within the
VELO, others outside. According to the track conventions the first sample is referred to as long-long (LL) sample
and the latter as down-down (DD) sample.

A further split of the 2012 data sample is investigated due to significant changes to the trigger implementation
during the June technical stop in view of a significant increase of the performance for V 0 particles such as the Λ
baryon. These pre- and post-June trigger configurations will hereafter be referred to as 2012a and 2012b. Overall
the data is hence split in three sets of conditions as far as the trigger is concerned: 2011, 2012a and 2012b.

3.1.1 Trigger selection

Instead of using all available trigger lines it is useful to select trigger lines that are sensitive to the decay studied.
This is useful to suppress background but more importantly it increases the liability of the available Monte Carlo
generated signal events. In case of selecting all available trigger lines it would be necessary to rely on the assumption,
that the generated event has the exact same properties. As this is not the case, it is useful to use trigger lines that
resemble the decay independent of the surrounding event.

Table 3.1: Trigger lines used to select events, the Hlt2Topo{2,3,4}BodySimple TOS trigger lines are used in 2011 data
only.

Trigger level Requirements

L0 L0Hadron TOS or L0Global TIS

HLT1 Hlt1TrackAllL0 TOS

HLT2 Hlt2Topo2BodyBBDT TOS or
Hlt2Topo3BodyBBDT TOS or
Hlt2Topo4BodyBBDT TOS or

Hlt2Topo2BodySimple TOS or
Hlt2Topo3BodySimple TOS or
Hlt2Topo4BodySimple TOS

In Table 3.1, the trigger lines used to select the events are listed. It is required that either one of the decay
products fired the L0 hadron trigger (Trigger On Signal) or that the event was triggered independently of any of the
decay products (Trigger Independent of Signal). The Hlt1TrackAllL0 selects tracks based on their transverse
momenta and displacement from the primary vertex. The topological HLT2 triggers combine several tracks into a
composite particle and select the events upon the invariant mass of the combination and the vertex displacement
from the primary vertex. In 2011 the cut based trigger lines Hlt2TopoNBodySimple were used as backup for
an algorithm based on a multi-variate analysis (MVA). This was only used in 2011 and was removed during the
2012 data taking period. It is required that one of these lines was fired by one of the decay products. Usually the
proton and the light hadron in the decay B0

(s) → Λph+ successfully trigger the Hlt2Topo2Body line since the
Λ decays further downstream, but short lived Λ baryons can also trigger the three- and four-body lines similar to
B decays containing charmed particles. A summary of the performance of each trigger stage on the B0 → Λpπ+

mode can be found in Appendix A.

The influence of the 2012a and 2012b trigger configurations on the input variables is shown in Appendix C and
found to be insignificant and it was decided to use the same selection for the whole 2012 data-set. This decision
is also corroborated by the otherwise limited statistics in the size of the training and test samples for signal and



3.1. Event Selection 37

background. The same argument applies to the common strategy at LHCb to split the data further to train two
independent selectors for each data period.

3.1.2 Stripping Selection

As mentioned before, the LHCb data is usually only available to the analyst in form of stripped µDST files. The line
chosen for this analysis is the StrippingLb2V0hh which reconstructs the decay Λb → Λπ+π− allowing for a
broad window of the invariant mass of the Λπ+π− system. This stripping line was initially developed by
the LHCb group at the University of Warwick [48]. When substituting a charged pion for a proton and correcting
for the different life time of the B0

(s) it is possible to search for B0
(s) → Λph+ using this stripping line. In Table

3.2 the list of stripping lines used as well as the selected stripping cycle is shown. The number 20 denotes the
release cycle, p2 shows, that it was the second incremental restripping, i.e. adding of additional lines to the original
stripping release, and r1 marks the 2011 data and r0 the 2012 dataset. Again data samples are split according to
the Λ being reconstructed in the VELO, i.e. its daughters are long-tracks, and behind the VELO, i.e. its daughters
are downstream-tracks.

Table 3.2: Stripping lines used in this analysis

Data period Stripping release Stripping lines

2011 20r1p2 StrippingLb2V0hhLLLine,
StrippingLb2V0hhDDLine2012 20r0p2

Detailed information on the selection in the stripping is summarised in Tables 3.3 and 3.4.

The LHCb stripping lines usually consist of three different selection stages. The first stage refines the
selection on the predefined Λ particles. The second and third step are part of the B0 reconstruction, the first placing
restrictions on the simple combination of the input variables and the latter on the fitted b hadron candidate.

The StdLooseLambdaLL list is used as input for the StrippingLb2V0hhLLLine and the selection criteria
are included in Tab. 3.3. The χ2(IP) is the squared ratio between the impact parameter (IP) divided by its error
and χ2(IP) > 9 means, that each daughter is displaced from the primary vertex (PV) by 3σ. Similarly the distance
between the Λ and its associated PV is required to be larger than

√
50σ.

The combination selection places restrictions on the individual transverse momenta as well as the sum of the absolute
value of the daughter transverse momenta. Finally only Λππ combinations within a given mass window are selected
and, in order to speed up the vertex fit, the χ2 of the distance of closest approach (DOCA) between any combination
of Λ0

b daughters with respect to each other should be χ2(DOCA) < 5.

The mother selection concludes with the selection on the fitted Λ0
b candidate such as the χ2 of the vertex fit and the

transverse momentum of the Λ0
b . In addition, the angle between the Λ0

b momentum vector and the vector connecting
the PV and the Λ0

b decay vertex, called θDIRA (cf. direction angle), is required to be close to zero and the IP of the
Λ0
b should be consistent with originating from a PV and its distance to any PV should be consistent with a displaced

vertex expected from a b hadron decay.

The StrippingLb2V0hhDDLine configuration for the DD Λ candidates is similar to the
StrippingLb2V0hhLLLine. There are additional requirements for the Λ candidates and an addi-
tional selection on the Λππ combinations in the form, that the daughter with the largest transverse momentum
should have a minimal IP of IP > 0.05 mm. In order to reduce the bandwidth of the stripping line the
momentum cuts are larger as well compared to the LL stripping.
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Table 3.3: Configuration of the StrippingLb2V0hhLLLine stripping line.

Λ filter Λ daughter track momentum p > 2000 MeV/c2

Daughter χ2(IP) wrt any PV χ2(IP) > 9
Mass difference wrt Λ mass |m(pπ)−m(Λ)| < 15 MeV/c2

Λ daughter track fit χ2/nDoF χ2(Trk)/nDoF < 3
χ2 of Λ vertex fit χ2(Λ) < 12
Λ-PV separation χ2 χ2(Λ− PVVD) > 50

Combination Charged daughter track fit χ2/nDoF χ2(Trk)/nDoF < 3
Sum over daughter pT

∑
Λ,π,π

pT > 3000 MeV/c

pT of at least two Λ0
b daughters pT > 800 MeV/c

pT of the combination four-vector pT > 1 GeV/c
Mass of the Λ0

b candidate m(Λππ) ∈ (4301, 6120) MeV/c2

χ2(DOCA) of any two daughters χ2(DOCA) < 5

Mother cut Λ0
b transverse momentum pT > 1500 MeV/c

χ2 of Λ0
b vertex fit χ2(Λ0

b) < 12
Cosine of the DIRA angle cos θDIRA > 0.995
Λ0
b IP χ2 wrt any PV χ2(IP) < 8

Λ0
b vertex distance d wrt any PV d > 1 mm

χ2 separation of Λ0
b vertex and PV χ2(Λ0

b − PVVD) > 50

Table 3.4: Configuration of the StrippingLb2V0hhDDLine stripping line.

Λ filter Λ daughter track momentum p > 2000 MeV/c2

Daughter χ2(IP) wrt any PV χ2(IP) > 4
Λ daughter track fit χ2/nDoF χ2(Trk)/nDoF < 3
Mass difference wrt Λ mass |m(pπ)−m(Λ)| < 20 MeV/c2

χ2 of Λ vertex fit χ2(Λ) < 12
Λ-PV separation χ2 χ2(Λ− PVVD > 50)
Λ flight distance wrt any PV r > 300 mm
Λ momentum p > 8000 MeV/c
χ2(DOCA) between daughters χ2(DOCA) < 25

Combination Charged daughter track fit χ2/nDoF χ2(Trk)/nDoF < 3

Sum over daughter pT

∑Λ,π,π
pT > 4200 MeV/c

pT of at least two Λ0
b daughters pT > 800 MeV/c

pT of the combination four-vector pT > 1 GeV/c
Mass of the Λ0

b candidate m(Λππ) ∈ (4301, 6120) MeV/c2

IP of the Λ0
b daughter with highest pT IP > 0.05 mm

χ2(DOCA) of any two daughters χ2(DOCA) < 5

Mother cut Λ0
b transverse momentum pT > 1500 MeV/c

χ2 of Λ vertex fit χ2(Λ) < 12
Cosine of the DIRA angle cos θDIRA > 0.995
Λ0
b IP χ2 wrt any PV χ2(IP) < 8

Λ0
b vertex distance d wrt any PV d > 1 mm

χ2 separation of Λ0
b vertex and PV χ2(Λ− PVVD) > 50
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3.1.3 Particle Substitution Procedure

The StrippingLb2V0hh stripping lines introduced in the previous section reconstruct the decay Λ0
b →

Λπ+π−. The incorrect hypothesis for the charged B daughters leads to a distorted invariant mass and needs to be
corrected. The Λ flavour is used to determine the B flavour, e.g. a B0 decays into a Λ baryon. Depending on the
B flavour either the π+ (B0) or the π− (B0) is the proton or antiproton, respectively, and the energy is calculated
using the p mass hypothesis instead of the π mass. Finally the decay is refitted with the B0 hypothesis. In case of
the B0

s → ΛpK+ decay, an additional substitution for the remaining pion is made. Fig. 3.1 illustrates the effect of
the particle substitution.
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Figure 3.1: Distribution of m(Λπ+π−) (left) using the π mass hypothesis and using the correct mass hypotheses (right) for the
B0 → Λpπ+ (black data points) and B0

s→ ΛpK+ (blue data points) modes. The data shown in both plots are simulated events
only.

3.1.4 Decay Tree Fitter

The stripped candidates are refitted with the Decay Tree Fitter (DTF) package, see sec. 2.3.3, in order to improve the
resolution and to calculate useful variables such as the B and Λ lifetimes. This refit is performed for each candidate
twice using the pion and kaon hypothesis, respectively. In addition, the Λ is constraint to its nominal mass [12].
This also improves the mass resolution. The resulting m(Λph) invariant mass is used later to determine the number
of signal candidates.

In a second DTF the B candidates are mass constrained to the B0
(s) meson mass [12]. Doing so leads to well defined

borders of the Dalitz plot, which will be of interest later on.

3.1.5 Pre-selection Cuts

In preparation for the MVA a loose preselection of the data is necessary. This rejects the most obvious background
events and restricts the input variables of the MVA to its signal region to maximise the performance of the MVA.
The following preselection is applied based on the signal distribution predicted by the simulation and a commonly
applied section criterion for the Ghost probability.

• Ghost probability (cf. sec. 2.3.1) of all charged final-state tracks, PGhost < 0.5,

• Loose proton PID pre-selection, ProbNNPIDp(p) > 0.05,

• The B vertex χ2 over its degree of freedom, χ2(DTF)/nDoF(DTF) < 5,
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• Logarithm of the significance of the Λ flight length r, log10 χ
2(r) > 0.75, i.e. χ2(r) ≈ 5.6,

• Distance of closest approach (DOCA) between the p and the bachelor (π+ or K+), r(p, h) < 0.15 mm,

• Direction angle of the B candidate, θDIRA < 0.04.

3.1.6 Multivariate Selection

Experiments in the field of particle physics are basically counting experiments with billions of repetitions. Therefore,
not only the processes studied but also the experimental environment is dominated by statistical processes.

In past experiments it was common practise to use cut-based analysis methods. In these, several key variables
were selected to distinguish between signal and background. The quality of this method depends on the variables
available. In the case of low separating power of the variables simply applying cuts in these variables does not lead
to a good signal-to-background ratio and it is useful to use multivariate methods. These take a given set of variables
and transform them into a new variable that can maximise the separation of signal and background.

3.1.6.1 Variable selection for the MVA Training

The final event selection is done with a multivariate analysis (MVA) using the algorithms provided by the TMVA
software package [49]. As method a multilayer perceptron (MLP) is chosen which is decribed in sec. 3.1.6.3.

Since the Dalitz plot is of interest as well in the analysis, it is necessary to choose variables that are insensitive to
the position in the Dalitz plot. Therefore, the focus is on topological variables. The following variables are selected
and explained below:

• The logarithm of the impact parameter (IP) calculated with respect to the associated primary vertex (PV),
log10 IP, for all particles,

• The sum over the χ2 of the IPs for the charged tracks,
∑
p,h

log10 χ
2(IP),

• The distance of closest approach (DOCA) between the two charged B daughters, r(p, h),

• The χ2/nDoF of the DecayTreeFit, χ2/nDoF(DTF),

• The fit probability of the DecayTreeFit calculated with ROOT: TMath :: Prob(χ2(DTF),ndof(DTF),

• B-mother kinematic variables pT and η, the transverse momentum and the pseudo-rapidity,

• The logarithm of the flight-significance, log10 χ
2(r),

• The logarithm of the lifetime, log10(cτ), of both the B and Λ candidates,

• θDIRA(B), the angle between the momentum vector and the vector connecting the associated PV with the
decay vertex,

• θDIRA(Λ), the angle between the momentum vector and the vector connecting the B decay vertex with the
decay vertex calculated in B rest frame,

• Angle between Λ momentum in the B rest-frame and the boost axis of the B, which is given by the B
momentum in the lab frame,

• Pointing variable defined as

P =

∑
Λph

p× sin θDIRA(B)

∑
Λph

p× sin θDIRA(B) +
∑
Λph

pT

. (3.1)
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The IPs of the daughter particles make use of the fact that the B meson is long lived and, therefore, the daughters
should have a non-zero IP compared to Λ, p, π candidates originating from the associated PV. The same argument is
true for using the flight-significance and the lifetime of the B meson and Λ baryon. Since all B daughters have a
non-zero IP, the sum of all three IPs should discriminate against random combinations of two particles from the B
decay and one particle with different origin. In addition to that, there is a correlation between the individual IPs
and the sum, which is different between signal and background candidates. Since the IP resolution for a neutral
composite particle is worse compared to charged tracks, only proton and pion are considered and used.

The DOCA is the minimal spacial distance between two tracks measured in the LHCb detector. Using the DOCA of
proton and pion allows to discriminate against random pπ− combinations. This variable is calculated before the
DecayTreeFit since this algorithms nullifies the effect of the DOCA variable.

Using both the χ2/nDoF and the fit probability allows to discriminate random pΛπ− combination from those
coming from a B meson. Tracks from different origins may be successfully fit to a common vertex, however, the fit
needs not to be good, hence its χ2 is worse compared to tracks actually having the same point of origin, i.e. the B
meson. This variable cannot distinguish between tracks from the B vertex and from a primary vertex.

The opening angle θDIRA discriminates against decays with additional particles since the sum of the daughter
momentum vectors does not point to the corresponding production vertex, i.e. the PV for the B candidate and the B
meson decay vertex for the Λ baryon. In order to improve the separation between signal and background θDIRA(Λ)
is calculated in the B meson rest frame using the Λ lifetime in the laboratory frame to construct the space-time
four-vector.

Both the B0 and the B0
s meson are spin 0 states. As a result the decay products are produced uniformly in the B

rest frame. The B momentum is very close to the z-axis, background Λ baryons are similarly produced with small
pT and are therefore close to the z-axis as well. When boosting into the B rest frame, background Λ baryons retain
their small angle compared to the boost axis, i.e. the B momentum, whereas signal Λ candidates have a uniform
distribution.

The pointing variable combines information on the direction of the B candidate in form of the θDIRA angle and the
daughter momenta. Random Λpπ combinations from the primary vertex have small opening angles as well but the
sum of their transverse momenta is small compared to the decay products of a heavy particle such as a B meson.
This again allows for a separation between these two kinds of events and yield additional information in form of the
correlation to the θDIRA angle. This variable has been used by several LHCb analyses before such as the analysis of
B+→ pph+ [50].

Appendix B shows the distributions of these variable for signal and background for all data periods and data samples.
It was decided to use the same MVA classifier for B0 → Λpπ+ and B0

s → ΛpK+. This choice helps to minimise
the systematic uncertainty later on. The correlations among the input variables for signal and background in case of
the 2012 LL training can be found in Fig. 3.2. The remaining correlation matrices can be found in Appendix E.

3.1.6.2 Comparison of the Variable Between the 2012 Trigger Periods

As mentioned in Sec. 3.1, there were significant changes in the trigger configuration during the technical stop in
June 2012. In order to investigate this effect two independent MC samples are studied, produced using the pre-June
conditions and the post-June conditions, respectively. Compared to the expected statistical uncertainties these
differences are negligible. In Fig. 3.6 the resulting MVA selectors for LL and DD for 2012a and 2012b are shown,
respectively. The distribution of the input variables are shown in Appendix C. The different efficiencies of the two
trigger periods will be addressed (cf. Sec. 3.3).

3.1.6.3 Training Configuration

Any attempt of separating signal and background needs a sample consisting of signal candidates and a sample
of background candidates. There are different opinions on these samples. Monte-Carlo generated signal events
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Figure 3.2: Correlations among the MVA input variables for the 2012 LL signal (top) and background (bottom) sample.

are usually used as signal sample and dedicated simulated background events are often used as well. This choice
has certain advantages such as exact knowledge and control over the composition of background modes, and it
is possible to check very specific sources of background. But this whole procedure depends on the quality of the
simulation both in generating the event and modelling the detector response. The B factories BABAR and Belle could
rely heavily on simulation both for signal and background as the e+e− interaction and hadronisation is quite well
understood. At the LHC with its pp collisions and the following hadronisation of the decay particles the situation is
different. Since it is very difficult to model the whole event, simulated data is only available for the signal sample.

A different approach is to use recorded data for both signal and background. If a similar decay with large
statistics is available, it can be used to emulate the signal decay. It is possible to select sideband data as source
of background assuming the combinatorial background behaves similar in the signal region. Due to the lack of a
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control channel with large statistics a mixed approach was chosen for this analysis. Simulated events are chosen
as signal and the right sideband of the invariant Λpπ-mass as background sample. The right sideband is defined
as m(Λpπ+) ∈ [5400, 5600] MeV/c2. The left sideband should not be used since decays with additional pions
are located there, a more detailed descriptions on these modes will be given in Section 3.2.3. These are very
similar to the B0

(s) → Λph+ decays and the purpose of the training is not to discriminate against these but against
combinatorial background.

After selecting the signal and background sample the trigger, Λ, PID, and preselection criteria are applied and the
refined samples are put into TMVA and the training is commenced. The performance of several different classifier
configurations was tested and the following was found to have superior performance: a Multilayer Perceptron with

• one hidden layer with N + 1 neurons, N being the number of input variables,

• uniformly transformed variables,

• the tanh as neuron-activation function,

• product of output neuron and its weights summing over all output neurons as synapse function.

Figure 3.3: Exemplary network layout similar to the
one used in the analysis [51].

The Multilayer Perceptron (MLP) is a special case of an artificial
neural network (ANN). An ANN is basically a collection of inter-
connected neurons with each neuron producing a response due
to a given input dataset, cf. Fig. 3.3. Applying an external signal
to the input neurons puts the neural network into a defined state,
which can be measured by the response of the output neurons.
So in general, a neural network maps the space of input variables
(x1, . . . , xk) either to a one dimensional or multidimensional
space. The first case is basically a signal-versus-background
problem, the idea is to have a single variable with which signal
and background can be separated. The latter case maps the input
variables (x1, . . . , xk) to output variables (y1, . . . , ym). These
can then be used as additional layers in the neural network. The
mapping between input and output variables can be non-linear
in case one ore more neurons have a non-linear response to the
input variables.

In principle a neural network with k neurons can have k2 directional connections to other neurons. This leads to
very complex structures. Alternatively the neurons can be organised into layers and only allowing connection from
a given layer to the next. This type of neural network is called a forward feeding Multilayer Perceptron. The initial
layer is represented by the input variables, followed by an arbitrary number of layers, called hidden layers, and
the final layer, the output layer, contains only one neuron, the output variable, which is used to separate signal and
background (see. fig. 3.3).

The configuration chosen is very similar to what is shown in fig. 3.3, the number if neuron is also N + 1, but the
number of input variables in this case is twenty. Furthermore, the MLP performance is improved by a transformation
of the input variables into uniform distributions. In fig. 3.4 the transformation for the Λ impact parameter log IP(Λ)
is illustrated. The transformation improves the performance by about 5%.

The neuron response function ρ maps the neuron input to the neuron output. It can often be factorised into a synapse
function κ responsible for propagating weights from one layer to the next and a neuron activation function α such
that ρ = α ◦ κ. The following definitions are chosen for α and κ

α : xi 7→
exi − e−xi
exi + e−xi

(3.2)

κ :
(
y(l)

1 . . . . , y(l)
n |w(l)

0,j . . . . , y
(l)
n,j

)
7→ w(l)

0,j +

n∑

i=1

y(l)
i w

(l)
i,j , (3.3)
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Figure 3.4: Comparison between the log IP(Λ) before (left )and after (right) the uniform transformation. The blue histogram
represent the signal sample and the red histogram the background sample.

with xi, . . . , xk being the input variables, y(l)
1 . . . . , y(l)

n the neurons of the lth layer and w(l)
i,j the weights for the

connection from neuron y(l)
i to the neuron y(l+1)

j . The output of the MLP within this configuration is calculated as
follows

yMLP =

n∑

j=1

y(2)
j w(2)

j,1 =

n∑

j=1

tanh

(
k∑

i=1

xiw
(2)
j,1

)
w(2)
j,1 , (3.4)

where k and n are the number of neurons in the input and hidden layer, respectively. The TMVA package then
generates random samples from the input data to determine the weights for maximum signal-to-background
separation.

Once the training is finished the performance of the MLP is evaluated. A useful tool for that is the Receiver
Operating Characteristic (ROC) curve. This graphical plot illustrates the performance of a binary
classification system by plotting the true positive rate, i.e selecting a B0

(s) → Λph+ candidate, against the true
negative rate, i.e reject a background candidate. A perfect training would lead to a ROC curve, that is 1 for all true
positive rates, which means for any efficiency to select a B0

(s) → Λph+ candidate it would reject any background
candidate. In any realistic application the background rejection decreases with an increased signal efficiency.

A general problem of any attempt to separate signal and background is the influence of statistical fluctuations. In
case of low statistics in either or both the signal and background sample it is possible to select candidates based on
statistical fluctuations in the input variables. In cut based analyses these effects are easier to spot than in dedicated
high dimensional MVA methods. Depending in the configuration, 1000 signal candidates can be enough for a
successful training, but in other configurations it might be completely inadequate. In order to address this issue an
additional statistically independent sample of signal and background candidates is used to evaluate this effect. This
sample is labeled the test sample. The classifier is applied to this dataset and is compared to the result obtained for
the training sample. The two distributions should be identical. A KOLMOGOROV-SMIRNOV test is applied to check
the equality by comparing the empirical distribution function of the test sample and the cumulative distribution
function of the training distribution. A non-zero value indicates good agreement.

In Fig. 3.5 the ROC curve and the training output is shown for the 2011 and 2012 data sets for both LL and DD.
The result of the Kolmogorov-Smirnov test is shown as well. Finally the effect of the 2012 trigger configuration is
investigated. In fig. 3.6 the application of the MLP on the 2012a and 2012b signal samples is shown. The effect is
small compared to the statistical uncertainty expected.
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Figure 3.5: ROC curve (left ) and comparison between the test and training sample (right) obtained for, from top to bottom, the
2011 LL, 2011 DD, 2012 LL, and 2012 DD data samples.
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Figure 3.6: Comparison between the MVA-response for the two 2012 periods for LL (left) and the DD (right) sample. The red
(black) histogram represent the pre-(post-)June trigger conditions.

3.1.6.4 MVA Selection Optimisation

In order to determine the best selection criteria on the MVA classifiers a Figure of Merit (FoM) needs to be
introduced. Naively, one could use the ROC curve and calculate the optimal ratio between the signal and background
contributions. A problem with that arises once the the number of signal and backgrounds candidates are different.
Usually, the number of background candidates far exceeds the number of signal candidates, it is, therefore, useful to
use the signal significance as a Figure of Merit,

FoM = S =
εS√
εS +B

, (3.5)

where S and B are the number of signal and background candidates after a certain selection, respectively. Unfor-
tunately, neither S nor B are usually accessible. Here, the FoM is maximised with respect to a loose selection of
0.45 chosen together with a proton neural net PID selection of NNPID(p) > 0.15. In a simple fit model to data
of a sum of an Novosibirsk (cf. Eq. (3.39)) and an exponential the number of B0 → Λpπ+ signal events SMVA

0.45 is
determined by the normalisation of the Novosibirsk. Using the information from the simulated B0 → Λpπ+ data
sets, the selection efficiency εMVA

0.45 can be determined and the initial number of events SMVA
0 is calculated as follows

SMVA
0.45 = εMVA

0.45 S
MVA
0 . (3.6)

Therefore, the number of events after any MVA selection can be calculated using S0 and the corresponding efficiency
from the simulation. The number of background events, BMVA, is estimated from the right-hand sideband data,
fitting with an exponential function, and extrapolating into the signal region. The overall Figure of Merit is thus
given by

FoM =
εMVASMVA

0√
εMVASMVA

0 +BMVA
. (3.7)

The m(Λpπ+) invariant mass distributions used to determine S0 as well as the fits are shown in Fig. 3.7 for the 2011
and 2012 data sets, respectively and Figure 3.8 presents the distributions of the FoM for all four selectors for the
2011 and 2012 LL and DD samples. The optimised selection criteria are indicated by the vertical lines corresponding
to

MLP− value11,LL > 0.93 MLP− value12,LL > 0.85 (3.8)
MLP− value11,DD > 0.9 MLP− value12,DD > 0.8 . (3.9)
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Figure 3.7: Distribution of the invariant m(Λpπ) mass for the LL (left) and DD (right) sample for 2011 (top) and 2012 (bottom)
after applying a loose MLP and proton PID selection as indicated in the text. The distributions are fitted with a Novosibirsk
function and an exponential function. The signal and background yields are listed in the plots.
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Figure 3.8: Figure of merit distributions for the LL (left) and DD selectors for 2011 (top) and 2012 (bottom). The selection cuts
are indicated in the figures by the vertical lines.
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Figure 3.9: Distributions of the signal significance for a given proton PID selection. The left (right) plot shows the LL (DD)
sample selection significance.

3.1.7 Particle Identification

A PID selection is applied to the bachelor proton and the bachelor meson. No PID cut is applied to the proton
from the Λ; indeed, as discussed in Sec. 3.2.4, no contamination from misidentified K0

S mesons is observed. The
Neural Net variables are used for the proton whereas the DLLKπ likelihood is used for the bachelor meson (cf.
Sec. 2.4.3).

The protons are required to have
NNPID(p) > 0.3 . (3.10)

This selection is based on a study of the significance of the given selection. As figure of merit

FoM =
εPID/MVASMVA√

εPID/MVASMVA +BPID

(3.11)

is again chosen, where εPID/MVA is now the signal selection efficiency with respect to events passing the selection
chain up to the MVA stage for a given proton PID selection based on the PIDCalib package [52], and SMVA is
the number of events expected for the MVA selection established in the previous section corrected for the PID
efficiency for the loose proton selection. The number of background events is again determined by a exponential fit
to the upper sideband and extrapolated into the signal region. The distribution of the selection significance is shown
separately for the LL and DD samples in Fig. 3.9. The (common) PID selection is chosen at the beginning of the
large plateau of the significances.

In the fitting stage of the analysis the PID selection efficiency is used to determine the individual cross-feeds of
B0

(s) → Λph+. In order to have statistically independent samples the samples are splitted according to a kaon PID
of

DLLKπ = 1 . (3.12)

Bachelor mesons with DLLKπ ≤ 1 are put into the Λpπ+ sample and mesons with DLLKπ > 1 into the ΛpK+

sample. This selection is chosen to allow both the Λpπ+ and ΛpK+ samples to have sufficient statistics.

3.1.8 Multiple Candidates

After applying the selection criteria introduced above, the remaining number of candidates per event is determined,
and about 5% of all selected events contain more than one candidate. Multiple candidates per event can bias the
efficiency determination due to the different track multiplicities between recorded and simulated data. A candidate
is chosen (pseudo-)randomly among all candidates in an event, thereby avoiding potential biases. Each DaVinci
subjob is configured using an independent seed in order to get reproducible results.
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3.2 Background Studies

In the previous section the separation between signal and combinatorial background was described. As mentioned
before, there are other sources of background especially related B0

(s) meson decays. These processes have similar
decay topology and are not removed from the dataset by applying the selections described in sec. 3.1.

The non-combinatorial background is categorised into two types, the first being background via charm particles, in
this case a Λ+

c → Λh+, h = π,K, and the second being other related charmless baryonic B0
(s) decays. The first

can be removed by vetoing the invariant Λπ+ mass. This is discussed in Sec. 3.2.1. The characterisation of the
remaining charmless backgrounds and of baryonic B-decays in general is challenging and complicated due to the
limited knowledge of the various possible background modes. In this particular case, only the branching fraction of
the mode B0→ Λpπ+ is known, the Belle collaboration having determined upper limits for “cousin modes”, see
discussion in Sec. 2.7.2. Cousin modes are decays which have similar characteristics. The first kind are decays of
B0
s mesons into a kaon instead of the pion due to the s being the spectator quark rather than than the d. The decay is

B0
s → ΛpK+ and is interesting by itself. Another source of background are decays with excited mesons or baryons

such as B0 → Λpρ+ with ρ+ → π+π0. These decays have very similar properties as the signal sample and are not
completely suppressed by the selection and appear as broad contributions at smaller invariant masses. In the case of
Λ baryon there is the special case of Σ0 → Λγ. The mass difference between Σ0 and Λ is small [12],

∆m = m(Σ0)−m(Λ) = (76.959± 0.002) MeV/c2 , (3.13)

and the branching fraction is B(Σ0 → Λγ) = 100% [12].

Therefore, modes such as B0
(s) → Σ0ph+ peak very close to the signal decays. In this section, the relevant

background modes are investigated and compared to the B0
(s) → Λph+ modes by discussing their influence on

both the B0→ Λpπ+ and B0
s→ ΛpK+ modes. As for the recorded data each simulated sample is split into a pion

and a kaon sample according to DLLKπ = 1. The selection discussed in the previous section is applied to all plots
if not stated otherwise and the histograms shows are scaled according to the factors determined in Sec. 2.7.2.

3.2.1 Charm Veto Selection

m(Λπ+)(MeV/c2)
2200 2220 2240 2260 2280 2300 2320 2340 2360 2380 2400

E
v
en
ts
/(
4
M
eV
/c

2
)

0

5

10

15

20

25

30

35

40
µ = 2284.84± 0.84

σ = 6.23± 0.91

NBkg = 124± 13

NSignal = 91± 11

a = −0.00427± 0.0016

m(Λπ+)(MeV/c2)
2200 2220 2240 2260 2280 2300 2320 2340 2360 2380 2400

E
v
en
ts
/(
4
M
eV
/c

2
)

0

10

20

30

40

50

60 µ = 2286.34± 0.58

σ = 5.49± 0.55

NBkg = 292± 19

NSignal = 150± 15

a = −0.00634± 0.0011

Figure 3.10: Distribution of m(Λπ+) in B0→ Λpπ+ for (left) the LL and (right) DD samples after the stripping for the 2012
data set. The signal is described by a Gaussian distribution and the background by an exponential function. Candidates within
3σ around the Gaussian mean value µ are rejected.

After applying the selection introduced in the previous sections, decays with an identical final state and similar
decay characteristics, i.e. b hadron decays into a Λ, an p, and a charged pion or kaon, remain in the data. One kind
of such decays are resonant decays like B0 → Λ∆̄0 with ∆̄0 → pπ+. Here the pπ+ system is created through a
resonant intermediate state, the ∆̄0 baryon. These are still of interest since the production mechanisms are identical
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or very similar to the B0
(s) → Λph+ decays. Another kind of events, such as B0 → Λ+

c p with Λ+
c → Λπ+, also

share the same final state as B0 → Λpπ+, however, are mediated by a different mechanism, namely b → c tree
amplitudes. The B0 → Λ+

c p candidates are removed by rejecting B0 → Λpπ+ candidates whose m(Λπ+) invariant
mass is consistent with the Λ+

c hypothesis. The invariant Λπ+ mass is shown in Fig. 3.10. There is a clear peak at
the nominal Λ+

c mass in the invariant Λπ+ mass distribution for both LL and DD samples. The Λπ+ invariant mass
is fitted with a Gaussian function for the Λ+

c signal and an exponential function for the background. Fig. 3.10 shows
the results of the fit and B0 → Λpπ+ candidates with

m(Λπ+) ∈ [2265, 2305] MeV/c2

m(Λπ+) ∈ [2269, 2302] MeV/c2 ,
(3.14)

for the LL and DD samples, respectively, are rejected. This corresponds to three times the Gaussian width.
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Figure 3.11: Distribution of m(ΛK+) for the B0
s→ ΛpK+ mode after the stripping before (top) and after (bottom) the kaon

PID selection described in sec. 3.1.7 for the LL (left) and DD (right) sample. The datasets are each fitted with the sum of a
Gaussian and an exponential; the parameters are listed in the plots. The bachelor PID selection removes Λ+

c → Λπ+ candidates.

Due to pion-kaon misidentification Λ+
c → Λπ+ can fake B0

s → ΛpK+ signal candidates as well. In Fig. 3.11
the invariant ΛK+ mass is shown. There is a peak corresponding to the Λ+

c → Λπ+ decays with the pion being
misidentified as a kaon. With the PID selection applied as described in Sec. 3.1.7 there are no Λ+

c → Λπ+ events
left in the invariant ΛK+ mass distribution. This is shown in Fig. 3.11 as well. Background from B0 → Λ+

c p with
Λ+
c → ΛK+ is Cabibbo suppressed with respect to Λ+

c → Λπ+. Due to the overall lower background in the kaon
sample a signal for these events can be seen in the invariant m(ΛK+) mass. Similar to the veto for Λ+

c → Λπ+

decays, the distribution is fitted with a Gaussian and an exponential function and candidates within three times the
width of the Gaussian distribution are rejected. The statistical uncertainty on the width of the Gaussian is large for
LL sample, therefore, the LL veto is chosen to be identical with the DD veto, which is consistent with the veto on
the Λ+

c → Λπ+ decays. The fits are shown in Fig. 3.12 and candidates with

m(ΛK+) ∈ [2270, 2307] MeV/c2 (3.15)
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are rejected.
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Figure 3.12: Distribution ofm(ΛK+) forB0
s→ ΛpK+ candidates for the LL (left) and DD (right) samples after the stripping for

the 2012 data set. The signal is described by a Gaussian distribution and the background by an exponential function. Candidates
within 3σ around the Gaussian mean value µ of the DD fit are rejected. The DD veto is also applied to the LL sample.

Another source of background are B decays into a charmonium state such as B0 → J/ψπ+π− with J/ψ → pp.
The final state would be identical to B0 → Λpπ+ and again the production mechanism would be dominated by a
b→ c tree amplitude. These modes, however, are suppressed due to the long lifetime of the Λ and no contribution
of any charmonium states is found in the pp invariant mass.

3.2.2 Background from Charged Particle Misidentification

The pion-kaon misidentification is expected to be a dominant source of peaking background for both B0 → Λpπ+

and B0
s → ΛpK+. Misidentifying a kaon as a pion leads to a shifted and asymmetric peak in the invariant Λpπ

mass distribution. The energy of the kaon is calculated using the pion mass hypothesis

E′ =
√

(m−∆m)2 + p2 , (3.16)

m being the kaon mass and ∆m the mass difference between kaon and pion, and p the kaon momentum. Due to
the non-linear dispersion relation the effect of misidentification is not immediately evident. For low momenta the
energy shift is dominated by the mass difference, for large momenta the shift becomes negligible. Since the track
momenta at LHCb are large compared to ∆m the peak values become similar. In the case of B0 → Λpπ+ and
B0
s → ΛpK+ the mass difference between B0 and B0

s adds an additional shift. As a result, the B0 → Λpπ+ and
misidentified B0

s → ΛpK+ peaks have a large overlap.

In addition to these modes there are also the highly suppressed b → d penguin amplitudes B0 → ΛpK+ and
B0
s→ Λpπ+ whose yields are negligible. Therefore, only the modes B0→ Λpπ+ and B0

s→ ΛpK+ are considered
as cross-feed to each other.

The distributions of fully selected B0→ Λpπ+ and B0
s→ ΛpK+ simulated signal events reconstructed with the

pion and kaon hypothesis, respectively, are presented in Fig. 3.13. The PID selection for the bachelor hadron
suppresses the cross-feeds considerably, especially in case for the B0

s → ΛpK+ mode under π-mass hypothesis.
The contribution, however, remains sizable and needs to be accounted for. In order to distinguish these two
decay channels the yields are determined in a simultaneous fit to both samples. The kaon-pion misidentification
rates obtained with the PIDCalib package are used to determine the corresponding cross feeds. Thus both the
B0 → Λpπ+ and B0

s → ΛpK+ yields will be determined in a single fit.

Proton-pion and proton-kaon misidentification is also considered. The only relevant source is Λ0
b → Λpp. In

Fig. 3.13 the distribution of these events is shown using the pion and kaon hypothesis, respectively. The shape
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of the Λ0
b→ Λpp candidates exhibits a long tail towards smaller Λph invariant masses for both mass hypotheses

overlapping with the signal peaks. The overall contribution from the proton misidentification, however, is found to
be small and considering the expected small branching fraction and the production ratio for Λ0

b baryons, this cross
feed is assumed to be negligible.
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Figure 3.13: Comparison between B0→ Λpπ+ (black data points), B0
s → ΛpK+ (red up triangles), and Λ0

b→ Λpp (green
down triangles) MC simulated data reconstructed with the π mass hypothesis (left) and kaon hypothesis (right) for the (DD)
2012b sample. The integral of the histograms is scaled according to Table 2.1. The full selection has been applied to all samples.

3.2.3 Partially Reconstructed Backgrounds

Partially reconstructed background candidates are trueB0
(s) decays with additional particles not being reconstructed.

These can be non-resonant, e.g. decays such as B− → Λpπ+π−, or resonant, e.g. B0→ Σ0pπ+ and B0→ Λpρ+.
Decays such as B− → Λpπ+π− are largely removed by the selection, the direction angle θDIRA is particularly
sensitive to such candidates. The additional pion may have an arbitrary momentum in the decay and this leads to
larger values for θDIRA which only uses p = p(Λ) + p(p) + p(π+). In contrast, resonant decays are three-body
decays. The momentum spectra of the missing particle depends on the mass of the intermediate particle. Resonances
like K∗ or ρ mesons are suppressed but not removed by the selection. Contributions from decays with Σ0 baryons
decaying into Σ0 → Λγ, the γ escaping detection and reconstruction, are expected to be only slightly suppressed
due to the small mass difference. In addition, those modes are expected to leak into the signal region. Searches
for related Σ0 modes have been conducted by the B factories such as B(B0→ Σ0pπ+) < 3.8 × 10−6 [22] and
B(B0 → D0ΛΣ0 +B0 → D0Σ0Λ) < 3.1× 10−5 [53] and the limits are about the same size as the observed Λ
modes, B(B0 → Λpπ+) = (3.14± 0.29)× 10−6 and B(B0 → D0ΛΛ) = (1.00+0.30

−0.26)× 10−5 [12]. Therefore, it
is not expected to measure these modes but a component describing these modes should be included in the fit model.

In Fig. 3.14 the distribution of B0 → Σ0pπ+ MC simulated candidates in comparison with B0 → Λpπ+ and
B0
s→ ΛpK+ candidates is shown. The figures for the corresponding B0

s decay mode, B0
s→ Σ0pK+, can be found

in Fig. 3.14 as well. In contrast to the modes with a missing pion these modes peak very close to the signal and leak
beneath the signal as well.

Despite their similar shapes the splitting into a pion and kaon sample allows both modes to be separated similar to
the B0

(s) → Λph+ modes.

The resonant four-body decays B0→ Λpρ+ and B0
s→ ΛpK∗+ are suppressed by the selection as expected. In

Figure 3.15 the distributions for these two modes with respect to B0 → Λpπ+ and B0
s → ΛpK+ under pion and

kaon mass hypothesis are shown. The overall contribution of these decays is small and is assumed to be negligible
but an additional systematic uncertainty will be applied to take these contributions into account.
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Figure 3.14: Comparison between B0→ Λpπ+ (black data points), B0
s → ΛpK+ (red up triangles), B0→ Σ0pπ+ (steel-grey

down triangles), and B0
s→ Σ0pK+ (blue up triangles) MC simulated data reconstructed with the π mass hypothesis (left) and

kaon hypothesis (right) for the (DD) 2012b sample. The integral of the histograms is scaled according to Table 2.1. The full
selection has been applied to all samples.
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Figure 3.15: Comparison between B0→ Λpπ+ (black data points), B0
s → ΛpK+ (red up triangles), B0→ Λpρ+ (khaki

diamonds), and B0
s→ ΛpK∗+ (magenta squares) MC simulated data reconstructed with the π mass hypothesis (left) and kaon

hypothesis (right) for the (DD) 2012b sample. The integral of the histograms is scaled according to Table 2.1. The full selection
has been applied to all samples.

3.2.4 Background from Decays Containing K0
S Mesons

The influence of proton-pion misidentification in the reconstruction and selection of the Λ baryon arising from K0
S

cross-feed is also investigated, since there is no PID requirement on the protons from the Λ decay. Related sources
of background to the B0 → Λpπ+ spectrum could arise e.g. from Λ0

b → K0
Spπ

− decays.

In order to distinguish between the K0
S and the Λ without PID information the Armenteros-Podolanski (AP) plot

is exploited [36]. The plot makes use of the different decay kinematics of the K0
S and Λ decays, the latter being
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asymmetric due to the larger proton mass. One defines

pT = p+ sinφ+ = p− sinφ− and

α =
pL

+ − pL
−

pL
+ + pL

− with pL
± = p± cosφ± ,

(3.17)

where p± are the daughter momenta and φ± the angle between the daughter and V 0 momenta in the laboratory frame.
In Fig. 3.16 the AP plot for both Λ and K0

S candidates from 2012 minimum bias events is shown. Minimum bias
events are events with very loose trigger thresholds. The symmetry of the K0

S decay and the two bands containing
the Λ and Λ candidates can be seen. Figure 3.17 shows the AP plot for B0→ Λpπ+ and B0

s → ΛpK+ events
passing our full selection. No K0

S candidates remain. The sharp edges compared to the distribution shown in
Fig. 3.16 are due to the Λ mass constrain in the decay-tree fit.
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Figure 3.16: Armenteros-Podolanski plot for K0
S and Λ candidates using minimum bias events from the 2012 data set.
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Figure 3.17: Armenteros-Podolanski plot for the Λ candidates after applying the selection as described in Sec. 3.1. There are no
K0

S present in the sample.

3.2.5 Summary of Background Contributions

In Figs. 3.18 and 3.19 the expected background contributions are stacked together with respect to the B0 → Λpπ+

and B0
s → ΛpK+ signal contributions using the scale factors listed in Tab. 2.1. For each mass hypothesis for the
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bachelor meson the influence from partially reconstructed four-body decays with ρ or K∗ mesons is expected to be
negligible but additional four-body modes containing excited Λ or Σ0 baryons could contribute the overall number
of background candidates. The Σ0 contributions are expected to be sizable, whereas crossfeed from misidentified
Λ0
b → Λpp decays is expected to be negligible.
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Figure 3.18: Plot of the invariant Λpπ mass showing the expected background contributions as a stacked histogram with respect
to the B0

s → ΛpK+ mode. The left (right) plot shows the LL (DD) sample.
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Figure 3.19: Plot of the invariant ΛpK mass showing the expected background contributions as a stacked histogram with respect
to the B0

s → ΛpK+ mode. The left (right) plot shows the LL (DD) sample.

As a result of the background studies, the following components need to be included in the fit model, the B0
(s) →

Λph+ signal modes and the B0
(s) → Σ0ph+ modes. The contribution from generic partially reconstructed four-

body decays will be assessed as a systematic uncertainty. In addition the data-sample is split into a π and into a K
sample. Both invariant mass spectra are fitted simultaneously in order to extract the number of the corresponding
candidates.

3.3 Efficiency Calculations

This part of the analysis is concerned with the effects of an imperfect detector and an imperfect selection. An ideal
detector would read out any event followed by an ideal selection, which would reject all background events while
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keeping all signal events. Any realistic detector is not able to select all hits of a charged particle, neither is the
reconstruction software able to find all tracks based on these hits. The read-out and network bandwidth forces
restrictions on the amount of events that can be triggered. Background and signal events usually overlap in the
selection variables as well. These factors all lead to a loss of candidates, i.e. not all signal events are detected
and identified as such. The ratio between the number of actually selected candidates with respect to the initially
produced number of candidates is referred to as efficiency. The overall efficiency can be written as a product of
individual efficiencies dealing with singular effects4,

εtot = εgen · εstrip/gen · εtrig/strip · εsel/trig · εPID , (3.18)

the individual terms refer to:

εgen The generator efficiency determines how many decays take place in the detector volume in comparison to the
full 4π solid angle. This basically reflect the geometric acceptance determined by the active detector volume.

εstrip/gen The stripping efficiency is determined relative to the generator efficiency, i.e. the number of events
selected by the stripping line (cf. Sec. 3.1.2) with respect to the number of candidates movin ginto the detector
volume.

εtrig/strip The trigger efficiency is given by the ratio between candidates passing the trigger selection (cf. Sec. 3.1.1)
and the number of candidates that have passed the stripping selection. This sequence seems unintuitive
since any event needs to be triggered first before it can be used during the stripping, however, due to the
workflow for handling simulated events, the stripping is applied before the trigger conditions.

εsel/trig The selection efficiency offers insight on how many signal events are rejected with respect to the trigger
stage of the selection and includes the preselection (Sec. 3.1.5), the MVA selection (Sec. 3.1.6.4), and the
charm veto (Sec. 3.2.1).

εPID The particle identification efficiency is calculated with respect to the selection efficiency εsel/trig and is the
final step in the selection chain. In contrast to the other efficiencies both the acceptance and the rejection of a
given particle hypotheses need to be taken into account, i.e. identifying a kaon as a kaon is as important to
consider as misidentifying a kaon as a pion.

All efficiencies except the PID selection efficiency are determined using MC simulated signal events assuming a
constant matrix element across the Dalitz plot. As described in Sec. 2.4.3, the PID performance in recorded and
simulated data is different, therefore, the PID efficiency is determined using a data driven method based on different
calibration samples compiled into the LHCb internal PIDCalib package.

Fortunately the measurement of both the relative branching fractions between the B0
(s) → Λph+ and B0

(s) →
Σ0ph+ modes and the measurement of the T violation asymmetry rely only on the ratios between the overall
efficiencies. Similar to Eq. (3.18) the ratio between the B0

s → ΛpK+ and B0 → Λpπ+ efficiency is given by

εtot
B0→Λpπ+

εtot
B0
s→ΛpK+

=
εgen

B0→Λpπ+

εgen

B0
s→ΛpK+

·
εstrip/gen

B0→Λpπ+

εstrip/gen

B0
s→ΛpK+

·
εtrig/strip

B0→Λpπ+

εtrig/strip

B0
s→ΛpK+

·
εsel/trig

B0→Λpπ+

εsel/trig

B0
s→ΛpK+

·
εPID
B0→Λpπ+

εPID
B0
s→ΛpK+

. (3.19)

A detailed listing of each individual contribution to the overall efficiency broken down into the three data taking
periods for all relevant B0

(s) → Λph+ and B0
(s) → Σ0ph+ modes can be found in Appendix F. For the following

tables, the efficiency for 2012 is calculated averaging over the 2012a and 2012b periods according to their relative
luminosities (cf. Eq. (2.4)). Table 3.5 lists the total efficiency given the correct bachelor meson hypotheses. In
Table 3.6 the ratios between the total efficiencies relative to the B0 → Λpπ+ mode barring the PID efficiencies can
be found. The ratios given in Tab. 3.6 are used in the fit allowing the application of physical constraints and are
independent of the bachelor meson mass hypothesis. The PID selection efficiencies are included in the fit as well,
but are incorporated separately from the selection efficiency ratios.

Finally it is necessary to point out that the efficiencies listed in this section are based on phase space MC simulated
decays. The effect will be addressed in the following section.

4Other decompositions are of course viable. In the end it boils down to a practical choice given the details of the analysis at hand.
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Table 3.5: Total selection efficiencies separated by data taking period and track reconstruction type.

Decay mode Reco. εtotal(10−4) for correct mass hypothesis
2011 2012

B0→ Λpπ+ LL 1.03±0.03 1.22±0.03
DD 2.92±0.05 3.44±0.04

B0
s→ ΛpK+ LL 1.15±0.04 1.35±0.03

DD 3.45±0.06 4.01±0.05

B0→ Σ0pπ+ LL 0.90±0.07 1.02±0.04
DD 2.46±0.11 3.05±0.07

B0
s→ Σ0pK+ LL 0.95±0.05 1.14±0.04

DD 2.91±0.09 3.46±0.06

Table 3.6: Ratios of total selection efficiencies, with respect to the B0→ Λpπ+ selection efficiency, for all data taking periods
and track reconstruction types.

Mode with respect to B0 → Λpπ+ Efficiency ratio

δ
B0
s→ΛpK+

π,LL,11 1.119± 0.050

δ
B0
s→ΛpK+

π,LL,12 1.109± 0.033

δ
B0
s→ΛpK+

π,DD,11 1.184± 0.031

δ
B0
s→ΛpK+

π,DD,12 1.166± 0.019

δB
0→Σ0pπ+

π,LL,11 0.877± 0.073

δB
0→Σ0pπ+

π,LL,12 0.841± 0.037

δB
0→Σ0pπ+

π,DD,11 0.843± 0.042

δB
0→Σ0pπ+

π,DD,12 0.885± 0.21

δ
B0
s→Σ0pK+

π,LL,11 0.920± 0.059

δ
B0
s→Σ0pK+

π,LL,12 0.936± 0.035

δ
B0
s→Σ0pK+

π,DD,11 0.997± 0.037

δ
B0
s→Σ0pK+

π,DD,12 1.005± 0.021

3.4 Variance of the Efficiencies Across the Dalitz Plane

The overall efficiencies listed in Tab. 3.5 as well the ratios between the individual modes, cf. Tab. 3.6, are based
on phase space simulated Events assuming a constant matrix element across the Dalitz plot. This is in stark
contradiction with the observed results for the B0 → Λpπ+ decay mode, shown in Fig.3.20 for the projection upon
the invariant Λp mass.

However, this is only problematic in case the efficiency varies largely across the Dalitz plane. It is therefore
necessary to study the efficiency as a function of the Dalitz plot variables ε (m2(Λp),m2(ph+)). Due to data storage
restrictions only events within the active detector volume are saved to disk. As a result the overall generated Dalitz
plot is not accessible. This becomes problematic when a two dimensional binned efficiency correction is to be
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Figure 3.20: Background subtracted distribution of the invariant Λp mass for B0 → Λpπ+ candidates obtained by the BABAR
collaboration [25].

applied, because the edges of the Dalitz plot do no fully overlap with all bins. This problem can be solved by
applying a mass constraint on the B0 mass as this leads to well defined edges for the reconstructed Dalitz plot as
well. The generated Dalitz plot is calculated by hand using the generator efficiencies from Tab. F.1 and assuming
a constant matrix element. The shape of the Dalitz plot is calculated using Eq. (1.61). The ratio between the
reconstructed candidates passing the complete selection chain without the PID selection and the calculated number
of events in each bin is taken as the efficiency. This procedure is done for both B0

(s) → Λph+ modes in 2011,
2012a, and 2012b as well as for LL and DD. The efficiency distribution for the 2012b DD B0 → Λpπ+ dataset is
shown in Fig. 3.21. The efficiency maps for the remaining samples can be found in Appendix F.6. The efficiency
large for small m2(Λp) and large m2(ph+), but small for large values of m2(Λp) and small values of m2(ph+).
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Figure 3.21: Plot of the efficiency as function of the two Dalitz plot variables ε
(
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)
for the B0 → Λpπ+ mode

in 2012b DD.

3.5 Mass Fits

In general, analyses in the field of particle physics are counting experiments. This is basically also true for the
determination of the T violation asymmetry to be determined in this analysis. Due to the complicated structure
of the invariant Λpπ mass it is difficult to simply count the number of signal candidates. In cases like this, the
number of signal candidates is usually determined by a maximum likelihood fit to the data. The likelihood includes
probability density functions (PDFs) for each physical contribution to the Λph invariant masses. Over the course of
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the next sections the overall fit strategy is introduced in detail followed by detailed listings of the PDFs used to
describe the different physical components.

3.5.1 Fit Strategy

As explained earlier, the data is split per year, per bachelor particle hypothesis, and per track type of the reconstructed
Λ daughters. An unbinned extended maximum likelihood fit is performed simultaneously on these eight sub-samples

• 2011 LL reconstructed with the pion mass hypothesis,

• 2011 LL reconstructed with the kaon mass hypothesis,

• 2011 DD reconstructed with the pion mass hypothesis,

• 2011 DD reconstructed with the kaon mass hypothesis,

• 2012 LL reconstructed with the pion mass hypothesis,

• 2012 LL reconstructed with the kaon mass hypothesis,

• 2012 DD reconstructed with the pion mass hypothesis,

• 2012 DD reconstructed with the kaon mass hypothesis.

Due to the expected limited statistics all spectra are described with a limited set of components:

• The two signal modes B0→ Λpπ+ and B0
s→ ΛpK+.

• One component for the contribution from each Σ0 baryon mode.

• Combinatorial background.

As was shown in the background summary (cf. 3.2.5) the contributions from Λ0
b → Λpp and partially reconstructed

decays can be neglected in the construction of the fit model.

All shape parameters are fixed to the values obtained from the signal MC simulation. The absolute momentum scale
is different between the recorded and simulated data, which leads to a shift of the peak position of the invariant
mass distributions. An additional parameter, ∆m, is introduced to account for this effect. It is shared among all fit
components and datasets. The different resolution between recorded and simulated data is treated as a systematic
uncertainty using a different decay mode as a reference. A global scale factor for the width of the signal modes was
prone to account for statistical fluctuations.

Several relations are shared among all datasets such as the ratio between the B0 → Λpπ+ and B0
s → ΛpK+ and

between the B0→ Σ0pπ+ and B0 → Λpπ+ branching fractions. Naively one could expect, that

B(B0 → Σ0pπ+)

B(B0 → Λpπ+)
=
B(B0

s → Σ0pK+)

B(B0
s → ΛpK+)

, (3.20)

but due to the different isospin structure of B0 and B0 decays the ratios should be different. Since it is difficult to
calculate the isospin relations between these two modes, each Σ0-to-Λ ratio is determined individually.

In addition to the physics derived constraints there are experimental effects, which can also be used to stabilise the
complex fit model needed for this analysis. Due to the Λ baryon all modes have to be separated into a LL and a DD
sample. As all decays share similar dynamics the ratio between the LL and DD samples should be the same, since
the Λ baryon has similar properties. Differences in the individual efficiencies for selecting any candidate for the
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different datasets are accounted for in the fit as well using Gaussian constraints. The individual fit functions are
introduced in the following section.

The logarithmic likelihood for a given dataset can be expressed as

logL = −
(
N(B0 → Λpπ+) +N(B0

s → ΛpK+) +N(B0→ Σ0pπ+) +N(B0
s→ Σ0pK+) +NBkg

)

+

N∑

j

log
[
N(B0 → Λpπ+)fB0→Λpπ+(mj(Λph

+)|~p) +N(B0
s → ΛpK+)fB0

s→ΛpK+(mJ(Λph+)|~p)

+N(B0→ Σ0pπ+)fB0→Σ0pπ+(mJ(Λph+)|~p) +N(B0
s→ Σ0pK+)fB0

s→Σ0pK+(mj(Λph
+)|~p)

+NBkgfBkg(mj(Λph
+)|~p)

]
,

(3.21)

where the N is the total number of candidates in a given datasample, the N(X)are the normalisations of the given
individual PDFs f , that depend on the invariant Λph+ mass and the parameters ~p. The simplest approach to
determine the number of signal events would now be to fit each of the eight datasets individually and to sum over all
yields. However, in order to reduce the statistical uncertainties, the above mentioned constraints are applied. The
PDFs remain unchanged but the yields are modified such as

N(B0 → Λpπ+)π,LL,12 = επ→πLL,12 ×N(B0 → Λpπ+)

N(B0 → Λpπ+)K,LL,12 = επ→KLL,12 ×N(B0 → Λpπ+) ,
(3.22)

with N(B0 → Λpπ+) being the B0 → Λpπ+ yield, N(B0 → Λpπ+)h,LL,12 the number of B0 → Λpπ+ candidates
found for a given mass hypothesis of the bachelor meson for either the LL, DD, 2011, or 2012 dataset, respectively,
and επ→h the efficiency to identify a pion as either a pion or kaon. The number of produced B0 → Λpπ+ decays is
independent of the PID selection, therefore, when taking the PID efficiencies into account, both equations should
yield the same N(B0 → Λpπ+) result, i.e.

επ→πLL,12 + επ→KLL,12 = 1 . (3.23)

The yields for the other modes can be expressed in a similar fashion, i.e. for the B0
s → ΛpK+ yield,

N(B0
s → ΛpK+)π,LL,12 = εK→πLL,12 ×N(B0

s → ΛpK+)

N(B0
s → ΛpK+)K,LL,12 = εK→KLL,12 ×N(B0

s → ΛpK+) ,
(3.24)

where N(B0
s → ΛpK+)h,LL,12 is the number of B0

s → ΛpK+ candidates in the respective dataset, εK→h the
efficiency to identify a kaon as either a pion or kaon, and N(B0

s → ΛpK+) the Number of B0
s → ΛpK+ decays,

which is related to the number of B0 → Λpπ+ decays by

N(B0
s → ΛpK+) = rB

0
s→ΛpK+ ×N(B0 → Λpπ+)

=
fd
fs

B(B0
s → ΛpK+)

B(B0 → Λpπ+)
×N(B0 → Λpπ+) .

(3.25)

Since LHCb is not suited to determine the absolute branching fractions of B0
(s) decays, the ratio between two

branching fractions such as rB
0
s→ΛpK+

is usually the relevant result. Eq. (3.25) holds only in case the overall
selection and reconstruction efficiency is the same for the B0 → Λpπ+ and B0

s → ΛpK+ decays. As was discussed
in Sec. 3.3 the total efficiencies are similar but not identical, therefore, an additional term needs to added of the
form,

N(B0
s → ΛpK+) =

εB0
s→ΛpK+

εB0→Λpπ+

× rB0
s→ΛpK+ ×N(B0 → Λpπ+)

= δB
0
s→ΛpK+ × rB0

s→ΛpK+ ×N(B0 → Λpπ+) ,

(3.26)
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where εB0
s→ΛpK+ and εB0→Λpπ+ are the total selection and reconstruction efficiencies. The efficiencies depend on

the dataset, hence the factor δB
0
s→ΛpK+

needs to be calculated for each sample independently. Using eq. (3.26) the
B0
s → ΛpK+ yields for the 2012 LL dataset can be written as

N(B0
s → ΛpK+)π,LL,12 = δ

B0
s→ΛpK+

π,LL,12 × εK→πLL,12 × rB
0
s→ΛpK+ ×N(B0 → Λpπ+)

N(B0
s → ΛpK+)K,LL,12 = δ

B0
s→ΛpK+

K,LL,12 × εK→KLL,12 × rB
0
s→ΛpK+ ×N(B0 → Λpπ+) .

(3.27)

The same arguments can be used to derive expressions for the other yields, which then read

N(B0→ Σ0pπ+)π,LL,12 = δB
0→Σ0pπ+

π,LL,12 × επ→πLL,12 × rB
0→Σ0pπ+ ×N(B0 → Λpπ+)

N(B0→ Σ0pπ+)K,LL,12 = δB
0→Σ0pπ+

K,LL,12 × επ→KLL,12 × rB
0→Σ0pπ+ ×N(B0 → Λpπ+)

(3.28)

N(B0
s→ Σ0pK+)π,LL,12 = δ

B0
s→Σ0pK+

π,LL,12 × εK→πLL,12 × rB
0
s→Σ0pK+ ×N(B0 → Λpπ+)

N(B0
s→ Σ0pK+)K,LL,12 = δ

B0
s→Σ0pK+

K,LL,12 × εK→KLL,12 × rB
0
s→Σ0pK+ ×N(B0 → Λpπ+) .

(3.29)

As described in Sec. 3.3 the ratios of the efficiencies are determined with control samples (PID efficiency) and
simulated events (stripping, trigger, and MVA selection).

So far only the LL case has been considered. As mentioned above, the ratio between LL and DD should be similar.
In principal the ratio between LL and DD is an effect related to the overall efficiency, so using the information from
the simulation allows us to write

N(B0 → Λpπ+)π,DD,12 = επ→πDD,12 × rMCLL/DD,12 ×N(B0 → Λpπ+)

N(B0 → Λpπ+)K,DD,12 = επ→KDD,12 × rMCLL/DD,12 ×N(B0 → Λpπ+) ,
(3.30)

it is, however, not expected, that the simulated events correctly reproduce this ratio. It is therefore useful to write for
the B0 → Λpπ+ DD yields

N(B0 → Λpπ+)π,DD,12 = επ→πDD,12 × rMCLL/DD,12 × rDD12 ×N(B0 → Λpπ+)

N(B0 → Λpπ+)K,DD,12 = επ→KDD,12 × rMCLL/DD,12 × rDD12 ×N(B0 → Λpπ+) ,
(3.31)

with επ→hDD,12 again being the PID selection efficiencies, rMCLL/DD,12 the ratio between the number of LL and DD candidates
predicted by the simulation, and N(B0 → Λpπ+) remains the number of B0 → Λpπ+ events, however, only the
number of LL B0 → Λpπ+ candidates. The additional factor rDD12 accounts for differences between data and the
simulation, but it is expected to be of the order of one. Due to major changes in the trigger configuration between
2011 and 2012, two independent ratios rDD11 and rDD12 are introduced. When defining the DD yields for the other
modes, similar considerations have to be made. Naively one would simply write for the B0

s → ΛpK+ DD yield

N(B0
s → ΛpK+)π,DD,12 = δ

B0
s→ΛpK+

π,DD,12 × εK→πDD,12 × rDD12 × rB
0
s→ΛpK+ ×N(B0 → Λpπ+)

N(B0
s → ΛpK+)K,DD,12 = δ

B0
s→ΛpK+

K,DD,12 × εK→KDD,12 × rDD12 × rB
0
s→ΛpK+ ×N(B0 → Λpπ+) ,

(3.32)

but since the ratio rDD12 is essentially an efficiency effect determined by the B0 → Λpπ+ decay it is necessary to take
the predicted ratio between LL and DD from the simulation, rMCLL/DD, into account as well, so that the B0

s → ΛpK+

DD yields are defined as,

N(B0
s → ΛpK+)π,DD,12 = δ

B0
s→ΛpK+

π,DD,12 × εK→πDD,12 × rMCLL/DD,12 × rDD12

× rB0
s→ΛpK+ ×N(B0 → Λpπ+)

N(B0
s → ΛpK+)K,DD,12 = δ

B0
s→ΛpK+

K,DD,12 × εK→KDD,12 × rMCLL/DD,12 × rDD12

× rB0
s→ΛpK+ ×N(B0 → Λpπ+) .

(3.33)
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Using the same arguments to derive the expressions for the B0→ Σ0pπ+ yields,

N(B0→ Σ0pπ+)π,DD,12 = δB
0→Σ0pπ+

π,DD,12 × επ→πDD,12 × rMCLL/DD,12 × rDD12

× rB0→Σ0pπ+ ×N(B0 → Λpπ+)

N(B0→ Σ0pπ+)K,DD,12 = δB
0→Σ0pπ+

K,DD,12 × επ→KDD,12 × rMCLL/DD,12 × rDD12

× rB0→Σ0pπ+ ×N(B0 → Λpπ+) ,

(3.34)

and for the B0
s→ Σ0pK+ yields,

N(B0
s→ Σ0pK+)π,LL,12 = δ

B0
s→Σ0pK+

π,DD,12 × εK→πDD,12 × rMCLL/DD,12 × rDD12

× rB0
s→Σ0pK+ ×N(B0 → Λpπ+)

N(B0
s→ Σ0pK+)K,DD,12 = δ

B0
s→Σ0pK+

K,DD,12 × εK→KDD,12 × rMCDD/DD,12 × rDD12

× rB0
s→Σ0pK+ ×N(B0 → Λpπ+) .

(3.35)

The whole process is repeated for the 2011 datasets sharing the same variables except rMCLL/DD,12 and rDD12, which are
expected to differ between the years. The overall LL B0 → Λpπ+ yield is independent as well. The ratios between
the B0

(s) → Λph+ and B0
(s) → Σ0ph+ modes are identical to the ratios found for the 2012 samples, but the ratios

between the overall efficiencies are calculated using simulated data representing the 2011 conditions. Otherwise the
constraints on the ratio would not be valid.

The yields of the combinatorial backgrounds are left independent throughout the samples, but the variables shared
by the samples and components are determined simultaneously as mentioned above.

Finally, rather than fixing the efficiency related parameters, Gaussian constraints for these parameters are introduced
using the uncertainties determined in Sec. 3.3. The uncertainties on the PID efficiencies are small compared to the
uncertainties of the efficiency ratios and the expected overall statistical uncertainty due to the limited sample size of
the data, therefore, the PID efficiencies are fixed rather than constrained during the fit to data.

Expanding Eq. (3.21) to all datasets the complete Likelihood can be expressed as

logL =

LL,DD∑

t

11,12∑

y

π,K∑

h

Nt,y,h∑

i

log

(
Modes∑

X

Nt,y,h(X)fXt,h(m(Λph)i|~pXt,h)−NBkgfBkg(mi(Λph
+)|~pBkg)

)

−
Modes∑

X

Nt,y,h(X)−NBkg −
LL,DD∑

t

11,12∑

y

π,K∑

h

Modes∑

X

1

2
χ2
(
δXt,y,h

)
−

11,12∑

y

χ2
(
rMCLL/DD,y

)
(3.36)

being the sum of the logarithmic likelihoods for each sample, the mode index X iterates over the components listed
before, namely

Modes =
{
B0 → Λpπ+, B0

s → ΛpK+, B0→ Σ0pπ+, B0
s→ Σ0pK+

}
. (3.37)

The remaining summations indicate sums of the LL and DD samples, t, the year of data taking, y, and the bachelor
meson hypothesis, h. The number of events Nt,y,h depends on the given year, Λ daughter track type, and the meson
hypothesis applied for the given sample. The normalisations introduced in Eqs. 3.22 to 3.35 are inserted as well.

3.5.2 Fit Components

In general the time dependence of a decay of a quantum mechanical state follows the exponential decay law, that is
related by Fourier transformation to the Breit-Wigner function in the energy domain. The mean life time is related
to the width of the Breit-Wigner function, which is known as the natural line shape and its width as the natural
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line width of the state. As a result, the naive choice to describe the signal contribution should be a Breit-Wigner
function, however, the shape of the peak in data is not just governed by its natural line shape but also by experimental
uncertainties, such as the momentum resolution (cf. Sec. 2.3.2). The experimental uncertainties lead to a Gaussian
line shape, so that in practical terms the line shape is given by a convolution of a Breit-Wigner and a Gaussian
function. This, however, can be simplified in case the natural line width exceeds the experimental resolution or in
case the experimental resolution is much larger than the natural line width. In the first case, a Breit-Wigner function
should describe the data, and in the latter case a Gaussian distribution. For B0

(s) mesons, the latter case is true. The
following notation is used for the Gaussian,

fGauss(m|µ, σ) =
1

σ
√

2π
e
(
m−µ√

2σ

)2

, (3.38)

with µ being the expected value of m and σ being the standard deviation.

In addition to the natural line shape and experimental resolution other effects also impact the shape of the signal
distribution. The momentum resolution is a function of the momentum of the particle (cf. Fig. 2.14) and an overlap
of these different Gaussian distributions can lead to a non-Gaussian behaviour. Another effect that influences the
line shape is Bremsstrahlung of the final state particles. In case it is not correctly accounted for in the momentum
measurement this effect will lead to a tail on the left hand side of the mass peak, i.e. towards smaller Λph invariant
masses. Both effects can be described by the Novosibirsk function [54],

fNovo(m|µ, σ, α) = exp

[
−1

2

(
ln2[1 + Λα(m− µ)]

α2
+ α2

)]

Λ =
sinh−1(α

√
ln 4)

(σα
√

ln 4)
,

(3.39)

with µ being the peak value, σ the width, and α determines the shape of the tail. In case of a vanishing tail parameter
α the Novosibirsk function behaves like a Gaussian. In comparison to the Crystal Ball function [55], which is widely
used at LHCb, it is more stable in the fit due to the smaller set of parameters and by being a continuous function.
This function is used to describe the B0 → Λpπ+ and B0

s → ΛpK+ decays in case of the correct mass hypothesis.

Decays reconstructed using an incorrect particle mass hypothesis or that are only partially reconstructed have a largely
asymmetric distribution in the Λph invariant mass. An example would be reconstructing the B0

s → ΛpK+ decay
using the pion-mass hypothesis for the kaon or decays such as B0 → Λpπ+π0 with the π0 not being reconstructed.
In order to describe partially or largely asymmetric distributions a convolution of an Argus function [56] with
a Gaussian is usually used. Due to numerical problems a different parametrisation is chosen, a product of an
exponential and a Fermi-Dirac function given by

fFermi(m|m0, T, a, N̂) = N̂
eδam

e−δT (m0−m) + 1
, (3.40)

with T being the inverse reduced temperature, m0 the chemical potential, a the slope of the exponential, and N̂
the normalisation factor. The value of m0 determines the inflection point of the distribution and T its slope. The
Fermi-Dirac distribution is constant except in the vicinity of the inflection point. The exponential is required to
modify this behaviour. The additional parameter δ is chosen to be δ = ±1 depending on whether it is necessary to
describe an asymmetric behaviour towards smaller (δ = +1) or towards larger (δ = −1) Λph+ invariant masses.

The Fit functions are determined using the simulated events also used for the background studies. The candidates
are matched to the simulated particles and the full selection is applied. The line shape depends indirectly on the PID
selection since the PID depends directly on the momentum. Applying a PID selection rejects candidates depending
on their momenta with different efficiencies warping the overall line shape. Therefore, the PID selections needs to
be finalised before determining the fit functions. The same functions are used to describe the 2011 and 2012 data.

In order to match the fit as closely to data as possible, all fits are performed as unbinned extended maximum
likelihood fits. In all figures shown in the next sections the units of the parameters are omitted. A collection of all
shape parameters and function can be found in Appendix G.
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3.5.2.1 Signal Modes

The line shape of the two signal components, i.e. the B0 → Λpπ+ and B0
s → ΛpK+ modes, are determined for four

different samples, the LL and DD data need to be described by different functions, since the momentum resolution is
worse for the Λ baryons reconstructed with DD tracks compared to LL Λ candidates. In addition to the shape for the
correct mass hypothesis, the cross feed of each mode for the other bachelor mass hypothesis needs to be modeled.

The shape of the B0 → Λpπ+ decay is modeled by the sum of two Novosibirsk functions in case of the π-mass
hypothesis. The distribution ofB0 → Λpπ+ candidates reconstructed with the kaon-mass hypothesis is described by
the sum a Gaussian and the modified Fermi-Dirac distribution (cf. Eq. 3.40). The fits are performed independently
and the results of the fits are shown in Fig. 3.22.
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Figure 3.22: Fit model for the B0 → Λpπ+ signal mode, reconstructed with the pion hypothesis (left) and with the kaon
hypothesis (right) for the LL sample (top) and the DD sample (bottom).
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The distributions of the B0
s → ΛpK+ are described analogously. Under the kaon mass hypothesis, the ΛpK

invariant mass is described by the sum two Novosibirsk functions and under the pion-mass hypothesis as the sum
of a Gaussian and the modified Fermi-Dirac distribution. As with the B0 → Λpπ+ fits, all fits are performed
independent of each other. The results are shown in Fig. 3.23.
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Figure 3.23: Fit model for the B0
s → ΛpK+ signal mode, reconstructed with the pion hypothesis (left) and with the kaon

hypothesis (right) for the LL sample (top) and the DD sample (bottom).
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3.5.2.2 Peaking Background

As discussed in Sec. 3.2.3, the possible contributions from B0
(s) → Σ0ph+ decays need to be taken into account in

the fit model. The line shapes for B0→ Σ0pπ+ and B0
s→ Σ0pK+ are quite similar for each mass hypothesis (cf.

Figs. 3.14) but similar to the cross feed between the signal contributions the PID selection suppresses the kaon
contribution to the Λpπ invariant mass distribution and vice versa. This allows to statistically disentangle the two
Σ0 contributions.

The B0 → Σ0pπ+ line shape is modeled by a modified Fermi-Dirac distribution except for the DD sample under π
mass hypothesis, which is described by a sum of a Novosibirsk and a Gaussian function. The fit results are shown in
Fig. 3.24.
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Figure 3.24: Fit model for the mode B0 → Σ0pπ+, reconstructed with the pion hypothesis (left) and with the kaon hypothesis
(right) for the LL sample (top) and the DD sample (bottom).

The Λph invariant mass distribution forB0
s→ Σ0pK+ candidates is modeled by a modified Fermi-Dirac distribution
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for the case, that the kaon is reconstructed as a pion and by a sum of a Novosibirsk a Fermi-Dirac distribution for the
LL case under kaon hypothesis. The corresponding DD sample is described by a sum of two Novosibirsk functions.
The fits to the simulated data samples are shown in Fig. 3.25.
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Figure 3.25: Fit model for the mode B0
s → Σ0pK+, reconstructed with the pion hypothesis (left) and with the kaon hypothesis

(right) for the LL sample (top) and the DD sample (bottom).

Again, all fits are performed independent of each other, the units of the fit parameters are omitted.

3.5.2.3 Combinatorial Background

Combinatorial background from random pΛh− combinations is described by an exponential function for both
bachelor meson hypotheses. All shape parameter are left floating in the data fit and all exponential functions are
determined independent of each other.
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3.5.3 Fit Summary

To conclude, the fit models for both Λpπ+ and ΛpK+ spectra are listed in Tables 3.7 and 3.8. The 2011 and 2012
datasets are fitted simultaneously.

The floating parameters in the fit are listed in Table 3.9. All shape parameters are fixed to the values presented in
the previous sections. A mass shift parameter, shared among the B0 → Λpπ+, B0

s → ΛpK+, B0→ Σ0pπ+, and
B0
s→ Σ0pK+ modes is allowed in the fit for both bachelor meson hypotheses and the Λ reconstruction types. No

global scale factor for the signal resolutions is applied in order to avoid being dominated by statistical fluctuations.
Furthermore, many modes overlap in the signal region and allowing for free scaling factor for the width could bias
the overall fit. This discrepancy between recorded and simulated data is addressed as an systematic uncertainty
instead. Several physical constraints are applied.

The ratio between the B0 → Λpπ+ and B0
s → ΛpK+ decays is a physical quantity determined by the branching

fractions. Therefore, the ratio should be constant throughout all data samples, and is constrained to be so. The same
argument is true for the ratio between the B0

(s) → Σ0ph+ modes with respect to the corresponding B0
(s) → Λph+

modes, and these ratios are constrained as well.

Table 3.7: Summary of the fit model describing the Λpπ invariant mass spectra.

Mode Sample Fit function

B0 → Λpπ+ LL Sum of two Novosibirsk functions
DD

B0
s → ΛpK+ LL Sum of a Gaussian and modified Fermi function

DD

B0→ Σ0pπ+ LL Modified Fermi function
DD Sum of a Gaussian and Novosibirsk function

B0
s→ Σ0pK+ LL Modified Fermi function

DD

Combinatorial LL Exponential function
DD

Table 3.8: Summary of the fit model describing the ΛpK invariant mass spectra.

Mode Sample Fit function

B0 → Λpπ+ LL Sum of a Gaussian and a modified Fermi function
DD

B0
s → ΛpK+ LL Sum of two Novosibirsk functions

DD

B0→ Σ0pπ+ LL Modified Fermi function
DD

B0
s→ Σ0pK+ LL Sum of a Novosibirsk and a modified Fermi function

DD Sum of two Novosibirsk functions

Combinatorial LL Exponential function
DD

All modes share similar Λ characteristics. The ratio between the number of LL and DD candidates is dominated by
the Λ baryon decay. Due to the similar kinematics between the B0

(s) → Λph+ and B0
(s) → Σ0ph+ modes the
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ratio between LL and DD should be compatible with respect to the limited statistics. Due to the different trigger
configuration in 2011 and 2012 this ratio should be dependant in the data period. The ratios are constrained for all
2011 data sets and all 2012 data sets.

Finally, the cross-feed contributions of B0
s → ΛpK+ and B0

s→ Σ0pK+ modes to the pion sample are constrained
to be consistent with the expectations calculated using the PID calibration samples with respect to the number of
B0
s → ΛpK+ and B0

s→ Σ0pK+ candidates determined in the kaon sample. The cross-feed of the B0 → Λpπ+

and B0→ Σ0pπ+ modes to the kaon sample are constrained in the same way.

Table 3.9: Free parameters determined in the simultaneous fit. The index y indicates the years 2011 and 2012, the index h the
bachelor hypotheses pion or kaon, and t the LL or DD configuration.

Parameter Description

N LL
y (B0 → Λpπ+) Number of LL B0 → Λpπ+ candidates

rB
0
s→ΛpK+

Ratio between the B0
s → ΛpK+ and B0 → Λpπ+ candidates

rDDy Correction factor for the MC ratio between the LL and DD yields

rB
0→Σ0pπ+

Ratio between the B0→ Σ0pπ+ and B0 → Λpπ+ yields

rB
0
s→Σ0pK+

Ratio between the B0
s→ Σ0pK+ and B0

s → ΛpK+ yields

∆m Mass shift shared among the B0
(s) → Λph+ and B0

(s) → Σ0ph+ modes

NBkg
y,h,t Number of combinatorial background events

aBkg
y,h,t Slope of the exponential function for the combinatorial background

The ratios between the overall selection efficiencies need to be included in the fit as well, otherwise the physical
constraints are not valid. The uncertainty on these ratios is often not negligible, thus they are included as Gaussian
constraints to the overall fit, and are listed in Tab. 3.10 and are based on phase space simulated events.

Table 3.10: Parameters with a Gaussian constraint applied. The parameters are constraint according to their values listed in the
second column. The variables are introduced in detail in Sec. 3.5.1.

Constraint parameter Gaussian constraint Description

rMCLL/DD,11 0.354± 0.007 MC prediction for the ratio between LL and
DD eventsrMCLL/DD,12 0.332± 0.009

δ
B0
s→ΛpK+

π,LL,11 1.051± 0.047 Ratio between the overall selection efficien-
cies between B0

s → ΛpK+ and B0 →
Λpπ+ for 2011, 2012, LL, and DD samples;
the PID selection is excluded

δ
B0
s→ΛpK+

π,LL,12 1.059± 0.032

δ
B0
s→ΛpK+

π,DD,11 1.110± 0.029

δ
B0
s→ΛpK+

π,DD,12 1.109± 0.018

δ
B0
s→Σ0pK+

π,LL,11 0.857± 0.055 Ratio between the overall selection efficien-
cies between B0

s → Σ0pK+ and B0 →
Λpπ+ for 2011, 2012, LL, and DD samples;
the PID selection is excluded

δ
B0
s→Σ0pK+

π,LL,12 0.887± 0.034

δ
B0
s→Σ0pK+

π,DD,11 0.922± 0.034

δ
B0
s→Σ0pK+

π,DD,12 0.945± 0.020

δB
0→Σ0pπ+

π,LL,11 0.872± 0.073 Ratio between the overall selection efficien-
cies between B0 → Σ0pπ+ and B0 →
Λpπ+ for 2011, 2012, LL, and DD samples;
the PID selection is excluded

δB
0→Σ0pπ+

π,LL,12 0.837± 0.037

δB
0→Σ0pπ+

π,DD,11 0.840± 0.042

δB
0→Σ0pπ+

π,DD,12 0.882± 0.210
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Chapter 4

Calculation of B(B0
s → ΛpK+) andAT

4.1 Dalitz Plots forB0
(s) → Λph+ Decays and Efficiency Recalculation

The efficiencies listed in Section 3.3 are based on phase space simulated events. In order to check this assumption it
is necessary to investigate the data Dalitz plots before running the global fit on the Run-I data.

The general structure of the B0
(s) → Λph+ decays was introduced in Sec. 1.4. For the recorded data the Dalitz

plot is not directly accessible since the background component needs to be subtracted in order to get the signal
distribution. There are several statistical methods to achieve this such as performing the nominal fit in each bin of
the Dalitz plot, with the advantage of being independent of different background shapes in different bins across
the Dalitz plot, but it is limited by the available statistics since the fit needs to converge in each bin limiting the
resolution of the Dalitz Plot. Another method is to use SPlot weights [57], also known as SWeights, in which
the covariance matrix of a global fit is used to calculate a weight for each event with respect to different event
classes, in this case B0 → Λpπ+, B0

s → ΛpK+, B0→ Σ0pπ+, B0
s→ Σ0pK+, and combinatorial background.

The global fit is done in a variable suitable to separate these classes, in this case the m(Λpπ) and m(ΛpK) invariant
masses. It is important to note, that the only free parameters are the normalisations for the event classes, all shape
parameters need to be fixed. In addition to that, no constraints should be applied in order to get the correct covariance
matrix. Finally, the variable in which the weights are calculated needs to be uncorrelated with the variables one is
interested in, which in this case are the invariant two body daughter masses. Due to these limitations the global fit
described previously cannot be applied and the weights are determined in each dataset individually rather than in
the simultaneous fit. However, the overall Dalitz plot for the B0

(s) → Λph+ modes is accessible as a sum of the
individual Dalitz plots. The content for a bin with the width ∆x and its uncertainty are determined by

n =

datasets∑

j

∑

x∈Bin(x±∆x
2

)

wi(x) and un =

√√√√√
datasets∑

i

∑

x∈Bin(x±∆x
2

)

w2
i , (4.1)

where dataset denotes the year, the LL/DD splitting, and the bachelor meson mass hypothesis. It is necessary to
point out that the sum of the weights must yield the fit result for the normalisation.

On the left hand side of Figure 4.1 the B0 → Λpπ+ Dalitz plot is shown. The Dalitz plot is dominated by
an enhancement in the invariant Λp mass squared, which is consistent with previous studies and the theoretical
predictions, cf. Fig. 1.5. No additional structures appear in m2(Λp) or the two squared invariant baryon meson
masses. The enhancement itself is not evenly distributed along them2(pπ+) axis. This hints to an additional internal
structure. Explanations for the enhancement have included, among others, baryonium states. Depending on its
structure this could lead a to non-trivial angular distribution for the Λp pair.

71



72 4. Calculation of B(B0
s
→ ΛpK+) andAT

m2(pΛ)(GeV2
/c4)

5
10

15
20

25 m
2 (pπ

− )(G
eV

2 /c
4 )

2
4

6
8

10
12

14
16

S
Pl

ot
w

ei
gh

ts
/(
(1
.3
9
×

1.
35

)
G
eV

4
/
c8
)

0

20

40

60

80

100

120

m2(pΛ)(GeV 2
/c4)

6
8

10
12

14
16

18
20

22
m
2 (pK

− )(G
eV

2 /c
4 )

4
6

8
10

12
14

16

S
Pl

ot
w

ei
gh

ts
/(
(1
.3
9
×

1.
35

)G
ev

4
/
c8
)

0

10

20

30

40

Figure 4.1: Dalitz plot for theB0 → Λpπ+ andB0
s → ΛpK+ decay modes. The bin contents are given by the sum of the SPlot

weights extracted from the fits to the m(Λph) invariant mass for each data sample. The only structure visible is a pronounced
enhancement at the m(Λp) threshold. There are no hints for additional resonances in the m(ph+) or m(Λh+) invariant masses.

The right hand side of Figure 4.1 shows the B0
s → ΛpK+ Dalitz plot. The enhancement near the Λp threshold

can be clearly seen as well. It is, however broader along the m2(pK+) axis compared to the enhancement seen
in B0 → Λpπ+. As for the B0 → Λpπ+ mode, no additional structures are found in the Dalitz plot, neither in
m2(pK+) nor in m2(ΛK+).

The Dalitz plots found in data are in stark contrast to the phase space model used in the simulation (cf. Fig. 2.16).
The fit strategy introduced in Sec. 3.5 makes use of the selection efficiencies in order to constrain the signal yields
across different data sets each with a different set of conditions. In Section 3.4 the total selection efficiency was
shown as a function of the two Dalitz variables and it became obvious that the selection efficiency varies and is
considerably larger for small m2(Λp) and large m2(pπ+) masses. Using these efficiencies only leads to an unbiased
result in case of a flat data Dalitz plot. This is not the case and the average efficiencies need to be recalculated using
the information obtained from the SPlots.

The new average efficiencies are calculated as follows,

ε̄ =

∑k

i
ni

∑k

i

ni
εi

, (4.2)

with ni being the sum of the SWeights and εi the efficiency in the ith bin. The total number of bins k depends on the
statistical uncertainty of the overall yield and the individual efficiencies. If k is too large the recalculated efficiency
is dominated by statistical fluctuations, if k is too small it is not possible to be sensitive to structures at small scales.
Due to the Dalitz structure of the B0

(s) → Λph+ modes an asymmetrical binning in m2(Λp) is chosen making use
of two small bins to take the narrow enhancement into account and a large bin for the remaining phase space. The
fluctuations in the SWeights and the efficiencies are large across the full two dimensional plane and in order to
avoid being dominated by statistical fluctuations, a one dimensional correction is applied integrating over m2(ph+)
using k = 3. The efficiencies and the yields are treated in the Poisson approximation. The background contribution
to each bin is still sizeable so that a multinomial approach might underestimate the statistical uncertainties. The
efficiencies are very small and in this case the Poisson approximation is valid. In Table 4.1 both the sum of the
SWeights and the efficiency for each bin are listed for B0 → Λpπ+ and B0

s → ΛpK+ and the resulting average
efficiencies are listed as well. It should be noted, that two different efficiencies are listed, ε̄B0

(s)→Λph+ is calculated
using all three bins whereas ε̄Enh

B0
(s)→Λph+ only takes the first two bins into account, i.e. the enhancement region.

The first is used in the B0
s → ΛpK+ branching fraction measurement, the latter for the time reversal asymmetry

measurement.



4.1. Dalitz Plots forB0
(s) → Λph+ Decays and Efficiency Recalculation 73

Table 4.1: Efficiencies and SWeighted signal events for the three bins of the invariant Λp mass used to determine the data driven
average efficiency. The 2012 efficiencies are determined as the luminosity weighted sum of the 2012a and 2012b efficiencies.
The new average efficiencies ε̄ are shown as well. The “Enh” denotes that only the first two bins are considered in the calculation.

2011 LL sample

m2(Λp) bin in ( GeV/c2)2 Sum of SWeights Efficiency inh
B0 → Λpπ+ B0

s → ΛpK+ B0 → Λpπ+ B0
s → ΛpK+

[(mp +mΛ)2, 6.9) 29.4± 7.0 12.3± 3.9 0.120± 0.006 0.139± 0.006
[6.9, 12.3) 0.7± 2.3 1.6± 2.0 0.117± 0.004 0.128± 0.004
[12.3, (mB −mh)] −1.5± 1.5 0.5± 2.1 0.095± 0.003 0.109± 0.003

ε̄Enh
B0→Λpπ+ = (0.120± 0.006)h ε̄Enh

B0
s→ΛpK+ = (0.138± 0.005)h

ε̄B0→Λpπ+ = (0.121± 0.007)h ε̄B0
s→ΛpK+ = (0.136± 0.007)h

2011 DD sample

m2(Λp) bin in ( GeV/c2)2 Sum of SWeights Efficiency inh
B0 → Λpπ+ B0

s → ΛpK+ B0 → Λpπ+ B0
s → ΛpK+

[(mp +mΛ)2, 6.9) 84.4± 11.6 40.8± 7.3 0.409± 0.010 0.454± 0.012
[6.9, 12.3) 7.5± 7.0 10.1± 4.0 0.335± 0.006 0.400± 0.007
[12.3, (mB −mh)] 4.2± 5.6 3.7± 3.2 0.229± 0.004 0.280± 0.005

ε̄Enh
B0→Λpπ+ = (0.402± 0.011)h ε̄Enh

B0
s→ΛpK+ = (0.442± 0.010)h

ε̄B0→Λpπ+ = (0.389± 0.018)h ε̄B0
s→ΛpK+ = (0.425± 0.016)h

2012 LL sample

m2(Λp) bin in ( GeV/c2)2 Sum of SWeights Efficiency inh
B0 → Λpπ+ B0

s → ΛpK+ B0 → Λpπ+ B0
s → ΛpK+

[(mp +mΛ)2, 6.9) 84.6± 13.0 38.3± 7.6 0.133± 0.004 0.178± 0.006
[6.9, 12.3) 9.3± 7.1 10.2± 4.7 0.1299± 0.0025 0.159± 0.004
[12.3, (mB −mh)] 5.5± 6.9 14.1± 5.2 0.1129± 0.0019 0.157± 0.003

ε̄Enh
B0→Λpπ+ = (0.133± 0.004)h ε̄Enh

B0
s→ΛpK+ = (0.174± 0.005)h

ε̄B0→Λpπ+ = (0.131± 0.004)h ε̄B0
s→ΛpK+ = (0.169± 0.004)h

2012 DD sample

m2(Λp) bin in ( GeV/c2)2 Sum of SWeights Efficiency inh
B0 → Λpπ+ B0

s → ΛpK+ B0 → Λpπ+ B0
s → ΛpK+

[(mp +mΛ)2, 6.9) 268.6± 22.9 108.6± 12.8 0.463± 0.006 0.593± 0.011
[6.9, 12.3) 51.9± 13.8 15.7± 6.4 0.403± 0.004 0.513± 0.006
[12.3, (mB −mh)] 27.2± 10.9 −0.7± 5.6 0.282± 0.003 0.428± 0.005

ε̄Enh
B0→Λpπ+ = (0.452± 0.005)h ε̄Enh

B0
s→ΛpK+ = (0.581± 0.010)h

ε̄B0→Λpπ+ = (0.432± 0.009)h ε̄B0
s→ΛpK+ = (0.569± 0.029)h

In order to increase the statistical precision for the measurement of the time reversal invariance in the B0 → Λpπ+

decay mode, it is sensible to limit the fit to the enhancement. The signal to background ratio is considerably
larger in the enhancement region compared to the remainder of the Dalitz plot since the combinatorial background
is uniformly distributed. As a result the T violation measurement is done for B0 → Λpπ+ candidates with
m2(Λp) < 12.3( GeV/c2)2 and the average efficiencies for the enhancement region are employed in the asymmetry
fit.

The treatment of the B0
(s) → Σ0ph+ modes is more complicated. No data Dalitz plot is accessible due to the lack
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of statistics and the missing photon. Applying the method used for the B0
(s) → Λph+ modes would be prone to

statistical fluctuations and due to the missing photon no unambiguous Dalitz plot can be defined. Since the ratio
between the B0

(s) → Λph+ and B0
(s) → Σ0ph+ branching fraction is not of particular interest for this analysis a

workaround can be applied assuming a similar behaviour for the Σ0 modes with respect to the invariant baryon
antibaryon mass. The assumption made here is, that all B0

(s) → Σ0ph+ candidates would fall in the interval of
[(mp +mΛ)2, 6.9]. The efficiency would be calculated as such

ε̄(B0
(s) → Σ0ph+) =

NReco

NGen

∣∣∣∣
m(Λp)2∈[(mp+mΛ)2,6.9]( GeV/c2)2

. (4.3)

The number of reconstructed events from the phase space simulated events NReco can be determined, but it is
problematic to calculate the number of generated events fulfilling that condition due to the loss of generator
information. The statistical significance on both B0

(s) → Σ0ph+ modes is below 3σ and it was decided not to put
the effort into a dedicated calculation of the B0

(s) → Σ0ph+ Dalitz plots. The missing information in the generated
Dalitz plot, however, can be absorbed into the fit parameter rB

0
(s)→Σ0ph+

. Starting from Eq. (3.28) omitting the
sample indices one finds

N(B0
(s) → Σ0ph+) =

ε̄B0
(s)→Σ0ph+

ε̄B0
(s)→Λph+

× επ→h × rB0
(s)→Σ0ph+ ×N(B0

(s) → Λph+)

=
N
B0

(s)→Σ0ph+

Reco

N
B0

(s)→Σ0ph+

Gen

× 1

ε̄B0
(s)→Λph+

× επ→h × rB0
(s)→Σ0ph+ ×N(B0

(s) → Λph+)

=
N
B0

(s)→Σ0ph+

Reco

ε̄B0
(s)→Λph+

× rB
0
(s)→Σ0ph+

N
B0

(s)→Σ0ph+

Gen

× επ→h ×N(B0
(s) → Λph+) , (4.4)

and using the following redefinitions

δ̃B
0
(s)→Σ0ph+

=
N
B0

(s)→Σ0ph+

Reco

ε̄B0
(s)→Λph+

and r̃B
0
(s)→Σ0ph+

=
rB

0
(s)→Σ0ph+

N
B0

(s)→Σ0ph+

Gen

(4.5)

leads to the same normalisation as before, the variables just have a different meaning now, especially rB
0
(s)→Σ0ph+

,
which loses its physical meaning. Another remark has to be made, that r̃B

0
(s)→Σ0ph+

is not constant over the 2011
and 2012 data sets, however, one finds

r̃
B0

(s)→Σ0ph+

11 =
rB

0
(s)→Σ0ph+

N
B0

(s)→Σ0ph+

Gen,11

=
rB

0
(s)→Σ0ph+

N
B0

(s)→Σ0ph+

Gen,11

× N
B0

(s)→Σ0ph+

Gen,12

N
B0

(s)→Σ0ph+

Gen,12

=
rB

0
(s)→Σ0ph+

N
B0

(s)→Σ0ph+

Gen,12

× N
B0

(s)→Σ0ph+

Gen,12

N
B0

(s)→Σ0ph+

Gen,11

, (4.6)

with N
B0

(s)→Σ0ph+

Gen,{11,12} being the number of generated events for m2(Λp) ∈ [(mp + mΛ)2, 6.9]. The efficiency of
this selection on the generated events is identical for 2011 and 2012, so that the ratio is given by the overall
ratio of generated events between 2011 and 2012. Taking this constant into account for the normalisation for
the 2011 B0

(s) → Σ0ph+ PDFs allows the nominal fit to be applied just to the enhancement region without
further modifications or assumptions. These changes are also valid for the branching fraction fit, the assumptions
for the efficiency are absorbed into the global rB

0
(s)→Σ0ph+

. The recalculated ratios between the efficiencies
for B0 → Λpπ+ and B0

s → ΛpK+, as well as the ratios between the B0 → Λpπ+ efficiency and the found
B0

(s) → Σ0ph+ candidates are listed in Tab. 4.2 and again enter the global fit for the B0
s → ΛpK+ branching

fraction as well as for the AT determination as Gaussian constraints.
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Table 4.2: Ratio between the average efficiencies for the B0
(s) → Λph+ modes and the ratio between the number of found

B0
(s) → Σ0ph+ events in the enhancement region and the recalculated average efficiency of B0 → Λpπ+ for each data set as

well as the ratio between LL and DD for the B0 → Λpπ+ mode for 2011 and 2012.

Ratio 2011 LL 2011 DD 2012 LL 2012 DD

δB
0
s→ΛpK+

1.15± 0.07 1.10± 0.04 1.31± 0.05 1.285± 0.26

δB
0→Σ0pπ+ × 10−3 2116.7± 169.8 1900.5± 86.2 3706.8± 200.7 3588.5± 97.5

δB
0
s→Σ0pK+ × 10−3 4975.0± 321.5 4534.8± 163.3 11187.9± 444.2 9643.8± 210.3

rMC
LL/DD 0.298± 0.017 0.294± 0.009

The global fit as introduced in Sec. 3.5.3 is now applied to the Run-I data using the new efficiency and one finds

NLL
11 (B0 → Λpπ+) = 42.3+9.2

−6.9 (4.7)

NLL
12 (B0 → Λpπ+) = 148.7+16.9

−15.1 (4.8)
rDD11 = 1.07+0.25

−0.23 (4.9)
rDD12 = 0.71+0.10

−0.09 (4.10)

rB
0
s→ΛpK+

= 0.392+0.044
−0.040 , (4.11)

corresponding to the following overall yields

N(B0 → Λpπ+) = 684.1± 41.6 (4.12)

N(B0
s → ΛpK+) = 268.0± 23.3 . (4.13)

Since the modified ratios for the B0
(s) → Σ0ph+ modes lost their physical meaning, no yields are listed here.

Similarly a list containing all other fit variables can be found in Appendix H.1. In Fig. 4.2 the fit to the data is
shown. The fit for the enhancement only can be seen in Fig. 4.3 and its results are listed in Appendix H.1. The
improvement in the signal-to-background ratio is obvious especially for the 2012 DD pion sample. The individual
yields calculated from the global fit for each sample are listed in Tab. 4.3. It should be pointed out, that these yields
are not yet corrected for the PID efficiencies hence the difference to the results listed above.

Table 4.3: Yields for the B0
(s) → Λph+ and B0

(s) → Σ0ph+ modes for the individual data samples calculated using the
global PDF. A full list of the parameters can be found in Appendix H.1.

Decay mode Reco. 2011 Yields 2012 Yields
m(Λpπ) m(ΛpK) m(Λpπ) m(ΛpK)

B0→ Λpπ+ LL 31.0 ± 5.9 3.5 ± 0.7 111.5 ± 12.1 11.4 ± 1.3
DD 104.2 ± 11.0 12.0 ± 1.3 262.6 ± 21.2 26.5 ± 2.1

B0
s→ ΛpK+ LL 0.67 ± 0.14 14.4 ± 3.0 3.0 ± 0.4 59.4 ± 7.3

DD 2.06 ± 0.26 48.9 ± 6.1 6.1 ± 0.6 136.7 ± 12.9

B0→ Σ0pπ+ LL 3.6 ± 3.2 0.4 ± 0.4 12.0 ± 10.5 1.2 ± 1.1
DD 11.5 ± 10.3 1.3 ± 1.2 28.2 ± 25.1 2.9 ± 2.5

B0
s→ Σ0pK+ LL 0.2 ± 0.1 4.9 ± 2.1 1.1 ± 0.4 20.8 ± 8.2

DD 0.67 ± 0.26 15.9 ± 6.1 2.0 ± 0.7 43.4 ± 16.1
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Figure 4.2: Results for global fit using the Dalitz plot corrected average efficiencies. The black points represent the data in the
individual sample indicated in the plots. The B0 → Λpπ+ contribution is shown in blue, B0

s → ΛpK+ in grey, B0→ Σ0pπ+

in green, and B0
s→ Σ0pK+ in brown. The sum of all components is shown in black.
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Figure 4.3: Results for global fit for m2(Λp) < 12.3( GeV/c2)2 using the Dalitz plot corrected average efficiencies. The
black points represent the data in the individual sample indicated in the plots. The B0 → Λpπ+ contribution is shown in blue,
B0
s → ΛpK+ in grey, B0→ Σ0pπ+ in green, and B0

s→ Σ0pK+ in brown. The sum of all components is shown in black.
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4.2 Branching Fraction of the DecaysB0
s → ΛpK+ andB0

s → ΛpK−

As mentioned earlier, up to now, no baryonic B0
s decays have been observed either by the B-factories nor by

LHCb. The fit in Fig. 4.2 shows clear peaks in several subsamples at the nominal B0
s mass and the fit finds

N(B0
s → ΛpK+) = 268.0 ± 23.3 candidates in the run-I data. This an observation of the B0

s → ΛpK+ decay.
Assuming that the ratio between the likelihoods with and without the B0

s → ΛpK+ signal hypothesis behaves like a
χ2 distribution with one degree of freedom, the significance is calculated by

S =
√
−2 log(L0/LSig) = 17.2 , (4.14)

which corresponds to 17.2 Gaussian standard deviations. Therefore, the first observation of these baryonic B0
s

decays can be claimed by LHCb.

For the calculation of the B0
s → ΛpK+ branching fraction additional input in needed. Basically the branching

fraction B of a decay chain like B0
s → ΛpK+ and Λ→ pπ− is calculated as a product branching fraction, because

the B0
s decay and the daughter decay are independent,

B(B0
s → ΛpK+)× B(Λ→ pπ+) =

NSig

εNB0
s

, (4.15)

where ε is the overall efficiency, NSig is the Number of signal events selected for the given decay chain, and NB0
s

represents the total number of B0
s mesons produced during the Run-I. Since the selection includes the charge

conjugated decay B0
s→ ΛpK+ as well, the branching fraction is calculated by

B(B0
s → ΛpK+)× B(Λ→ pπ−) =

NSig

ε(NB0
s

+NB0
s
)

. (4.16)

It is, however, very difficult to estimate the absolute number of B0
s mesons produced during the first run of the

LHC. Using the knowledge of the integrated luminosity, the bb cross section, and the fragmentation probabilities the
number of B0

s mesons is given by

(NB0
s

+NB0
s
) =

∫
L dt× σbb × 2× fs , (4.17)

where
∫
L dt is the integrated luminosity, σbb is the bb cross section, the factor 2 accounts for the production of

both the b and the b, and fs represents the b hadronisation probability to the B0
s meson. Each of these measured

parameters contributes with its uncertainty to the overall uncertainty of the number of B0
s mesons, the hadronisation

probability fs is only known relative to fd. Therefore, it is not useful to measure absolute branching fractions at
LHCb but to search for a suitable normalisation decay mode, which shares a lot of similarities with the signal decay
and whose branching fraction is already known. In the case of the B0

s → ΛpK+ decay, the ideal normalisation
mode is B0 → Λpπ+ since it is already included in the analysis, the only difference being the PID selection and
differences between the kaon and pion reconstruction. As was shown in Sec. 3.3 and 4.1 the overall selection
efficiency for both decay modes is very similar and the ratio between their efficiencies is already accounted for in
the final fit. In practical terms, the B0

s → ΛpK+ branching fraction is calculated relative to that of the B0 → Λpπ+

normalisation channel, taking into account that only a sum of the two B0
s decays B0

s → ΛpK+ and B0
s → ΛpK−

can be measured, extracted from

B(B0
s → ΛpK+)+B(B0

s → ΛpK−) =
fd
fs
×N(B0

s → ΛpK+ +B0
s → ΛpK−)

N(B0 → Λpπ+)
× εB0→Λpπ+

εB0
s→ΛpK+

×B(B0 → Λpπ+) ,

(4.18)
where fq represents the b hadronisation probability to the relevant hadron and ε contains the product of all efficiencies
for the signal daughters to be in the LHCb acceptance, for triggering, reconstruction, stripping, and final selection.
The Λ branching fraction cancels in the ratio as does the number of B0 and B0

s mesons, which are replaced by the
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corresponding hadronisation probabilities. The ratio fs/fd is known and the latest fs/fd combination from LHCb
is used here, fs/fd = 0.259± 0.015 [44]. The term

N(B0
s → ΛpK+ +B0

s → ΛpK−)

N(B0→ Λpπ+)
× εB0→Λpπ+

εB0
s→ΛpK+

(4.19)

is already accounted for in the fit, thus the B0
s → ΛpK+ branching fraction is given by

B(B0
s → ΛpK+) + B(B0

s → ΛpK−) =
fd
fs
× rB0

s→ΛpK+ × B(B0 → Λpπ+) . (4.20)

Since no dedicated flavour tagging is applied only the sum of the B0
s → ΛpK+ and B0

s → ΛpK− branching
fraction can be measured. Using B(B0 → Λpπ+) = (3.14±0.29)×10−6 [12] the branching fraction is determined
to be

B(B0
s → ΛpK+) + B(B0

s → ΛpK−) = (4.75+0.53
−0.49 ± 0.44(B(B0 → Λpπ+)))× 10−6 , (4.21)

where the uncertainty is statistical and based on the B0 → Λpπ+ branching fraction only. Another advantage of
choosing the B0 → Λpπ+ as normalisation mode is, that a lot of systematic uncertainties cancel in the ratio. The
dominating source of systematic uncertainty is expected to be the fit model, especially the contributions from the
Σ0 and partially reconstructed modes. An additional systematic uncertainty is based on the limited knowledge of
the true line shape, which is taken from the simulation. But as both B0 → Λpπ+ and B0

s → ΛpK+ line shapes are
similar, the effect should be relatively small. The systematic uncertainties are studied in detail in Section 4.5

4.3 Time Reversal AsymmetryAT Determination

In the previous section the fit to whole Run-I data was shown, cf. Fig. 4.2, using data driven average efficiencies
taking the Dalitz plot structure into account. For theAT measurement the data need to be split into four independent
samples depending on the B0 hadron flavour and on the sign of the triple product. Three different asymmetries need
to be calculated as follows,

AT =
NB0→Λpπ+

(O>0) −NB0→Λpπ+

(O<0)

NB0→Λpπ+

(O>0) +NB0→Λpπ+

(O<0)

(4.22)

ĀT =
NB0→Λpπ−

(O>0) −NB0→Λpπ−
(O<0)

NB0→Λpπ−
(O>0) +NB0→Λpπ−

(O<0)

(4.23)

AT = 1/2(AT − ĀT ) , (4.24)

where AT is defined as the asymmetry between the number of B0 → Λpπ+ candidates with a positive sign of the
triple product and the number of candidates with a negative sign, ĀT is the asymmetry for the B0 → Λpπ− events,
and AT is half the difference between the asymmetries. The triple product O is given by

O = sΛ · (pΛ × pπ+) (4.25)

and was introduced in Sec. 1.2.4.

Instead of determining the number of candidates for each sub sample independently, all samples are fit simultaneously
and the time reversal asymmetry is calculated in the fit making use of the complete covariance matrix taking into
account correlations as well. In order to achieve this, in each sample, the individual yields for B0 → Λpπ+ are
expressed in terms of the parameters of the asymmetry. Using Equations (4.22), (4.23), and (4.24) the yields take
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the form

NB0→Λpπ+

LL,11,(O>0) = NB0→Λpπ+

LL,11,(O<0)

AT + 1

1−AT
(4.26)

NB0→Λpπ+

DD,11,(O>0) = rDD11 × rMCLL/DD,11 ×NB0→Λpπ−
LL,11,(O<0)

AT + 1

1−AT
(4.27)

NB0→Λpπ+

LL,12,(O>0) = NB0→Λpπ+

LL,12,(O<0)

AT + 1

1−AT
(4.28)

NB0→Λpπ+

DD,12,(O>0) = rDD12 × rMCLL/DD,12 ×NB0→Λpπ+

LL,12,(O<0)

AT + 1

1−AT
, (4.29)

for the B0 → Λpπ+ components and

NB0→Λpπ−
LL,11,(O>0) = NB0→Λpπ−

LL,11,(O<0)

(AT − 2AT ) + 1

1− (AT − 2AT )
(4.30)

NB0→Λpπ−
DD,11,(O>0) = rDD11 × rMCLL/DD,11N

B0→Λpπ−
LL,11,(O<0)

(AT − 2AT ) + 1

1− (AT − 2AT )
(4.31)

NB0→Λpπ−
LL,12,(O>0) = NB0→Λpπ−

LL,12,(O<0)

(AT − 2AT ) + 1

1− (AT − 2AT )
(4.32)

NB0→Λpπ−
DD,12,(O>0) = rDD12 × rMCLL/DD,12N

B0→Λpπ−
LL,12,(O<0)

(AT − 2AT ) + 1

1− (AT − 2AT )
(4.33)

for the B0 → Λpπ− components. The NB0→Λpπ+

LL,11,(O≶0) denotes the over all B0 → Λpπ+ yield in the sample with
O ≶ 0 for a given year or Λ configuration. The yields for O < 0 are independent, but the yields for O > 0 are
connected via the asymmetries to the yields for O < 0. All other yields are determined independently in each
sample to allow for a different behaviour with respect to the triple product. This approach increases the statistical
uncertainty but leads to no additional model dependent systematic uncertainties.

4.3.1 Correction Factors for the Time Reversal Asymmetry

The asymmetries listed in the previous chapter reflect an unrealistic scenario in which there are no diluting effects.
There are two major effects diluting the overall asymmetry. The first effect is driven by the detector, whereas the
second is driven by the assumptions made in order to determine the Λ spin, which is not directly ccessible to the
LHCb experiment.

In Fig. 4.4(a) the triple product is shown schematically. In case the angle between two of its vectors is very small
the value of the triple product is also small, but more importantly, the uncertainty on the sign of the triple product is
larger. The distribution of the values of the triple product for the generated particles is shown in Fig. 4.4(b) and it is
centred around zero. Due to the non-zero angular resolution it might happen, that the reconstructed triple product
switches its sign with respect to its true value. This effect was studied using simulated events, comparing the sign of
the triple products before (cf. Fig. 4.4(b)) and after the reconstruction. Since only the sign is important rather than
its value, it is checked how often the sign flips following the reconstruction. The effect is found to be small and it
should be noted, that only the enhancement region is checked, since the triple product is evaluated in that part of the
three body phase space. The probabilities to flip the sign during the reconstruction are listed in Tab. 4.4.

Table 4.4: Probability PFlip for flipping the sign of the triple product due to the angular resolution.

2011 LL 2011 DD 2012 LL 2012 DD

PFlip inh 4.12± 0.13 15.54± 0.08 3.5± 0.07 13.3± 0.04
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Figure 4.4: Illustration of the triple product employed to determine the time reversal violation in the B0 → Λpπ+ decay (a) and
distribution of the triple product for simulated B0 → Λpπ+ decays before the reconstruction (b).

The probability PFlip to flip the sign is treated as a dilution factor DFlip. A dilution factor is an effect that reduces
the amplitude of the asymmetry, which for the sign flip is given by

DFlip = 1− 2PFlip . (4.34)

Another, more pronounced dilution effect results from the Λ spin estimation. As was explained in Sec. 1.3 the
direction of the proton in the Λ rest frame is taken as the direction of the Λ spin and it is then boosted into the B0

rest frame. It awas shown in Sec. 1.3, that this approach leads to an additional dilution since the expectation value
of the angle between the proton momentum and the Λ spin is given by

〈cos θ〉 = +
α

3
, (4.35)

with the decay parameter α, which in case of maximal parity violation in the Λ decay would take the value of one,
so even for this extreme case, the dilution would be one in three. The measured values for α are given as [12]

α(Λ→ pπ−) = +0.642± 0.013

α(Λ→ pπ+) = −0.71± 0.08 .
(4.36)

The decay parameters for Λ and Λ overlap within their uncertainties and the α with the smaller uncertainty is used in
the fit. In doing so it is assumed that CP is conserved in the Λ decay. The uncertainty on α is treated as an external
systematic uncertainty. In contrast to PFlip entering the dilution DFlip, the value for 〈cos θ〉 is already a dilution
factor, therefore one finds

DΛ−spin =
α

3
= 0.214 . (4.37)

The overall dilution is given by

DT = DFlipDΛ−spin = (1− 2PFlip)
α

3
. (4.38)

The dilution factors can be included in the overall fit by modifying the individual yields. Instead of the physical
asymmetries, the fit yields so called raw asymmetries, defined as

Araw = DTAT (4.39)
Āraw = D̄T ĀT , (4.40)
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note that the dilution factor need not be identical for the B0 → Λpπ+ and B0 → Λpπ− decays, for example the
decay parameter for the Λ is different than for the Λ baryon, but assuming CP conservation in the Λ decay leads to
DT = D̄T .

The fit is modified to take these effects into account by multiplying the asymmetries with the corresponding dilution
factors and then extract the physical asymmetries. The fit employed in this analysis is flexible enough to allow for
an individual dilution factor for each sample, which is necessary given the different values of DFlip. But before
including the correction to the asymmetry it is useful to determine the raw asymmetries themselves in order to get
an impression of the overall statistical sensitivity of the analysis. The raw asymmetries derived from the fit are

Araw = (−0.3+7.8
−7.8)% (4.41)

Āraw = (−3.3+8.2
−8.2)% (4.42)

Araw = (1.5+5.7
−5.7)% , (4.43)

the uncertainties being statistical only. The theoretical prediction for AT is about 10 percent and in case of no
dilution factors entering the determination of the physical asymmetries the analysis should be able to establish a
time reversal violation at the 1 . . . 2σ in case AT ∼ 10%, which is remarkable given the limited statistics. Due to
the large dilution coming from the assumptions made for the Λ spin the uncertainty increases considerably, for the
full fit including both dilution factors the physical asymmetries are found to be

AT = (−1.0+37.2
−37.2)% (4.44)

ĀT = (−16.2+39.1
−39.1)% (4.45)

AT = (7.6+27.0
−27.0)% , (4.46)

again the uncertainties being statistical only. Within the large uncertainty the central value for Araw is in agreement
with both the theoretical prediction as well as the no time reversal violation hypothesis. Furthermore, the sign of the
asymmetry cannot be determined unambiguously either. The results of the full asymmetry fit including all dilution
factors is shown in Figs. 4.5, 4.6, 4.7, and 4.8 for the B0 → Λpπ+ sample with O > 0, B0 → Λpπ+ sample with
O < 0, B0 → Λpπ− sample with O > 0, and B0 → Λpπ− sample with O < 0, respectively. The final values for
all fit parameters can be found in Appendix H.3.

4.4 Systematic uncertainties forAT

The results listed in the previous section contain only the statistical uncertainties. This section is centred around the
systematic uncertainties for the time reversal asymmetry and relative B0

s → ΛpK+ branching fraction measurement.
Several sources of systematic uncertainties need to be considered, fortunately in the asymmetry measurement many
sources cancel, especially due to the fact, that the result is based on the difference between two asymmetries. The
same is also true for the relative branching fraction measurement. The following sources have been investigated:

Fit model: The overall fit model is very complex containing a lot of components, many cross-sample constraints
and it is considered to be the largest source of systematic effects on the AT measurement. Several individual
factors need to be considered, the influence of the four body decays appearing at smaller Λph invariant masses,
the Σ0 modes and the assumptions made on its dynamic structure, and differences between the simulated line
shape and the line shape in the recorded data.

Selection: In this analysis two distinctive selections are applied, the PID and candidate selection. The kaon/pion
particle identification enters the fit as a crucial component allowing the separation of the different B0 and B0

s

modes. Although the method of extracting the efficiencies is data driven, differences in the coverage between
the signal modes and the calibration sample might lead to a systematic effect. The same is true for the proton
identification. The remaining selection is based on a multivariate approach using simulated data as input
for the signal sample. Differences between the input variables for simulated and recorded events need to be
investigated since the relative efficiencies are used in the fit as well. Finally, effects of the trigger and tracking
should be investigated as well at least for differences between the B0 and B0

s modes.
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Λ decay constant: The uncertainty of Λ decay constant is at the 2% level for the Λ and at the 11% level for Λ. This
uncertainty will be considered as an external uncertainty. The assumption of CP conservation in the Λ decay
will also be checked and its influence on the T asymmetry measurement will be evaluated as well.

4.4.1 Fit model

The overall fit to the invariant Λph masses contains a lot of components compared to the available statistical
precision. This section evaluates the systematic uncertainties based on the fit model.
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Figure 4.9: Distribution of Pulls for the Time reversal asymmetry measurement for a thousand toy experiments using the results
for the nominal fit. The plot in the left hand side shows the Pull plot for AT and on the right hand side the Pull plot for AT is
shown. Both distribution agree with a standard normal distribution within the statistical uncertainty, hence no bias is detected.

Before investigating the individual contributions to the systematic uncertainties for the fit model, it is useful to
perform toy experiment studies to check whether the complex fit converges consistently and reproduces the fit
results listed in Sec. 4.3.1. For that reason a thousand toy experiments are generated according to the nominal fit
results and the overall fit function. Each toy set is generated according to a Poisson distribution for each variable
and is fitted afterwards. The fit results can now be compared to the nominal values used in the toy generation using
the pull distribution defined for a variable x as

Pull =
xFit − xGen

σFit
, (4.47)

where xFit is the fit value, σFit the uncertainty of xFit ,and xGen the nominal value for each toy sample, respectively.
Ideally, the pull distribution follows a normal distribution, in case the fit is unbiased, i.e. its mean value is zero and
its standard deviation is one. In Fig. 4.9 the pull distribution for the relevant variables for the AT measurement are
shown, the asymmetry for the B0 samples, AT , and the difference between the B0 and B0 asymmetry,AT . Both are
compatible with the expectation from an unbiased fit, therefore, no corrections due to a biased fit need to be applied.

The true composition of the lower mass sideband is unknown, many different B0 and B0
s decays contribute apart

from the Σ0 decays or the studied B0→ Λpρ+ and B0
s→ ΛpK∗+ decays, neither of which has been observed

and there are no available limits on these modes. Including a component for these four body modes based on the
B0→ Λpρ+ and B0

s→ ΛpK∗+ decays has been included in the fit, the yields, however, were compatible with zero
in the fit to the data. In order to evaluate the influence of these modes on the T asymmetry measurement, the range
of the fit is changed. Instead of using the full range of m(Λph) ∈ [4900, 5600] MeV/c2 the fit is repeated using a
smaller range of m(Λph) ∈ [5100, 5600] MeV/c2.
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Figure 4.5: Fit results for the full asymmetry fit for the O > 0 and B0 → Λpπ+ samples. The graphical representation is
identical to Fig. 4.3. The samples are denoted in the plots.
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Figure 4.6: Fit results for the full asymmetry fit for the O < 0 and B0 → Λpπ+ samples. The graphical representation is
identical to Fig. 4.3. The samples are denoted in the plots.
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Figure 4.7: Fit results for the full asymmetry fit for the O > 0 and B0 → Λpπ− samples. The graphical representation is
identical to Fig. 4.3. The samples are denoted in the plots.
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Figure 4.8: Fit results for the full asymmetry fit for the O < 0 and B0 → Λpπ− samples. The graphical representation is
identical to Fig. 4.3. The samples are denoted in the plots.
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The fit result for the asymmetry using the updated fit range and the difference with respect to the nominal fit is

AT = (7.3+28.0
−28.0)% (4.48)

∆AT = 0.3% , (4.49)

the statistical uncertainty on the difference is neglected since the same candidates are used. The difference of
∆AT = 0.3% is included as systematic uncertainty based on the fit model.

As was described in Sec. 4.1 it is assumed that theB0
(s) → Σ0ph+ decay modes have a similar dynamic distribution

as the B0
(s) → Λph+ modes. The systematic effect of this assumption is tested by using the overall phase space

efficiencies (cf. Sec. 3.3). The new asymmetry AT and the difference to the nominal number is given by

AT = (7.7+27.0
−27.0)% (4.50)

∆AT = 0.1% , (4.51)

omitting the statistical uncertainty, and the difference of ∆AT = 0.1% is assigned as a contribution to the overall
systematic uncertainty for the fit model.

The individual line shapes for the B0
(s) → Λph+ modes are determined using simulated events and are fixed in the

fit to data. In general, the simulation underestimates the mass resolution. While measuring the relative branching
ratios for B+ → pph+ A. Hicheur et al. [50] determined the width of the B+ → ppK+ line shape in recorded and
simulated events. The width in data was 16.7% larger compared to the simulation. This factor is applied for the
B0

(s) → Λph+ modes in the nominal fit, the B0
(s) → Σ0ph+ distributions in contrast are broad and no scaling

factor is applied. The resulting asymmetry and difference to the nominal fit given by

AT = (8.6+26.3
−26.3)% (4.52)

∆AT = 1.0% , (4.53)

the statistical uncertainty on the difference is neglected since the same candidates are used. The difference of
∆AT = 1.1% is used to determine systematic uncertainty for the fit model.

The overall systematic uncertainty due to the fit model is given by summing the individual contributions in quadrature
and is found to be

∆AFit
T = 1.1% . (4.54)

4.4.2 Selection

There are several steps in the selection chain that need to be investigated as sources for systematic uncertainties, one
being the PID selection.

The PID selection efficiency enters the fit in two ways. First the proton selection efficiency is used in the overall
constraints and the pion and kaon (mis-)identification is exploited to constrain the B0

(s) → Λph+ cross feeds.
Due to the finite size of the calibration samples provided for the PIDCalib package and problems with the p-η
coverage for the proton samples it is necessary to investigate any systematic effects. This is done by choosing a
different binning in order to extract the efficiency for the given selection. The efficiencies for the kaons and pions
are stable compared to the previous binning, the proton efficiency drops by several percent, the drop, however, is
almost equal among all modes, so the effect on the asymmetry is expected to be small and it is estimated by running
the full fit using the new efficiencies and the difference is used as an estimate for the systematic uncertainty, one
finds

AT = (7.7+27.0
−27.0)%

∆AT = 0.1% .
(4.55)
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In addition to that it is recommended to assign an additional relative uncertainty of 0.1% due to the SPlot formalism
applied to the kaon and pion calibrations samples. Summing both effects in quadrature one finds for the systematic
uncertainty based in the PID

∆APID
T = 0.1% . (4.56)

The multivariate analysis uses simulated events as source for the signal class. Several input variables require good
knowledge of the B0 and B0

s production processes. Especially the pseudorapidity and transverse momentum of the
B mesons depend on these models but also derived variables such lifetimes. Furthermore, variables such as the
impact parameters depend on the correct simulation of the detector. It is necessary to check, whether the response
function for the neural nets matches between the simulation and the recorded data. This is done by comparing the
response of simulated signal events with SWeighted data events. The resulting behaviour is shown in Fig. 4.10.
Except for the 2011 DD sample the agreement between the simulation and the data is very good. Nevertheless,
only the ratio of events before and after the selection is of importance here. Since this is good for 2011 DD as
well, no systematic effects can be found. In addition to that, the selection is mostly based on topological variables.
Systematic effects would be expected to cause the sign of the triple product to flip and it was shown in Sec. 4.3.1
that these effects are expected to be small compared to dilution effects based on the Λ spin determination.
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Figure 4.10: Comparison between the MVA response for simulated signal candidates (red data points) and background subtracted
candidates in recorded data (black data points). The background subtraction is performed using the SPlot technique. The
histograms are scaled to have the same integral. The top (bottom) row shows the plots for the 2011 (2012) samples, the LL (DD)
sample on the left (right) hand side. Except for the 2011 DD sample the agreement is good.

Effects based on the deviation from the simulation based on a constant matrix element are accounted for in the
statistical uncertainty, as the uncertainty on the recalculated efficiency is included as a Gaussian constraint. The
trigger efficiency is not expected to be constant across the Dalitz plot, but this effect is included in the overall
efficiency and therefore in the overall statistical uncertainty. Additional differences between data and the simulation
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may arise to misalignment effects not correctly reproduced by the simulation. Here, the angular measurement is
important since it may change the sign of the triple product. As was shown in Sec. 4.3.1 the predicted effect from the
simulation is at the per mille level. Even a discrepancy by a factor of two between data and simulation would have a
smaller effect than the uncertainty on the Λ decay constant. Therefore, no uncertainty due this effect is assigned.

4.4.3 Λ Decay and Λ Decay Constant

The uncertainty on the Λ decay constant is given by [12]

∆α(Λ→ pπ−)

α(Λ→ pπ−)
= 2.0% , (4.57)

and it is mitigated as an external systematic uncertainty on the time reversal asymmetry. The systematic uncertainty
on AT is given as

∆AΛT = 0.15% . (4.58)

So far it is assumed, that CP is conserved in the Λ decay and the decay parameter for the Λ is used for Λ decay as
well since its uncertainty is smaller. This is in agreement with the experimental observation, and the predictions
from the Standard Model. Still it is interesting to allow for CP violation in the Λ decay by using the different decay
parameters for the Λ and the Λ. In order to account for the effect, the asymmetries are modified

Araw = DTAT = (1− 2PFlip)
α(Λ)

3
(4.59)

Āraw = D̄T ĀT = (1− 2PFlip)
α(Λ)

3
, (4.60)

and the fit is rerun with this configuration, one finds

ACPV
T = (−1.2+37.3

−37.1)% (4.61)
ĀCPV
T = (−9.9+23.6

−23.6)% (4.62)
ACPV
T = (4.3+22.1

−22.0)% , (4.63)

which is slightly smaller compared to the asymmetry assuming CP conservation. This based on the smaller dilution
due to the larger α for the Λ. The uncertainty on the Λ decay constant is considerably larger [12],

∆α(Λ→ pπ+)

α(Λ→ pπ+)
= 11.3% , (4.64)

and the overall systematic uncertainty due to the decay parameters is

∆AΛCPV
T = 0.5% . (4.65)

The total systematic uncertainty calculated by summing the individual uncertainties in quadrature assuming no
correlation between the individual sources is given by

∆AT = 1.1%

∆ACPV
T = 1.2% ,

(4.66)

the first uncertainty is based on assuming CP conservation for the Λ decay, the second allows for CP violation in the
Λ decay. In Table 4.5 the relative systematic uncertainties are listed.
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4.5 Systematic Uncertainties for theB0
s → ΛpK+ Branching Fraction

The systematic uncertainties on the branching fraction measurement are quite similar to the uncertainties for AT . In
the end, the B0

s → ΛpK+ branching fraction is extracted from the ratio relative to B0 → Λpπ+.

The relevant uncertainties are :

Fit model: The overall fit determines the ratio between the B0
s → ΛpK+ and B0

s → ΛpK− modes and B0 →
Λpπ+. Similar to the AT measurement the relevant sources are due the limited knowledge of the composition
of the lower m(Λph) invariant mass sideband and the line shapes for the B0

(s) → Λph+ decays. Both
sources are treated similarly to the AT measurement, the fit is performed in different ranges and with the
width scaling from B+ → ppK+, respectively.

Selection: Again the fit uses constraints on the relative branching fractions thus makes use of the selection and
PID efficiencies. These effects are investigated separately.

Hadronisation factor: The B0
s → ΛpK+ branching fraction is measured with respect to the B0 mode B0 → Λpπ+.

Since the hadronisation probabilities are different from B0 and B0
s the ratio fs/fd is treated as an external

systematic uncertainty on the B0
s → ΛpK+ branching fraction.

Branching fraction for B0 → Λpπ+: Since the B0
s → ΛpK+ branching fraction is determined relative to B0 →

Λpπ+ the limited knowledge on B(B0 → Λpπ+) is accounted for in the systematic uncertainty.

4.5.1 Fit Model

As for the time reversal asymmetry fit, it is useful to perform toy studies in order to check the stability of the overall
fit. In Fig. 4.11 the pull distribution for the ratio between the B0 → Λpπ+ and B0

s → ΛpK+ branching fractions is
shown, as before the mean value and standard deviation agree with a normal distribution signalling an unbiased fit.
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Figure 4.11: Pull distribution for ratio between the B0 → Λpπ+ and B0
s → ΛpK+ branching fraction for one thousand toy

experiments using the nominal fit results.

The uncertainties due to the limited knowledge of the four body modes is accounted for by performing the fit using
the reduced interval of m(Λph) ∈ [5100, 5600] MeV/c2. Using the new result for rB

0
s→ΛpK+

the relative deviation
from the nominal value is taken as a systematic uncertainty, one finds

∆rB
0
s→ΛpK+

rB0
s→ΛpK+

= 2% . (4.67)
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The uncertainty due to the assumptions on the B0
(s) → Σ0ph+ Dalitz plot distribution is treated similar to the

uncertainty on AT , the fit is performed using the efficiencies calculated from the phase space simulated events. The
relative deviation between the updated rB

0
s→ΛpK+

and the nominal fit value is taken as the systematic uncertainty,

∆rB
0
s→ΛpK+

rB0
s→ΛpK+

= 1% . (4.68)

For the time reversal asymmetry the main systematic uncertainty was due to the imperfect knowledge of the line
shape. Again using the the 16% difference between the recorded data and the simulation based on the B+ → ppK+

analysis the new ratio rB
0
s→ΛpK+

is determined and the deviation from the nominal value taken as a relative
systematic uncertainty. One finds

∆rB
0
s→ΛpK+

rB0
s→ΛpK+

= 2.5% . (4.69)

Summing all uncertainties in quadrature the total relative systematic uncertainty based on the fit model is given as

∆rB
0
s→ΛpK+

rB0
s→ΛpK+

= 3.4% . (4.70)

4.5.2 Selection

The systematic uncertainty for the PID selection follows the same line as for AT . The PID efficiencies are
calculated using a different binning, the relative change in rB

0
s→ΛpK+

is taken as the systematic uncertainty.

Rerunning the fit using the modified PID efficiencies one finds,

∆rB
0
s→ΛpK+

rB0
s→ΛpK+

= 1.3% . (4.71)

Another source of systematic uncertainty is based on the remaining selections and most effects cancel. In Fig. 4.10
the comparison between background subtracted signal in data and truth matched simulated events shows good
agreement between the multivariate selectors in data and the simulation save for the 2011 DD sample, however, the
efficiency for the selection is identical within the statistical uncertainty. Therefore, the simulation describes the
input variables reasonably well and no additional systematic uncertainty is applied.

The largest difference between the efficiencies for B0
s → ΛpK+ and B0 → Λpπ+ modes is the trigger efficiency.

Neglecting small differences between these two modes based on the different masses of the B0 and B0
s meson as

well the larger kaon mass, the trigger efficiencies for each mode should be identical within the uncertainty. Taking
into account the different relative luminosities for each sample the average maximum difference in the trigger
efficiencies it 4.3% and half this value, 2.2%, is taken as a systematic uncertainty.

The total relative systematic uncertainty is determined by adding both contributions in quadrature,

∆rB
0
s→ΛpK+

rB0
s→ΛpK+

= 2.6% . (4.72)

4.5.3 External Systematic Uncertainties

As mentioned before, the hadronisation probabilities for B0 and B0
s mesons need to be taken into account in order

to determine the relative branching fraction. The ratio fs/fd was determined by the LHCb experiment averaging
over hadronic and semi-leptonic modes to be [44]

fs
fd

= 0.259± 0.015 . (4.73)
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The relative systematic uncertainty of 5.8% is taken as a systematic uncertainty. The branching fraction for
B0 → Λpπ+ is taken from the PDG averaging previous BABAR and BELLE measurements

B(B0 → Λpπ+) = (3.14± 0.29)× 10−6 . (4.74)

Its relative uncertainty of 9.2% is taken as a systematic uncertainty. Fortunately, the uncertainty on the Λ branching
fraction cancels in the ratio as both decays are reconstructed using the identical Λ decay into a proton and a pion.
Since these two uncertainties dominate and are not related to the measurements provided by this analysis, these are
listed as separate systematic uncertainties.

In Table 4.5 the relative systematic uncertainties are summarised.

Table 4.5: Summary of the relative systematic uncertainties for the AT , the ACPV
T , and the relative branching fraction

measurement.

Uncertainty origin Value (%)
AT ACPV

T B(B0
s → ΛpK+)

Fit Model 14.7% 3.4%

Selection 1.3% 2.6%

Λ decay constant 2.0% 6.7% –

Hadronisation factor – 5.8%

Branching fraction of B0 → Λpπ+ – 9.2%

Total 14.7% 16.0% 11.7%
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Chapter 5

Results and Conclusion

The initial goal of this analysis was the measurement of the time reversal violating asymmetry AT using the triple
product

O = sΛ · (pΛ × pπ+) (5.1)

and the following asymmetries

AT =
NB0→Λpπ+

(O>0) −NB0→Λpπ+

(O<0)

NB0→Λpπ+

(O>0) +NB0→Λpπ+

(O<0)

(5.2)

ĀT =
NB0→Λpπ−

(O>0) −NB0→Λpπ−
(O<0)

NB0→Λpπ−
(O>0) +NB0→Λpπ−

(O<0)

(5.3)

AT = 1/2(AT − ĀT ) . (5.4)

The asymmetries are calculated independently for B0 → Λpπ+ and B0 → Λpπ− and finally subtracted and in
doing so CP conserving effects due to final state interaction cancel. The whole analysis was proposed by C. Q.
Geng and Y. K. Hsiao [2]. The asymmetries have been determined in a simultaneous unbinned extended maximum
likelihood fit to the data taken in 2011 and 2012, a combined sample of 3 fb−1, as well two different Λ configurations
based on whether the Λ decays inside (LL) or outside (DD) the Vertex Locator.

There are three main results to report, the first two are the asymmetries for B0 → Λpπ+ assuming CP conservation
and CP violation in the Λ decay. The third result is the first observation of the baryonic B0

s decay B0
s → ΛpK+.

For the CP conserving asymmetry AT ones finds

AT = (7.6± 27.0 (stat)± 1.1 (syst))% . (5.5)

Allowing for CP violation in the Λ decay the asymmetry is determined to be

ACPV
T = (4.3+22.1

−22.0 (stat)± 1.2 (syst))% . (5.6)

The decaysB0
s → ΛpK+ andB0

s → ΛpK− are observed for the first time and their combined statistical significance
corresponds to 17.2 Gaussian standard deviations.

The branching fraction for the sum of B0
s → ΛpK+ and B0

s → ΛpK− is measured to be

B(B0
s → ΛpK+) + B(B0

s → ΛpK−) =
[
4.75+0.53

−0.49 (stat)± 0.20 (syst)± 0.28(fs/fd)± 0.44(B)
]
× 10−6 .

(5.7)
For each result the first uncertainty is statistical and the second systematic, further additional external uncertainties
are labelled accordingly. In addition to these results, the Dalitz plot for B0 → Λpπ+ and B0

s → ΛpK+ has been
studied and shows the familiar behaviour with a pronounced enhancement at threshold in the invariant baryon
antibaryon mass. Each result will be discussed in the following sections.
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5.1 AsymmetriesAT andACPV
T

The theoretical prediction for asymmetry AT is given by C. Q. Geng and Y. K. Hsiao [2] to be

AT ∈ [10.2, 10.4]% (5.8)

assuming different strong phases between the interfering Feynman diagrams. The experimental results are compatible
with the prediction, but due to the limited statistics and large dilution factor based on the determination of the Λ
spin the significance of the measurement is small. The theoretical prediction can neither be excluded nor confirmed,
the asymmetry is compatible with the no T violation hypothesis. Furthermore, the sign of the asymmetry cannot be
determined either. As can be seen by the difference between AT and ACPV

T the dilution due to the Λ spin ambiguity
is the main limitation of the analysis. The statistical precision of the raw asymmetry, i.e. neglecting dilution effects,
was found the be Araw = (1.5± 5.7)%.

Previous analyses using the triple product technique in search for CP violation used different triple products
containing only momentum vectors. Using a triple product containing the spin of one daughter particle has the
advantage, thatAT is even with respect to parity and only changes sign with respect to T. BaryonicB0

(s) decays allow
using the spin rather than just the momentum and define a triple product only sensitive to T, however, the inability to
determine the spin vector of a fermion negates the advantage. Due to the large dilution factor the available number
of candidates needs to be increased by an order of magnitude to allow a significant measurement. Experimentally,
the reconstruction of the Λ baryon at LHCb imposes further restrictions since the detection efficiency is small.
Unfortunately, decays such as B+ → ppK+ are not suited for this kind of triple product either, because the spin of
the proton cannot be determined. Studying B decays to Λ+

c might prove more successful, the overall branching
fraction for decays such as B− → Λ+

c pπ
− is two orders of magnitude larger compared to charmless modes such

as B0 → Λpπ+ with B(B− → Λ+
c pπ

−) = (2.8± 0.8)× 10−4 [12] and the detection efficiency is larger at LHCb
due the shorter lifetime of the Λ+

c baryon. The downside of using Λ+
c baryons is, that there is no well known

two body decay mode with a large branching fraction such as Λ → pπ−. The decay mode Λ+
c → Λπ+ with

B(Λ+
c → Λπ+) = (1.07±0.28)% [12] suffers from similar experimental issues due to the Λ in the decay chain, but

the decay parameter for Λ+
c → Λπ+ is close to one α(Λ+

c → Λπ+) = −0.91± 0.15 [12] decreasing the dilution
factor. Unfortunately, taking all these effects into account the statistical precision will again be the limiting factor,
the small Λ+

c → Λπ+ branching fraction almost negates the overall larger branching fraction of B− → Λ+
c pπ

− with
respect to B0 → Λpπ+. The uncertainty on α(Λ+

c → Λπ+) is also large compared to the Λ decay constant, whose
uncertainty is a large contributor to the overall systematic uncertainty. Finally, decays with b→ c transitions, such
as B− → Λ+

c pπ
−, are not very interesting since the CP or T violation appearing in such tree decays is expected to

be negligible.

To conclude on the results for AT and ACPV
T , this analysis is mainly a feasibility study to check the approach of

using a triple product containing a spin vector compared to using momentum vectors only, repeating this analysis
using the Run-I and Run-II data collected by LHCb during the next years seems unreasonable, as the available
number of recorded B mesons will not increase by an order of magnitude and there has been no major revision of
the V 0 reconstruction before the start of Run-II. It will be interesting to see the V 0 reconstruction efficiency of the
BELLE2 experiment and the actual luminosity that will be achieved. Maybe the BELLE2 experiment will be more
suited to doing this kind of analysis.

5.2 Observation of the BaryonicB0
s DecayB0

s → ΛpK+

The field of baryonic B0
s decays is still an unexplored field of study. For the B0 and B± mesons a number of

baryonic decays have been observed. This is mainly due to the experimental constraints of the second generation B
factories BABAR and BELLE operating at the Υ (4S)resonance, which is not heavy enough to decay into B0

s mesons.
The BELLE experiment has a small sample of Υ (5S)data. The Υ (5S)resonance decays include B0

s mesons. The
BELLE collaboration has found evidence for a baryonic B0

s decay [58] namely B0
s → Λ−c Λπ

+. A charmless
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baryonic B0
s decay has not been observed yet. The decays B0

s → ΛpK+ and B0
s → ΛpK− are observed in this

analysis with a significance of 17.2 Gaussian standard deviations.

At first glance theB0
s decayB0

s → ΛpK+ should be the analogue toB0 → Λpπ+ but as was shown in Sec. 1.2.2 this
is not the case. There are several different amplitudes contributing with different strong phases and the expectation,
that the only difference between the two decays was the spectator quark is invalidated. The difference between these
two modes goes even further. Due to the s quark in the B0

s meson in combination with an s quark produced in
either the penguin loop or the b→ uW− decay it is possible to create either a Λ baryon or a Λ antibaryon while
the second s or s quark is part of the kaon. This implies that both the B0

s and the B0
s can decay into the identical

final state ΛpK. Such an effect does not occur for the B0 → Λpπ+ decay. In this analysis the flavour of the B0
s

meson, i.e. whether it is a B0
s or B0

s, was not tagged, but for future studies with enhanced statistics it should be
possible to do a time dependent CP violation measurement. Since the weak phase difference of b→ s penguin
decays interfering with b→ u tree amplitudes is given by the CKM angle γ a large direct CP violation could occur
depending on the strong phase differences. But as for further studies for AT this will be difficult to achieve with the
Run-I and Run-II data only. Typically the tagging efficiency at LHCb is about 7% which combined with the lower
number of B0

s meson available and the low Λ reconstruction efficiency will severely limit the statistical precision. A
time dependent measurement would be further diluted by the decay resolution. A time integrated measurement
is an alternative but yields it own problems. The time dependent CP violation is separated into two terms, a sine
term containing the mixing between the B0

s and B0
s and a cosine term determined by the direct CP violation. The

mixing is determined by the small angle βs, therefore, the contribution of the sine term should be rather small and
the asymmetry should be dominated by the cosine term. A time integrated measurement would integrate over the
sine term and in case of a coherent initial state, the sine term would vanish. Unfortunately, the B0

s and B0
s mesons at

LHCb are not produced in a coherent state, thus a time integrated measurement will always measure the mixture of
the sine and cosine term.

In contrast to the measurement ofAT the time dependent CP asymmetry measurement is probably not feasible for the
BELLE2 experiment. First, its main focus will be running at the Υ (4S)resonance rather than the Υ (5S)resonance
and therefore the available statistics will be limited as well. Furthermore, the Υ (5S)does not decay exclusively into
a B0

s -B0
s pair further limiting the statistics at hand and the B0

s and B0
s mesons are not necessarily in a coherent

state, so a time integrated measurement will again measure both the sine and cosine term. In general, the tagging
efficiency at the e+e−B factories was larger than it is at LHCb, but the performance of the new BELLE2 detector
and the reconstruction software are yet unknown as well.
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Figure 5.1: Dalitz plot for the B0
s → ΛpK+ (left plot) and B0 → Λpπ+ (right plot) decay modes. The bin contents are given

by the sum of the SPlot weights extracted from the fits to the m(Λph) invariant mass for each data sample. The only structure
visible is a pronounced enhancement at the m(pΛ) threshold.

Apart from the observation of these two B0
s decays the Dalitz plot has been studied, although a full amplitude
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analysis is not feasible given the limited statistics, the structures become apparent. In Fig.5.1 the Dalitz plots for both
the B0

s → ΛpK+ and B0 → Λpπ+ are shown again. While the structures look similar there are slight differences.
While the width of the enhancement with respect to the m2(Λp) invariant mass is similar, the B0

s → ΛpK+

enhancement is broader with respect to the m2(pK+) invariant mass compared to the B0 → Λpπ+ mode. The
latter is almost exclusively limited to the upper left corner of the Dalitz plot indicating an asymmetry in the
decay dynamics. Coming back to the Feynman diagrams and the fragmentation picture, the pronounced threshold
enhancement in the m2(Λp) invariant mass favours the meson pole hypothesis. There are no structures visible in
any baryon meson invariant mass combination disfavouring the baryon pole description of baryonic B decays.

Another advantage of having such a pronounced enhancement in both decay modes is a simplification of a CP
asymmetry measurement. Three body decays usually necessitate a full amplitude analysis across the Dalitz plot
in order to determine a CP asymmetry, because different regions of the Dalitz plot may show different inference
effects between the CP eigenstates. The enhancement in B0

s → ΛpK+ and B0 → Λpπ+ allows these decays to be
treated as pseudo two body decays similar to decays such as B → J/ψK0

S . The enhancement hereby takes the role
of the J/ψ . Once the quantum numbers of the enhancement are determined, the CP asymmetry can be extracted
without having to model the whole Dalitz plot. The BES collaboration observed an enhancement in J/ψ → γpp
and measured the quantum numbers of this resonance to be consistent with both JPC = 0−+ and JPC = 0++ [59].
A similar determination is beyond the scope of this analysis but once these numbers are known, the CP eigenvalues
of the decays can determined as well.
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Figure 5.2: Distribution of the proton helicity angle for efficiency corrected and background subtracted B0 → Λpπ+ (left) and
B0
s → ΛpK+ (right) candidates for m2(Λp) ∈ [(mp + mΛ)2, 6.9]( GeV/c2)2. Each distribution was fitted with a constant

(blue curve) corresponding to the spin-0 hypothesis for the threshold enhancement. The χ2/nDoF is listed in the plots. The data
disfavour the spin-0 hypothesis for the B0 → Λpπ+ mode, the B0

s → ΛpK+ mode is compatible with the spin-0 hypothesis.

The angular quantum numbers of the threshold enhancement can be determined through the helicity angle θH of
one of its daughters. Here, the angle between the p and the B0

(s) meson is calculated in the rest frame of the Λ-p
system. In order to measure the angular distribution only for the enhancement region, the invariant m(Λp) mass
squared is restricted to m2(Λp) ∈ [(mp +mΛ)2, 6.9]( GeV/c2)2. The SPlot weights determined in the extraction
of the Dalitz plots are used here (cf. Sec. 4.1). It was shown, that the efficiency is not flat across the Dalitz plot and,
therefore, not flat in the helicity angle as well. In a similar approach to the one described in Sec. 4.1 the efficiency is
determined in five bins of the helicity angle and the SPlot weights are corrected with these efficiencies. In Fig. 5.2
the results for both the B0 → Λpπ+ (left) and B0

s → ΛpK+ (right) can be found. The distribution for the proton
helicity angle for B0 → Λpπ+ is compatible with the previous BELLE measurement shown in Fig. 5.3 and exhibits
a strong asymmetry, which is not yet understood by theory [60]. Naively, one would expect the angular distribution
for a pole to be flat, since the dominant poles have zero angular momentum. The proton helicity angle distribution
was fit assuming a constant distribution and the χ2/nDoF is 29.09/4 indicating a bad fit. The asymmetry in the
angular distribution for B0

s → ΛpK+ is less pronounced and the a χ2/nDoF of 5.18/4 shows good a agreement
with the hypothesis of no angular momentum.

Apart from measuring the angular quantum numbers for the threshold enhancement, the helicity analysis can be
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Figure 5.3: Distribution of he proton helicity angle over the differential branching fraction obtained by the BELLE collabora-
tion [24].

applied to measure the polarisation of the Λ hyperon on the B0
(s) decay. Here, the angular distribution for the proton

from the Λ decay is measured with respect to the B0 or, alternatively, the Λp system each determined in the Λ rest
frame. The angular distribution for the proton is given by

I(θ) = 1 + αP cos θ , (5.9)

which is similar to the distribution employed to determine the T reversal asymmetry, the difference being, rather
than measuring the spin of a single Λ, the statistical average is analysed. The polarisation P in an indication,
how often the Λ spins have similar orientations. For fully polarised Λ baryons, P = 1, all spins have the same
orientation in space, for unpolarised Λ hyperons, P = 0, the spins are distributed uniformly canceling each other.
The cos θH distributions for the Λ proton can be found in Fig. 5.4, on the left side for the B0 → Λpπ+ mode and
on the right hand side for B0

s → ΛpK+. The black (blue) data points show the cos θH distribution calculated with
respect to the Λp (B0) system. The polarisation is determined by a χ2 fit to the cos θH . Within the uncertainties
the Λ polarisation is identical with respect to both systems of reference, the fit results are given in Tab.5.1. In
order to improve the statistical sensitivity the polarisation is determined averaging over Λ and Λ assuming equal
polarisation by measuring αP instead of P . In the B0 → Λpπ+ decay, the Λ baryons are partly polarised whereas
the Λ hyperons are unpolarised in the B0

s → ΛpK+ decay.
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Figure 5.4: Distribution of the proton helicity angle for the proton from the Λ with respect to the Λp system (black data points)
and the Λpπ system (blue data points) for efficiency corrected and background subtracted data for the B0 → Λpπ+ (left) and
B0
s → ΛpK+ (right) candidates for m2(Λp) ∈ [(mp +mΛ)2, 6.9]( GeV/c2)2. The fit function for the Λ polarity is indicated

by the dashed lines coloured according to the system of reference.

The polarisation of the Λ baryons can help understanding the underlying structure of these baryonic B0
(s) decays.

The Λ baryons are bound states of three quarks in an s wave state, the u and d quark forming a spin singlet.
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Table 5.1: Fit results for the polarisation fit for the B0 → Λpπ+ and B0
s → ΛpK+ decays for both axis of reference, the

Λ-antiproton system and the B0
(s) system, respectively.

Axis of reference αP (B0 → Λpπ+) αP (B0
s → ΛpK+)

Λ-p −0.26± 0.15 −0.01± 0.20
B0

(s) −0.22± 0.15 0.05± 0.19

Therefore, the Λ spin is entirely given by the s quark spin in the static quark model. After a boost into a moving
frame of reference, the Λ helicity is determined by the s quark helicity. Measuring the handedness of the Λ allows
to determine the chirality of the s quark in the weak interaction.

In the B0 → Λpπ+ decay, the s quark can be produced either in the b→ s penguin or through a W boson in the b
→ u amplitude. In the first case, the s quarks carries over the momentum of the decaying b quark and is, therefore,
dominant left handed. In the fragmentation of the Λ baryon, the s is the leading quark, therefore, the Λ baryons
should be polarised. In case of a b→ u tree amplitude, the momentum of the s quarks is small compared to the b
quark and thus not dominant left handed. As a result, the Λ should be less polarised in comparison. Applying these
thoughts to the decays at hand, the B0

s → ΛpK+ and B0
s → ΛpK− decays should be dominated by the b→ u tree

and W exchange diagrams. The B0 → Λpπ+ decay mode should have mixed contributions from the penguin and
tree decay amplitudes.

The chirality argument should lead to a dependence of the Λ polarisation on the Λ energy in the B0 rest frame. For
large Λ energies the Λ should be highly polarised due to the s quark chitality [61]. In case the s quark has a large
boost in the b rest frame it is predominant left handed, therefore, the Λ polarisation is large. For small boosts the
polarisation should vanish. In Fig. 5.5 the dependence of the Λ polarisation on the Λ energy in the B0 rest frame is
shown for a previous BABAR measurement [25], this analysis, and the theoretical prediction [61]. The results agree
well with the theoretical prediction, but cannot exclude the the hypothesis of unpolarised Λ hyperons due to the
large uncertainties.
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Figure 5.5: Distribution of αP as a function of Λ energy in the B0 rest frame. The left plot shows the LHCb data in black and
the BABAR results in blue [25]. The predicted relation for αP (E∗(Λ)) is shown on the right hand side [61].

To conclude this section, one can learn a lot about the decay dynamics of baryonic B decays by studying the
various angular distributions. In order to receive conclusive measurements, the statistical uncertainty needs to be
reduced. This makes this an interesting field of study for the upcoming BELLE2 experiment and future runs of the
LHC. Concerning LHCb, however, improvements to the Λ detection efficiency are necessary to allow conclusive
measurements.
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Appendix A

Study of Trigger Lines

It is interesting to study the contribution to the overall trigger efficiencies coming from the individual lines at all
trigger levels. Such a study is here performed for the standard lines typically employed as trigger requirements on
hadronic B decays.

The tables below show the various contributions separately for LL and DD samples of the B0→ Λpπ+ signal decay
mode. Very similar numbers are obtained for the B0

s→ ΛpK+ mode; they are not shown as they are redundant.

As explained in Sec. 3.1.1, the BodySimple trigger lines are only used in the 2011 data selection. They are
hence omitted in the studies on the 2012b sample. The results are the following for the 2012b LL and DD samples,
respectively:

==========================================================================================
eff_{L0/strip} = ( 44.97 +/- 0.39 ) % ( 12985 out of 28874 )

L0HadronTos = ( 24.51 +/- 0.29 ) % ( 7078 out of 28874 )
L0GlobalTis = ( 29.07 +/- 0.32 ) % ( 8393 out of 28874 )

------------------------------------------------------------------------------------------
eff_{HLT1/L0} = ( 73.62 +/- 0.75 ) % ( 9560 out of 12985 )

Hlt1TrackAllL0Tos = ( 73.62 +/- 0.75 ) % ( 9560 out of 12985 )
------------------------------------------------------------------------------------------
eff_{HLT2/HLT1} = ( 69.75 +/- 0.85 ) % ( 6668 out of 9560 )

Hlt2Topo2BodyBBDTTos = ( 61.23 +/- 0.80 ) % ( 5854 out of 9560 )
Hlt2Topo3BodyBBDTTos = ( 50.59 +/- 0.73 ) % ( 4836 out of 9560 )
Hlt2Topo4BodyBBDTTos = ( 15.84 +/- 0.41 ) % ( 1514 out of 9560 )

==========================================================================================
eff_{trig/strip} = ( 23.09 +/- 0.28 ) % ( 6668 out of 28874 )
==========================================================================================

==========================================================================================
eff_{L0/strip} = ( 45.59 +/- 0.20 ) % ( 50912 out of 111681 )

L0HadronTos = ( 27.11 +/- 0.16 ) % ( 30276 out of 111681 )
L0GlobalTis = ( 27.66 +/- 0.16 ) % ( 30890 out of 111681 )

------------------------------------------------------------------------------------------
eff_{HLT1/L0} = ( 64.46 +/- 0.36 ) % ( 32819 out of 50912 )

Hlt1TrackAllL0Tos = ( 64.46 +/- 0.36 ) % ( 32819 out of 50912 )
------------------------------------------------------------------------------------------
eff_{HLT2/HLT1} = ( 65.86 +/- 0.45 ) % ( 21616 out of 32819 )

Hlt2Topo2BodyBBDTTos = ( 57.71 +/- 0.42 ) % ( 18941 out of 32819 )
Hlt2Topo3BodyBBDTTos = ( 37.41 +/- 0.34 ) % ( 12278 out of 32819 )
Hlt2Topo4BodyBBDTTos = ( 0.00 +/- 0.00 ) % ( 0 out of 32819 )

==========================================================================================
eff_{trig/strip} = ( 19.36 +/- 0.13 ) % ( 21616 out of 111681 )
==========================================================================================
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The results are the following for the 2011 LL and DD samples, respectively:

==========================================================================================
eff_{L0/strip} = ( 47.31 +/- 0.51 ) % ( 8523 out of 18014 )

L0HadronTos = ( 27.35 +/- 0.39 ) % ( 4927 out of 18014 )
L0GlobalTis = ( 29.84 +/- 0.41 ) % ( 5375 out of 18014 )

------------------------------------------------------------------------------------------
eff_{HLT1/L0} = ( 71.72 +/- 0.92 ) % ( 6113 out of 8523 )

Hlt1TrackAllL0Tos = ( 71.72 +/- 0.92 ) % ( 6113 out of 8523 )
------------------------------------------------------------------------------------------
eff_{HLT2/HLT1} = ( 61.41 +/- 1.00 ) % ( 3754 out of 6113 )

Hlt2Topo2BodyBBDTTos = ( 55.01 +/- 0.95 ) % ( 3363 out of 6113 )
Hlt2Topo3BodyBBDTTos = ( 36.09 +/- 0.77 ) % ( 2206 out of 6113 )
Hlt2Topo4BodyBBDTTos = ( 13.43 +/- 0.47 ) % ( 821 out of 6113 )

Hlt2Topo2BodySimpleTos = ( 36.10 +/- 0.77 ) % ( 2207 out of 6113 )
Hlt2Topo3BodySimpleTos = ( 21.25 +/- 0.59 ) % ( 1299 out of 6113 )
Hlt2Topo4BodySimpleTos = ( 8.80 +/- 0.38 ) % ( 538 out of 6113 )

==========================================================================================
eff_{trig/strip} = ( 20.84 +/- 0.34 ) % ( 3754 out of 18014 )
==========================================================================================

==========================================================================================
eff_{L0/strip} = ( 49.18 +/- 0.28 ) % ( 31265 out of 63570 )

L0HadronTos = ( 30.04 +/- 0.22 ) % ( 19099 out of 63570 )
L0GlobalTis = ( 29.52 +/- 0.22 ) % ( 18767 out of 63570 )

------------------------------------------------------------------------------------------
eff_{HLT1/L0} = ( 63.82 +/- 0.45 ) % ( 19954 out of 31265 )

Hlt1TrackAllL0Tos = ( 63.82 +/- 0.45 ) % ( 19954 out of 31265 )
------------------------------------------------------------------------------------------
eff_{HLT2/HLT1} = ( 52.44 +/- 0.51 ) % ( 10464 out of 19954 )

Hlt2Topo2BodyBBDTTos = ( 51.58 +/- 0.51 ) % ( 10293 out of 19954 )
Hlt2Topo3BodyBBDTTos = ( 0.18 +/- 0.03 ) % ( 36 out of 19954 )
Hlt2Topo4BodyBBDTTos = ( 0.00 +/- 0.00 ) % ( 0 out of 19954 )

Hlt2Topo2BodySimpleTos = ( 31.77 +/- 0.40 ) % ( 6339 out of 19954 )
Hlt2Topo3BodySimpleTos = ( 0.10 +/- 0.02 ) % ( 20 out of 19954 )
Hlt2Topo4BodySimpleTos = ( 0.00 +/- 0.00 ) % ( 0 out of 19954 )

==========================================================================================
eff_{trig/strip} = ( 16.46 +/- 0.16 ) % ( 10464 out of 63570 )
==========================================================================================

It is clear that all trigger lines are relevant apart from the HLT2 Topo4Body lines when it comes to selecting DD
signal candidates. For consistency the selection is nevertheless kept the same throughout, as it is believed that this
does not introduce any non-negligible systematic uncertainty.
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B.1 MVA Training for the 2011 LL Data
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Figure B.1: Input variables for the training for the 2011 period for the LL sample. The blue data points are signal, the red data
points background.
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Figure B.2: Input variables for the training for the 2011 period for the LL sample. The blue data points are signal, the red data
points background.
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Figure B.3: Input variables for the training for the 2011 period for the LL sample. The blue data points are signal, the red data
points background.



B.1. MVA Training for the 2011 LL Data 115

Angle between Λ and B in the B rest-frame
0 0.5 1 1.5 2 2.5 3

0

20

40

60

80

100

120

140

160 Signal

Background

Pointing variable
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

100

200

300

400

500

600
Signal

Background

Figure B.4: Input variables and output of the training for the 2011 period for the LL sample. The blue data points are signal, the
red data points background.
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B.2 MVA Training for the 2011 DD Data
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Figure B.5: Input variables for the training for the 2011 period for the DD sample. The blue data points are signal, the red data
points background.
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Figure B.6: Input variables for the training for the 2011 period for the DD sample. The blue data points are signal, the red data
points background.
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Figure B.7: Input variables for the training for the 2011 period for the DD sample. The blue data points are signal, the red data
points background.
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Figure B.8: Input variables and output of the training for the 2011 period for the DD sample. The blue data points are signal, the
red data points background.
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B.3 MVA Training for the 2012 LL Data
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Figure B.9: Input variables for the training for the 2012 period for the LL sample. The blue data points are signal, the red data
points background.
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Figure B.10: Input variables for the training for the 2012 period for the LL sample. The blue data points are signal, the red data
points background.
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Figure B.11: Input variables for the training for the 2012 period for the LL sample. The blue data points are signal, the red data
points background.
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Figure B.12: Input variables and output of the training for the 2012 period for the LL sample. The blue data points are signal, the
red data points background.
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B.4 MVA Training for the 2012 DD Data
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Figure B.13: Input variables for the training for the 2012 period for the DD sample. The blue data points are signal, the red data
points background.
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Figure B.14: Input variables for the training for the 2012 period for the DD sample. The blue data points are signal, the red data
points background.
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Figure B.15: Input variables for the training for the 2012 period for the DD sample. The blue data points are signal, the red data
points background.
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Figure B.16: Input variables and output of the training for the 2012 period for the DD sample. The blue data points are signal, the
red data points background.
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Appendix C

Effect of the Trigger Configuration in 2012

During the June technical stop significant changes to the trigger were implemented increasing the performance
for V 0 particles significantly. The influence of the new trigger configuration on the input variables was checked
comparing their distributions in the pre-June and post-June configurations, see Figs. C.1 to C.4 and C.5 to C.8 for
the Long and Down sample, respectively. All pre-June and post-June distributions are found to be in rahther good
agreement, meaning no significant deviations are observed for any variable. Hence it was decided not to split the
data sample in two disjoint sub-samples for 2012 for the purposes of the event selection.
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Figure C.1: MVA input variables for the two 2012 data-taking periods for the LL sample – set 1. The red (black) points represent
the pre-(post-)June trigger conditions.
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Figure C.2: MVA input variables for the two 2012 data-taking periods for the LL sample – set 2. The red (black) points represent
the pre-(post-)June trigger conditions.
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Figure C.3: MVA input variables for the two 2012 data-taking periods for the LL sample – set 3. The red (black) points represent
the pre-(post-)June trigger conditions.
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Figure C.4: MVA input variables for the two 2012 data-taking periods for the LL sample – set 4. The red (black) points represent
the pre-(post-)June trigger conditions.
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Figure C.5: MVA input variables for the two 2012 data-taking periods for the DD sample – set 1. The red (black) points represent
the pre-(post-)June trigger conditions.
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Figure C.6: MVA input variables for the two 2012 data-taking periods for the DD sample – set 2. The red (black) points represent
the pre-(post-)June trigger conditions.
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Figure C.7: MVA input variables for the two 2012 data-taking periods for the DD sample – set 3. The red (black) points represent
the pre-(post-)June trigger conditions.
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Figure C.8: MVA input variables for the two 2012 data-taking periods for the DD sample – set 4. The red (black) points represent
the pre-(post-)June trigger conditions.
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Appendix D

Hadronisation Fractions

The hadronisation fractions fq represent the b hadronisation probabilities to the possible b-flavoured final states.
In this analysis all fq values have been taken or determined from LHCb measurements [44, 45] assuming isospin
symmetry, namely fu/fd = 1. They are collected in Tab. D.1. The values given in the table have been used to
determine expected signal and background yields, and to assess relative background contributions.

Table D.1: Hadronisation fractions used in the analysis. The quoted fΛ0
b
/(fu + fd) result was obtained assuming an average pT

of 10 GeV/c.

Measured quantity Experimental result

fu/fd 1 (assumed)
fs/fd 0.259± 0.015 [44]

fΛ0
b
/(fu + fd) (0.404± 0.110)× [1− (0.31± 0.05)] [45]

fq Used value

fd 0.350
fu 0.350
fs 0.092
fΛ0

b
0.198
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Appendix E

Correlation between the MVA Input
Variables

The correlations of the MVA input variables in signal and background were presented in Section 3.1.6.1 for the
2012 LL sample for the sake or argumentation. For completeness the correlation tables for the remaining samples
are here, see Figures E.1 to E.6.
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Figure E.1: Correlations between the input variables for the 2011 LL signal sample.
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Figure E.2: Correlations between the input variables for the 2011 LL background sample.
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Figure E.3: Correlations between the input variables for the 2011 DD signal sample.
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Figure E.4: Correlations between the input variables for the 2011 DD background sample.
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Figure E.5: Correlations between the input variables for the 2012 DD signal sample.
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Figure E.6: Correlations between the input variables for the 2012 DD background sample.



Appendix F

Breakdown of the Selection Efficiencies

F.1 Generator Efficiencies

The generator-level efficiencies for all daughters to satisfy 10 < θ < 400 mrad – averaged over the magnet up and
down samples – for both B0

(s) → Λph+ signal modes are collected in Table F.1. As expected all numbers are rather
similar, slightly higher for the B0

s mode and for 2012 compared with 2011.

Table F.1: Generator-level efficiencies obtained on the MC samples for both years.

Decay mode εgen(%)
2011 2012

B0→ Λpπ+ 21.28± 0.03 21.52± 0.03

B0
s→ ΛpK+ 22.01± 0.05 22.37± 0.05

B0→ Σ0pπ+ 21.13± 0.06 21.54± 0.05

B0
s→ Σ0pK+ 22.14± 0.05 22.35± 0.04
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F.2 Stripping Efficiencies

Table F.2 summarises the (combined) reconstruction and stripping selection efficiencies obtained from MC for all
relevant decay modes separately according to the year and the Λ-daughter reconstruction type. These efficiencies
also incorporate the reconstruction efficiencies for all final-state particles. All quoted numbers are again weighted
averages over the magnet up and down samples.

Table F.2: Reconstruction and stripping selection efficiencies relative to the generation level, obtained on the MC samples, for
both track reconstruction types and years.

Decay mode Reco. εstrip/gen(o/oo)
2011 2012

B0→ Λpπ+ LL 4.42± 0.03 3.60± 0.02
DD 15.59± 0.06 13.94± 0.04

B0
s→ ΛpK+ LL 4.26± 0.03 3.61± 0.02

DD 15.77± 0.06 14.62± 0.04

B0→ Σ0pπ+ LL 3.99± 0.07 2.43± 0.04
DD 14.06± 0.14 9.62± 0.07

B0
s→ Σ0pK+ LL 3.82± 0.05 3.19± 0.03

DD 14.1± 0.1 13.10± 0.07
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F.3 Trigger Efficiencies

The trigger efficiencies are calculated on MC with respect to stripped events, but prior to the application of the MVA
and PID requirements. All results are collected in Tables F.3 to F.5, which present the numbers independently for
each data taking period. The efficiencies per trigger level also also detailed. The “overall” trigger efficiencies are
the product of the three per-level efficiencies. As expected, the overall efficiencies for the DD candidates are lower
than the corresponding efficiencies for the LL candidates.

Table F.3: Trigger efficiencies obtained on the MC samples for 2011. Refer to the text for details.

Decay mode Reco. εL0/strip(%) εHLT1/L0(%) εHLT2/HLT1(%) εtrig/strip(%)

B0→ Λpπ+ LL 47.31± 0.62 71.72± 1.20 61.41± 1.27 20.84± 0.37
DD 49.18± 0.34 63.82± 0.58 52.44± 0.63 16.46± 0.17

B0
s→ ΛpK+ LL 47.29± 0.64 73.69± 1.25 64.11± 1.33 22.34± 0.40

DD 48.56± 0.34 66.16± 0.59 54.73± 0.64 17.58± 0.18

B0→ Σ0pπ+ LL 48.20± 1.52 71.60± 2.86 58.38± 2.93 20.15± 0.88
DD 48.64± 0.41 63.47± 1.40 51.16± 1.52 15.64± 0.41

B0
s→ Σ0pK+ LL 46.51± 1.07 72.50± 2.13 61.58± 2.23 20.76± 0.65

DD 48.02± 0.57 65.78± 1.02 55.52± 1.12 17.54± 0.31

Table F.4: Trigger efficiencies obtained on the MC samples for 2012a. Refer to the text for details.

Decay mode Reco. εL0/strip(%) εHLT1/L0(%) εHLT2/HLT1(%) εtrig/strip(%)

B0→ Λpπ+ LL 47.86± 0.97 66.30± 1.75 78.26± 2.41 24.83± 0.64
DD 48.95± 0.49 58.62± 0.79 54.83± 0.98 15.74± 0.24

B0
s→ ΛpK+ LL 48.12± 0.87 67.10± 1.61 79.35± 2.31 25.62± 0.62

DD 49.17± 0.48 59.11± 0.77 55.62± 0.96 16.16± 0.23

Table F.5: Trigger efficiencies obtained on the MC samples for 2012b. Refer to the text for details.

Decay mode Reco. εL0/strip(%) εHLT1/L0(%) εHLT2/HLT1(%) εtrig/strip(%)

B0→ Λpπ+ LL 44.97± 0.48 73.62± 0.99 69.75± 1.11 23.09± 0.31
DD 45.59± 0.24 64.46± 0.46 65.86± 0.58 19.36± 0.14

B0
s→ ΛpK+ LL 44.32± 0.47 74.51± 1.01 71.55± 1.13 23.63± 0.32

DD 44.87± 0.24 65.81± 0.46 67.62± 0.57 19.97± 0.14

B0→ Σ0pπ+ LL 43.59± 1.12 71.70± 2.38 66.54± 2.66 20.80± 0.71
DD 45.10± 0.57 63.36± 1.08 64.20± 1.36 18.35± 0.33

B0
s→ Σ0pK+ LL 44.55± 0.81 73.56± 1.74 70.57± 1.97 22.61± 0.54

DD 44.17± 0.40 65.30± 0.78 66.48± 0.98 19.18± 0.24
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Table F.8: PID efficiencies of the proton selection cut for both years. The values and their uncertainties are determined by
the PIDCalib package. The bachelor meson PID efficiency is not included. There is no PID selection imposed on the Λ
daughters.

Decay mode Reco. εp→p(%)
2011 2012

B0→ Λpπ+ LL 79.577±0.034 82.462±0.019
DD 79.968±0.022 83.0135±0.009

B0
s→ ΛpK+ LL 79.430±0.034 82.244±0.019

DD 79.642±0.021 82.771±0.009

B0→ Σ0pπ+ LL 80.095±0.082 82.889±0.045
DD 80.363±0.060 83.391±0.022

B0
s→ Σ0pK+ LL 80.23±0.06 82.965±0.033

DD 80.822±0.043 83.808±0.016

B0→ Λpρ+ LL 83.18±0.11 85.387±0.066
DD 83.859±0.053 86.332±0.029

B0
s→ ΛpK∗+ LL 82.73±0.09 85.110±0.053

DD 83.353±0.048 85.7935±0.027

F.6 Variation of the Efficiency Across the Dalitz Plot
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Figure F.1: Plot of the efficiency as function of the two Dalitz plot variables ε
(
m2(Λp),m2(ph+)

)
for the B0 → Λpπ+ mode

in 2011 LL (left) and DD(right).
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Figure F.2: Plot of the efficiency as function of the two Dalitz plot variables ε
(
m2(Λp),m2(ph+)

)
for the B0 → Λpπ+ mode

in 2012a LL (left) and DD(right).
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Figure F.3: Plot of the efficiency as function of the two Dalitz plot variables ε
(
m2(Λp),m2(ph+)

)
for the B0 → Λpπ+ mode

in 2012b LL (left) and DD(right).
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Figure F.4: Plot of the efficiency as function of the two Dalitz plot variables ε
(
m2(Λp),m2(ph+)

)
for the B0

s → ΛpK+ mode
in 2011 LL (left) and DD(right).
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Figure F.5: Plot of the efficiency as function of the two Dalitz plot variables ε
(
m2(Λp),m2(ph+)

)
for the B0

s → ΛpK+ mode
in 2012a LL (left) and DD(right).
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Figure F.6: Plot of the efficiency as function of the two Dalitz plot variables ε
(
m2(Λp),m2(ph+)

)
for the B0

s → ΛpK+ mode
in 2012b LL (left) and DD(right).



Appendix G

List of Shape Parameters

Table G.1: Shape parameters for the B0 → Λpπ+ mode used in the corresponding samples. For the π hypothesis a sum of two
Novosibirsk functions is used with the parameters µi, σi, and αi, the fraction between these two is described by f . For the K
hypothesis a sum of a Gaussian, with parameters µ and σ, and the modified Fermi-Function, with the parameters T , m0, and a,
is used, the fraction is again given by f . The fit results are shown in Fig. 3.22.

LL DD

π hypothesis K hypothesis π hypothesis K hypothesis

µ1 = 5281.31 MeV/c2

σ1 = 12.2 MeV/c2

α1 = −0.0004

µ2 = 5274.9 MeV/c2

σ2 = 29.7 MeV/c2

α2 = 0.009

f = 0.833

µ = 5325.6 MeV/c2

σ = 14.9 MeV/c2

m0 = 5314.6 MeV/c2

T = 301 ( MeV/c2)−1

a = 36.5 ( MeV/c2)−1

f = 0.833

µ1 = 5283.58 MeV/c2

σ1 = 13.55 MeV/c2

α1 = 0.481

µ2 = 5278.97 MeV/c2

σ2 = 12.82 MeV/c2

α2 = −0.2198

f = 0.366

µ = 5323.7 MeV/c2

σ = 18.06 MeV/c2

m0 = 5330 MeV/c2

T = 194 ( MeV/c2)−1

a = 33.3 ( MeV/c2)−1

f = 0.52

Table G.2: Shape parameters for the B0
s → ΛpK+ mode used in the corresponding samples. For the K hypothesis, a sum of

two Novosibirsk functions is used, with the parameters µi, σi, and αi, the fraction between these two is described by f . For the
π hypothesis, a sum of a Gaussian, with parameters µ and σ, and the modified Fermi-Function, with the parameters T , m0, and
a, is used, the fraction is again given by f . The fit results are shown in Fig. 3.23.

LL DD

π hypothesis K hypothesis π hypothesis K hypothesis

µ = 5323.3 MeV/c2

σ = 19.6 MeV/c2

m0 = 5269

T = 124( MeV/c2)−1

a = 56( MeV/c2)−1

f = 0.221

µ1 = 5376.88 MeV/c2

σ1 = 12.39 MeV/c2

α1 = −0.0113

µ2 = 5365.5 MeV/c2

σ2 = 30.5 MeV/c2

α2 = 0.029

f = 0.872

µ = 5325.81 MeV/c2

σ = 17.81 MeV/c2

m0 = 5299 MeV/c2

T = 220( MeV/c2)−1

a = 89( MeV/c2)−1

f = 0.811

µ1 = 5362.0 MeV/c2

σ1 = 28.7 MeV/c2

α1 = −0.0410

µ2 = 5367.78 MeV/c2

σ2 = 11.92 MeV/c2

α2 = −0.0165

f = 0.108
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Table G.3: Shape parameters for theB0→ Σ0pπ+ mode used in the corresponding samples. For the LL case under π hypothesis,
a single modified Fermi-function, with the parameters T , m0 is used and a sum of a Novosibirsk functions, with the parameters
µ1, σ1, and α, and a Gaussian, with the parameters µ2 and σ2, the fraction is given by f . For the K hypothesis, a modified
Fermi-function, with the parameters T , m0, and a, is used. The fit results are shown in Fig. 3.24.

LL DD

π hypothesis K hypothesis π hypothesis K hypothesis

m0 = 5220.4 MeV/c2

T = 331( MeV/c2)−1

a = 66.0( MeV/c2)−1

m0 = 5161 MeV/c2

T = 237 ( MeV/c2)−1

a = 197 ( MeV/c2)−1

µ1 = 5201.4 MeV/c2

σ1 = 55.8 MeV/c2

α1 = 0.511

µ2 = 5310 MeV/c2

σ2 = 125 MeV/c2

α2 = −0.2198

f = 0.9951

m0 = 5168 MeV/c2

T = 235 ( MeV/c2)−1

a = 196 ( MeV/c2)−1

Table G.4: Shape parameters for the B0
s→ Σ0pK+ mode used in the corresponding samples. For the π hypothesis, a single

modified Fermi-function, with the parameters T , m0 is used. For LL under K hypothesis, a sum a modified Fermi-function,
with the parameters T , m0, and a, and a Novosibirsk, with the parameters µ, σ, and α, is used, the fraction is given by f . For DD
under K hypothesis, a sum of two Novosibirsk functions is used, with the parameters µi, σi, and αi, the fraction is determined
by f . The fit results are shown in Fig. 3.25.

LL DD

π hypothesis K hypothesis π hypothesis K hypothesis

m0 = 5272 MeV/c2

T = 386( MeV/c2)−1

a = 57.9( MeV/c2)−1

µ = 5278.4 MeV/c2

σ = 56.8 MeV/c2

α = 0.359

m0 = 5292 MeV/c2

T = 3 ( MeV/c2)−1

a = 207 ( MeV/c2)−1

f = 0.998

m0 = 5256 MeV/c2

T = 300 ( MeV/c2)−1

a = 70.9 ( MeV/c2)−1

µ1 = 5200.7 MeV/c2

σ1 = 61.5 MeV/c2

α1 = −0.0886

µ2 = 5297.2 MeV/c2

σ2 = 43.7 MeV/c2

α2 = 0.440

f = 0.297



Appendix H

Additional Fit information

H.1 Fit to the Full Data with Dalitz Plot Corrected Efficiencies

Table H.1: Fit yield parameters for the full Dalitz plot using the recalculated efficiencies. It should be noted that the Σ0 ratios
have no physical meaning per construction.

Floating parameter Fit value and uncertainties

NLL
11 (B0 → Λpπ+) 43.0+8.4

−7.6

NLL
12 (B0 → Λpπ+) 149.1+16.4

−15.5

rB
0
s→ΛpK+

0.392+0.044
−0.040

rB
0→Σ0pπ+

2.8+2.6
−2.5 × 10−5

rB
0
s→Σ0pK+

3.9+1.6
−1.5 × 10−5

NBkg
11,π,LL 145.1+13.5

−12.9

NBkg
12,π,LL 945.9+33.8

−33.2

NBkg
11,π,DD 590.9+28.5

−27.9

NBkg
12,π,DD 2813.4+62.1

−61.6

NBkg
11,K,LL 77.2+10.3

−9.7

NBkg
12,K,LL 360.0+22.9

−22.3

NBkg
11,K,DD 209.+17.0

−16.3

NBkg
12,K,DD 972.1+36.2

−35.6

Table H.2: Shape parameters for the full Dalitz plot using the recalculated efficiencies.

Floating parameter Fit value and uncertainties

∆m 4.54+0.89
−0.88

aBkg
11,π,LL −12.2+4.2

−4.3 × 10−4

aBkg
12,π,LL −13.3+1.7

−1.7 × 10−4

aBkg
11,π,DD −10.5+2.1

−2.1 × 10−4

aBkg
12,π,DD −7.85+0.95

−0.95 × 10−4

aBkg
11,K,LL −1.8+5.8

−5.9 × 10−4

aBkg
12,K,LL −7.4+2.7

−2.8 × 10−4

aBkg
11,K,DD −12.0+3.7

−3.8 × 10−4

aBkg
12,K,DD −3.2+1.6

−1.7 × 10−4
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Table H.3: Efficiency related parameters for the full Dalitz plot using the recalculated efficiencies. Except rDD
11 and rDD

12 all
determined through Gaussian constraints.

Floating parameter Fit value and uncertainties

rDD
11 1.05+0.27

−0.21

rDD
12 0.704+0.098

−0.085

rMCLL/DD,11 0.311+0.023
−0.023

rMCLL/DD,12 0.303+0.011
−0.011

δ
B0
s→ΛpK+

LL,11 1.124+0.089
−0.088

δ
B0
s→ΛpK+

LL,12 1.300+0.049
−0.049

δ
B0
s→ΛpK+

DD,11 1.124+0.067
−0.067

δ
B0
s→ΛpK+

DD,12 1.271+0.069
−0.069

δB
0→Σ0pπ+

LL,11 2092+179
−179

δB
0→Σ0pπ+

LL,12 3752+205
−205

δB
0→Σ0pπ+

DD,11 1970+115
−115

δB
0→Σ0pπ+

DD,12 3757+122
−122

δ
B0
s→Σ0pK+

LL,11 4943+349
−349

δ
B0
s→Σ0pK+

LL,12 11400+454
−454

δ
B0
s→Σ0pK+

DD,11 4678+243
−243

δ
B0
s→Σ0pK+

DD,12 10077+260
−260
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H.2 Fit to the Full Data with Dalitz Plot Corrected Efficiencies for the
Enhancement Only.

Table H.4: Fit yield parameters for the enhancement only region of the Dalitz plot using the recalculated efficiencies. It should
be noted that the Σ0 ratios have no physical meaning per construction.

Floating parameter Fit value and uncertainties

NLL
11 (B0 → Λpπ+) 43.8+7.7

−7.0

NLL
12 (B0 → Λpπ+) 137.3+15.2

−13.9

rB
0
s→ΛpK+

0.355+0.039
−0.036

rB
0→Σ0pπ+

3.0+2.1
−2.0 × 10−5

rB
0
s→Σ0pK+

2.8+1.4
−1.3 × 10−5

NBkg
11,π,LL 58.3+9.2

−8.5

NBkg
12,π,LL 546.4+26.2

−25.2

NBkg
11,π,DD 401.7+23.5

−22.7

NBkg
12,π,DD 1834.1+50.5

−50.1

NBkg
11,K,LL 29.9+6.8

−6.1

NBkg
12,K,LL 208.6+17.2

−16.7

NBkg
11,K,DD 122.5+13.6

−12.6

NBkg
12,K,DD 640.9+29.8

−29.1

Table H.5: Shape parameters for the enhancement only region of the Dalitz plot using the recalculated efficiencies.

Floating parameter Fit value and uncertainties

∆m 3.79+0.81
−0.81

aBkg
11,π,LL −20.5+6.9

−7.2 × 10−4

aBkg
12,π,LL −11.3+2.2

−2.2 × 10−4

aBkg
11,π,DD −7.8+2.6

−2.5 × 10−4

aBkg
12,π,DD −7.2+1.2

−1.2 × 10−4

aBkg
11,K,LL −22+11

−12 × 10−4

aBkg
12,K,LL −6.3+3.6

−3.7 × 10−4

aBkg
11,K,DD −11.4+4.9

−5.1 × 10−4

aBkg
12,K,DD −6.0+2.1

−2.1 × 10−4
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Table H.6: Efficiency related parameters for the enhancement only region of the Dalitz plot using the recalculated efficiencies.
Except rDD

11 and rDD
12 all determined through Gaussian constraints.

Floating parameter Fit value and uncertainties

rDD
11 1.00+0.23

−0.18

rDD
12 0.80+0.11

−0.09

rMCLL/DD,11 0.311+0.023
−0.023

rMCLL/DD,12 0.303+0.011
−0.011

δ
B0
s→ΛpK+

LL,11 1.126+0.088
−0.088

δ
B0
s→ΛpK+

LL,12 1.293+0.050
−0.049

δ
B0
s→ΛpK+

DD,11 1.12+0.07
−0.07

δ
B0
s→ΛpK+

DD,12 1.28+0.07
−0.07

δB
0→Σ0pπ+

LL,11 2100+179
−179

δB
0→Σ0pπ+

LL,12 3748+206
−206

δB
0→Σ0pπ+

DD,11 1969+115
−116

δB
0→Σ0pπ+

DD,12 3756+122
−121

δ
B0
s→Σ0pK+

LL,11 4933+351
−348

δ
B0
s→Σ0pK+

LL,12 11371+456
−454

δ
B0
s→Σ0pK+

DD,11 4693+241
−245

δ
B0
s→Σ0pK+

DD,12 10082+261
−260
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H.3 Fit to the Full Data in Order to Determine for AT with Dalitz Plot
Corrected Efficiencies Including Dilution Effects

Table H.7: Asymmetry parameters for the AT fit.

Floating parameter Fit value and uncertainties

AT 1.0+37.1
−37.3

AT 7.6+26.9
−27.1

Table H.8: Fit yield parameters for the AT fit for the B0 → Λpπ+ and O < 0 sample.

Floating parameter Fit value and uncertainties

NLL
11 (B0 → Λpπ+) 10.4+2.6

−2.2

NLL
12 (B0 → Λpπ+) 36.0+6.0

−5.4

rB
0
s→ΛpK+

0.34+0.10
−0.08

rB
0→Σ0pπ+

0.0+3.4
−3.6 × 10−5

rB
0
s→Σ0pK+

2.8+2.6
−2.3 × 10−5

NBkg
11,π,LL 27.3+5.8

−5.2

NBkg
12,π,LL 158.3+13.6

−13.2

NBkg
11,π,DD 106.4+11.2

−11.2

NBkg
12,π,DD 492.1+23.6

−25.5

NBkg
11,K,LL 6.8+3.4

−2.7

NBkg
12,K,LL 49.4+8.4

−7.8

NBkg
11,K,DD 32.0+6.7

−6.0

NBkg
12,K,DD 165.4+15.4

−14.7

Table H.9: Fit yield parameters for the AT fit for the B0 → Λpπ+ and O > 0 sample.

Floating parameter Fit value and uncertainties

rB
0
s→ΛpK+

0.310+0.096
−0.075

rB
0→Σ0pπ+

1.4+4.1
−1.4 × 10−5

rB
0
s→Σ0pK+

4.9+3.5
−3.0 × 10−5

NBkg
11,π,LL 21.7+5.7

−5.0

NBkg
12,π,LL 143.7+13.2

−12.5

NBkg
11,π,DD 110.1+12.5

−11.8

NBkg
12,π,DD 505.5+26.2

−25.4

NBkg
11,K,LL 12.8+4.5

−3.7

NBkg
12,K,LL 44.5+8.2

−7.4

NBkg
11,K,DD 38.8+7.7

−7.0

NBkg
12,K,DD 179.0+14.5

−13.8



160 H. Additional Fit information

Table H.10: Fit yield parameters for the AT fit for the B0 → Λpπ− and O < 0 sample.

Floating parameter Fit value and uncertainties

NLL
11 (B0 → Λpπ+) 12.1+2.7

−2.3

NLL
12 (B0 → Λpπ+) 34.9+5.7

−5.1

rB
0
s→ΛpK+

0.45+0.12
−0.10

rB
0→Σ0pπ+

0.0+3.4
−3.6 × 10−5

rB
0
s→Σ0pK+

2.2+2.0
−1.8 × 10−5

NBkg
11,π,LL 19.2+5.1

−4.4

NBkg
12,π,LL 127.2+12.1

−11.8

NBkg
11,π,DD 132.0+12.3

−12.8

NBkg
12,π,DD 489.5+23.5

−24.4

NBkg
11,K,LL 13.8+4.4

−3.7

NBkg
12,K,LL 66.6+9.8

−9.2

NBkg
11,K,DD 27.1+6.5

−5.7

NBkg
12,K,DD 152.0+14.6

−13.9

Table H.11: Fit yield parameters for the AT fit for the B0 → Λpπ− and O > 0 sample.

Floating parameter Fit value and uncertainties

rB
0
s→ΛpK+

0.33+0.10
−0.08

rB
0→Σ0pπ+

6.6+3.9
−3.4 × 10−5

rB
0
s→Σ0pK+

0.0+1.2
−0.0 × 10−5

NBkg
11,π,LL 16.1+4.9

−4.2

NBkg
12,π,LL 162.4+14.1

−13.4

NBkg
11,π,DD 85.7+12.0

−11.3

NBkg
12,π,DD 457.2+25.0

−24.4

NBkg
11,K,LL 12.1+4.0

−3.3

NBkg
12,K,LL 6.7+8.7

−8.0

NBkg
11,K,DD 39.6+7.3

−6.5

NBkg
12,K,DD 179.0+14.5

−13.8

Table H.12: Shape parameters for the AT fit for the B0 → Λpπ+ and O < 0 sample.

Floating parameter Fit value and uncertainties

∆m 4.18+0.80
−0.80

aBkg
11,π,LL −12.2+8.8

−9.1 × 10−4

aBkg
12,π,LL −10.8+3.6

−3.6 × 10−4

aBkg
11,π,DD −5.6+4.3

−4.3 × 10−4

aBkg
12,π,DD −6.6+2.0

−2.0 × 10−4

aBkg
11,K,LL −1.9+2.5

−2.5 × 10−4

aBkg
12,K,LL −6.8+3.4

−3.4 × 10−4

aBkg
11,K,DD −10.1+4.0

−4.0 × 10−4

aBkg
12,K,DD −3.8+2.0

−2.0 × 10−4
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Table H.13: Shape parameters for the AT fit for the B0 → Λpπ+ and O > 0 sample.

Floating parameter Fit value and uncertainties

aBkg
11,π,LL −19.0+9.2

−9.8 × 10−4

aBkg
12,π,LL −13.1+3.8

−3.8 × 10−4

aBkg
11,π,DD −5.0+4.2

−4. × 10−4

aBkg
12,π,DD −5.7+1.9

−1.9 × 10−4

aBkg
11,K,LL −2.3+2.1

−2.1 × 10−4

aBkg
12,K,LL −7.3+4.0

−4.0 × 10−4

aBkg
11,K,DD −9.6+3.5

−3.5 × 10−4

aBkg
12,K,DD −3.3+1.8

−1.8 × 10−4

Table H.14: Shape parameters for the AT fit for the B0 → Λpπ− and O < 0 sample.

Floating parameter Fit value and uncertainties

aBkg
11,π,LL −23.6+10.0

−10.2 × 10−4

aBkg
12,π,LL −7.1+3.6

−3.7 × 10−4

aBkg
11,π,DD −11.0+4.1

−4.1 × 10−4

aBkg
12,π,DD −8.0+2.0

−2.0 × 10−4

aBkg
11,K,LL −3.1+2.8

−2.8 × 10−4

aBkg
12,K,LL −5.5+3.1

−3.1 × 10−4

aBkg
11,K,DD −7.4+2.8

−2.8 × 10−4

aBkg
12,K,DD −3.6+2.1

−2.1 × 10−4

Table H.15: Shape parameters for the AT fit for the B0 → Λpπ− and O > 0 sample.

Floating parameter Fit value and uncertainties

aBkg
11,π,LL −21.8+10.0

−10.4 × 10−4

aBkg
12,π,LL −8.9+3.4

−3.5 × 10−4

aBkg
11,π,DD −10.2+4.7

−4.7 × 10−4

aBkg
12,π,DD −4.5+2.0

−2.0 × 10−4

aBkg
11,K,LL −2.0+1.5

−1.5 × 10−4

aBkg
12,K,LL −4.3+2.4

−2.4 × 10−4

aBkg
11,K,DD −5.6+2.3

−2.3 × 10−4

aBkg
12,K,DD −3.0+1.8

−1.8 × 10−4
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Table H.16: Efficiency related parameters for the AT fit. Except rDD
11 and rDD

12 all determined through Gaussian constraints.

Floating parameter Fit value and uncertainties

rDD
11 1.44+0.42

−0.32

rDD
12 0.84+0.19

−0.15

rMCLL/DD,11 0.317+0.004
−0.005

rMCLL/DD,12 0.2801+0.0020
−0.0013

δ
B0
s→ΛpK+

LL,11 1.15+0.07
−0.07

δ
B0
s→ΛpK+

LL,12 1.31+0.05
−0.05

δ
B0
s→ΛpK+

DD,11 1.10+0.04
−0.04

δ
B0
s→ΛpK+

DD,12 1.129+0.026
−0.026

δB
0→Σ0pπ+

LL,11 2114+170
−170

δB
0→Σ0pπ+

LL,12 3693+201
−201

δB
0→Σ0pπ+

DD,11 1906+86
−86

δB
0→Σ0pπ+

DD,12 3589+98
−98

δ
B0
s→Σ0pK+

LL,11 4962+321
−321

δ
B0
s→Σ0pK+

LL,12 11219+444
−444

δ
B0
s→Σ0pK+

DD,11 4535+163
−163

δ
B0
s→Σ0pK+

DD,12 9639+210
−210
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