
A
TL

-S
O

FT
-P

R
O

C
-2

01
7-

01
9

24
Ja

nu
ar

y
20

17

AthenaMT: Upgrading the ATLAS Software1

Framework for the Many-Core World with2

Multi-Threading3

Charles Leggett1, John Baines2, Tomasz Bold3, Paolo Calafiura1,4

Steven Farrell1, Peter van Gemmeren4, David Malon4, Elmar Ritsch5,5

Graeme Stewart6, Scott Snyder7, Vakhtang Tsulaia1, Benjamin6

Wynne8 on behalf of the ATLAS Collaboration7

1Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA8

2STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX110QX, United Kingdom9

3AGH, University of Science and Technology al. Mickiewicza 30, PL-30-059 Cracow, Poland10

4Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA11

5European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland12

6SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United13

Kingdom14

7Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973, USA15

8SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ,16

United Kingdom17

E-mail: cgleggett@lbl.gov18

Abstract. ATLAS’s current software framework, Gaudi/Athena, has been very successful for19

the experiment in LHC Runs 1 and 2. However, its single threaded design has been recognized20

for some time to be increasingly problematic as CPUs have increased core counts and decreased21

available memory per core. Even the multi-process version of Athena, AthenaMP, will not scale22

to the range of architectures we expect to use beyond Run2.23

After concluding a rigorous requirements phase, where many design components were24

examined in detail, ATLAS has begun the migration to a new data-flow driven, multi-threaded25

framework, which enables the simultaneous processing of singleton, thread unsafe legacy26

Algorithms, cloned Algorithms that execute concurrently in their own threads with different27

Event contexts, and fully re-entrant, thread safe Algorithms.28

In this paper we report on the process of modifying the framework to safely process multiple29

concurrent events in different threads, which entails significant changes in the underlying30

handling of features such as event and time dependent data, asynchronous callbacks, metadata,31

integration with the Online High Level Trigger for partial processing in certain regions of interest,32

concurrent I/O, as well as ensuring thread safety of core services. We also report on upgrading33

the framework to handle Algorithms that are fully re-entrant.34

1. Introduction35

ATLAS’s[1] framework (Gaudi[2]/Athena[3] ) was designed to process serially one event at a36

time. Limitations of existing and emerging computing technology, as well as the requirements of37

the ATLAS reconstruction environment, have forced us to examine concurrent, multi-threaded38

implementations[5].39



In 2014, the ATLAS Future Framework Requirements Task Force created a report that40

summarized a list of requirements and recommendations for such a framework, and in 201541

ATLAS began the process of migrating its software to the new design[6]. For a large experiment42

like ATLAS, with a massive software code base, a complete rewrite of the software was43

deemed untenable, and instead, capitalizing on certain fundamental features of the GaudiHive[7]44

framework, which allow the localization of enforced thread safe code to only a limited set of45

components, an evolutionary migration strategy was developed.46

The most difficult part of this migration is the requirement that all shared software Services,47

i.e. components that can be accessed concurrently by clients from multiple threads, must not48

only be thread safe, but must also be able to process requests from different events. These core49

Services must be fixed before any realistic migration of user analysis algorithms can commence.50

ATLAS has created an aggressive migration schedule in order to be ready in time for Run 3,51

and in 2016, we have focused our attention on the migration of core Services. We will detail our52

efforts in this paper.53

2. Enabling Concurrency in Core Services54

In order to function properly in AthenaMT, shared Services must be thread safe, and also able55

to process requests from various clients that may be executing in different concurrent events.56

These requirements have a broad range of impacts on the migration of the software. Some57

Services are already event agnostic, and can be made thread safe with simple mutexes or thread58

safe data structures.59

Some Services need more intrusive modifications to be able to handle state information that60

is associated with multiple concurrent events. For example, the MagFieldSvc, which is used to61

calculate the value of the detector’s magnetic field at any given location, was caching localized62

data internally, in order to speed up sequential requests which are usually for very similar63

physical locations. Not only was this thread unsafe, but this localization was broken if multiple64

clients queried the Service simultaneously, requesting information about very different regions.65

The Service was re-designed to carry a cache object along with each request, localizing the cache66

to the client, and not the Service, thus maintaining both thread safety and performance benefits.67

Another example is the THistSvc, which is used to manage histograms and ntuples. Since the68

objects it manages are identified either by name, or a pointer to the object, multiple concurrent69

clients that updated these objects could interfere with each other. The Service was upgraded so70

that clients could either request a shared object, with an enforced locking policy that prevented71

simultaneous updates to the object, or their own copy of the object that would not be shared.72

At the end of the job, these copied objects could be automatically merged.73

And some Services, such as those that manage Asynchronous Data, (e.g. the IOVSvc which74

manages detector Conditions or the GeoModelSvc which deals with detector alignments), need75

a complete redesign. These will be discussed in further detail below.76

3. Concurrent Processing of Asynchronous Data77

One of the challenges in the migration process has been the handling of Asynchronous Data, i.e.78

data which can have a lifetime of more than one event. The period of time for which any piece79

of such data is valid is referred to as an Interval of Validity (IOV). While we do have a solution80

for managing multiple concurrent Event Stores belonging to different events, Asynchronous data81

cannot be stored there, as the contents of the Event Store are erased at the end of each event,82

so a different solution must be found.83

We can classify Asynchronous Data into two, somewhat interrelated, categories: Conditions,84

such as high voltages, calibrations, etc., and Detector Geometry and Alignments. Closely related85

to these are Asynchronous Callbacks (Incidents), which are functions that need to be executed86



at non-predetermined intervals, such as in response to the opening of a file, or the signaling of87

the beginning of a new run.88

3.1. Conditions89

In serial Athena, Conditions were managed by the Interval of Validity Service (IOVSvc). At90

the start of a job, the IOVSvc is configured to manage a number of objects in an associated91

Conditions Database, which stores the value of each object for each IOV. At the start of each92

event, the IOVSvc examines the validity of each registered object. Objects that are no longer93

valid are re-read from the database, and any required post-processing of the data is performed94

by an associated callback function. The processed objects are then placed in a conditions store,95

from whence they can be retrieved by a user Algorithm.96

This workflow fails when multiple events are processed concurrently. Since only a single97

instance of the conditions data can be held at any one time in the conditions store, if two98

events are processed concurrently, with associated conditions data from different IOVs, one99

will overwrite the other. Furthermore, neither the IOVSvc itself nor any of the conditions100

callback functions were designed to be thread safe, and since these are shared instances, threading101

problems are bound to occur. A major rewrite of the entire infrastructure is required.102

Several different designs for the condition handling were examined, with two key requirements103

in mind: minimize changes to client code (as there is so much of it), and minimize memory usage104

(as an overall memory shortage is one of the main reasons we need to use a multi-threaded105

framework). Designs considered and discarded were the use of a processing barrier, and the use106

of multiple conditions stores. With a processing barrier the framework would only concurrently107

process events that had the same set of conditions, draining the event scheduler until all these108

events had finished processing, then loading a new set of conditions data for the next set of events,109

before resuming processing events concurrently. The problem with this design is that it assumes110

that conditions boundaries are infrequent, so that the loss of concurrency when the scheduler is111

drained and refilled is minimal. On ATLAS, however, Conditions changes can sometimes occur112

very rapidly, for example as frequently as once per event in the Muon subsystem. This would113

have the effect of serializing event processing, with complete loss of concurrency. Processing out114

of order events could also result in a loss of concurrency.115

The other rejected design used multiple conditions stores, one per concurrent event, in the116

same manner as the Event Stores are duplicated for each concurrent event. The mechanism117

by which data is retrieved from the conditions store would be modified, such that clients would118

associate with the correct Store. Impact on client code would be small - only the conditions data119

retrieval syntax would need to be updated. However, beyond merely ensuring thread safety of120

the IOVSvc and the callback functions, there are two significant problems with this design: the121

memory usage would balloon, as objects would be duplicated between each Store instance; and122

also the execution of the callback functions that are used to process data would be duplicated,123

resulting in extra CPU overhead.124

The chosen solution was to implement a single conditions store in the form of a multi-125

cache. Instead of holding individual Condition Objects, it holds containers of them, where the126

elements in each container correspond to individual IOVs. Clients access Condition Objects via127

smart references, called ConditionHandles, which implement logic to determine which element128

in any ConditionContainer is appropriate for a given event. The callback functions are migrated129

to fully- fledged Condition Algorithms, which are managed by the framework like any other130

Algorithm, but only executed on demand when the Conditions Objects they create need to be131

updated.132

One of the fundamental changes in the client code needed for the migration to AthenaMT133

is that all access to event data must be done via smart references, called DataHandles.134

DataHandles are declared as member variables of Algorithms, and provide two fundamental135



Figure 1. ConditionHandles Figure 2. Detector Geometry Alignments

functions: to perform the recording and retrieval of event data, and to automatically declare the136

data dependencies of the Algorithms to the framework, so that the Algorithms can be executed137

by the Scheduler as the data becomes available. We capitalized on the migration to DataHandles138

by requiring that all access to Conditions data be done via related ConditionHandles. By139

using ConditionHandles in the Condition Algorithms to write data to the conditions store,140

the framework solves the problem of Algorithm ordering for us, ensuring that the Condition141

Algorithm is executed, and the updated Condition Objects are written to the store before any142

downstream Algorithm which needs to use them are executed.143

When a ConditionHandle is initialized, it will look in the conditions store for its associated144

container, identified by a unique key. This container holds a set of objects of the same type and145

their associated IOVs. Upon dereferencing, the ConditionHandle will use the current event and146

run numbers to look inside this container, and determine what action needs to be taken. At the147

start of the event, the Condition Service analyzes the subset of the objects held in the condition148

store that have been registered with it at the start of the job by the Condition Algorithms, and149

determines which are valid or invalid for the current event. If an object is found to be invalid,150

the Condition Algorithm that produces that object will be scheduled. If an object is found to be151

valid, then the Scheduler will be informed that this object is present, and placed in the registry152

of existing objects. In this case the Condition Algorithm will not execute.153

When a Condition Algorithm is executed, it queries the Conditions Database for data154

corresponding to the current event, as well as its associated IOV, creates the new object for155

which it is responsible, and adds a new entry in the ConditionContainer that is associated156

with a ConditionHandle (see Fig. 1). When a downstream Algorithm that needs to read157

a ConditionHandle from the store is executed, the data is guaranteed to be present. The158

ConditionHandle uses the current event number to identify which element in the container is159

the appropriate one, and returns its value.160

By using basic features of the new framework, namely the use of ConditionHandles and data161

flow dependencies to automatically schedule Algorithms as needed, we are able to minimize162

changes to client code, and delegate the majority of the work to the framework. The use of163

collections of Condition Objects inside of a single conditions store allows us to minimize the164

total memory footprint.165

3.2. Detector Geometry and Alignments166

The detector geometry model used in ATLAS (GeoModel), is a hierarchical tree that is built167

from several components (see Fig. 2): a Physical Volume (PV) which are the basic building168

blocks; a Transform (TF) that is fixed at construction; and an Alignable Transform (ATF),169

which accounts for the movement of the detector component as a function of time, reading170



Figure 3. The IncidentSvc in Serial Athena Figure 4. Handling Incidents in AthenaMT

Deltas (D) from a database. When a client requests the position of a Detector Element, the Full171

Physical Volume (FPV) is assembled, and the position is cached (C). As the detector alignment172

changes, new Deltas are read in by the ATF, and the cache held by the FPV is invalidated, until173

the position of the element is again requested, recomputed, and cached.174

When multiple concurrent events are processed, this design will fail, as there is only a single175

shared instance of the GeoModel tree, and the ATF and FPV can only keep track of single Delta176

or cache at any one time. We can solve this problem in the same way as for the conditions.177

The time dependent information (i.e. the Deltas and cache) held by the GeoModel is decoupled178

from the static entries, and held in a new AlignmentObject located inside the ConditionStore.179

The ATF and FPV use ConditionHandles to access this data, and they are updated by a new180

GeoAlignAlg which is scheduled on demand by the framework. Clients of the DetectorElements181

are entirely blind to this change, and the only code that needs to be modified are base classes182

inside the GeoModel structure.183

4. Asynchronous Callbacks184

ATLAS uses the Incident Service to execute callback functions at certain well-defined times185

following the well-established observer patterns. Clients register interest in certain “Incidents”186

with the Service, such as BeginEvent, FileOpen, or EndMetaData. When components fire these187

Incidents, execution flow is passed to the IncidentSvc, which triggers the appropriate callback188

function in the registered observers (see Fig. 3). There are many issues with this design in189

AthenaMT, where there can be multiple instances of any Algorithm, executing simultaneously190

in different events. If a cloned Algorithm is an Incident observer, should all instances execute191

the callback? What if an instance is currently executing in a different thread? Fixing the design192

in a generic way looked to be an impossible task.193

Instead, we did a study of exactly how Incidents were being fired and used, and discovered that194

the vast majority were fired outside the event execution loop (i.e. before or after all Algorithms195

are executed for one event), and being used to signal discrete state changes, such as BeginEvent.196

We realized that we could significantly limit the scope of the IncidentSvc without losing any197

functionality. Incidents instead became schedulable (see Fig. 4), where the IncidentSvc would198

add special IncidentAlgs at the beginning or end of the event processing loop, which would199

interact with event context aware Services to perform the same function as the old Incident200

callback functions. Clients would then interact with these Services, passing them the current201

event to extract the relevant information.202



Figure 5. Struc-
ture of EventViews
and ROIs in the
EventStore

5. Event Views203

One of the major requirements put forth by the Future Framework Requirements Task Force,204

was that the online and offline software be unified, and use the same code base. The High Level205

Trigger (HLT), used by the online, functions in a significantly different manner than offline206

reconstruction and analysis. In order to maximise performance and perform quick rejection, the207

HLT operates independently on geometrical Regions of Interest (ROI). Multiple filtering and208

hypothesis Algorithms are applied to each ROI in chains, with the ability to abort a chain if an209

unsatisfactory conclusion is reached. Each of these Algorithms sees only the data relevant to210

the ROI that it is operating upon, unlike the offline analysis Algorithms which operate on the211

entire detector. But since the same Algorithms are to be shared by the online and offline, the212

framework must be able to present the data to the Algorithms in a ROI or detector agnostic213

manner.214

We were able to make use of the fact that Algorithms access Event data via smart215

DataHandles, and having the framework modify the data presented to the Algorithm internally216

within the DataHandle itself. This was done by implementing an EventView class, that can be217

used interchangeably with the whole Event Store. It has the same interface as the Event Store,218

but adds a Data Object that describes the corresponding ROI. In the case of online processing,219

each Event View is populated with the data corresponding to a single ROI, and the DataHandle220

of a particular Algorithm is updated to point to that View before execution by the framework.221

By this mechanism, we are not only able to use the same algorithmic code for online and222

offline analysis, but it also offers us the possibility of increasing concurrency in the offline by223

doing sub-Algorithmic parallelism in various ROIs.224

6. Re-Entrant Algorithms225

One of the features of AthenaMT which frees Algorithm authors from having to implement226

thread safe code, is that any single instance of an Algorithm is guaranteed to process an event in227

its entirety in only a single thread at a time. Concurrent event processing is achieved by cloning228

Algorithms, i.e. multiple instances of the same Algorithm are created by the framework, so if229

the same Algorithm is scheduled simultaneously in different Events, each Event gets its own230

copy of the Algorithm. This frees Algorithm authors from having to worry about most forms of231

thread safety. Thread hostile behavior, however, such as the use of global statics, must still be232

avoided.233

The downside of this cloning mechanism is that memory usage will increase as each Algorithm234

is copied. While the user can set the number of copies of each Algorithm during job configuration,235

and limit the cloning, this comes at the expense of limiting possible concurrency. There is always236

a trade off between performance and memory usage.237

Because of this, we decided to add a new type of Algorithm - a fully re-entrant Algorithm.238

For these Algorithms, the framework will only create one instance, and the same instance may239



be executed by the scheduler concurrently in multiple events. This eliminates the memory240

overhead of multiply cloned Algorithms. The re-entrant Algorithms must be made fully thread241

safe, and also stateless. In order to facilitate this design, the signature of the Algorithm’s242

event process method had been made const, and the EventContext, a class which is used to243

provide information about the currently executing event, is explicitly passed into the method.244

Furthermore, the name of the base class of the Algorithm has been changed, to ensure that it is245

not used accidentally.246

Having re-entrant Algorithms available gives us greater flexibility in designing Algorithms.247

While it is unlikely that the majority of existing Algorithms will be migrated to a re-entrant248

design, it is recommended to users that they first attempt to write new Algorithms in the re-249

entrant fashion. Older Algorithms will be made re-entrant on a case by case and as-needed250

basis, in all likelihood by experts who understand the complexity of re-entrant designs.251

7. Conclusions252

ATLAS has begun the migration of core framework elements to function in AthenaMT. While in253

some cases this is a relatively straight forward task, it often requires significant design changes254

beyond mere thread safety. Some redesigns were able to preserve the full functionality of the255

serial versions, but in other cases it became apparent that the serial version was completely256

incompatible with a concurrent environment. In these cases we examined the real use of the257

code, and limited the re-design to reproduce the actual use cases.258

We have made design choices that minimized alterations to client code, due to its enormous259

volume. By leveraging on existing features of the framework, such as DataHandles, data260

dependency hierarchies of Algorithms, and the structure of the Scheduler itself, we have been able261

to vastly simplify the task. We anticipate on-schedule finalization of design, and implementation262

of essential core Services by the end of 2016, with full support of multi-threaded concurrency263

by the end of 2017. We already have production level ATLAS Geant4 simulations running in264

multi-threaded environment on the Knights Landing platform[8].265

Changes to Algorithmic client code that use these framework elements are also underway. We266

believe that, for the most part, there is a relatively straight forward recipe for this migration, but267

it will nevertheless require a significant amount of manpower to effectuate. The broad migration268

of ATLAS’s Algorithm client code to function in AthenaMT will take place in 2017.269

References270

[1] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider,” JINST 3, S08003271

(2008).272

[2] G. Barrand, I. Belyaev, P. Binko, M. Cattaneo, R. Chytracek, G. Corti, M. Frank and G. Gracia et al., “GAUDI273

- A software architecture and framework for building HEP data processing applications,” Comput. Phys.274

Commun. 140, 45 (2001).275

[3] P. Calafiura, W. Lavrijsen, C. Leggett, M. Marino and D. Quarrie, “The Athena control framework in276

production, new developments and lessons learned,” CHEP 2004 Conf. Proc. C04-09-27 pp 456-458 (2005)277

[4] Binet S et al., 2012 Multicore in production: Advantages and limits of the multiprocess approach in the278

ATLAS experiment J. Phys.: Conf. Series 368 012018 (ACAT2011 proceedings)279

[5] P. Calafiura, W. Lampl, C. Leggett, D. Malon, G. Stewart and B. Wynne, “Development of a Next Generation280

Concurrent Framework for the ATLAS Experiment,” J. Phys. Conf. Ser. 664, no. 7, 072031 (2015).281

doi:10.1088/1742-6596/664/7/072031282

[6] G. A. Stewart et al., “Multi-threaded software framework development for the ATLAS experiment,” J. Phys.283

Conf. Ser. 762, no. 1, 012024 (2016). doi:10.1088/1742-6596/762/1/012024284

[7] M. Clemencic, B. Hegner, P. Mato and D. Piparo, “Introducing concurrency in the Gaudi data processing285

framework,” J. Phys. Conf. Ser. 513, 022013 (2014).286

[8] S. Farrell, P. Calafiura, C. Leggett, V. Tsulaia, A. Dotti et al., “Multi-threaded ATLAS Simulation on Intel287

Knights Landing Processors,” Proceedings of the CHEP 2016 conference J. Phys.: Conf. Ser.288


