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�All hanged, hanged utterly: a terrible beauty is born.�

Yeats, Easter 1916

�Ô Mort, vieux apitaine, il est temps! levons l'anre!

Ce pays nous ennuie, � Mort! Appareillons!

Si le iel et la mer sont noirs omme de l'enre,

Nos oeurs que tu onnais sont remplis de rayons!

Verse-nous ton poison pour qu'il nous réonforte!

Nous voulons, tant e feu nous brûle le erveau,

Plonger au fond du gou�re, Enfer ou Ciel, qu'importe?

Au fond de l'Inonnu pour trouver du nouveau!�

Charles Baudelaire, Le Voyage, Les Fleurs du Mal

�L'inspiration, 'est une invention des gens qui n'ont jamais rien réé. Nous entretenons

la légende pour nous faire valoir, mais entre nous, 'est un blu�. Le poète ne onnaît

que la ommande.�

Jean Anouilh
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Résumé

Ce manusrit présente plusieurs études des désintégrations de mésons B0
et B0

s en trois

orps non-harmés, dont un méson K0
S
. Ces études portent sur les données enregistrées

par l'expériene LHCb pendant le Run I du LHC, orrespondant à une luminosité intégrée

de

∫

L = 3 fb

−1
.

Une première analyse onsiste en une mesure des rapports d'embranhement des modes

B0
d,s→ K0

S
h+h

′−
, où h(

′)
désigne un kaon ou un pion. Les préédentes mesures par LHCb

des rapports d'embranhements de es modes de désintégration, rapportés à elui du mode

B0 → K0
Sπ

+π−
, sont mis à jour. De plus, le but prinipal de ette analyse est de reherher

le mode B0
s → K0

S
K+K−

, pas enore observé par les analyses préédentes. Les rapports

d'embranhement relatifs sont mesurés :

B (B0
s → K0

S
π+π−)

B (B0→ K0
S
π+π−)

= 0.26± 0.04(stat.)± 0.02(syst.)± 0.01(fs/fd),

B (B0→ K0
S
K±π∓)

B (B0→ K0
S
π+π−)

= 0.17± 0.02(stat.)± 0.00(syst.),

B (B0
s → K0

S
K±π∓)

B (B0→ K0
Sπ

+π−)
= 1.84± 0.07(stat.)± 0.02(syst.)± 0.04(fs/fd),

B (B0→ K0
SK

+K−)

B (B0→ K0
S
π+π−)

= 0.59± 0.02(stat.)± 0.01(syst.),

(1)

Une première observation de B0
s → K0

S
K+K−

est rapportée, ave une signi�ane globale

de 3.7 σ.
Une analyse non-étiquetée de saveur et indépendante du temps du plan de Dalitz de la

désintégration B0→ K0
S
K+K−

est présentée, en utilisant l'approhe isobare. Les rapports

d'embranhement quasi-deux-orps des désintégrations B0 → K0
S
φ0
, B0 → K0

S
f

′

2(1525),
B0 → K0

Sf0(1710), et B
0 → K0

Sχc0 sont mesurés. Ils sont ompatibles ave les mesures

préédentes de BaBar, à l'exeption de B0→ K0
S
f0(1710).
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Abstrat

This dissertation presents several studies of the deays of both B0
and B0

s mesons to

harmless three-body �nal states inluding a K0
S
meson. They use the data reorded by

the LHCb experiment during Run I of LHC, orresponding to an integrated luminosity of

∫

L = 3 fb

−1
.

A �rst analysis onsists of the measurement of the branhing frations of B0
d,s →

K0
S
h+h

′−
deays, where h(

′)
designates a kaon or a pion. Preeding LHCb measurements

of branhing frations for all deay hannels, relative to that of B0 → K0
S
π+π−

, are

updated. Furthermore, the primary goal of this analysis is to searh for the, as yet,

unobserved deay B0
s → K0

S
K+K−

. The relative branhing frations are measured to be:

B (B0
s → K0

Sπ
+π−)

B (B0→ K0
S
π+π−)

= 0.26± 0.04(stat.)± 0.02(syst.)± 0.01(fs/fd),

B (B0→ K0
S
K±π∓)

B (B0→ K0
S
π+π−)

= 0.17± 0.02(stat.)± 0.00(syst.),

B (B0
s → K0

S
K±π∓)

B (B0→ K0
S
π+π−)

= 1.84± 0.07(stat.)± 0.02(syst.)± 0.04(fs/fd),

B (B0→ K0
S
K+K−)

B (B0→ K0
Sπ

+π−)
= 0.59± 0.02(stat.)± 0.01(syst.),

(2)

A �rst observation of B0
s → K0

S
K+K−

is reported with a global signi�ane of 3.7 σ.
A �avour-untagged, time-independent Dalitz-plot analysis of B0 → K0

SK
+K−

is pre-

sented, using the isobar approah. The quasi-two-body branhing frations of B0→ K0
S
φ0
,

B0→ K0
S
f

′

2(1525), B
0→ K0

S
f0(1710), and B

0→ K0
S
χc0 are measured. They are ompati-

ble with previous measurements from BaBar, exept for B0→ K0
Sf0(1710).
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Introdution

The study of of b-hadron deays to hadroni �nal states with no harmed partiles allow

for a rih array of studies. A few examples are the measurements of branhing frations,

CP asymmetries, weak and strong phases; they probe the dynamis of weak and strong

interations. The typial branhing frations of these modes are below 10−5
and thus

their analyses are feasible only with large data samples and the use of powerful tools to

rejet bakground. The LHCb experiment at the CERN Large Hadron Collider (LHC) is

an adequate experimental environment for these analyses, o�ering the possibility to study

deays of light B mesons, Bs mesons and b baryons.
This dissertation desribes two analyses of B0

d,s → K0
S
h+h

′−
deays, where h(

′)
rep-

resents a kaon or a pion, that were performed with the 3 fb

−1
dataset olleted by the

LHCb experiment during the years 2011 and 2012, at entre-of-mass energies of 7 and

8TeV, respetively. The deays under study are dominated by loop transitions, that may

have ontributions from partiles beyond the standard model. The measured observables

are therefore probes for new physis. A �rst analysis onsists in the measurement of the

six branhing frations of these modes, relative to that of B0→ K0
S
π+π−

. This inludes

a searh for the mode B0
s → K0

SK
+K−

, that has never been observed before. A seond

study is the �rst amplitude analysis (or Dalitz-plot analysis) of the mode B0→ K0
S
K+K−

from LHCb. It ontains a measurement the branhing frations of intermediate states that

intervene in the deay, using the isobar approximation. This is the �rst suh study of

this mode in LHCb; it will be pursued in steps of inreasing omplexity with the growing

dataset, and will beome more and more sensitive to new physis observables.

This dissertation is organized as follows. Setion 1 shortly reviews the theoretial

framework, as well as onepts related to the amplitude analysis. It also gives a short

overview of existing results. Setion 2 then desribes the LHCb experiment and the related

onepts that are useful for the understanding of the analysis work. The presentation

of my work is then separated into three parts. Firstly, Se. 3 presents an alternative

proedure to simulate bakground events. This proedure is used in the measurement

of B0
d,s → K0

S
h+h

′−
branhing frations. Seondly, Se. 4 desribes the measurement of

the branhing frations of B0
d,s→ K0

Sh
+h

′−
modes, along with the searh for the missing

B0
s → K0

S
K+K−

mode. Finally, Se. 5 presents the untagged, time-independent Dalitz-

plot analysis of the B0→ K0
S
K+K−

deay.
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Chapter 1

Theory

1.1 Introdution

The Standard Model (SM) of partile physis desribes the interation of fundamental

partiles through the strong and eletroweak interations [1�3℄. It is an outstandingly

suessful theory that predits nearly all the measurements ever performed with great

preision. There are however some hints that point at a larger theory, the SM being an

e�etive model of that theory at lower energies:

• the SM does not explain the number of fermion generations nor their highly hierar-

hial struture in terms of mass. Instead, masses of partiles form the bulk of free

parameters of the SM (13 out of 18);

• the SM does not inlude gravity. In fat, general relativity is even mathematially

inompatible with quantum �eld theory (QFT). The SM has then to be an e�etive

theory that annot be valid at the Plank energy sale;

• the SM does not provide a andidate for old dark matter, whose ontribution to

the mass ontent of the Universe is found to be about �ves times larger than that

of ordinary matter [4℄;

• there is no mehanism in the SM that explains the smallness of the mass of the

Higgs boson. Indeed, quantum ontributions to the Higgs boson mass from Grand

Uni�ation or Plank-sale partiles would make the mass huge, unless there is a

�ne-tuning anellation between the radiative orretions and the bare mass [5℄.

This problem may be solved by the presene of physis beyond the SM at low mass

sale (1TeV), whih would provide a more natural anellation;

• the SM fails to aount for the matter-antimatter asymmetry observed in the Uni-

verse.

These issues motivate the searh for new physis (NP), and also provide some hints that

it should be aessible at energies lose to the TeV sale.
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Searhes for new physis an be lassi�ed in two ategories: diret and indiret searhes.

Diret searhes look for the prodution of on-shell partiles beyond the SM, suh as

supersymmetri partiles (squarks, gluinos) [4℄. Indiret searhes fous on deviations of

measurements of observables from a theoretial SM predition due to the e�et of o�-

shell NP partiles. These searhes require both a lean theoretial predition and a lean

experimental measurement so that possible deviations an be attributed to the e�ets of

NP; they are better performed on deays where a ontribution from NP is expeted. In

general, diret searhes need an aurate desription of the bakground, whereas features

of the bakground an be usually inferred from data in indiret searhes.

The violation of the CP symmetry, desribed in Se. 1.2, is a feature of the Standard

Model whih is strongly related to the matter-antimatter asymmetry in the Universe.

1

It depends on few parameters of the Standard Model, thus its preditive power is rather

high. The study of the violation of this symmetry in B0
d,s → K0

S
h+h

′−
deays provides

opportunities to perform indiret searhes for NP. Indeed, deays of the type B0
d,s →

K0
Sh

+h
′−
, where h(

′)
are kaons or pions, are dominated by so-alled penguin diagrams

that inlude a loop of virtual partiles. Partiles of NP ould ontribute inside of that

loop and ause a deviation of some observables from the SM predition. Additionally,

these deays also provide a relatively lean experimental ontext in the LHCb experiment,

where sample purities larger than 90% an be ahieved.

Setion 1.2 details the Standard Model desription of the CP violation, and Se. 1.3

presents some general onepts of amplitude analysis. Finally, Setion 1.4 presents an

overview of the motivations and experimental ontext of the study of B0
d,s → K0

S
h+h

′−

deays.

1.2 Violation of the CP symmetry

The violation of the CP symmetry, desribed in Se. 1.2.2 is a key fator to understand

the matter-antimatter asymmetry of the Universe. Indeed, the required onditions so that

a model ould allow for a matter-antimatter asymmetry, denoted Sakharov onditions [7℄,

are

• the existene of an interation that does not onserve the baryon number;

• the existene of an interation that violates both the C and CP symmetries;

• non-thermal equilibrium.

The baryon number is not onserved in some non-perturbative eletroweak proesses, for

instane the proesses alled sphalerons [8℄. The existene of suh proesses relies however

on the existene of a CP violation at the perturbative sale.

1

As desribed in the following, CP violation is a key ingredient to explain this asymmetry, but this

CP violation is too small by 9 orders of magnitude to explain the matter-antimatter asymmetry of the

Universe [6℄.
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1.2.1 Introdution to symmetries

Symmetries play a fundamental role in modern physis, as they onstitute the building

bloks of any Lagrangian theory. They an be ontinuous or disrete. Continuous sym-

metries are families of symmetries that depend on a ontinuous parameter. For instane,

U(1) is a group of the ontinuous, global symmetries that desribe rotations in a plane.

It an be de�ned as

{tα ∈ U(1); y → y × eiα}, (1.1)

where y is a omplex number and α is a real number.

Continuous, global symmetries an be extended into gauge symmetries, where the

parameter is itself a funtion of the position in spae and time. For instane, the gauged

version of the global U(1) symmetry would be

{tα ∈ U(1); y(x) → y(x)× eiα(x)}, (1.2)

where x is a position in spae-time, y(x) is a omplex operator, and α(x) is a real funtion.
The Standard Model is a gauge theory of the SU(3)C ⊗ SU(2)L ⊗ U(1)Y group. This

underlying struture onstrains the partile ontent of the theory and the interations

between these partiles.

The strong interation is desribed by the underlying SU(3)C symmetry, where the C
stands for �olour� harge of the interation. Properties of that symmetry group naturally

yield the gluon self-interation, whih is the underlying ause for the on�nement of quarks

into olourless hadrons.

The eletromagneti and weak interations are desribed by the underlying SU(2)L ⊗
U(1)Y symmetry, where the L stands for �left-handed� and the Y for the hyperharge.

The left-handed aspet of the SU(2)L symmetry is what explains the nonexistene of

right-handed neutrinos, and thus the violation of parity (see Se. 1.2.2) by the weak

interations. The SU(2)L ⊗ U(1)Y symmetry is spontaneously broken at the urrent

Universe energy density, leaving only the residual U(1)Q symmetry that is responsible for

eletromagneti interation and whose mediator is the massless photon γ. The mehanism

of that symmetry breaking, where the vauum expetation value of one of the salar �elds

of the theory is nonzero, is known as the Higgs mehanism. This mehanism gives rise

to the masses of fermions and of the gauge bosons of the weak interation, W±
and

Z0
, and has been on�rmed by the disovery of the Higgs boson by the ATLAS and

CMS experiments in 2011 [9, 10℄. The weak interation is the only one known to ouple

di�erent �avours. In the quark setor, it ouples up-type quarks (u,c,t) and down-type

quarks (d,s,b).
Disrete symmetries do not depend on a ontinuous parameter, and annot be gauged.

They are however interesting in the building of a model as they orrespond to onserved
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quantum numbers, through the Noether theorem (also valid for ontinuous symmetries).

The onservation of these quantum numbers in a proess governed by an interation that is

invariant under the orresponding symmetry allows to build seletion rules. The following

setion desribes three of these disrete symmetries, C, P , T , as well as the CP and CPT
produts.

1.2.2 The C, P , and T symmetries

The harge-onjugation operator C

The harge-onjugation operator C transforms a partile to the orresponding antipartile.

This antipartile shares all the properties of the original partile, exept for reversed

eletri, �avour, and olour harges. The Lagrangians of the eletromagneti and strong

interation are invariant under C, unlike the Lagrangian of the weak interation.

The parity operator P

The parity operator is de�ned as the reversal of all the spatial oordinates of a 4-vetor,

while the time omponent is onserved. It onserves all the harges of the partile and its

spin. The angular momentum L is onserved, whih means that the sign of the heliity

of the partile, de�ned as

H =
L.p

|p| , (1.3)

is reversed. Hene P transforms left-handed (H = −1) partiles into right-handed (H = 1)
partiles, and inversely. The heliity is strongly related to the hirality of the partile,

whih de�nes its transformation under P .2 In ontrary to the heliity, however, hirality

does not depend on the referene frame in the ase of massive partiles.

Following the observation that parity is onserved by the eletromagneti and strong

interations, weak interation was initially thought to onserve that symmetry. However,

Lee and Yang [11℄ raised onern that the weak interation ould be sensitive to the

hirality of partiles (�hiral interation�). This was on�rmed by the observation that

β deays only emit left-handed neutrinos [12℄. More generally, only left-handed partiles

(and right-handed antipartiles) interat via the weak interation.

The T operator

The time-reversal operator T is omplementary to the parity operator P , as it transforms

(t,x) into (−t,x). It is onserved by the eletromagneti and the strong interations. The

�rst diret observation of the violation of the T symmetry by the weak interation has

been performed in the study of the B0
system [13℄.

2

The heliity and the hirality are equal for massless partiles.
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The CP and CPT operators

The previous results on C and P operators ould mean that the produt of the C and

P operator, denoted CP , is onserved by weak interations as this operator transforms

left-handed neutrinos into right-handed antineutrinos [14℄. The �rst demonstration of CP
violation in nature has been obtained through the study of the mixing of neutral mesons

suh as the K0
[15℄ and the B0

[16℄

The CPT theorem states that the Lagrangian of the SM must be invariant under

the CPT produt. This is related to Lorentz invariane and loality. Searhes for CPT
violation have for now not found any signi�ant violation.

Under the assumption of the CPT theorem, any observation of violation of the T or

the CP symmetry results in the violation of CP or T , respetively. This has led to the

�rst observation of time-reversal symmetry violation in the neutral kaon system, under the

assumption of CPT [17℄. Additionally, measurements of the T -violation have onstrained

the violation of CP by the strong interation to smaller than 10−10
[18℄. This onstitutes

the strong CP problem, as the strong interation ould in priniple violate CP . We

onsider in the rest of this dissertation that the strong interation if CP -onserving.
Setion 1.2.3 desribes the mehanism of CP violation in the mixing of neutral mesons,

along with the di�erent types of CP violation in the Standard Model.

1.2.3 Neutral mesons mixing and CP violation

We onsider a neutral meson |P 0〉 suh that |P 0〉 6= |P 0〉, deaying to a �nal state f .
There are three di�erent bases that an be used to desribe the |P 0〉-|P 0〉 system:

• |P 0〉 and |P 0〉 (�avour eigenstates);

• 1√
2
(|P 0〉+ |P 0〉) and 1√

2
(|P 0〉 − |P 0〉) (CP -eigenstates);

• |PL〉 and |PH〉 (eigenstates of the Hamiltonian).

In the two eigenstates of the Hamiltonian, L and H stand for �light� and �heavy�, re-

spetively. The weak Hamiltonian onserves CP if and only if the eigenstates of the

Hamiltonian are also eigenstates of CP .
The e�etive Hamiltonian H , desribing the evolution of an initial state ontaining a

mixture of |P 0〉 and |P 0〉 (and ignoring �nal states), an be written as

H =M − i

2
Γ, (1.4)

where M and Γ are hermitian matries de�ned as

M =

(

m11 m12

m∗
12 m22

)

,Γ =

(

Γ11 Γ12

Γ∗
12 Γ22

)

. (1.5)
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The CPT invariane requires that the diagonal terms of these matries are equal. The

introdution of the matrix Γ in the Hamiltonian removes its property of hermitiity, whih

is linked to the onservation of probability. This allows to introdue the lifetime of the

states desribed by this Hamiltonian, as the square of the wave-funtion that desribes

them is dereasing exponentially with time.

The Shrödinger equation that governs the time-evolution of a wave-funtion is

i
d|Ψ(t)〉

dt
= H|Ψ(t)〉. (1.6)

The integration of this equation applied to the |PL,H〉 states yields

|PL,H(t)〉 = |PL,H〉e−i(ML,H− i
2
ΓL,H)t

(1.7)

where (ML,H − i
2
ΓL,H) are the orresponding eigenvalues of the Hamiltonian. The terms

p and q are de�ned as the (nonvanishing) oe�ients that allow to hange the basis

|PL〉 = p|P 0〉+ q|P 0〉,
|PH〉 = p|P 0〉 − q|P 0〉, (1.8)

where |p|2 + |q|2 = 1. Conversely, these oe�ients an be used to write

|P 0〉 = 1

2p
(|PL〉+ |PH〉),

|P 0〉 = 1

2q
(|PL〉 − |PH〉). (1.9)

We remark that if p = q = 1√
2
, |PL〉 and |PH〉 are exatly equal to

1√
2
(|P 0〉 + |P 0〉) and

1√
2
(|P 0〉 − |P 0〉), and CP is onserved.

Finally, ombining Eq. 1.9 and 1.7, the time-evolution of |P 0〉 and |P 0〉 states writes

|P 0〉(t) = f+(t)|P 0〉+ q

p
f−(t)|P 0〉,

|P 0〉(t) = f+(t)|P 0〉+ p

q
f−(t)|P 0〉,

(1.10)
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Table 1.1 � Experimental average for ∆m and ∆Γ in di�erent neutral-meson systems from [19℄.

B0
mixing parameters

∆md( ps
−1) 0.510± 0.003

∆Γd/Γd 0.001± 0.010
|q/p| 1.0009± 0.0013
B0

s mixing parameters

∆ms( ps
−1) 17.757± 0.020± 0.007

∆Γs/Γs 0.124± 0.009
|q/p| 1.0038± 0.0021

where

f±(t) =
1

2

(

e−i(ML− i
2
ΓL)t ± e−i(MH− i

2
ΓH)t

)

. (1.11)

We de�ne the quantities

∆m = mH −mL,∆Γ = ΓL − ΓH, (1.12)

and obtain

f±(t) =
1

2

(

e−imLte−
1
2
ΓLt
[

1± e−i∆mte−
1
2
∆Γt
])

. (1.13)

This funtion governs the mixing in the |P 0〉�|P 0〉 system.

The ∆m and ∆Γ parameters an be predited from SM alulations, and experimen-

tally measured. Table 1.1 summarizes the urrent world averages for the B0
and B0

s meson

systems [19℄.

We onsider the deay of the |P 0〉 meson to a �nal state f , assoiated with the ampli-

tude Af .
3

The parameter

λf =
q

p

Af

Af
(1.14)

ontains the information about CP violation in that deay. Indeed, if the modulus of λf
is not 1, or if its imaginary part is not vanishing, CP violation in the |P 0〉 → f deay

ours. De�ning the three observables

3

In the following, the onjugate deay of |P 0〉 to f is assoiated with the amplitude Af .
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Cf =
1− λ2f
1 + λ2f

, (1.15)

Sf =
2ℑ(λf)
1 + λ2f

, (1.16)

A∆Γ
f = −2R(λf )

1 + λ2f
, (1.17)

(1.18)

the deay rate of |P 0〉 as a funtion of time writes

Γ(t) ∝ e−Γ|P0〉t

2τ

[

cosh

(

∆Γt

2

)

+A∆Γ
f sinh

(

∆Γt

2

)

+ (Cf cos (∆mt)− Sf sin (∆mt))

]

,

(1.19)

where τ = (ΓL+ΓH

2
)−1

, Γ|P 0〉 =
ΓL+ΓH

2
, and ∆Γ = ΓL − ΓH. It is neessary to perform a

time-dependent analysis of a deay in order to measure all the CP -violation e�ets with

preision, as well as to determine the �avour of the neutral meson that deays (�tagging�).

In the ase where several hannels ontribute to the total amplitude, the amplitudes

A and A of the total deay an be written

A =
∑

i

Aie
i(φi−δi),A =

∑

i

Aie
i(φi+δi), (1.20)

where the sum runs over the hannels ontributing to the amplitude and Ai is the magni-

tude of the ontribution of eah hannel. The phases φi and δi are the CP -onserving and
CP -violating omponents of the phase orresponding the eah hannel, respetively. The

e�et of the CP symmetry an only indue a di�erene in phase, not magnitude, in eah

hannel taken separately. However, in the presene of two or more ontributing hannels,

the di�erene in the pattern of interferene indued by the CP -violating phase an result

in CP violation in the deay.

Three types of CP violation soures an be distinguished, with di�erent physial in-

terpretations.

CP violation in deays

In presene of several ontributions to the amplitude that both have a relative CP -
onserving phase and di�erent CP -violating phases, the rate of a deay and its onjugate

may be di�erent. Indeed, in the ase of two ontributing diagrams,

A = A1e
i(φ+δ1) + A2e

i(−φ+δ2),A = A1e
i(φ−δ1) + A2e

i(−φ−δ2), (1.21)
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where the relative CP -onserving phase between diagrams 1 and 2 is 2φ, and δ1,2 is the CP -
violating phase between these diagrams. If both the CP -onserving and the CP -violating
phases are not 0, the deay rates related to A and A are di�erent.

This is the only possible type of CP violation in deays of harged mesons or baryons.

CP violation through mixing

As underlined before, CP violation an be indued by the mixing of neutral mesons.

Considering for instane Eq. 1.8, CP is violated in the mixing of neutral mesons if and

only if |p
q
| 6= 1. As shown in Tab. 1.1, this ratio is onsistent with 1 in the ase of the B0

and B0
s mesons.

CP violation in interferene between mixing and deay

Another type of CP violation is assoiated to the interferene between mixing and deay

proesses of neutral mesons to the same CP -eigen state. Contrary to the CP violation in

deay, it does not require several hannels to ontribute to the amplitude, as the inter-

ferene happens between the mixed and unmixed amplitudes. This type of CP violation

ours in ase that the imaginary part of λ takes a nonzero value. The parameter that

outlines this measurement is ontained in the term Sf .

Diret and indiret CP violation

CP violation an be alternatively lassi�ed into diret or indiret CP violation. Diret CP
violation orresponds to CP violation through deay, whereas indiret CP violation refers

to CP violation through mixing or through the interferene between mixing and deay.

As shown in Tab. 1.1, the CP violation in the mixing of the B0
meson an be negleted in

most ases, and thus �indiret CP violation� often refers to interferene between mixing

and deay when onsidering deays of the B0
meson.

1.2.4 The CKM matrix and the KM mehanism

As desribed in Se. 1.1, �avour eigenstates are eigenstates of the eletroweak intera-

tion. They are however not neessarily eigenstates of the strong interation, or of the

Hamiltonian. This setion desribes how the hange of basis between eigenstates of the

eletroweak interation and of the Hamiltonian introdues an irreduible phase in the SM,

and thus to CP violation, when three or more quark generations exist.

We onsider the hange of basis between the quark eigenstates of �avour and of the

Hamiltonian by the matries Uf
L and Uf

R, de�ned suh as

Mmass =
(

Uf
L

)†
MflavourU

f
R, (1.22)
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where Mmass and Mflavour are the matries that desribe quark urrents in the mass basis

and the �avour basis, respetively. The idea of di�erent bases to desribe the mass

and the weak eigenstates was �rst proposed by Cabibbo [20℄. The motivation was to

explain the suppression of the deay of strange partiles, and thus the long lifetime of

these partiles. The GIM mehanism is an extension of this onept that requires the

existene of a seond-generation up-type quark, the c quark [21℄. It allows to forbid any

�avour-hanging neutral urrent at tree-level in the Standard Model.

A 2× 2 unitary matrix V an be desribed by a single real parameter. Starting from

the original 2× 4 real parameters (e.g. magnitudes and phases), unitarity relations state

that

∀(i, j),
∑

k

VikV
∗
jk = δij , ∀(i, j),

∑

k

VkiV
∗
kj = δij , (1.23)

whih removes 4 parameters. Finally, phases between quark urrents are physially mean-

ingless, thus removing 2N − 1 = 3 parameters, leaving only one real parameter. The

omparison with real orthogonal matries leads to de�ning this parameter as an angle θC,
and so

V =

(

cos θC sin θC
− sin θC cos θC

)

. (1.24)

This idea has �rst been proposed with the two lightest quark generations, this angle

θC being named the Cabibbo angle. Kobayashi and Maskawa have proposed to extend

this idea to three quark generations and showed how this resulted in the introdution

of a physial phase in the SM, responsible for CP violation [22℄.

4

Indeed, an extension

of the disussion above shows that a 3 × 3 unitary matrix an be desribed by 4 real

parameters, one of whih being an irreduible phase. The 3 × 3 basis-hanging matrix

in the ase of three quark generations is alled the Cabibbo-Kobayashi-Maskawa (CKM)

matrix. The 2008 Nobel prize of physis was awarded to Kobayashi and Maskawa after

preise measurements of CP violation showed that it was indeed onsistent with their

desription.

The CKM matrix is written as

VCKM = (Uu
L )

† Ud
R =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (1.25)

It is important to note that, due to the fat that �avour-hanging neutral urrents (FCNC)

are forbidden at tree-level in the SM, up-type quarks are only paired with down-type

quarks, and inversely. Following the disussion on the number of degrees of freedom,

this matrix an be parameterized by three real parameters and one imaginary parameter.

These three angles are de�ned as θ12(= θC) , θ13, and θ23. For eah angle θij , its osine
and sine are noted cij and sij , respetively, and the CKM matrix may be written as

4

This irreduible phase is equivalent to a violation of CP , as this symmetry is anti-linear.
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VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (1.26)

where δ is the irreduible phase. Sine the term s12 is small, this form of the CKM

matrix an be written as an expansion of λ = s12 ≈ 0.22, and three parameters that are

lose to unity: A = s23
λ2 , ρ = s13

λs23
cos δ, and η = s13

λs23
sin δ. This yields the Wolfenstein

parameterization [23℄

VCKM =





1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



+O(λ4). (1.27)

Finally, the

ρ = ρ

(

1− λ2

2

)

, η = η

(

1− λ2

2

)

(1.28)

terms an be de�ned to yield the Buras parameterization [24℄ whih is is valid at O(λ5)

VCKM =





1− λ2/2− λ4/8 λ+O(λ7) Aλ3(ρ− iη)
−λ + A2λ5 [1− 2(ρ+ iη)] /2 1− λ2/2− λ4 (1 + 4A2) /8 Aλ2 +O(λ8)

Aλ3(1− ρ− iη) −Aλ2 + Aλ4 [1− 2(ρ+ iη)] /2 1− A2λ4/2





(1.29)

1.2.5 The unitarity triangles

The unitarity of the CKM matrix an be formulated as

L∗
iLj =

∑

i

V ∗
ikVjk = δij ,

C∗
i Cj =

∑

i

V ∗
kiVkj = δij ,

(1.30)

where Li(j) and Ci(j) are the ith (jth) line and olumn, respetively. These unitarity

onstraints yield 9 equations, among whih six involve di�erent lines or olumns

5

:

5

As the CKM matrix an be written using only four terms, these equations are highly redundant.
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V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = 0, (1.31)

V ∗
udVub + V ∗

cdVcb + V ∗
tdVtb = 0, (1.32)

V ∗
usVub + V ∗

csVcb + V ∗
tsVtb = 0, (1.33)

V ∗
cdVud + V ∗

csVus + V ∗
cbVub = 0, (1.34)

V ∗
tdVud + V ∗

tsVus + V ∗
tbVub = 0, (1.35)

V ∗
tdVcd + V ∗

tsVcs + V ∗
tbVcb = 0. (1.36)

These onstraints an be represented by triangles in the omplex plane, denoted by �uni-

tarity triangles�. Most of them inlude terms of di�erent orders in λ, thus orresponding to
�at triangles. Equation 1.32 and 1.35, however, only inlude terms that are proportional

to λ3.
The triangle de�ned by Eq. 1.32 is often alled �the� unitarity triangle, as it has been

the fous of many measurements. Indeed, the three sides of this triangle are all of order

λ3, ompared to other triangles that are �atter. Alternatively, it is referred to as the

B0
unitarity triangle. Its sides are normalized by V ∗

cdVcb, and its internal angles are thus

de�ned as:

α = arg

(

− V ∗
tbVtd

V ∗
ubVud

)

= arg

(

−1− ρ− iη

ρ+ iη

)

+O(λ2), (1.37)

β = arg

(

−V
∗
cbVcd
V ∗
tbVtd

)

= arg

(

1

1− ρ− iη

)

+O(λ4), (1.38)

γ = arg

(

−V
∗
ubVud
V ∗
cbVcd

)

= arg (ρ+ iη) +O(λ2). (1.39)

Figure 1.1 shows a sketh of this unitarity triangle speifying the angles and the expres-

sions of the lengths of its sides [19℄.

The angles and the sides of the triangle an be measured experimentally, to onstrain

the loation of its apex.

6

These di�erent onstraints set by the measurements must overlap

in at least one region of spae so that the unitarity of the CKM matrix is respeted. Fig-

ure 1.2 shows the status of the onstraints on this unitarity triangle, from the CKM�tter

ollaboration [19℄. These onstraints arise from the measurement of physis observables

by several experiments. They inlude

• the measurement of εK and ε′K (CP -violating parameters of the neutral kaon system)

[26℄;

• the onstraint on ∆md, measured �rst by the UA1 [27℄ and ARGUS [28℄ ollabora-

tions; urrent world average is dominated by B-fatories and LHCb;

6

The freedom to set the origin of the referential and its orientation an be used to set two of the tree

apexes of the triangle to 0 and 1, leaving only one apex to be determined.

13



Figure 1.1 � Sketh of the unitarity triangle de�ned by Eq. 1.32, from [19℄.

• the onstraint on ∆ms, �rstly measured by CDF [29℄; LHCb [30℄ is dominating the

urrent world average

7

;

• the measurement of β performed in b→ ccs modes by BaBar [31℄, Belle [32℄, and

LHCb [33℄;

• the measurement of the angle α, measured in time-dependent analyses of b→ uud
deays suh as B→ ππ, B→ ρρ, and B→ ρπ;

• the onstraint on γ, set with the best preision in harmed B tree deays, and

measured by CDF, BaBar, Belle, and LHCb. It is one of the least known parameters

of the B0
unitarity triangle.

The mixing phase between the B0
s and the B0

s is noted φs, and is equal to

φs = −2βs = arg

(

−VtsV
∗
tb

VcsV ∗
cb

)

, (1.40)

where βs is one of the angles of the B
0
s unitarity triangle de�ned by Eq. 1.33. The LHCb

experiment disposes of a large sample of B0
s mesons that allows it to improve onstraints

on this triangle.

1.2.6 B0
osillations and the β angle

As disussed in Se. 1.2.3, �avoured neutral mesons (K0
, D0

, B0
, and B0

s ) osillate when

they propagate. The short-range terms related to these osillations an be desribed at

�rst order by box diagrams like those shown in Fig. 1.3. Long-range terms and upper or-

7

The ratio ∆md/∆ms is leaner than the individual observables, as it anels some hadroni uner-

tainties.
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Figure 1.2 � Constraints on the apex of the unitarity triangle de�ned by Eq. 1.32 from the

CKM�tter ollaboration [25℄

Figure 1.3 � Seond-order weak interation Feynman diagrams that give rise to the mixing of

the B0
meson. The virtual loop in both diagrams is dominated by the top-quark.

ders are negleted. The ontribution from virtual quarks inside of the loop are dominated

by the top-quark. It is then a very good approximation to onsider the amplitude to be

proportional to VtbV
∗
td/V

∗
tbVtd, whose phase is equal to −2β at O(λ4). This expression also

yields that |q/p| = 1+O(λ4), thus strongly suppressing CP violation in the mixing of B0
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mesons.

The angle β an be extrated from various hannels that allow to measure the inter-

ferene between the mixing and the deay of B0
mesons. Considering a B0 → f deay,

where f is a CP eigenstate and only one proess ontributes to the amplitude, no diret

CP violation is possible and

Sf = sin (arg (λf)) = sin

(

arg

(

q

p

Af

Af

))

= ηf sin 2β, (1.41)

where ηf = ±1 is the eigenvalue of the f �nal state. The observable Sf an be extrated

from an analysis that measures Γ(t) (time-dependent analysis).

Deays of the formB0→ K0
S
(K0

L
)(cc) are dominated by the tree-level transition b→ ccs

and thus allow for a lean measurement of the angle β by means of a time-dependent

analysis. This allows to extrat a lean measurement of β in modes where no signi�ant

ontribution from NP proesses is expeted. This value an then be ompared to the

value of β from modes that inlude a virtual loop.

Charmless B0
deays involve an underlying b → qqs transition. They are strongly

suppressed at tree level as the only tree-level ontribution involves a b→ u transition,

that is suppressed by a fator λ2 in branhing frations ompared to a b→ c transition.
Figure 1.4 shows a ompilation of the CKM angle β and of βeff as of 2014 [19℄, in the

b→ ccs and the b→ qqs transitions, respetively. These two averages are ompatible, but

most of the b→ qqs measurements are smaller than measurements in b→ ccs modes.

1.3 Amplitude analyses onepts

1.3.1 Three-body partile deays and the Dalitz plot

The di�erential ross-setion assoiated with the deay of a partile of mass M and mo-

mentum P into n partiles of momenta pi and energies Ei is

dΓ =
(2π)4

2M
|M|2 dΦn(P ; p1...pn), (1.42)

where

dΦn(P ; p1, ...pn) = δ4(P −
n
∑

i=1

pi)
n
∏

i=1

d3pi
(2π)32Ei

(1.43)

is the phase-spae element of volume, and the sattering matrix M ontains all the infor-

mation related to underlying dynamis (suh as resonanes or hadroni fators). Conser-

vation of momentum is ensured by the Dira funtion δ.
In the ase of three-body deays, the previous equation beomes

dΓ =
1

(2π)5
1

16M2
|M|2 dE1dE3dαd(cosβ)dγ (1.44)
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Figure 1.4 � World average of β from [19℄, extrated from b → ccs deays (left) and b → qqs
deays (right). The world average from b→ ccd is also indiated in the right hand-side �gure.

where E1 and E3 are the energy of partiles 1 and 3 in the rest frame of the mother partile.

The angles α, β, and γ are the Euler angles that de�ne the plane where momenta of the

daughters are ontained. Here, the initial twelve degrees of freedoms are redued to �ve

when the onservation of momentum and the masses of the three �nal-state partiles is

taken into aount.

In the ase of the deay of a (pseudo-)salar partile into three (pseudo-)salar partiles,

the proess is isotropi. This means that the dependeny on angles an be integrated out,

further reduing the number of degrees of freedom from �ve to two. Equation 1.44 beomes

dΓ =
1

(2π)3
1

8M
|M|2 dE1dE3. (1.45)

This equation an be rewritten as

dΓ =
1

(2π)3
1

32M3
|M|2 dm2

12dm
2
13, (1.46)

where the mij masses are the invariant masses of the partile pair ij. This amplitude only

depends on two variables, whih allows to represent the whole phase-spae on a single

plane. A graphi representation of this plane is alled a Dalitz plot [34℄.

The onservation of momentum and the mass of the mother partile set onstraints on

the Dalitz plot. Figure 1.5 shows a typial Dalitz plot along with kinematial boundaries.
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Figure 1.5 � Typial Dalitz plot, along with kinematial boundaries [4℄.

The physial region orresponds to the gray area, limited by boundaries where all partiles

are ollinear. The orners of the physial region orrespond to the ase where one of the

partiles is at rest.

As shown in Eq. 1.46, the only possible soure of non-uniformities over the Dalitz

plot is the sattering matrix M. Suh non-uniformities typially arise in the presene of

quasi-two body (Q2B) deays (see Se. 1.3.3).

1.3.2 The square Dalitz plot

An alternative representation of events that is sometimes easier to manipulate is the

square Dalitz plot [35℄. Its oordinates m′
and θ′ are de�ned as

m′ =
1

π
arccos

(

2
mij −mmin

ij

mmax
ij −mmin

ij

− 1

)

, (1.47)

θ′ =
1

π
θij , (1.48)

where m
max(min)
ij designates the maximum (minimum) mass of the ij pair

mmax
ij =M −mk (1.49)

mmin
ij = (mi +mj), (1.50)
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Figure 1.6 � Jaobian of the transformation from the usual Dalitz plot to the square Dalitz

plot. [36℄

where M is the mass of the mother partile and mi,j,k is the mass of the daughter i, j,
or k. The angle θij is the heliity angle of a given ij system, whih is de�ned between

the momenta of the partiles k and i in the ij rest frame. These oordinates are de�ned

between 0 and 1, and the hange of oordinates between the regular Dalitz plot and the

square Dalitz plot is de�ned as

dm2
ijdm

2
jk → | det J |dm′dθ′, (1.51)

|det J | = 4
∣

∣p∗ij
∣

∣ |p∗k|
δmij

δm′
δ cos θij
δθ′

, (1.52)

J being the Jaobian of the transformation. The momenta p∗ij =
√

E2
ij −m2

ij and p
∗
k =

√

E2
k −m2

k are de�ned in the ij rest frame. Figure 1.6 shows the distribution of this

Jaobian over the square Dalitz plot.

This representation is espeially useful in harmless B deays, as they populate areas

of the Dalitz plot lose to its boundaries, due to the small mass of intermediate resonanes

ompared to the mass of the B meson. Additionally, from a tehnial point of view, the

square shape of this plot allows to bin the plane more easily.

A major di�erene between the usual Dalitz plot and the square Dalitz plot is that

the square Dalitz plot area is not proportional to the element of phase spae. This means

that strutures over the square Dalitz plot are not neessarily related to any dynamis,

unlike in the usual Dalitz plane. This is illustrated by Fig. 1.6, as the Jaobian an be

interpreted as the shape over the square Dalitz plot of a �at, phase-spae, omponent.

19



Figure 1.7 � Sketh of a Dalitz plot inluding several Q2B deays, represented in di�erent olours.

The red strip orresponds to a salar resonane. The green and dark blue points orrespond to

vetor resonanes, while the magenta and light blue orrespond to tensor resonanes. A spin

3 resonane is also shown, in yellow. Interferene regions are learly visible where resonanes

overlap, suh as the red and green ones.

1.3.3 Quasi-two body deays

A deay A→ B+C+D an proeed via an intermediate state R that deays for instane

into B and C. The deay A→ (R→ B + C)D is alled a �quasi-two-body� deay, where

D is sometimes denoted as the �bahelor� partile.

A Q2B deay appears as a strip over the Dalitz plot with a mean and a width that are

related to the mass and the width of the resonane, respetively. The variations of the

magnitude along the strip provide information about the spin of the resonane. Figure 1.7

shows an example of a Dalitz plot with several Q2B deays with di�erent spins of the

resonanes.

1.3.4 The isobar model

The amplitude of a three-body deay an be modelled in di�erent ways. The isobar

approah approximates the total amplitude as

A
(

�

)

=
N
∑

n

An

(

�

)

, (1.53)

where the sum runs over N oherent ontributions and

An

(

�

)

= an
(

�

)

Fn

(

m2
ij , m

2
jk

)

, (1.54)
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are the partial amplitudes that are haraterized by their lineshapes Fn

(

m2
ij , m

2
jk

)

[37�39℄.

The an
(

�

)

oe�ients are omplex numbers.

Under the assumption of heavy-quark fatorization, the lineshape Fn

(

m2
ij , m

2
jk

)

is

only related to strong dynamis. Hene this does not ontain any information about CP
violation

8

, and is not deay-dependent.

The isobar oe�ients an
(

�

)

an be parameterized in several ways. In the analyses that

are detailed in this dissertation, they are parameterized as

an = cn(1± bn)e
i(φn±δn), (1.55)

where φn and δn are the strong and weak phases, respetively. This parameterization has

been proposed by the BaBar experiment in Ref. [40℄.

The oe�ients an are not physial as, for instane, all the magnitudes in a given model

ould be multiplied by a fator without hanging the desription of data. Fit frations of

resonanes are de�ned as

FFn =

∫∫

DP

(

|An|2 +
∣

∣An

∣

∣

2
)

dm2
12dm

2
13

∫∫

DP

(

|A|2 +
∣

∣A
∣

∣

2
)

dm2
12dm

2
13

(1.56)

Eah Q2B branhing frations is related to the �t fration of the orresponding resonane

by

B(A→ RD) = FFR × B(A→ BCD). (1.57)

Similarly, interferene �t frations between two resonanes i and j an be de�ned as

FFnm = 2Re









∫∫

DP

(

AnA∗
m +AnAm

∗)
dm2

12dm
2
13

∫∫

DP

(

|A|2 +
∣

∣A
∣

∣

2
)

dm2
12dm

2
13









. (1.58)

The sum of �t frations FFn is not neessarily unity, beause of interferene. In the

ontrary, the relation

∑

n≤m

FFnm = 1 (1.59)

is ful�lled.

The parameters of the oe�ients an an also be used to de�ne CP -violating observ-
ables Cn and Sn for resonane n as

Cn =
2bn

1 + b2n
(1.60)

and

Sn =
1− b2n
1 + b2n

sin(2βeff ,n), (1.61)

8CP violation by the strong interation is negligible.
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where

βeff,n = β + δn. (1.62)

The angle βeff ,n quanti�es the interferene between mixing and deay for a given Q2B

deay. The observable Sn is meaningful only for CP -eigen Q2B deays suh as B0→ K0
S
φ.

1.3.5 Resonane dynamis

Resonane dynamis are ontained in the Fn

(

m2
ij , m

2
jk

)

terms of the isobar deomposition.

This term an be deomposed as

Fn

(

m2
ij , m

2
jk

)

= XL(|p∗|r′)XL(|q|r)Tn(L,p,q)Rn(mij), (1.63)

where:

• i and j are the daughters of the resonane;

• mij is the mass of the deay produts of the resonane;

• L is the angular momentum of the resonane;

• p∗
is the momentum of the bahelor partile, evaluated in the B rest frame;

• r and r′ are the Blatt-Weisskopf barrier radii;

• p and q are the momenta of one of the resonane daughters and of the bahelor

partile, respetively. They are both evaluated in the rest frame of the resonane.

We review in the following the de�nition and the physial meaning of the terms XL,

Tn, and Rn.

Blatt-Weisskopf momentum barrier fators XL

The maximum angular momentum L of a strong deay is limited by the momentum and

by a distane that is omparable to the �radius� of the resonane. The Blatt-Weisskopf

momentum barrier fator ( [41℄) depends on these two variables, and reweights the am-

plitudes in order to enfore the global onservation of angular momentum. The value of

this fator depending on the angular momentum L of the resonane is

L = 0;XL(z = |p|r) = 1;

L = 1;XL(z = |p|r) =
√

1 + z20
1 + z2

;

L = 2;XL(z = |p|r) =
√

9 + 3z20 + z40
9 + 3z2 + z4

;

where z0 is the value of the z = |p|r variable when the invariant mass of the two daughter

partiles is exatly the mass of the resonane. In the following of this dissertation, we

take the radii values as r′ = 0 and r = (4± 2.5) (GeV/c2)−1
from Ref. [40℄.
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Zemah tensor Tn

The Zemah tensor Tn desribes the angular distribution of the resonane daughters [42℄.

It depends on the resonane angular momentum L following:

L = 0;Tn = 1; (1.64)

L = 1;Tn = 4p.q; (1.65)

L = 2;Tn =
16

3

[

3(p.q)2 − (|p||q|)2)
]

. (1.66)

(1.67)

This terms explains the variations of the amplitude along a resonane, as seen in Fig. 1.7.

The resonane lineshape Rn

Hadroni resonanes are de�ned as poles of the sattering matrix S, whih desribes the

unitary operator that relates the asymptoti initial and �nal states. They appear in

several ways, for instane as an inrease in the total ross-setion when s approahes the
square of the mass of the resonane. The amplitude an be expanded in several ways

around suh a pole.

The Breit-Wigner formalism is well-suited to model the amplitude near an isolated

pole that is far from the opening of any threshold. It is a �rst-order Taylor expansion of

the amplitude around the pole. The assoiated lineshape is de�ned as

Rn(mij) =
1

m2
r −m2

ij − imrΓij(q)
, (1.68)

where r is a resonane deaying into the partiles i and j, and q is the momentum of the

resonane in the mother rest frame. The mass-dependent width Γ is

Γij(q) = Γr

( |q|
|q

r
|

)2L+1(
mr

mij

)

X2
L(q, q0), (1.69)

where Γr is the intrinsi width of the resonane and q
r
is the value of q when m = mr. It

is worth mentioning that a sum of lose Breit-Wigner distributions breaks the unitarity

of the S matrix. In the ase of overlapping or broad resonanes, other parameterizations

an be used, suh as the Gounaris-Sakurai for the ρ0 resonane [43℄. One of these param-

eterizations is the Flatté formula ( [44℄) that desribes the amplitude of a resonane lose

to a threshold, suh as the f 0(980) (lose to the KK threshold)

Rn(mij) =
1

m2
r −m2

ij − i(ρ1g
2
1 + ρ2g

2
2)
, (1.70)

where g21 + g22 = mrΓr. The gi are oupling onstants that are measured experimentally.

The ρi fators are phase-spae terms that ontain the information about the di�erent
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masses of the �nal states. In the ase of the f0(980), they are written

ρ1 = ρππ =

√

√

√

√

(

1−
(

2mpi

mij

)2
)

, (1.71)

ρ2 = ρKK =
1

2

√

√

√

√

(

1−
(

2mK±

mij

)2
)

+

√

√

√

√

(

1−
(

2mK0

mij

)2
)

. (1.72)

The K-matrix formalism ( [45℄) desribes the sattering proess by deomposing the T̂
matrix as

T̂ = (I − iρK̂)−1K̂, (1.73)

where ρ is the phase-spae matrix, and K̂ is a Lorentz-invariant matrix de�ned as

K̂ij =
∑

α

α

√

mαΓα,i(m)mαΓα,j(m)

(m2
α −m2)

√
ρiρj

, (1.74)

where the sum runs overs all resonanes α. This onstrution expliitly enfores the

unitarity of the T̂ operator. Additionally, this expression yields the same result as a Breit-

Wigner in the ase of a single resonane in a single hannel. The K-matrix formalism

is best de�ned in the ase of sattering. It an be transposed to the ase of three-body

deays under the assumption that there are no interations between the bahelor partile

and the daughters of the resonane.

1.3.6 Nonresonant amplitude

The nonresonant amplitude is not related to any pole of the S matrix, and overs the

whole phase spae. It is espeially important to onsider in the ase of B deays as the

phase spae is large, and as resonanes over a small portion of it (even more so in the

ase of harmless B deays, as harmless resonanes have a small mass ompared to the

B mass). As a result, while the typial nonresonant ontribution to harmed deays is of

the order 10%, it an be as large as 90% in B→ KKK deays ( [46℄). This nonresonant

amplitude is poorly understood theoretially, and may even be the result of the presene

of several broad resonanes. Several parameterizations of the nonresonant amplitude have

been used by di�erent analyses from di�erent ollaboration, inluding a �at distribution,

an exponential distribution, and a polynomial. These parameterizations have usually been

de�ned in an ad ho manner. For instane the use of a �at nonresonant distribution was

motivated by the presene of signal events in the entre of the Dalitz plot.

In the ontext of the fatorization approah, a large salar ontribution is expeted

in B → KKK [47℄. However, as disussed in the following, a large additional P -wave
ontribution has been observed by the BaBar experiment in these modes.
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Table 1.2 � Summary of favoured (�Fav.�) and suppressed (�Sup.�) B0
d,s→ K0

Sh
+h

′−
deays. The

suppression fator is equal to λ2
, where λ ≈ 0.22 is the sine of the Cabibbo angle.

Final state

Bd,s meson K0
Sπ

+π− K0
Sπ

+K− K0
SK

+π− K0
SK

+K−

B0
Fav. Sup. Sup. Fav.

B0
s Sup. Fav. Fav. Sup.

1.4 The study of B0
d,s→ K0

Sh
+h− deays

Deays of B0
and B0

s mesons to K0
S
h±h

′∓
are a privileged setor to perform indiret

searhes for NP. They have been studied for years in di�erent experiments suh as BaBar,

Belle, and now LHCb. This setion presents the general properties of these deays, with

an emphasis on the B0→ K0
S
K+K−

deay, along with a state of the art.

1.4.1 B0
d,s→ K0

S
h+h

′−
deay amplitudes

The B0
d,s → K0

Sh
+h

′−
deays proeed through b→ qqu tree-level transitions, as well as

q → qqd and b→ qqs penguin transitions, where q = d or s. Figure 1.8 shows all the

possible dominant diagrams that ontribute to a three-body deay of a heavy meson,

where Q denotes the heavy quark, T , C, A, E , and P stand for �tree�, �olour-suppressed

tree�, �annihilation�, �exhange�, and �penguin�, respetively. As disussed in Se. 1.2.4,

b→ u transitions are suppressed with respet to b→ c transitions by a fator λ2, where
λ ≈ 0.22 is the sine of the Cabibbo angle. This results in the suppression of tree-level

diagrams in these deays, relative to the penguin amplitudes. The following disussion

thus fouses on the properties of penguin amplitudes.

Depending on the nature of the mother partile and on the number of kaons in the

�nal state, a B0
d,s→ K0

Sh
+h

′−
deay proeeds via the Cabibbo-favoured b→ qqs transition

or the Cabibbo-suppressed b→ qqd transition, as shown in Table 1.2.

In B-meson deays, it is a good approximation to fatorize the weak and strong parts

of the deay, due to the large mass of the b quark ompared to ΛQCD.

The B0 → K0
S
K+K−

deay ontains the B0 → K0
S
φ(1020) ontribution, whih is a

partiularly good hannel to study time-dependent CP violation. Indeed, it is dominated

by a b→ sss transition that proeeds via a gluoni b→ s penguin. There is no tree on-

tribution to this hannel (�tree pollution�), whih means that deviations of the measured

value of the CKM angle β ompared to that performed in b→ ccs transitions suh as

B0→ J/ψK0
S
an be an indiation to NP.

The K0
S
K+K−

�nal state is not a CP -eigenstate. Indeed, for a given orbital angular

momentum L of the K+K−
system,

CP |K0
SK

+K−〉 = (−1)L|K0
SK

+K−〉. (1.75)
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Figure 1.8 � Quark diagrams for three-body deays of a heavy meson. Q denotes the heavy

quark. The dominant diagrams in B0→ K0
SK

+K−
are P1 and P2.

One of the uses of a Dalitz plot analysis of this mode is to separate the di�erent partial-

wave ontributions in order to measure CP -violating observables in a CP -eigen �nal state.

1.4.2 Previous studies of B0
d,s→ K0

S
h+h

′−
and B0

d,s→ K0
S
K+K−

de-

ays

The work desribed in this doument is part of deade-long e�orts by several ollaborations

to study B0
d,s → K0

Sh
+h

′−
deays. The main goal of the analyses desribed in the next

setion is to re�ne previous measurements and to gather more information in the spei�

LHCb environment. It lays the groundwork for future �avour-tagged, time-dependent,

analyses of these modes in LHCb.
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Legay from B fatories

The B0→ K0
S
π+π−

and B0→ K0
S
K+K−

deays have been studied by BaBar ( [40,48℄) and

Belle ( [49,50℄). Both experiments have measured the branhing frations of these deays

and performed a �avour-tagged time-dependent analysis that extrated βeff in several Q2B
modes. Additionally, BaBar has reported the observation of the B0 → K0

S
K±π∓

deay

in [51℄ with a total signi�ane of 5.2σ.
Studies of three kaons �nal states from BaBar and Belle have shown that they are

dominated by a large nonresonant omponent. This nonresonant amplitude annot be

desribed with a �at phase-spae shape, and BaBar has shown that it an be desribed as

a sum of S-wave and P -wave ontributions. One of the main goals of the time-integrated

amplitude analysis desribed in Se. 5 is to provide more insight on this omponent.

Analysis with LHCb data (1 fb

−1
)

The LHCb experiment has reported in [52℄ a measurement of the B0
d,s→ K0

S
h+h

′−
branh-

ing frations, relative to the B0 → K0
S
π+π−

branhing fration, as well as a glimpse of

the Dalitz-plot distribution of signal events. The observation of the B0→ K0
SK

±π∓
mode

from BaBar was on�rmed, and the B0
s → K0

S
π+π−

and B0
s → K0

S
K±π∓

modes were

observed for the �rst time.
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Chapter 2

Desription of the LHCb experiment

The LHCb detetor is plaed at one of the interation points of the Large Hadron Collider

(LHC), presented in Se. 2.1. The detetor, desribed in Se. 2.2, is designed in order to

take advantage of the large amount of bb and cc pairs produed near the beam axis in

the onditions of the LHC. The system of partile identi�ation is shortly disussed in

Se. 2.3.

The large number of ollisions and their short spaing in time (50 ns in 2010�2012,

then 25 ns) requires a trigger system, desribed in Se. 2.4. Finally, modern high-energy

physis relies on aurate simulations of physis and detetor response, and I desribe in

Se. 2.5 the software environment for Monte-Carlo produtions in the LHCb experiment.

2.1 The Large Hadron Collider

The LHC is the largest and most powerful aelerator in the world in terms of entre-of-

mass energy, and is loated at the Conseil Européen pour la Reherhe Nuléaire (CERN),

in Geneva. It is the �nal point of a hain of aelerators loated at CERN, shown in

Fig. 2.2. It aelerates bunhes of protons from 450GeV to energies of 3.5, 4, or 6.5TeV,
depending on the data-taking period. This aeleration is performed using 16 radio-

frequenies (RF) avities loated along the 27 km tunnel. The aelerator is also designed

to aelerate beams of lead ions during dediated runs.

The programme of the LHC is separated into several parts alled �Runs� by long

shutdowns (LS), during whih the harateristis of the aelerator remain rather stable.

The LHC aelerator physis programme is divided in Runs separated by long shut-downs

(LSD) during whih both the aelerator and the detetors an be maintained and/or

upgraded. The data-taking during 2011 and 2012 is designated as �Run I�, and the data-

taking period starting from 2015 is designated as �Run II�. Data used in this thesis was

entirely aquired during Run I. Figure 2.1 shows the running plan for the LHC in the next

few years, inluding planned upgrades for the experiments.

Nominal proton beams are omposed of bunhes of 1.2�1.4.1011 protons separated

by 50(25) ns in Run I(II). A beam an ontain up to 2,808 bunhes of protons, and an

remain stable for over 8 hours. The beams are steered by 1,232 superonduting (1.3K)
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Figure 2.1 � Plan for the LHC in the next few years. Long shutdowns are indiated as �LS�. The

upgrade of the LHCb experiment is planned during �LS2�.

Figure 2.2 � Aeleration omplex of the LHC. The four main experiments are also shown along

the LHC.

Niobium-Titanium dipole magnets, ooled by super�uid helium, eah of them reating a

�eld of up to 8.3T. Quadrupole and otupole magnets are also used to fous the beam

and orret hromati aberrations.

The two beams ollide in 4 interation points along the LHC, and seven experiments

are loated at these points. The ATLAS and CMS experiments use giant general-purpose

detetors (GPDs) with a barrel-like geometry to study the produt of ollisions that have

a large transverse momentum pT . This physis programme inludes the study of the
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Figure 2.3 � Di�erential branhing fration of bb pair prodution at the energies of the LHC

during the 2011 data-taking, and angular aeptane of GPDs (CMS and ATLAS, marked in

yellow) and LHCb (marked in red).

Higgs boson that these experiments disovered in 2012 [9, 10℄, of the top quark, and

searhes for New Physis (NP) partiles produed on shell. These two experiments, and

CMS in partiular, also have sensitivity to proesses relevant for �avour physis, suh as

B0
s → µ+µ−

[53, 54℄.

The other experiments being operated at the LHC are LHCb (desribed in Se. 2.2),

ALICE, TOTEM, LHCf, and MoEDAL. Figure 2.3 ompares the angular overage of the

ATLAS, CMS, and LHCb detetors, illustrating the di�erent purposes of these experi-

ments.

2.2 The LHCb detetor

The LHC aelerator is the world most intense soure of b and c quark pairs. The LHCb

detetor is designed to take advantage of the loalization of these pairs by overing only

the forward regions near the beam axis. Figure 2.4 shows the diagrams responsible for

heavy-quark pair prodution at the LHC.

The LHCb detetor, shown in Fig. 2.5, is designed as a single-arm forward spetrom-
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Figure 2.4 � Dominant diagrams for bb and cc pair prodution at the energies of the LHC: (left)

qq annihilation; (middle) gluon separation; (right) gluon fusion.

eter. This geometry overs an angular aeptane of 15�300(250)mrad in the bending

(non-bending) plane of the magnet.

1

A right-handed oordinate system is de�ned with

the z-axis parallel to the beam axis in the diretion from the VELO towards the muon

stations, and the y-axis pointing upwards. In this arrangement the magneti �eld bends

trajetories in the xz plane. Additionally, the terms �upstream� and �downstream� are

often used to designate the relative position of two points with respet to the interation

point.

1

This is equivalent to a pseudorapidity overage of 2 < η < 5. The pseudorapidity η is de�ned as

η = − log(tan θ/2), where θ is the polar angle with respet to the beam axis.
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Figure 2.5 � Overview of the LHCb detetor. The z axis is along the horizontal, while the y axis is along the vertial. The interation

point is loated on the left, inside of the VELO subdetetor. The beam pipe and the ontours of the pit are �lled with gray. Upstream

and downstream diretions orrespond to the left and the right, respetively.

3
2



Figure 2.6 � Number of primary verties as a funtion of the luminosity.

2.2.1 Beam onditions at the LHCb interation point

The LHCb detetor has been designed to operate at a nominal luminosity of 2 ×
1032 cm2 s−1

, whih is lower than the maximum that an be provided by the LHC. Indeed,

as shown in Fig. 2.6, larger instantaneous luminosities indue an inreased number of

multiple pp inelasti ollisions. These multiple pp inelasti ollisions inrease the amount

of data reorded by the detetor, but indue larger oupanies and thus less aurate

reonstrution. They also inrease the amount of radiations absorbed by the detetor.

The luminosity for the LHCb experiment an be tuned by hanging the beam fous at

its interation point independently from the other interation points. This allows LHCb

to maintain its optimal luminosity for the whole duration of a �ll, as shown in Fig. 2.7.

The luminosity has been inreased to 3.5×1032 cm2 s−1
and 4.5×1032 cm2 s−1

in 2011 and

2012, respetively.

2.2.2 The magnet

The LHCb dipole magnet [55℄ is loated between the TT and traking stations. It gen-

erates a magneti �eld that is perpendiular to the beam axis, so that the trajetory of

all harged partiles that pass through is urved. The urvature radius of the trajetory

allows for a measurement of the trak momentum. In order to ahieve a 0.5% relative

preision on p up to 200GeV/c momenta, the integrated bending power is equal to 4Tm

for traks of 10m length.

The magnet is omposed of two saddle-shaped aluminium oils maintained by an iron

yoke, as shown in Fig. 2.8. An important feature of the LHCb magnet is the ability to
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Figure 2.7 � (Left) Example of the evolution of instantaneous luminosity of the lifetime of a �ll

for di�erent experiments. (Right) Integrated luminosity in fb

−1
per year of data taking.

Figure 2.8 � Layout of the LHCb magnet.

reverse the polarity of its magneti �eld.

2

This allows to anel out detetion asymmetries

suh as the harge detetion asymmetry [56℄.

2.2.3 The traking system

The goal of the traking system is to measure the trajetories and momenta of harged

partiles (�traks�) in the detetor aeptane. It is omposed of the VELO and of two

ensembles of stations loated upstream and downstream from the magnet. These ensem-

bles are the TT and the T1�3 stations. The T1�3 stations are omposed of two distint

subdetetors: the Inner Traker (IT) and the Outer Traker (OT).

2

The two polarities are referred to as MagUp and MagDown.
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Figure 2.9 � (Left) Resolution of the impat parameter of a trak with respet to a vertex as

a funtion of the momentum p of that trak. (Right) Resolution of the impat parameter of a

trak with respet to a vertex as a funtion of the inverse of the transverse momentum pT of

that trak.

The vertex loator (VELO)

The VErtex LOator (VELO) provides preise measurements of harged trak oordinates

lose to the interation region, whih are used to identify the primary verties and the

displaed (seondary) verties.

3

The information on detahed verties is used to enrih the b-hadron ontent of the

data written to tape, as well as in the LHCb o�ine analysis in order to measure partiles

lifetimes and to rejet bakgrounds. Indeed, the main soure of bakground for most

analyses is the ombinatorial bakground, where one or several traks are mathed to the

wrong deay vertex.

The ability of the VELO to di�erentiate between the multiple primary and seondary

verties is strongly related to its resolution of the impat parameter (IP) of traks with

respet to these verties. This parameter is de�ned as the smallest distane of approah of

a trak to the vertex, and is expeted to be zero for traks originating from this vertex. The

resolution of the VELO on the impat parameter of a trak relative to a vertex depends

on the transverse momentum pT of that trak. Figure 2.9 shows the performanes of the

VELO as a funtion of the p and pT of a trak [57℄.

The detetor is divided in two halves, eah onsisting of 21 modules mounted around

and downstream of the interation point and perpendiular to the beam as shown in

Fig. 2.10. The number of modules is hosen suh that traks that are inside the aeptane

of the rest of the traking system (and originate up to 10 cm downstream of the interation

point) traverse at least 3 modules. Eah module is equipped with silion strips oriented

in the r and φ diretions to measure the azimuthal and radial oordinates of harged

3

Primary verties are the verties of the pp interation. Conversely, verties formed by the deay of

partiles (e.g.B0
mesons) are alled seondary verties.
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Figure 2.10 � Top: ut view of the VELO; the rest of the LHCb detetor is loated downstream

(on the right). Bottom: view of a VELO module in losed (left) and open (right) positions.

partiles.

4

The pith within a module varies from 38µm at the inner radius of 8.2mm,

inreasing linearly to 102µm at the outer radius of 42mm. Figure 2.11 shows a projetion

of a module with its r and a φ silion strips.

Two additional stations are plaed upstream of the interation point. They are used

to aid the instantaneous measurement of luminosity. To protet the detetor while LHC

beams are not squeezed at the IP, the two VELO halves are retrated 35mm from the

beam axis, as shown in Fig. 2.10.

Traking Turiensis (TT) stations

The Traker Turiensis

5

(TT) detetor is loated upstream from the magnet, after the

RICH1 subdetetor. This station is omposed of four planar layers 150 cm wide and

130 cm high, overing an ative area of 8.4m2
. These layers are arranged in a �x�u�v�x�

layout, with vertial (x-layers) and rotated by stereo angles of +5

◦
and -5

◦
(u and v-layers,

respetively) readout strips. The struture of these planes is illustrated in Fig. 2.12. This

layout allows the TT to resolve the x and y position of the hits in the stations.

4

This geometry is hosen to enable fast pattern reognition in the trigger.

5

The Traker Turiensis was formerly known as the Trigger Traker.
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Figure 2.11 � Silion strips used to measure the r (left) and the φ (right) oordinates in the

VELO.
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Figure 2.12 � Sketh of the TT subdetetor. The two inner layers are tilted by a stereo angle of

±5◦ (u/v-layers) in order to provide information on the y oordinate.

The planes whih omprise the TT are manufatured using silion miro-strip teh-

nology similar to that used in the VELO, with a strip pith of 183µm and 500µm thik

p+-on-n sensors.
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Figure 2.13 � (Left) View of a traking module. The inner traker overs the entral region,

while the outer traker overs the rest of the angular aeptane. (Right) View of an IT module.

Dimensions are given in cm and refer to the sensitive surfae overed by the IT.

Traking stations T1�3

The traking stations T1�3 are loated downstream from the magnet. Eah of them is

omposed of four substations organized in a x�u�v�x layout, desribed in Se. 2.2.3. In

order to avoid unovered regions in the aeptane, the top and bottom modules are

staggered 4mm in the z-axis and 3mm in the x-axis, with respet to the lateral ladders.

Eah of these substations is divided into an inner traker (IT) and an outer traker OT,

as shown in Fig. 2.13.

The entral regions near the beam pipe feature large oupanies and require a �ne

granularity. The IT is positioned in the three downstream traking stations T1�T3, and

uses a silion miro-strip tehnology. It is separated into single and double lines of seven

staggered silion ladders. Figure 2.13 shows a projetion of this subdetetor.

The remaining area has a signi�ant redution in the oupany, allowing a oarser

granularity. Therefore, the OT detetor overs this large aeptane (total area of 5×6m2
)

utilizing a drift-tube tehnology. The OT aeptane extends from the outer boundaries

of the inner traker up to the nominal LHCb overage. It is designed in four layers of

arrays of gaseous straw tubes 2.4m long and 4.9mm in diameter. Eah of these modules

ontains two monolayers of drift tube as shown in Fig. 2.14. The gas is omposed of

a mixture of Ar (70%) and CO2 (30%). Both these harateristis enable the detetor

to ahieve a fast drift-time aross the drift-tubes under 50 ns, whih is the performane

required for the traking algorithm.

Types of traks in LHCb

The quality of a trak in LHCb depends on the subdetetors used in its reonstrution.

Four types of traks are de�ned in LHCb: Long, Down, T, and Muon. Figure 2.15 shows
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Figure 2.14 � a (Left) View of the OT. The T2 station is in open position. (Right) Illustration

of the OT layer and zoom on the arrangement of straw tubes (distanes are given in cm). [58℄

these di�erent types, with the exeption of Muon traks, whih also have hits in the muon

hambers.

A trak is reonstruted as Long if it rosses at least three VELO stations. As K0
S

mesons �y a typial distane of 1m, some of them do not deay inside of the VELO

aeptane and thus their pion daughters are reonstruted as Down traks. Three types

of K0
S
mesons are de�ned in LHCb, depending on the trak type of their daughters: Down-

Down, Long-Long, and Long-Down. As the resolution of the momenta of Down traks is

worse than the resolution of Long traks, the resolution of the mass of Down-Down K0
S

mesons is worse than for Long-Long K0
S
mesons.

2.2.4 The RICH1 and RICH2

The ring imaging Cherenkov (RICH) stations are loated upstream (RICH1) and down-

stream (RICH2) of the magnet. These stations are �lled with a radiative material of

refrative index n that emits a ring of Cherenkov light whenever a high-energy partile

traverses them. All photons are emitted at an angle

θc =
1

nβ
, (2.1)

where β is the ratio between the partile veloity and the speed of light. A preise

measurement of this ratio and of the partile momentum (performed by the traking

system in the ase of harged traks) allows to extrat the mass of the partile, and then

to identify it.

The hoie of the refrative index of the material determines the momentum range

in whih the detetor e�iently determines the mass of the partile. Figure 2.16 shows
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Figure 2.15 � Types of trak in LHCb, along with the magneti �eld as a funtion of z [58℄.

Muon traks that only leave hits in the muon stations are not shown.

the Cherenkov angle as a funtion of momentum for two di�erent refrative indexes. The

RICH1 subdetetor uses two di�erent refrators, SO2 (n=1.03) and C4F10 (n=1.0014).

The RICH2 subdetetor uses only CF4 (n=1.0005) as a refrator.

The full overage of the nominal momentum range 2�100GeV/c is ahieved through

the use of di�erent tehnologies in the RICH1 and the RICH2. Upstream from the magnet,

low-momentum partiles assoiated to a large angular aperture are overed by the RICH1

detetor momentum aeptane 2�60GeV/c. Partiles that have a larger momentum or

a smaller aperture are overed by the RICH2 momentum aeptane of 15�100GeV/c.
Di�erent momentum ranges orrespond to the hoie of di�erent refrative indexes. While

RICH1 overs the LHCb traking aeptane, RICH2 has a redued angular aeptane

of 120mrad (horizontal) and 100mrad (vertial), as it is dediated to the PID of partiles
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Figure 2.16 � (Left) Cherenkov angle as a funtion of the partile momentum for di�erent radi-

ators and partiles. (Right) Reonstruted Cherenkov angle for isolated traks, as a funtion of

trak momentum in the C4F10 radiator [59℄. The Cherenkov bands for muons, pions, kaons and

protons are learly visible.

with high momenta, whih are mainly at small angles.

Figure 2.17 shows the layout of the two RICH stations. Partiles pass through the

middle of the detetor, and emits Cherenkov light that is re�eted by the mirrors loated

on the sides. The photons are �nally olleted by hybrid photo-detetors (HPDs) loated

outside of the LHCb aeptane.

The RICH system provides good partile identi�ation over the entire momentum

range. The average e�ieny for kaon identi�ation for momenta in the 2�100GeV/c
interval is 95%, with a orresponding average pion misidenti�ation rate of 5%. Around

30GeV/c the identi�ation probability is lose to 97% and the misidenti�ation probability

roughly 5%.

2.2.5 Calorimeters

The LHCb alorimeter is loated downstream of the T1�3 and RICH2 stations, and on-

sists of the eletromagneti alorimeter ECAL and the hadroni alorimeter HCAL. It

provides information about the energy and the position of all partiles, inluding neutral

partiles (π0
,γ) that do not leave a trae until that point. Two additional systems, PS

and SPD, are dediated to the detetion of neutral partiles. This strategy is designed in

order to separate eletrons and pions (harged or neutral), whih requires a longitudinal

separation of the showers. The eletromagneti alorimeter (ECAL) is designed to stop

eletrons and photons, and the hadroni alorimeter (HCAL) is designed to stop hadrons.

Calorimeter systems perform a destrutive detetion of the partile. This detetion is

performed by onverting the energy of the inoming partile in a shower of partiles that

exite a radiator medium, whose nature depends on the type of partiles that are deteted.
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Figure 2.17 � Shemati ross setion of the RICH1 (left) and RICH2 (right) detetors. [60℄

This radiator medium then emits UV photons that are olleted by the detetor. The

total amount of olleted light is proportional to the energy of the inoming partile.

The SPD and the PS

The PS and SPD onsist of two idential planes of sintillator pads with a 15mm thik

lead plane in between that orresponds to 2.5X0 for eletrons and photons, but only to

6% hadroni interation lengths. This allows to gain information about the nature of

inoming partiles, in partiular on the γ/e separation. Figure 2.18 shows the typial

longitudinal shower pro�le for di�erent kind of partiles.

Additionally, the SPD hit multipliity information is used in the hardware trigger as

it is orrelated to the multipliity of the event.

The eletromagneti alorimeter ECAL

The eletromagneti alorimeter is responsible for measuring the energy of inoming ele-

trons and photons. It is a shasklik-type sampling alorimeter of thikness 25X0, omposed

of 66 layers of lead plates and sintillating tiles; the sintillating light is olleted by photo-

multipliers. The ell size varies from 4×4 cm in the inner part of the detetor, to 6×6 cm
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Figure 2.18 � Sketh of the typial repartition of showers depending on the nature of the inoming

partile. �Pb� refers to a lead plate that onverts photons to asades of harged partiles.

Figure 2.19 � (Left) Segmentation of the ECAL. (Right) Segmentation of the HCAL. The beam

pipe region is �lled with blak, and is outside of the aeptane of both alorimeters.

and 12 × 12 cm in the middle and outer parts. Figure 2.19 shows these di�erent segmen-

tation shemes. The ell granularity orresponds to that of the SPD and the PS, aiming

at a ombined use in γ/e separation.

The hadroni alorimeter HCAL

The hadroni alorimeter is designed to absorb the entire energy of inoming hadrons. It

is organized as a suession of 26 layers of thin iron plates and sintillating tiles arranged

parallel to the beam pipe. Figure 2.19 shows the segmentation of the two alorimeters.

2.2.6 Muon hamber

The �ve muon hambers are responsible for the identi�ation of muons and for providing

a fast-response detetion of high-pT muons in the trigger system. Four of them onsist of
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Figure 2.20 � Shemati view of the (left) side of the LHCb muon detetor and the (right) two

mehanially independent station halves with the four regions (R1-R4) indiated.

multi-wire projetion hambers (MWPC). The �rst muon hamber is loated upstream

from the alorimeter systems in order to improve the resolution of the transverse momen-

tum of muons, as alorimeters indue multiple sattering. It is equipped with a triple gas

eletron multiplier (GEM) that is more resistant to the inreased radiation in this region.

The other muon hambers (M2�5) are loated downstream from the alorimeter systems.

A 80 cm-thik layer of iron absorber is plaed in front of eah of these hambers in order

to redue bakgrounds, and another is plaed in front of M5 for the same purposes.

After the hadroni alorimeter, most hadrons and eletromagneti (e, γ) partiles have
been absorbed. Inversely, muons mostly pass through the whole detetor without being

absorbed, due to their low rate of energy loss dE/dx. Hene, the mathing of a trak to

a deposit in the muon hambers inreases its probability to be assoiated with a muon.

This information is used in partile identi�ation.

Figure 2.20 shows the layout of the muon hambers. The segmentation of the readout

is �ner in the regions near the beam axis, as these orrespond to higher oupanies.

The information from muon hambers is used as a veto in the analyses desribed in fur-

ther parts of the doument. Indeed, the muon identi�ation provided by the information

from these hambers allows to veto out muon misidenti�ation with a large e�ieny.

2.3 Partile identi�ation in LHCb

The identi�ation of partiles in the LHCb experiment relies on information from most of

its subdetetors, suh as:

• Cherenkov radiation angle from the RICH (harged partiles only);

• trak measurement in the muon hambers (muons);
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• deposited energy in the ECAL, assoiated with the trak momentum (eletrons);

• information from the PS and SPD (neutral partiles).

Additionally, a luster formed in the alorimeters that is not assoiated with a trak an

be attributed to a γ or a π0
. As all analyses desribed in this doument use harged pions

and kaons as �nal-state partiles, we only desribe in the following the tehniques relative

to these partiles.

Two approahes are used in LHCb for the identi�ation of partiles. The �rst method,

named DLL, omputes the di�erene of likelihood between a mass hypothesis and the

pion hypothesis for eah subsystem, and ombines them linearly. The seond method,

named ProbNN, uses information from all subdetetors as inputs to a multivariate method

that outputs a single probability for eah hypothesis. It takes the orrelations between

subdetetors responses into aount, as well as additional information. The training of

this multivariate method is performed on inlusive simulated B events. Its performane

depends on the blending of MC samples used (tune).

2.4 Trigger system in the LHCb experiment

The LHC aelerator operates at a bunh-rossing frequeny of 40MHz. Due to the lower
luminosity settings at the LHCb interation point and to the detetor geometry, the rate

of visible interations was 15MHz for 2012 data-taking onditions.

6

At a luminosity of

2 × 1032 the bunh rossings with visible pp interations are expeted to ontain a rate

of about 100 kHz of bb-pairs. However, only about 15% of these events will inlude at

least one B meson with all its deay produts ontained in the spetrometer aeptane.

Furthermore the branhing ratios of interesting B meson deays used to study for instane

CP violation are typially less than 10−3
. The role of the LHCb trigger system is to redue

the rate down to 5 kHz while enrihing the samples with events that are interesting for

LHCb analyses. The trigger is also required not to bias interesting observables too muh,

whih is espeially hallenging in the ase of partile lifetimes.

Figure 2.21 shows the overall struture of the LHCb trigger system during Run I,

along with the rates assoiated to eah level. The trigger is divided in two levels: the

hardware trigger (level-0 trigger or L0), and the software trigger (high-level trigger or

HLT). The struture of the trigger system in LHCb has been overhauled for Run II, with

the suppression of the hardware trigger.

2.4.1 The hardware trigger (L0 trigger)

The purpose of the L0 trigger is to redue the LHC beam rossing rate of 40MHz to the

rate of 1MHz with whih the entire detetor an be read out. The logi of the L0 trigger

takes advantage of the fat that the dominant soure of transverse momentum and energy

6

An interation is de�ned to be visible if it produes at least two harged partiles with su�ient hits

in the VELO and T1�T3 to allow them to be reonstrutible.
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Figure 2.21 � (Left) Overview of the LHCb trigger system in 2012, along with the allowed rates

for eah line. (Right) Detetor subsystems involved in the L0 trigger deision.

in the LHCb aeptane omes from the deays of heavy partiles and resonanes. A

partial read-out of the muon hamber information and of the alorimeter information is

proessed in order to estimate the transverse momentum of single/di-muon andidates and

the highest ET luster, respetively. Both quantities are then ompared to a pre-de�ned

threshold. The rates of eah deision line in 2012 data-taking onditions are shown in

Fig. 2.21, along with a sketh showing the subdetetors involved in the deision.

In parallel with this �ltering, the information from the SPD is also read in order to

estimate the total number of traks in the event, respetively. This allows to veto events

that would have too many traks and that would be triggered due to large ombinatoris.

These events would also oupy a disproportionate fration of the data-�ow bandwidth

or available proessing power in the HLT.

The L0 trigger is operated synhronously with the 40MHz bunh-rossing frequeny,

using ustom-made eletronis.

2.4.2 The software trigger (HLT trigger)

The High Level Trigger (HLT) is designed as a series of C

++

algorithms that redues

the output rate to approximately 3.5 kHz and 5 kHz in 2011 and 2012, respetively. This

orresponds to the nominal event rate for being permanently stored. The HLT arhiteture

is divided in two stages: fast partial event reonstrution with an inlusive seletion

(HLT1) in order to redue the rate to 40 and 80 kHz for 2011 and 2012, respetively;

omplete event reonstrution with �nal trigger seletion (HLT2).

With the additional information available, the strategy of a single trak trigger is

implemented in HLT1 using information on the quality of the trak and the displaement
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from the primary vertex. Further improvements on the traking searh are obtained by

reduing the phase-spae boundaries to onsider only traks with transverse momentum

above the required threshold onditions. In partiular, an inlusive approah for beauty

deays has been designed, whih omprises a large fration of the output bandwidth. The

strategy of this approah is to selet a high transverse momentum, signi�antly displaed

trak, and a signi�antly displaed vertex ontaining this trak and 1�3 other traks [61℄.

This design triggers e�iently on B deays with at least two harged daughters.

2.4.3 Trigger onventions

Another important onsideration is the assoiation of a trigger objet with a signal trak.

An event is lassi�ed as trigger-on-signal (TOS) if the signal under study triggers the event,

whereas trigger-independent-of-signal (TIS) ategorizes the trigger objets not assoiated

to the signal. This separation is espeially relevant when the main trigger line for an

analysis introdues a bias on the variables of interest that has to be studied.

2.5 Monte-Carlo simulations in LHCb

The simulation of a physis event in LHCb is divided in several phases, integrated in

the Gaudi framework. Firstly, the underlying physial event and its interation with

the LHCb detetor is simulated inside the Gauss framework. The digitization of hits

in the subdetetors and the building of the raw dataset is then modelled by the Boole

pakage. The reonstrution of traks from this raw dataset is then modelled by the

Brunel pakage. Finally, the DaVini pakage simulates the further o�ine analysis

steps, suh as the building of physial variables from traks. Figure 2.22 shows the data

�ow of simulated events in LHCb.

In this setion, I fous on the Gauss and DaVini parts of the framework. I also

detail several soures of data/MC disrepanies that are relevant to the analyses disussed

in this doument.

2.5.1 The Gauss framework

The Gauss pakage simulates pp ollisions in LHCb and the detetor response to the

produts of the ollision. It operates in two phases that an be run sequentially or inde-

pendently.

The �rst phase onsists of the event generation of pp ollisions and the deay of the

B-mesons in hannels of interest for the LHCb physis programme. It is interfaed to

Pythia for the event prodution and to a speialized deay pakage, EvtGen, for the

B-meson deay. The generator phase of Gauss also handles the simulation of the running

onditions, the smearing of the interation region due to the transverse and longitudinal

sizes of the proton bunhes and the hange of luminosity during a �ll due to the �nite beam

lifetime. Single and multiple pp ollisions are produed aording to the hosen running

luminosity. Other event generator engines an be interfaed in this phase if required.
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Figure 2.22 � The LHCb data proessing appliations and data �ow. Underlying all of the

appliations is the Gaudi framework and the event model desribes the data expeted. The

arrows represent input/output data

The seond phase of Gauss onsists in the propagation in the LHCb detetor of the

partiles produed by the generator phase. The simulation of the physis proesses that

the partiles undergo when traveling through the experimental setup is delegated to the

Geant4 toolkit. The behaviour of the Geant4 simulation engine in terms of detetors

to simulate, physis models to use, details of the Monte-Carlo truth to be provided, is

ontrolled at run time via job options on�guration.

The behaviour of the generator phase and of the detetor response is regularly studied

using referene deay hannels for whih LHC disposes of a large high-purity dataset. The

orretion of some variables in the Monte-Carlo prodution in order to math data better

is alled �tuning�. It is espeially relevant to the generator phase, where the output of

Pythia and other hadronization tools is losely srutinized.

As the seond phase is the most CPU-intensive, it is possible to speify a set of

requirements (�generator-level uts�) to the �rst phase, in order to veto out events that

have no hane to be reonstruted by LHCb, for instane, a signal event with a harged

trak outside of the LHCb aeptane.

2.5.2 The DaVini framework

The DaVini pakage manages the reation of physial objets suh as traks from the

output of Gauss or from the detetor response to real data-taking. Additionally, DaVini

ontains tools to tag the �avour of partiles, or to re�t events taking onstraints suh as

masses or verties into aount. This allows, for instane, to onstrain the masses of all
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Figure 2.23 � Distributions of the number of traks in B0→ K0
Sπ

+π−
events. Simulated events

are represented in blue, while signal events from data are represented in red.

partiles to be the �true� mass when onsidering a Dalitz plot.

The DaVini pakage is implemented in suh a way that Monte-Carlo produtions and

real data are treated the same way.

2.5.3 Data/MC disrepanies

Despite regular tuning and an overall exellent performane, the LHCb Monte-Carlo pro-

dution does not math data perfetly, for several reasons. I desribe in the following

several soures of data/MC disrepanies that are relevant to the analyses desribed in

this dissertation.

Our understanding of strong interation and hadroni physis is limited, and the sim-

ulation of the underlying event is only an approximation. As a result, the kinematial

spetrum of the produts of pp interations and the number of these produts is di�erent

in Monte-Carlo and data. The response of several subdetetors, suh as the RICH and

the alorimeters, is orrelated to the trak multipliity in the event. Figure 2.23 shows the

di�erent distributions in trak multipliity of events in data and Monte-Carlo. The trak-

�nding e�ieny of LHCb is orrelated to momenta and to the trak multipliity, and

so di�ers between data and simulation. The kinematial dependeny of that di�erene

means that it depends a priori on the Dalitz plot.

As mentioned in Se. 2.2.4, performanes of the RICH detetors depend on the re-

frative index n of their radiator. This index is highly sensitive to temperature and

pressure hanges through the whole year, a hange that is impossible to math perfetly

in Monte-Carlo. Additionally, the performanes of these subdetetors depend on the trak

multipliity in the event and on the kinematis of partiles. The PIDCalib tool is used

to reweight Monte-Carlo produtions to math the e�ieny of a given seletion on PID
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variables. The weights are alulated using a referene data sample and the dependene

on trak multipliity and the kinematis of the given partile is taken into aount.

50



Chapter 3

Fast Monte-Carlo method for

bakground studies

In this hapter, I desribe a fast simulation method that I have developed to model the

partially reonstruted bakgrounds in B0
d,s→ K0

Sh
+h− modes. I present the strategy of

the method in Se. 3.1, and then present the study of a fully simulated sample of one of

these bakgrounds in Se. 3.2. I show the results of exporting this study to another sample

of partially reonstruted bakground in Se. 3.3. I disuss in Se. 3.4 the modelling of

aeptane e�ets by means of seletion riteria, and �nally present the results of a full

fast MC simulation in Se. 3.5.

3.1 Strategy of the fast MC method

Partially reonstruted bakground in B0
d,s → K0

S
h+h− modes onsists of events suh

as X → K0
S
h+h−Y , where Y is not being reonstruted (e.g. it is soft or out of the

aeptane). It an originate from a variety of hannels with di�erent mother partiles,

missed partiles, or intermediate resonanes.

Studying and modelling the partially reonstruted bakground is usually done by

generating large samples of fully reonstruted Monte-Carlo (MC) events, whih is CPU-

onsuming. As desribed in Se. 2.5, the simulation of the detetor is the most expensive

part of the generation of simulation samples in terms of CPU. We thus aim at modelling

the e�ets of the detetor on the distribution of invariant masses without simulating the

whole detetor.

The detetor a�ets the distributions of physial variables beause of its �nite resolu-

tion, and beause of its �nite aeptane. The proposed fast Monte-Carlo method onsists

of smearing generator-level variables event by event, to aount for resolution e�ets on

invariant masses, after applying some requirements on the generator-level distributions in

order to aount for the aeptane e�ets.

For most kinemati variables, the distributions of variables at generator-level and

reonstrution-level are barely distinguishable. We study the resolution of a variable X
by means of the distribution of
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Figure 3.1 � Mass spetrum of B0
d,s → K0

Sπ
+π−

(LHCb data) from [52℄. The partially reon-

struted bakground an be seen to the left of the Bd,s signal peaks.

∆X = X −Xtrue. (3.1)

In the ase of a variable at reonstrution level Xrec, the resolution quanti�es the detetor

e�et on the variable. We attempt to obtain a hoie of variables to smear with a para-

metri funtion modelling their resolutions, in a way that ensures that resolution e�ets

on all the invariant masses are fairly well taken into aount.

For obvious reasons, we prefer having a set of variables for whih the resolutions are not

orrelated. Resolutions of the omponents px, py and pz of the three �nal-state-partiles
momenta do not have these properties (x, y, and z are the usual LHCb oordinates de�ned
in Se. 2.2). We therefore use the resolutions of 1/pz, the polar angle θ, and the azimuthal

angle φ, along with the resolution of mK0
S
. One we extrat the resolution distributions,

we use them to smear the orresponding variables, and ompute the resulting invariant

masses.

We investigate the results of extrating resolution funtions from one hannel, and

applying them on another. Indeed, the partially reonstruted bakground of B0
d,s →

K0
S
h+h

′−
is omposed of hannels of various types. They an di�er by their topologies,

or by the missing partile. For instane, the following modes ontribute to the partially

reonstruted bakground of B0
d,s→ K0

S
π+π−

:

• B0→ (K∗0→ K0
S
π0)(ρ0→ π+π−), P→VV topology, missing π0

(massive alorimet-

ri objet);

1

1

The P,V, and S letters stand for pseudo-salar, vetor, and salar, respetively.
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• B0→ K0
S
(η→ π+π−π0), P → PS, S→PPP topology, missing π0

;

• B0→ K0
Sπ

+π−γ, nonresonant, missing γ (massless alorimetri objet);

• B0→ K0
S
(η′→ π+π−γ), resonant, missing γ;

• B0→ (K∗0→ K0
Sπ

+)π+π−
, P→VPP topology, missing π+

(massive trak).

The invariant-mass distribution of eah of these modes is modelled by an Argus

distribution onvoluted with a Gaussian. The Argus distribution is parameterized as

f(m; c, s,m0) = N m

m0

(

1−
(

m

m0

)2
)c

.e
− 1

2
s2

(

1−m2

m2
0

)

, (3.2)

where the parameters c, s, and m0 are the urvature, slope, and threshold mass, respe-

tively, and N is a normalization fator.

3.2 Study of a B0→ (K∗0→ K0
Sπ

0)(ρ0→ π+π−) sample

We extrat the resolutions from a fully simulated sample of roughly 20,000 Monte-Carlo

events of B0 → (K∗0 → K0
Sπ

0)(ρ0 → π+π−). This setion only presents the study of

events with Down-DownK0
S
reonstrution, as de�ned in Se.2.2.3. The results also hold

for events with a Long-Long K0
S reonstrution.

For eah partile in eah event, we extrat ∆θ, ∆φ, and ∆
1/pz

, along with ∆mK0
S
,

and �t them with analyti funtions. These are then used to smear the generator-level

variables, to obtain fast Monte-Carlo distributions. These distributions are not omplete

fast Monte-Carlo distributions, as we apply here the smearing proedure on the generator

level of a fully reonstruted sample. We ontrol the results obtained by omparing the fast

Monte-Carlo and reonstrution-level distributions of invariant masses. We also ompare

the distributions of ∆X for the reonstruted sample Xrec and for the fast Monte-Carlo

sample XfastMC.

Figure 3.2 shows the distributions of ∆θ, ∆φ, and ∆
1/pz

for the π+
with respet to its

pz momentum. The three variables show a strong dependene on pz. We aount for this

dependene by handling twelve intervals of pz that ontain roughly the same number of

events, and �tting ∆θ, ∆φ, and ∆
1/pz

in eah of them. Figure 3.2 shows the distribution

of ∆mK0
S
along the pz(K

0
S
) axis. The resolution of m(K0

S
) depends on the momentum of

theK0
S
, but this dependene is ignored in the following as it is smaller than the dependene

of other resolutions with respet to the momentum.

We model the distributions of ∆θ, ∆φ, and ∆
1/pz

by a sum of two Gaussians in eah

interval. Figure 3.3 shows the results of a �t to the resolution distributions obtained for

π+
in a single pz interval. The �t is overall satisfatory.
To generate fast Monte-Carlo distributions, we proeed as following:
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Figure 3.2 � Distributions versus pz of ∆θ (top, left), ∆φ (top, right), and ∆
1/pz

(bottom, left)

for π+
, and distribution of ∆mK0

S
versus pz (bottom, right).

 [rad]θ∆
0.0015− 0.001− 0.0005− 0 0.0005 0.001 0.0015

E
v
e
n
ts

 /
 (

 0
.0

0
0
1
 )

0

50

100

150

200

250

300

350

 [rad]φ∆
0.015− 0.01− 0.005− 0 0.005 0.01 0.015

E
v
e
n
ts

 /
 (

 0
.0

0
1
 )

0

50

100

150

200

250

300

350

400

/MeV]c) [
Z

 (1/p∆
1.5− 1− 0.5− 0 0.5 1 1.5

10×

E
v
e
n
ts

 /
 (

 1
e
0

7
 )

0

20

40

60

80

100

120

140

160

180

200

220

Figure 3.3 � Fit results for pz (π
+
) between 8.5 GeV/c2 and 11.5 GeV/c2. Left: ∆θ(π

+). Middle:

∆φ(π
+). Right: ∆

1/pz
(π+).

• for eah event i, generate a random value aording to the PDF of ∆mK0
S
. We
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obtain mi
K0

S ,fastMC
= mi

K0
S,true

+ ∆mK0
S

i
;

• for eah partile, determine in whih pz interval it lies, and generate a random value

aording to the orresponding PDFs to get ∆θ
i
, ∆φ

i
, and ∆

1/pz
i
; we then obtain

θifastMC = θitrue + ∆θ
i
, φi

fastMC = φi
true + ∆φ

i
, and 1/piz,fastMC = 1/piz,true + ∆

1/pz
i
;

• dedue the fast MC values of momenta, mK0
Sh

+h′
, mK0

Sh
, mK0

Sh
′, and mhh′

.

Figure 3.4 shows a omparison of the reonstruted and fast Monte-Carlo distributions

of mK0
Sh

+h′
. These do not agree perfetly well, but given the small amount of partially re-

onstruted bakground events in our modes of interest, it is good enough for our purpose.

In the same �gure, we also ompare the reonstruted and fast Monte-Carlo resolution for

mK0
Sh

+h′
. The shape is sensibly the same, but the fast Monte-Carlo distribution is slightly

narrower. Possible explanations inlude imperfetions of the used resolution funtions or

missed orrelations between variables.

Figure 3.5 shows the distributions of bakground events over the Dalitz plane in reon-

strution level and fast MC. It also shows the distribution of the di�erene between the

two former distributions, divided by the standard error on the di�erene. In the follow-

ing, this distribution is referred to as the distribution of pulls between reonstruted and

fast Monte-Carlo distributions. These pulls are small and show no overall struture, thus

showing that the agreement between the reonstruted level and the fast Monte-Carlo is

rather good.
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Figure 3.4 � Left: Distributions of mK0
Sh

+h′
for reonstruted (blue) and fast MC (red) B0 →

K∗0ρ0 events. Right: Resolutions of mK0
Sh

+h′
for reonstruted (blue) and fast MC (red) B0→

K∗0ρ0 events.
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K0

Sh
versus m2

K0
Sh

′ for the B0 → K∗0ρ0 mode, with DD reon-

strution of the K0
S . Left: Reonstruted events. Middle: Fast MC events. Right: Pulls between

the two distributions.

3.3 Study of the resolution model applied to other han-

nels

We apply the resolution funtions extrated from B0 → K∗0ρ0 deays, using the same

proedure and pz intervals as in Se. 3.2, to a variety of partially reonstruted samples.

The fully simulated and fast Monte-Carlo distributions of mK0
Sh

+h′
and ∆m

K0
S
h+h

′ are then

ompared, as well as the distributions of events over the Dalitz plane. As in Se. 3.2, this

is not a omplete fast Monte-Carlo distribution, as we still use the generator level of a

fully reonstruted sample.

In this setion I disuss the results of this proedure applied to a sample of B0 →
K0

S (η
′ → π+π−γ) deays. This hannel appears as a bakground in the K0

Sπ
+π−

spe-

trum, and the missed partile is massless, whih makes this ontribution dangerous to

our analysis. In Annex C, I summarize the results of the same proedure applied to other

hannels of partially reonstruted deays.

Figure 3.6 shows the distribution of mK0
Sh

+h′
near the threshold for reonstruted and

fast MC events, as well as the resolution distributions formK0
Sh

+h′
. The distributions agree

quite well for mK0
Sh

+h
′
, with a well-reprodued behaviour at the threshold. As before, the

distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC ase. Figure 3.7 shows the

distributions of events over the Dalitz plane for reonstruted and fast MC events, along

with the distribution of the pulls between these two distributions. The distributions are

similar, and the pulls are rather small and show no struture. Overall, the result we

obtain with this hannel are satisfatory.

3.4 Study of generator-level reonstrution e�ets

The generator-level distributions that we smeared in Se. 3.2 and Se. 3.3 are not those

that are diretly produed by the Gauss generation. They ontains events that pass the
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+h′
for reonstruted (blue) and fast MC (red) B0 →

K0
Sη

′
events. Right: Resolutions of mK0

Sh
+h′

for reonstruted (blue) and fast MC (red) B0 →
K0

Sη
′
events.
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Figure 3.7 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B
0→ K0

Sη
′
mode, with DD reonstru-

tion of the K0
S . Left: Reonstruted events. Middle: Fast MC events. Right: Pulls between the

two distributions.

trigger, reonstrution, and a step alled �stripping�, all of whih modify the generator-

level distributions of invariant masses and momenta. In this setion I disuss the possibil-

ity of aounting for these e�ets by applying seletion riteria on variables available at

generator level. To do so, we use the same samples as in Se. 3.2 and hek the onsisteny

of our proedure on the samples used in Se. 3.3.

3.4.1 K0
S
reonstrution mode

Firstly, we have to determine if a K0
S in the generator level would be reonstruted as

Down-Down or as Long-Long. For this purpose, we study four variables: the z position

of the K0
S
end vertex, the radial oordinate r of this vertex in the LHCb usual oordinate
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Table 3.1 � Seletion riteria applied on events to assign them to Long-Long reonstrution.

A minz> 30mm & z(K0
S
end vertex) < 650mm

B r(K0
S end vertex) < 35mm

C z(K0
S
end vertex) < 250mm

D θ(K0
S ) < 0.07 rad

E z(K0
S
) < 300mm || (z(K0

S
) + 1.2×minz) > 550mm

Total ut A & B & (C || (!C & D)) & E

Table 3.2 � Summary of DD-LL requirements on all hannels under study. E�ieny is de�ned

as the portion of events from the orresponding K0
S reonstrution mode that pass the riterion;

power is de�ned as the proportion of events from the other K0
S reonstrution mode that do not

pass the riteion.

Channel E�ieny (%) Power(%)

B0→ K∗0ρ0 98.7 99.7

B0→ K0
S
η 98.9 99.5

B0→ K0
S
π+π−γ 98.4 99.7

B0→ K0
Sη

′
98.8 99.7

B+→ K∗+π+π−
98.0 99.6

B0→ K∗0φ 98.5 99.7

B+→ K∗+φ 98.6 99.8

B0
s → K∗0φ 98.4 99.6

system, the polar angle θ of the K0
S
, and a variable named minz. This variable aounts

for the fat that a trak an be reonstruted as Long only if it rosses at least three

VELO stations (see Se. 2.2.3). To design the seletion riteria on these variables, we

onsider the VELO as a ylinder of radius r = 35mm.

Figure 3.8 shows the distribution of the K0
S end vertex, θ, and minz for Down-Down

and Long-Long reonstrution in fully simulated B0 → K∗0ρ0 events. We an ahieve a

good separation between the two samples with rather simple requirements presented in

Table 3.1.

These requirements are then tested on all other available hannels, and the results

are shown in Table 3.2. Here, the e�ieny is de�ned as the perentage of Long-Long

events that pass these requirements, and the power is de�ned as the perentage of Down-

Down events that do not pass these requirements. Both the e�ieny and the power are

onsistently high for all hannels, and do not vary signi�antly between them.
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Figure 3.8 � Left: Distributions of the r oordinate of the K0
S end vertex for Down-Down events

(blue) and Long-Long events (red), in the r <100mm region. Middle: Distributions of the θ
angle of the K0

S versus the K0
S end vertex z position in the z < 700mm region (top: DD, bottom:

LL). Right: Distributions of minz with respet to the z position of the K0
S end vertex (top: DD,

bottom: LL), in the z < 700mm region.

3.4.2 Reprodution of the generator-level distributions

We generate with Gauss 20,000 events of eah of the following modes: B0 → K∗0ρ0,
B0 → K0

S
η, B0 → K0

S
η′, B0 → K0

S
π+π−γ, B0 → K∗0φ, and B+ → K∗+φ. The seletion

applied to these Gauss samples are presented in Table 3.3. Most of them are desribed in

Ref. [62℄, but some values are hanged to obtain a higher e�ieny of the fully simulated

samples.

2

We also add requirements on θ(B) and on the B-meson �ight distane. These

do not a�et the e�ieny of fully simulated samples, and improve the agreement between

p
z,Gauss

(B) and pz,full(B).
Figure 3.9 shows a omparison between the distributions of mK0

Sh
, mK0

Sh
′, mhh′

, and

pz(B) at generator level for fully simulated samples and ourGauss samples of B0→ K∗0ρ0

events. The invariant mass distributions are similar, while the pz(B) fully reonstruted

distribution is shifted towards higher values. This ould ome from a χ2
seletion on

the B vertex, as this variable is orrelated with the momentum of the B meson. The

momentum of the B meson a�ets our smearing proedure, as resolutions depend on pz.
We aount for this e�et by reweighting the pz(B) distributions. Figure 3.10 shows

the distributions of the weights alulated for all hannels of whih we generated a Gauss

2

This readjustment is neessary beause the seletion riteria quoted in Ref. [62℄ are applied to

reonstrution-level variables, whih are a�eted by the resolution.
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Table 3.3 � List of generator-level seletions

Down-Down Long-Long

pz(B) > 25GeV/c
pT (B) > 1.5GeV/c
∑

daughters

pT > 3GeV/c

pT,daugh > 800 GeV/c for at least 2 B-meson daughters

cos(DIRAB) > 0.999
pT (h1) > 250GeV/c
pT (h2) > 250GeV/c
pK0

Sdaughters
> 2GeV/c

p(K0
S ) > 6 GeV/c n/a

θ(K0
S
) > 0.01 rad

θ(K0
S ) < 0.35 rad

θ(h(
′)) > 0.01 rad

θ(h(
′)) > 0.4 rad

zK0
Sendvertex

< 2400mm n/a

zK0
Sendvertex

> 100mm n/a

RK0
Sendvertex

> 15mm n/a

B-meson �ight distane > 1.5mm B-meson �ight distane > 1mm

sample. For a given bin i and hannel j, we de�ne the weight wj
i
as following:

wj
i =

Nj,full
i

Nj,Gauss
i
× Nj,Gauss

Nj,full

,with Nj,(Gauss,full) =
∑

i

Ni
j,(Gauss,full). (3.3)

Within unertainties, all these weights are ompatible. We an then reweight our

generator-level distributions using weights from all our fully simulated samples.

3.5 Complete fast Monte-Carlo test on B0→ K∗0ρ0

In this setion I present a omparison between fast Monte-Carlo events and the

reonstrution-level in fully reonstruted Monte-Carlo events. We generate 50,000

B0 → K∗0ρ0 events using Gauss �rst stage (see Se. 2.5.1), with generator-level uts

on the prodution angle of the daughters, to ensure that they are in the LHCb aep-

tane. We also apply a seletion on mK0
Sh

+h′
, fored to be larger than 4800MeV/c2. We

apply the generator-level uts desribed in Se. 3.4.1 and in Table 3.3 to our generated

sample; we apply weights as desribed in Se. 3.4.2.

Prior to the smearing, we ombine all the fully reonstruted samples used in Se. 3.2

and Se. 3.3 to extrat new resolution funtions. The larger number of events allows to
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Figure 3.9 � Distributions of mK0
Sh

(top, left), mK0
Sh

′ (top, right), mhh′
(bottom, left), and

pz(B) (bottom, right) for fully simulated (blue) and generated (red) events of B0 → K∗0ρ0 at

generation-level. The agreement between entre-of-mass distributions is satisfatory, but the

z momentum distributions do not agree well between fully simulated samples and generated

samples.

divide the pz axis into 24 intervals and the �t is of better quality. We then smear the

generator-level variables as desribed in Se. 3.2.

The resulting mK0
Sh

+h′
and ∆m

K0
S
h+h

′ distributions are shown and ompared to the

fully simulated distributions for the same hannel in Fig. 3.11 with Down-Down and

Long-Long K0
S reonstrution. The level of agreement between the two distributions is
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Figure 3.10 � Distribution of the weights alulated using Eq. 3.3 for di�erent hannels of partially

reonstruted bakground.

good enough for our purposes. Figure 3.12 shows the distribution of the Dalitz plane in

fast Monte-Carlo events, and in fully simulated events, as well as the pulls between these

two distributions. The pulls are larger than in Se. 3.3, but overall satisfatory given the

small amount of partially reonstruted bakground events that we expet.

3.6 Conlusion

In the ase of the partially reonstruted bakground of B0
d,s → K0

S
h+h

′−
, it is possible

to aount for resolution e�ets on invariant masses by smearing event-by-event the θ, φ,
1/pz of eah reonstruted partile, along with the K0

S
mass. The funtions we use to

smear these variables an be extrated from only one Monte-Carlo sample, and exported

from one hannel to another, regardless of the missed partile or the type of reonstruted

hadron.

We also demonstrated that we an emulate the aeptane e�ets on our samples by

using seletion riteria on variables available at generator level only, and by reweighting

the resulting sample. This opens the possibility to generate a large amount of events

with Gauss, and to obtain sensible distributions of invariant masses both in Down-Down

and Long-Long K0
S
reonstrution modes. This proedure an be useful in modelling

bakgrounds oming from a large variety of hannels, suh as the partially reonstruted

bakground.

However, this proedure still su�ers from inauraies in several levels. Firstly, the

funtions we use to �t resolution distributions are not perfet, and there are dependenies

that we did not take into aount, for instane between the distributions of ∆φ for the
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Figure 3.11 � Distributions of mK0
Sh

+h
′
(left) and ∆m

K0
S
h+h

′ (right) for full (blue) and fast (red)

Monte-Carlo methods, with Down-Down (top) and Long-Long (bottom)K0
S reonstrution mode.

two harged traks, whih ould explain the ∆m
K0

S
h+h

′ behaviour in Se. 3.2 and Se. 3.3.

The generator-level uts ould be improved using Monte-Carlo samples disposing of the

whole generator-level information, whih would improve the agreement between invariant-

masses distributions shown in Fig. 3.11 and in Fig . 3.12. The weighting proedure would

greatly bene�t from a areful study and larger samples. Finally, this proedure has only

been tested on harmless bakgrounds. The di�erent topology of open-harm deays

ould require another set of generator-level uts. Overall, this method provides su�ient

modelling power for reonstrution e�ets on invariant masses for the analyses desribed

in this dissertation.
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Figure 3.12 � Left: Distributions of fully simulated B0→ K∗0ρ0 events with Down-Down (top)

and Long-Long (bottom) K0
S reonstrution mode over the Dalitz plane. Middle: Distributions

of fast Monte-Carlo B0 → K∗0ρ0 events with Down-Down (top) and Long-Long (bottom) K0
S

reonstrution mode over the Dalitz plane. Right: Pulls between the two distributions with

Down-Down (top) and Long-Long (bottom) K0
S reonstrution mode.
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Chapter 4

Measurement of the branhing frations

of the B0
d,s→ K0

Sh
+h

′−
modes

In this hapter I desribe the measurement of the branhing frations of the B0
d,s →

K0
S
h+h

′−
modes. In Se. 4.1, I shortly present the analysis strategy. I then review in

Se. 4.2 the formalism and methods employed in the mass �t and in the extration of

the signal shapes over the Dalitz plot. The di�erent event speies onsidered in eah

mass spetrum and their modelling are desribed in Se. 4.3. The results of the mass

�t to data are shown in Se. 4.4, and the results of the toy studies used to validate the

model are shown in Se. 4.5. I then present the di�erent soures of systemati unertainties

originating from the mass �t in Se. 4.6. Finally, I disuss the extration of the distribution

of signal events over the Dalitz plot in Se. 4.7, and present the measurements of the

branhing frations in Se. 4.8.

4.1 Analysis strategy

The �rst LHCb analysis of the B0
d,s→ K0

S
h+h

′−
modes, performed with 1 fb

−1
of 2011 data,

was published in 2012 [63℄ and updated in 2013 [52℄. The present analysis integrates the

additional 2 fb

−1
of data from 2012, disposes of more simulated samples, and makes use of

more re�ned analysis tehniques on several points. Our aim is to update the measurements

of the branhing frations of the modes previously observed, along with observing the

B0
s → K0

SK
+K−

deay for the �rst time. In order to avoid any experimenter bias in

this searh, we blind the region of the B0
s → K0

S
K+K−

signal in the mass �t. Finally,

the result of the mass �t performed in this analysis is one of the key inputs to the three

Dalitz-plot analyses performed on the Cabibbo-favoured signal modes.

We onsider separately four di�erent �nal states: K0
S
K+K−

, K0
S
K+π−

, K0
S
π+K−

,

and K0
Sπ

+π−
. However, due to experimental di�erenes, we have to simultaneously �t 24

di�erent spetra in total. Firstly, we have to split our data between the Down-Down and
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Long-Long K0
S
reonstrution modes

1

, desribed in Se. 2.2.3, as the shapes and yields

of the di�erent event speies are expeted to di�er between these two on�gurations.

Seondly, we have to onsider separately the 2011 data and two di�erent data-taking

periods in 2012, due to the di�erene in the trigger on�guration between these periods

desribed in Se. 2.4.

Eah of these mass spetra ontains signals events from B0
and B0

s deays, as well as

several speies of bakgrounds. In the ase of omponents that are well separated from the

signal, suh as the harmed bakground desribed in Se. 4.3.2, we use a veto to remove

most of their ontributions. We desribe in the following the di�erent strategies adopted

for the remaining bakgrounds.

The ombinatorial bakground, desribed in Se. 4.3.5, is �rst suppressed using some

preseletion riteria that have a high e�ieny on signal. It is then further suppressed us-

ing Boosted Deision Tree (BDT optimization) methods, trained using Monte-Carlo as the

signal referene and events from the upper-mass sideband (m(K0
S
h±h

′∓) > 5450MeV/c2)
as the ombinatorial bakground referene. In order not to bias the Dalitz plot, the

variables used as an input to the BDT method are mainly topologial variables. These

methods produe an output variable for whih the signal and ombinatorial bakground

distributions are well separated, as shown in Fig. 4.1. We then apply a seletion on this

variable so that the resulting signal and ombinatorial bakground yields maximize the

�gure of merit

FoM =
N(Sig)

√

N(Sig) + N(Bkg)
(4.1)

for all observed signal modes. N(Sig) and N(Bkg) are the number of signal and bak-

ground events after the seletion is applied. For the unobserved B0
s → K0

SK
+K−

mode,

we use the Punzi �gure of merit [64℄

FoM =
ǫsig

√

a
2
+N(Bkg)

(4.2)

with a = 2, where ǫsig is the signal e�ieny, estimated by means of Monte-Carlo samples.

We use two di�erent sets of requirements on the BDT output variable for eah spetrum,

depending on the signal omponent that we use to alulate the �gure of merit. Indeed,

onsidering di�erent signal omponents for the parameterN(Sig) will result in di�erent ut
values as ross-setions are di�erent between B0

and B0
s signals. Seletion uts optimized

using a �gure of merit alulated with the Cabibbo-favoured mode will be referred to as

�loose�, whereas those alulated with the Cabibbo-suppressed mode will be refereed to

as �tight�.

1

We do not dispose of a dediated stripping line for Long-Down K0
S
andidates.
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BDT response
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Figure 4.1 � Left: distribution of the output variable of a BDT method for signal Monte-Carlo

events (red) and upper-mass sideband events (blue). Dashed histograms represent the distri-

bution of the BDT output variable in training samples, while dots represent the distribution

of the BDT output variable in test samples. Right: value of the �gure-of-merit alulated on

B0→ K0
SK

+K−
, 2011, Down-Down signal for di�erent BDT seletion ut values. The maximum

is hosen as the ut value for the loose BDT seletion in that sample.

We apply a seletion on partile identi�ation variables (PID uts) to redue the

ontributions from misidenti�ed signal events, or ross-feeds, with riteria of the type

(PROBNN(Pi/K)− PROBNN(K/Pi) > α). (4.3)

These likelihood-based PID lassi�ers are desribed in Se. 2.2.4. The threshold α is

optimized for eah spetrum, using the same �gure of merit as in the orresponding BDT

ut optimization. The value of α is therefore di�erent between the loose and the tight

optimizations. The values of α are also hosen in suh a way that no event an ontribute

to two di�erent spetra.

Partially reonstruted bakground events, already disussed in Se. 3, peak at a

lower reonstruted K0
Sh

±h
′∓

invariant mass than signal events. In order to redue the

number of partially reonstruted bakground events, we inlude in the �t events with a

reonstruted K0
S
h±h

′∓
mass between 5150MeV/c2 and 5800MeV/c2.

The e�ieny of the trigger, stripping, and seletion riteria is not onstant over the

Dalitz plane. We estimate its distribution using Monte-Carlo simulations, orreted for

data/MC disrepanies in the traking and the trigger e�ienies. The total e�ieny is

taken as the fatorized produt of three omponents

ǫtot = ǫgenǫsel|genǫPID|(sel|gen), (4.4)
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where ǫgen is the e�ieny of the generator-level uts in the Monte-Carlo, ǫsel|gen is the

trigger, seletion, and stripping e�ieny, and ǫPID|(sel|gen)
is the PID e�ieny, estimated

using the PIDalib tool disussed in Se. 2.5.3. The �|� symbol states that the e�ieny

is alulated using samples that passed the seletion orresponding to the phases on the

right of the symbol. These e�ienies are orreted for di�erenes between data and

Monte-Carlo in traking and trigger e�ienies. This is done in LHCb by a standard

reipe based on kinematis-dependent orretion tables. Unfortunately, a problem was

very reently disovered in the tables used in the orretion of the trigger e�ieny and

is now under study in the ollaboration. The results presented in this dissertation will be

onsequently updated before the �nal publiation.

We perform a simultaneous unbinned maximum likelihood �t to the 24 reonstruted

B mass spetra in order to extrat the signal yields. We also perform a seond �t, letting

only the signal and ombinatorial bakground yields to vary, in order to extrat sWeights.

These sWeights allow to estimate the distribution fB0
d,s

→K0
Sh

+h′−(m′, θ′) of signal events

over the Dalitz plane as

ǫ =

∑

e∈data
sW (e)

∑

e∈data

sW (e)
ǫ(e)

, (4.5)

where sW (e) and ǫ(e) are the sWeight assoiated to the event e and the signal e�ieny

of the event e, respetively. We estimate the total e�ieny of signal events

ǫtot =

∫∫

sqDP

fB0
d,s

→K0
Sh

+h
′−(m′, θ′)ǫB0

d,s
→K0

Sh
+h

′−(m′, θ′)dm′ dθ′, (4.6)

where the integration is performed over the square Dalitz plot variables m′
and θ′, de-

sribed in Se. 1.3.2. The e�ieny-orreted signal yield of a partiular hannel is then

N corr
B0

d,s
→K0

Sh
+h′− = ǫtotNB0

d,s
→K0

Sh
+h′− , (4.7)

where NB0
d,s

→K0
Sh

+h′− is the yield from the signal �t. The branhing fration of eah signal

mode is then

B(B0
d,s→ K0

S
h+h

′−) =
N corr

B0
d,s

→K0
Sh

+h′−

L.σpp→bb.fd,s
(4.8)
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where fd,s is the fration of b quarks hadronising to B0
or B0

s mesons, L is the integrated

luminosity, and σpp→bb is the ross-setion of bb pair prodution in LHCb. The two last

parameters anel out when we onsider ratios of branhing frations of K0
S
h±h

′∓
modes,

and the unertainty on the fs/fd ratio is smaller than the unertainty on fd and fs
individually. Therefore, we aim at measuring the ratios

B(B0
d,s→ K0

S
h+h

′−)

B(B0→ K0
S
π+π−)

=
fd,s
fd

N corr
B0

d,s
→K0

Sh
+h′−

N corr
B0→K0

Sπ
+π−

. (4.9)

My personal ontribution to this analysis is detailed in the following, and is foused

on the extended maximum likelihood �t to data, and on the extration of the signal

distribution over the Dalitz plane.

4.2 Tools and formalism of the B-meson invariant mass

�t

4.2.1 The unbinned maximum extended likelihood �t

Maximum-likelihood estimation is a widely used method of �tting parameters of a model

to some data. For a variable x, we onsider a model f , funtion of a parameter θ.2 Given

a set of measurements xi, the likelihood of the model is

L(θ) =
N
∏

i=1

f(xi, θ), (4.10)

whih is a funtion of θ. The maximum-likelihood estimator θ̂ for θ is then the value of θ
that maximizes the likelihood.

3

Maximum likelihood estimators are generally asymptoti-

ally unbiased and e�ient for large data samples.

In the ase where several event speies are present in the model, the number Ni of

events in eah event speies is itself a random variable. In the general ase, it follows a

Poisson distribution with the observed number of event parameter Ni,0

f(Ni) =
NNi,0

i

Ni,0!
e−Ni . (4.11)

2

All the following assertions and formulae extend naturally to the ase where there are several param-

eters and/or variables.

3

As this value also maximizes the logarithm of the likelihood, it is often preferred to work with the

logarithm.
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Inluding this term in the model f(x, θ), and de�ning N0 =
∑

i

Ni,0 and N =
∑

i

Ni, the

extended likelihood is de�ned as

L(θ;Ni) =
e−N

N0!

N0
∏

i=1

f(xi, θ;Ni),− ln(L) = N +

N0
∑

i=1

ln (f(xi, θ;Ni)) . (4.12)

In this expression, the normalization term N0! of the Poisson law was dropped, as it does

not hange the estimator for θ.

4.2.2 Gaussian onstraints

One of the advantages of the likelihood estimator is that it is possible to �plug in� an

external knowledge about some parameters by adding a term to the log-likelihood funtion.

This e�etively onstrains the parameter by adding a penalty to the likelihood. We often

hoose so-alled �Gaussian onstraints� that result in the likelihood

L′(θ) = L(θ)× e
− (θ−θ0)

2

2σ2
θ , (4.13)

where θ0 is the entral value of the onstraint and σθ is its unertainty. Gaussian on-

straints are often used to allow a proper onvergene of a �t where the sensitivity to one

or several parameters is poor.

4.2.3 The sPlots method

Subtrating bakground from distributions in physis analyses an be performed in sev-

eral ways. The sPlots method [65℄ uses the ovariane matrix extrated from a �t to a

disriminating variable X to disentangle the signal and bakground distributions of some

ontrol variables Yi. This ovariane matrix is extrated from a �t in whih only the yields

of the di�erent event speies present in the dataset are varied.

Let a model with NS event speies, eah with a yield noted Nk and a normalized PDF

noted fk. The sPlots method de�nes for eah event e and event speies n the weight

sPn(e) =

NS
∑

j=1

Vnjfj(Xe)

NS
∑

k=1

Nkfk(Xe)

, (4.14)

where Vnj is the ovariane between the yields of speies n and j. The estimated distribu-

tion of eah ontrol variable Yi for the event speies n is denoted sMn(Yi) and is de�ned

by
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NnsMn(Yi)δYi =
∑

e⊂[Yi−δYi,Yi+δYi]

sPn(e). (4.15)

In the presene of speies with �xed yields, Eq. 4.15 beomes

Nn.sMn(Y ).δY =
∑

e⊂[Y−δY,Y+δY ]

sPn(e) + cn.M0(Y ), (4.16)

where M0(Y ) is the distribution of the variable Y for the ensemble of speies with �xed

yields. The parameter cn is extrated from the ovariane matrix of the �t and is

cn = Nn −
NS
∑

j=1

Vnj, (4.17)

where Nn and Vnj are de�ned as in Eq. 4.14. The parameter NS is the number of speies

with varying yields.

The RooFit implementation of the sPlot method does not allow to �x a part of the

yields in the �t. We disuss in Annex A the pitfalls of the urrent implementation and

propose a new implementation that we use in the following.

4.3 The B-meson invariant mass �t model

In this setion, we review the di�erent event speies present in our dataset and their

models in the mass �t.

4.3.1 B0
and B0

s signal

The signal is modelled by a double Crystal-Ball distribution, whih is the sum of two

Crystal-Ball distributions [66℄, de�ned by

t = m− µ,

F (m) =

{

exp(−t2/2σ2) if t/σ > −α
( n
|α|)

nexp(−α2/2)(n−α2

|α| − t
σ
)−n

if t/σ ≤ −α
(4.18)

This distribution ombines a Gaussian-type ore, parameterized by µ and σ, and a

radiative tail, parameterized by α and n. Depending on the sign of α, the tail an be on

the left or on the right of the Gaussian ore. Figure 4.2 shows an example of a Crystal-

Ball distribution with a tail on the left, superimposed with a Gaussian distribution for

omparison.
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Figure 4.2 � Example of a Crystal-Ball distribution entered around 5280MeV/c2, with a tail on

the left (solid line). The distribution drawn with a dashed line is a Gaussian with the same µ
and σ (normalization has been hanged aordingly).

The two Crystal-Ball distributions of eah signal omponent share their Gaussian

parameters, and have their tails on opposite sides. The left-hand side tail aounts for

radiative energy loss, while the right-hand side tail aounts for small stohasti dispersion.

The fration of the distribution with the tail on the left is denoted f , for a total of 7

parameters per signal omponent. Considering that there are two signal ontributions

per spetrum (B0
and B0

s mesons), we have to onstrain some of the parameters in the

�t to data. For that purpose, we �rst perform a simultaneous �t to fully simulated signal

Monte-Carlo samples, using the following �t model:

• The turnover point α0 and the tail parameter n0 of the left-hand side tail are di�erent

for eah reonstrution mode and data-taking period, but are the same for the B0

and B0
s mesons, as well as for Down-Down and Long-Long andidates.

• The parameters α1 and n1 of the right tail are the same in all the modes, data-taking

periods, and B meson types. They are thought to be related to traking e�ets, and

all the modes under study have similar kinematis at �rst order.

• The fration f is assumed to be the same for the B0
and B0

s mesons, and the Down-

Down and Long-Long reonstrution modes, but is taken as di�erent in the di�erent

reonstruted modes.

• The parameters µ of both B0
and B0

s are free to vary in the �t and are the same

for all reonstrution modes and invariant masses.
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• The width of the K0
S
π+π−

deays is varied in the �t and two (multipliative) sale

fators for the widths of the K0
SK

±π∓
and K0

SK
+K−

deays are also free to vary in

the �t. The ratio of the widths of Down-Down and Long-Long andidates is assumed

to be the same, in order to redue the number of free parameters. The ratio of the

widths of B0
and B0

s is also assumed to be ommon between all reonstrution modes

and data-taking periods.

Fits to Monte-Carlo samples are shown in Fig. 4.3, and the results are satisfatory.

In the �t to data, we �x all the tail parameters and the frations, but let the Gaussian

parameters µ and σ vary, as well as the multipliative fators.

4.3.2 Charmed ontributions

Sub-deays with harmed intermediate states, suh as B0→ (D0→ K+π−)K0
S
, have di�er-

ent physis properties than the signal and are bakgrounds to our analysis. Furthermore,

they do not interfere with our signal beause of the long lifetime of the harmed mesons.

As suh deays generally have larger branhing frations than our signal we veto them

out. We thus apply a seletion on the invariant mass of the daughters of the harmed

hadron. Figure 4.4 shows this ontribution in data events reonstruted aording to

the K0
S
K+π−

mass hypothesis and that passed the trigger requirements, along with the

distribution obtained from simulated B0→ K0
SK

±π∓
signal events.

We also have to take into aount misidenti�ation of one of the daughters. For

instane, B → (D0 → K+π−)K0
S
deays an also ontribute to the K0

S
π+π−

spetrum,

and are also vetoed there.

4.3.3 Λ bakground

Another soure of bakground omes from Λ baryons misidenti�ed as K0
S
mesons, as the

proton from the Λ deay has been wrongly identi�ed as a pion. Figure 4.5 shows the

distribution of K0
S
π+π−

data events on the proton PID of one of the K0
S
daughters and

the mass of the K0
S
using a proton hypothesis for this K0

S
daughter. A lear peak near

the Λ mass is present, indiating the presene of the Λ baryon bakground in data.

We veto out this ontribution by imposing that an event is either outside the

|m(K0
S as Λ) − m(Λ)| < 10MeV/c2 window, or the PID variable ProbNNp of eah of the

pion daughters is inferior to 0.05 unities. The e�ieny of this requirement is estimated

on MC, and shown to be around 99%.

4.3.4 Beauty baryons bakgrounds

The mass of beauty baryons is larger than 5600MeV/c2 and if a proton is misidenti�ed

as a pion or a kaon, may fall into our onsidered mass range. We apply an additional

seletion riterion on the proton PID, required to be inferior to 0.5 unities for both h+

and h′−, in order to veto these bakgrounds out.
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Figure 4.3 � Results of mass �ts on simulated signal samples (2011)(Down-Down), using the loose

BDT optimization, shown in logarithmi sale. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
, and K0

Sπ
+π−

are shown from top to bottom, while B0
deays are shown on the left and B0

s deays on the

right.
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Figure 4.4 � Reonstruted K+π−
mass (in MeV/c2) from trigged Down-Down B0→ K0

SK
±π∓

data events before seletion (left) and from trigged Down-Down B0→ K0
SK

±π∓
simulated events

before seletion (right).
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Figure 4.5 � Left (Right): Distributions of seleted data events on the reonstruted K0
S mass,

alulated using proton mass hypothesis on the π+
(π−

) with respet to the proton PID of the

same partile.

4.3.5 Combinatorial bakgrounds

The dominant soure of bakground in the analysis is the random ombination of traks

from several deays. In the LHCb experiment, we do not dispose of a dediated Monte-
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Carlo simulation for suh ontributions. However, we ould use spei� stripping lines

looking for K0
Sh

+h′+ andidates. These andidates an only ome from random ombi-

nation of traks or other soures of bakground that we did not onsider here, and are

expeted to be kinematially lose to the ombinatorial bakground. These stripping lines

have been prepared but ould not be inluded in this iteration of the analysis.

We onsider two di�erent shapes for the ombinatorial bakground: exponential and

linear. Both yield similar results, and we hoose the linear shape as a baseline for our

analysis. We add two multipliative fators to the linear shape to aount for di�erenes

between Long-Long and Down-Down reonstrution modes and between invariant mass

spetra. The slopes for di�erent data-taking periods are onsidered independent.

4.3.6 Cross-feeds

Cross-feeds are the ontributions to a mass spetrum K0
S
h±h

′∓
originating from a signal

deay B0
d,s→ K0

Sh
±h′′∓, where h′′ is misidenti�ed as an h′. These ontributions typially

lie near a signal peak, and thus are dangerous to the �t as they an be absorbed in the

tails of signal distributions. We model them by double Crystal-Ball distributions, and �x

all of their parameters (inluding the parameters µ and σ) to their value extrated from

the �t to Monte-Carlo. Figure 4.6 shows the results of some of these �ts.

Even with �xed shape, these ontributions are too lose to the signal to be prop-

erly aounted for by an unonstrained �t. We thus onstraint their yields using known

e�ienies and the yield parameters of the signal yield from whih they originate

N(B0→ K0
Sh

±h
′∓ as K0

Shh
′′) = N(B0→ K0

Sh
±h

′∓)f(B0→ K0
Sh

±h
′∓ as K0

Shh
′′), (4.19)

f(B0→ K0
Sh

±h
′∓ as K0

Shh
′′) = ǫPID|sel&gen(B0→ K0

Sh
±h

′∓ as K0
Shh

′′)
ǫsel|gen(B0→ K0

S
h±h

′∓)

ǫsel|gen(B0→ K0
S
h+h′′−)

.

(4.20)

The width of the Gaussian onstraint on the parameter f(B0→ K0
Sh

±h
′∓ as K0

Shh
′′)

is derived from unertainties on the relevant e�ienies.

4.3.7 Partially reonstruted bakgrounds

We already disussed the nature and general properties of partially reonstruted bak-

grounds in B0
d,s→ K0

Sh
+h

′−
deays in Se. 3.1. Table 4.1 shows the ategories of partially

reonstruted bakgrounds that ontribute to eah reonstruted invariant mass. We

model the shapes of these ontributions using the fast Monte-Carlo method desribed in

Chapter 3, and �x all their shape parameters in the �t to data.

As these ontributions are expeted to be small and as their distributions overlap, we

onstrain the yields of eah partially reonstruted bakground ategory using
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Figure 4.6 � Results of the �t of the reonstruted invariant mass of the misidenti�ed signal

deays, using the loose optimization of the BDT on 2011, Down-Down simulated signal samples.

Top: on the left, B0 → K0
SK

+K−
as K0

SK
±π∓

; on the right, B0 → K0
Sπ

+π−
as K0

SK
±π∓

.

Bottom: on the left, B0
s → K0

SK
±π∓

as K0
Sπ

+π−
; on the right, B0

s → K0
SK

±π∓
as K0

SK
+K−

.

Table 4.1 � Categories of partially reonstruted bakgrounds inluded in eah invariant mass

spetrum.

Category K0
S
π+π− K0

S
K±π∓ K0

S
K+K−

Charmed(B0
) Yes Yes Yes

Charmless(B0
) Yes Yes Yes

Charmed(B0
s ) Yes Yes No

Charmless(B0
s ) Yes Yes No

Missing γ(B0
, NR) Yes No No

Missing γ(B0
, resonant) Yes No No

N(Cat) = N(Sig)h(Cat)B(Cat), (4.21)

h(Cat) =
1

B(Sig)
ǫ(Sig)

ǫ(Cat)
, (4.22)

77



Table 4.2 � Values and statistial unertainties on yield parameters extrated from the �t to data

(loose BDT optimization)

2011 2012(pre-June) 2012(post-June)
N(B0→ K0

S
K+K−)(DD) 281± 19 181± 15 671± 30

N(B0→ K0
SK

+K−)(LL) 222± 17 119± 12 344± 20
N(B0

s → K0
S
K+K−)(DD) 23± 9 2± 6 25± 13

N(B0
s → K0

S
K+K−)(LL) 7± 8 6± 5 8± 7

N(B0→ K0
S
K+π−)(DD) 52± 12 44± 11 73± 14

N(B0→ K0
SK

+π−)(LL) 37± 8 29± 8 30± 9
N(B0

s → K0
S
K+π−)(DD) 152± 15 92± 12 255± 19

N(B0
s → K0

S
K+π−)(LL) 91± 11 51± 8 118± 13

N(B0→ K0
S
K−π+)(DD) 52± 12 47± 11 91± 16

N(B0→ K0
S
K−π+)(LL) 26± 7 21± 8 56± 10

N(B0
s → K0

SK
−π+)(DD) 181± 17 113± 14 307± 22

N(B0
s → K0

S
K−π+)(LL) 115± 12 49± 9 143± 14

N(B0→ K0
Sπ

+π−)(DD) 803± 36 553± 30 1410± 46
N(B0→ K0

S
π+π−)(LL) 471± 27 286± 19 654± 30

N(B0
s → K0

Sπ
+π−)(DD) 65± 18 16± 15 83± 22

N(B0
s → K0

S
π+π−)(LL) 23± 12 15± 8 42± 14

where B(Cat) is the estimated inlusive branhing fration of the ategory, and Sig refers

to the Cabibbo-favoured signal mode of the orresponding K0
S
h±h

′∓
spetrum. The pa-

rameter h(Cat) is Gaussian-onstrained using information from Monte-Carlo simulation,

under the assumption that the e�ienies of all the deays within a ategory are roughly

equal. In order to aount for the lak of preise knowledge of the e�ienies on partially

reonstruted bakgrounds, we multiply the width of the onstraint by a fator two.

Exept for radiative deays B0→ K0
S
π+π−γ and B0→ K0

S
η′, the branhing frations

B(Cat) are not known. We use information from the PDG to obtain an estimate of

the minimum of eah inlusive branhing fration. We then perform a �t to data while

�xing the parameter h(Cat as K0
S
h±h

′∓) in order to extrat an estimate of this branhing

fration, and then �x it to the value obtained from this �t.

4.4 Results of the mass �t

Table 4.2 and Table 4.3 show the results of the �t to data on the loose and tight BDT

optimizations, respetively. Figure 4.7-4.10 show the orresponding �ts for the 2011 data-

taking period. All spetra are satisfyingly modelled.

A naive, statistial only signi�ane of the B0
s → K0

SK
+K−

observation an be ob-

tained by performing a �t �xing all B0
s → K0

S
K+K−

yields to 0, and mesuring the di�er-
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Table 4.3 � Values and statistial unertainties on yield parameters extrated from the �t to data

(tight BDT optimization)

2011 2012(pre-June) 2012(post-June)
N(B0→ K0

S
K+K−)(DD) 122± 11 129± 12 299± 17

N(B0→ K0
SK

+K−)(LL) 149± 12 71± 8 140± 11
N(B0

s → K0
S
K+K−)(DD) 5± 3 2± 3 5± 4

N(B0
s → K0

S
K+K−)(LL) 4± 3 1± 2 1± 2

N(B0→ K0
S
K+π−)(DD) 34± 9 29± 8 48± 11

N(B0→ K0
SK

+π−)(LL) 28± 7 23± 6 24± 7
N(B0

s → K0
S
K+π−)(DD) 118± 12 65± 10 222± 18

N(B0
s → K0

S
K+π−)(LL) 78± 10 40± 7 73± 9

N(B0→ K0
S
K−π+)(DD) 42± 10 34± 8 74± 13

N(B0→ K0
S
K−π+)(LL) 22± 6 22± 7 41± 8

N(B0
s → K0

SK
−π+)(DD) 139± 14 90± 11 268± 19

N(B0
s → K0

S
K−π+)(LL) 91± 10 42± 8 102± 11

N(B0→ K0
Sπ

+π−)(DD) 514± 25 392± 23 898± 34
N(B0→ K0

S
π+π−)(LL) 386± 23 239± 17 441± 23

N(B0
s → K0

Sπ
+π−)(DD) 43± 10 16± 8 86± 14

N(B0
s → K0

S
π+π−)(LL) 21± 8 15± 6 38± 8

ene in NLL. This method yields

∆NLL = −7.70 (loose)

∆NLL = −4.65 (tight)

whih orrespond to a signi�ane of 3.9 and 3.1σ, respetively. This di�erene in signif-

iane may be related to the fat that rossfeed events are relatively more abundant in

the tight spetra than in the loose spetra.
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Figure 4.7 � Result of the simultaneous �t to data (Down-Down, 2011) with the loose BDT

optimisation. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear sale and the right on a logarithmi sale.
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Figure 4.8 � Result of the simultaneous �t to data (Long-Long, 2011) with the loose BDT

optimisation. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear sale and the right on a logarithmi sale.
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Figure 4.9 � Result of the simultaneous �t to data (Down-Down, 2011) with the tight BDT

optimisation. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear sale and the right on a logarithmi sale.
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Figure 4.10 � Result of the simultaneous �t to data (Long-Long, 2011) with the tight BDT

optimisation. K0
SK

+K−
, K0

SK
+π−

, K0
Sπ

+K−
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear sale and the right on a logarithmi sale.

83



4.5 Validation of the mass �t model

A �t model an be tested by means of pseudo-experiments. Performing the �t to these

samples allows to hek the sensitivity to ertain parameters, their ovariane, and the

onvergene properties of the model. For eah parameter θ and eah pseudo-experiment

i, we de�ne the bias

∆i(θ) = θt − θi (4.23)

and the pull statisti

pi(θ) =
∆i(θ)

σi(θ)
, (4.24)

where θt is the value used to generate the toys, θi is the value extrated from the �t

to pseudo-experiment i, and σi(θ) is the unertainty on θi. In the ase of an unbiased

estimator that properly overs unertainties, the pull statisti is expeted to follow a

standard Gaussian with mean 0 and width 1. Deviations of the mean from 0 indiate a

bias in the �t, while deviations of the width from 1 indiate an inorret overage of the

unertainty.

We test the invariant-mass �t model by means of 500 pseudo-experiments. They are

generated using the �t model with all parameters set to the value extrated from the

�t, exept for the yields, whih are varied aording to their Poisson distribution. We

summarise in Table 4.6 and in Table 4.7 the results of the �t validation proedure. When

the deviation from the standard Gaussian is signi�ant, we orret the measured value of

a parameter θ with

θcorr = θ0 −
∆(θ)

2
(4.25)

and its unertainty δ(θ) with

δ(θ)corr =
δ(θ)

σ(p(θ))
. (4.26)

A systemati unertainty

δsyst(θ) =
∆(θ)

2
(4.27)

is assoiated to this orretion.

Figure 4.14 shows the pull distributions for 2011 K0
S
K+K−

signal yields using the

loose BDT optimization. Tables 4.4 and 4.5 detail the signal yields for whih a bias larger

than 2σ was observed in the loose and tight BDT optimizations, respetively. The width

of the pulls distribution is always onsistent with the unity expetation.
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Figure 4.11 � Residuals distributions for yields of K0
Sπ

+π−
2011 signals. Top: B0 → K0

Sπ
+π−

signal, bottom: B0
s → K0

Sπ
+π−

signal. Left: Down-Down, right: Long-Long.

Table 4.4 � Signal yields for whih a bias was observed in the loose BDT optimization, along

with the bias. They are orreted for in the �nal results and aounted for in the unertainties.

Signal yield Bias

B0→ K0
SK

+π−
(Down-Down)(2011) 1.7± 0.5

B0→ K0
S
π+π−

(Down-Down)(2012a) 3.3± 1.4
B0→ K0

Sπ
+π−

(Down-Down)(2012b) 5.2± 2.0
B0→ K0

S
π+π−

(Long-Long)(2012a) 1.7± 0.8
B0→ K0

S
π+π−

(Long-Long)(2012b) 3.1± 1.4
B0

s → K0
SK

+π−
(Down-Down)(2011) 1.7± 0.7
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Figure 4.12 � Residuals distributions for yields of K0
Sπ

+K−
2011 signals. Top: B0→ K0

SK
−π+

signal, bottom: B0
s → K0

SK
−π+

signal. Left: Down-Down, right: Long-Long.

Table 4.5 � Signal yields for whih a bias was observed in the tight BDT optimization, along

with the bias. They are orreted for in the �nal results and aounted for in the unertainties.

Signal yield Bias

B0→ K0
S
π+π−

(Down-Down)(2012b) 3.3± 1.6
B0

s → K0
SK

+K−
(Down-Down)(2012b) 2.6± 0.7

B0
s → K0

S
K+π−

(Long-Long)(2011) 0.9± 0.5
B0

s → K0
S
K+π−

(Long-Long)(2012a) 0.9± 0.3
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4.6 Estimation of systemati unertainties

Systemati unertainties an arise from di�erent soures, suh as biases or assumptions

made on model parameters. We onsider two types of systemati unertainties related to

the �t model.

The �rst type is related to parameters that are �xed to values determined from sim-

ulated events. We extrat these systemati unertainties by performing several hundreds

of alternative �ts to data, varying all the �xed parameters aording to the orrelation

matrix of the �t to simulated samples. The distribution of di�erenes between yields in

the nominal �t and alternative �ts is �tted using a Gaussian distribution. The systemati

unertainty on a yield X is then

∆X =

√

(µ

2

)2

+ σ2, (4.28)

where µ and σ are the mean and the width of the Gaussian. The �xed parameters of the

�t model are:

• signal model: the tail parameters of the CB funtions (α0, n0,
α1

α0
,

n1

n0
), and the

fration of the two funtions, f ;

• partially reonstruted bakground model: the two parameters of all the Argus

funtions. The threshold is varied within 1MeV/c2 of its nominal value;

• ross-feeds model: all the parameters for eah onsidered event speies.

The seond type of systemati unertainties related to the �t model originates from

the hoie of the models used in the nominal �t. Toy experiments are used to estimate

the systematis due to these e�ets: a pseudo-dataset is generated aording to the result

of the �t of an alternative model to data; the pseudo-dataset is then �tted with both the

nominal model and the alternative model. The distribution of the di�erenes of the yields

of the two �ts is �tted with a Gaussian funtion. The assoiated systemati unertainty

is then estimated as in Eq. 4.28.

Both the partially reonstruted bakground and the ross-feed shapes su�er from a

large statistial unertainty due to small Monte-Carlo samples, and it is believed that the

toy exerise desribed above overs any reasonable variation of the shapes. Hene, the un-

ertainty due to the hoie of the model will be estimated for the signal and ombinatorial

bakground models only. We onsider the following alternative models:

• signal: the Cruij� distribution, de�ned as

t = m− µ,

F (m) =

{

exp(−t2/(2σ2
L + α2

Lt
2)) if t/σ ≤ 0

exp(−t2/(2σ2
R + α2

Rt
2)) if t/σ > 0

(4.29)

is taken as an alternative desription of the signal;
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Table 4.6 � Systemati unertainties on signal yields related to �xed parameters of the signal

shapes (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.3 0.2 0.2 0.1 0.8 0.5

B0→ K0
S
K+π−

0.1 0.1 0.1 0.1 0.2 0.1

B0→ K0
SK

−π+
0.1 0.1 0.1 0.1 0.2 0.1

B0→ K0
S
π+π−

1.1 0.9 0.8 0.4 1.7 0.9

B0
s → K0

S
K+K−

0.1 0.1 0.0 0.0 0.2 0.2

B0
s → K0

SK
+π−

0.3 0.2 0.2 0.1 0.4 0.2

B0
s → K0

S
K−π+

0.3 0.2 0.2 0.1 0.5 0.3

B0
s → K0

Sπ
+π−

0.4 0.3 0.2 0.1 0.6 0.3

Table 4.7 � Systemati unertainties on signal yields related to �xed parameters of the signal

shapes (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.2 0.2 0.1 0.1 0.4 0.1

B0→ K0
SK

+π−
0.1 0.1 0.1 0.0 0.1 0.1

B0→ K0
S
K−π+

0.1 0.1 0.1 0.1 0.2 0.1

B0→ K0
Sπ

+π−
0.6 0.7 0.6 0.3 1.1 0.5

B0
s → K0

S
K+K−

0.0 0.0 0.0 0.0 0.1 0.0

B0
s → K0

S
K+π−

0.2 0.1 0.1 0.1 0.4 0.1

B0
s → K0

SK
−π+

0.2 0.1 0.1 0.1 0.4 0.1

B0
s → K0

S
π+π−

0.2 0.2 0.2 0.1 0.5 0.2

• ombinatorial bakground: the exponential distribution as taken as an alternative

to the linear shape;

• ommon parameters in the ombinatorial bakground model: in the nominal model,

the ratios of the slopes between data-taking periods and K0
S
reonstrution modes

are onstrained. We onsider an alternative model where all these onstraints are

removed.

Tables 4.6 and 4.7 show the estimated systemati unertainties on signal yields that

originate from �xed parameters in the signal shapes. Tables 4.8 and 4.9 show the

estimated systemati unertainties on signal yields that originate from �xed parameters
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Table 4.8 � Systemati unertainties on signal yields related to �xed parameters of the ross-feed

shapes (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.2 0.4 0.1 0.2 0.7 0.4

B0→ K0
S
K+π−

0.5 0.3 0.4 0.2 0.8 0.4

B0→ K0
SK

−π+
0.5 0.2 0.4 0.2 0.8 0.4

B0→ K0
S
π+π−

0.9 0.8 1.0 0.4 2.0 0.9

B0
s → K0

S
K+K−

0.1 0.1 0.1 0.1 0.3 0.1

B0
s → K0

SK
+π−

0.4 0.2 0.3 0.1 0.6 0.3

B0
s → K0

S
K−π+

0.4 0.2 0.3 0.1 0.6 0.3

B0
s → K0

Sπ
+π−

0.3 0.2 0.2 0.1 0.4 0.2

Table 4.9 � Systemati unertainties on signal yields related to �xed parameters of the ross-feed

shapes (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.1 0.2 0.1 0.1 0.6 0.2

B0→ K0
SK

+π−
0.1 0.1 0.1 0.1 0.3 0.1

B0→ K0
S
K−π+

0.1 0.1 0.1 0.1 0.3 0.1

B0→ K0
Sπ

+π−
0.2 0.2 0.2 0.1 0.3 0.1

B0
s → K0

S
K+K−

0.1 0.1 0.1 0.0 0.2 0.1

B0
s → K0

S
K+π−

0.1 0.1 0.2 0.1 0.2 0.1

B0
s → K0

SK
−π+

0.1 0.1 0.2 0.1 0.2 0.1

B0
s → K0

S
π+π−

0.2 0.1 0.1 0.1 0.4 0.1

in the ross-feeds shapes.

Tables 4.10 and 4.11 show the estimated systemati unertainties on signal yields that

originate from �xed parameters in the partially reonstruted bakground shapes.

Figure 4.15 shows �ts to simulated signal events using the Cruij� distribution, and

Tables 4.12 and 4.13 show the systemati unertainties evaluated using this distribution

as an alternative signal model.

Figure 4.16 shows �ts to 2011, Down-Down data using the exponential shape to model

the ombinatorial bakground and the loose BDT optimization. Tables 4.14 and 4.15

summarise the systemati unertainties assoiated with the hoie of ombinatorial shape.

In the �t to data, we fatorize the parameters of the ombinatorial bakground shapes
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Figure 4.15 � Result of the simultaneous �t of the reonstruted invariant mass on simulated

samples of the signal deays (Down-Down), using the loose optimization of the BDT and a

Cruij� distribution (logarithmi sale). K0
SK

+K−
, K0

SK
±π∓

and K0
Sπ

+π−
are shown from top

to bottom, while B0
deays are shown on the left and B0

s deays on the right.
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Table 4.10 � Systemati unertainties on signal yields related to �xed parameters of the partially

reonstruted bakgrounds shapes (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.1 0.1 0.1 0.1 0.2 0.3

B0→ K0
S
K+π−

0.1 0.0 0.0 0.0 0.0 0.0

B0→ K0
SK

−π+
0.0 0.0 0.0 0.0 0.1 0.0

B0→ K0
S
π+π−

0.1 0.0 0.1 0.1 0.2 0.1

B0
s → K0

S
K+K−

0.0 0.0 0.0 0.0 0.0 0.1

B0
s → K0

SK
+π−

0.1 0.1 0.1 0.0 0.1 0.1

B0
s → K0

S
K−π+

0.1 0.0 0.0 0.0 0.1 0.1

B0
s → K0

Sπ
+π−

0.0 0.0 0.0 0.0 0.0 0.0

Table 4.11 � Systemati unertainties on signal yields related to �xed parameters of the partially

reonstruted bakground shapes (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.1 0.0 0.1 0.0 0.1 0.0

B0→ K0
SK

+π−
0.0 0.0 0.0 0.0 0.0 0.0

B0→ K0
S
K−π+

0.0 0.0 0.0 0.0 0.0 0.0

B0→ K0
Sπ

+π−
0.1 0.0 0.0 0.0 0.1 0.0

B0
s → K0

S
K+K−

0.0 0.0 0.0 0.0 0.0 0.0

B0
s → K0

S
K+π−

0.0 0.0 0.0 0.0 0.1 0.1

B0
s → K0

SK
−π+

0.0 0.0 0.0 0.0 0.0 0.0

B0
s → K0

S
π+π−

0.0 0.0 0.0 0.0 0.0 0.0

in order to onstrain the ratio of their value between years and between K0
S reonstrution

modes

α(K0
Sh

±h
′∓)(period)(K0

S mode) = kmodekperiodα(K
0
Sh

±h
′∓)(2011)(DD). (4.30)

We evaluate the systemati unertainty assoiated with this hoie by removing these

onstraints. Tables 4.16 and 4.17 show this systemati unertainty on eah signal yield.
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Table 4.12 � Systemati unertainties related to the hoie of the shape of the signal distribution

(loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

2.2 1.3 1.2 0.8 4.2 1.4

B0→ K0
S
K+π−

4.4 2.3 2.8 1.6 5.5 2.6

B0→ K0
SK

−π+
4.4 1.9 2.7 1.6 5.9 2.7

B0→ K0
S
π+π−

10.8 4.1 5.1 3.0 14.4 5.8

B0
s → K0

S
K+K−

0.4 0.4 0.3 0.2 0.7 0.3

B0
s → K0

SK
+π−

6.8 3.8 4.4 2.6 8.0 3.4

B0
s → K0

S
K−π+

4.9 2.3 2.7 1.6 6.6 2.9

B0
s → K0

Sπ
+π−

3.4 1.4 1.8 1.1 5.0 2.3

Table 4.13 � Systemati unertainties related to the hoie of the shape of the signal distribution

(tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

0.9 2.3 1.1 0.7 1.6 1.5

B0→ K0
SK

+π−
2.8 1.7 1.4 1.1 4.1 1.2

B0→ K0
S
K−π+

2.8 1.4 1.3 1.2 4.5 1.2

B0→ K0
Sπ

+π−
7.3 3.9 3.8 2.5 12.1 4.4

B0
s → K0

S
K+K−

0.2 0.8 0.3 0.5 0.3 0.7

B0
s → K0

S
K+π−

4.9 2.9 2.8 1.8 5.8 1.7

B0
s → K0

SK
−π+

3.3 1.8 1.5 1.2 5.4 1.4

B0
s → K0

S
π+π−

2.6 1.5 1.4 1.0 4.6 2.0

4.6.1 Total unertainties on yields

Tables 4.18, 4.19, and 4.20 show the unertainties on yield parameters of the signal for

2011, 2012 pre-June, and 2012 post-June, respetively. The unertainties are dominated

by the statistial unertainty and the systemati unertainty related to the ombinatorial

shape. In parallel to the inrease of the size of datasets, next iterations of this analysis

will thus have to srutinise the modelling of ombinatorial bakground. The study of

same-sign data samples, formed of K0
S
h+h′+ events, would improve this modelling and

redue the systemati unertainties related to the ombinatorial bakground.
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Table 4.14 � Systemati unertainties on signal yields related to the hoie of ombinatorial

bakground shape (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
SK

+K−
1.8 2.3 1.5 1.3 2.4 1.6

B0→ K0
S
K+π−

2.5 1.3 1.6 1.1 3.4 1.6

B0→ K0
S
K−π+

2.5 1.2 1.5 1.1 3.6 1.7

B0→ K0
Sπ

+π−
7.5 4.4 5.1 3.1 11.1 5.3

B0
s → K0

S
K+K−

0.4 0.5 0.3 0.1 0.9 0.3

B0
s → K0

S
K+π−

4.8 2.8 3.5 2.0 6.2 2.5

B0
s → K0

SK
−π+

2.9 1.3 1.8 1.1 4.2 1.8

B0
s → K0

S
π+π−

3.9 1.9 2.5 1.2 5.6 2.6

Table 4.15 � Systemati unertainties on signal yields related to the hoie of ombinatorial

bakground shape (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

1.6 2.0 1.9 1.2 2.1 5.0

B0→ K0
SK

+π−
1.9 1.3 1.0 1.1 2.9 0.9

B0→ K0
S
K−π+

1.8 1.1 0.9 1.2 3.3 0.9

B0→ K0
Sπ

+π−
5.8 5.7 4.4 3.0 9.0 5.0

B0
s → K0

S
K+K−

0.3 0.3 0.4 0.2 0.4 0.8

B0
s → K0

S
K+π−

3.5 2.6 1.9 1.7 5.5 3.0

B0
s → K0

SK
−π+

1.9 1.1 0.9 0.8 3.7 1.7

B0
s → K0

S
π+π−

2.4 2.3 1.7 1.0 4.7 2.1
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Figure 4.16 � Result of the simultaneous �t of the data (Down-Down, 2011) with the loose BDT

optimization. K0
SK

+K−
, K0

SK
±π∓

, K0
Sπ

±K∓
and K0

Sπ
+π−

are shown from top to bottom,

while the left plots show the result on a linear sale and the right on a logarithmi sale.
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Table 4.16 � Systemati unertainties on signal yields related to the hoie of ombinatorial

bakground model (loose BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
SK

+K−
3.5 2.7 2.5 1.9 7.3 2.6

B0→ K0
S
K+π−

4.0 1.7 3.6 1.5 4.4 3.2

B0→ K0
S
K−π+

4.1 1.5 3.4 1.6 4.8 3.2

B0→ K0
Sπ

+π−
13.2 4.4 7.1 4.6 15.2 10.9

B0
s → K0

S
K+K−

1.3 1.2 1.0 0.7 2.7 0.8

B0
s → K0

S
K+π−

6.1 3.1 5.1 2.6 7.0 3.7

B0
s → K0

SK
−π+

4.0 1.7 3.0 1.4 4.7 3.0

B0
s → K0

S
π+π−

5.4 2.1 3.0 1.9 6.3 5.1

Table 4.17 � Systemati unertainties on signal yields related to the hoie of ombinatorial

bakground model (tight BDT optimization).

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
K+K−

2.9 10.0 2.3 1.6 3.9 9.8

B0→ K0
SK

+π−
3.5 1.8 1.5 1.1 4.7 1.4

B0→ K0
S
K−π+

3.3 1.4 1.4 1.1 5.2 1.4

B0→ K0
Sπ

+π−
8.3 4.0 4.3 3.3 14.3 6.1

B0
s → K0

S
K+K−

1.0 4.4 0.8 0.7 1.2 3.9

B0
s → K0

S
K+π−

5.3 2.8 2.7 1.8 6.2 2.1

B0
s → K0

SK
−π+

3.3 1.5 1.4 1.1 5.3 1.6

B0
s → K0

S
π+π−

3.4 1.7 1.7 1.4 6.2 2.9
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Table 4.18 � Signal yields for 2011 data samples, along with unertainties (loose BDT optimization). Comb. shape and Comb. model

refer to systemati unertainties related to the ombinatorial bakground shape and to ommon parameters in the ombinatorial

bakground model, respetively.

Yield Stat Bias Sig.

model

CF.

model

PartRe Comb.

model

Comb.

shape

Sig.

shape

Total

B0→ K0
S
π+π−

803.0 35.6 0.0 1.1 0.9 0.1 20.1 1.0 16.0 44.0

B0→ K0
Sπ

+π−

471.3 26.6 0.0 0.9 0.8 0.0 1.0 4.5 5.1 27.5

B0→ K0
S
K−π+

52.4 12.4 0.0 0.1 0.5 0.0 6.4 1.8 7.9 16.2

B0→ K0
S
K−π+

26.2 7.3 0.0 0.1 0.3 0.0 1.5 0.8 3.2 8.2

B0→ K0
SK

+π−

52.4 12.3 0.8 0.2 0.5 0.1 6.3 1.7 7.7 16.0

B0→ K0
S
K+π−

37.5 8.3 0.0 0.1 0.3 0.0 1.6 0.7 3.9 9.4

B0→ K0
S
K+K−

281.1 19.2 0.0 0.3 0.2 0.2 5.7 1.7 3.5 20.4

B0→ K0
SK

+K−

222.4 16.9 0.0 0.2 0.4 0.2 1.8 3.3 1.0 17.4

B0
s → K0

S
π+π−

65.4 18.1 0.0 0.4 0.3 0.0 8.0 6.2 4.5 21.2

B0
s → K0

Sπ
+π−

23.2 12.0 0.0 0.3 0.2 0.0 1.0 2.6 1.3 12.4

B0
s → K0

S
K−π+

181.0 16.9 0.0 0.3 0.4 0.1 6.5 4.1 8.9 20.6

B0
s → K0

S
K−π+

115.5 11.9 0.0 0.2 0.2 0.1 1.8 1.5 3.7 12.7

B0
s → K0

SK
+π−

152.2 15.1 0.8 0.3 0.4 0.2 7.6 4.5 10.5 20.4

B0
s → K0

S
K+π−

91.2 10.6 0.0 0.2 0.2 0.1 2.7 3.1 5.6 12.7

B0
s → K0

S
K+K−

22.8 9.4 0.0 0.1 0.1 0.1 2.0 0.5 0.2 9.6

B0
s → K0

SK
+K−

6.8 8.1 0.0 0.1 0.1 0.0 1.3 0.7 0.1 8.2
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Table 4.19 � Signal yields for 2012 pre-June data samples, along with unertainties (loose BDT optimization). Comb. shape and

Comb. model refer to systemati unertainties related to the ombinatorial bakground shape and to ommon parameters in the

ombinatorial bakground model, respetively.

Yield Stat Bias Sig.

model

CF.

model

PartRe Comb.

model

Comb.

shape

Sig.

shape

Total

B0→ K0
S
π+π−

553.1 30.3 1.7 0.9 1.0 0.2 3.3 2.5 4.5 31.0

B0→ K0
Sπ

+π−

286.4 19.5 0.8 0.4 0.4 0.1 3.2 1.5 1.9 19.9

B0→ K0
S
K−π+

46.9 10.7 0.0 0.1 0.4 0.1 5.9 0.5 4.7 13.1

B0→ K0
S
K−π+

21.2 7.8 0.0 0.1 0.2 0.0 2.1 0.3 2.6 8.5

B0→ K0
SK

+π−

43.9 11.0 0.0 0.1 0.4 0.0 6.3 0.5 4.9 13.6

B0→ K0
S
K+π−

28.7 7.8 0.0 0.1 0.2 0.1 1.9 0.3 2.5 8.5

B0→ K0
S
K+K−

180.7 15.3 0.0 0.2 0.1 0.1 0.8 1.8 1.5 15.5

B0→ K0
SK

+K−

119.2 11.8 0.0 0.1 0.2 0.1 1.6 1.9 0.5 12.1

B0
s → K0

S
π+π−

16.5 15.1 0.0 0.2 0.2 0.1 1.1 3.7 1.2 15.6

B0
s → K0

Sπ
+π−

15.4 7.7 0.0 0.1 0.1 0.0 1.4 1.3 0.7 8.0

B0
s → K0

S
K−π+

112.9 13.7 0.0 0.2 0.3 0.1 5.1 2.5 4.7 15.6

B0
s → K0

S
K−π+

48.6 9.1 0.0 0.1 0.1 0.0 2.0 1.3 2.5 9.7

B0
s → K0

SK
+π−

92.0 12.1 0.0 0.2 0.3 0.1 7.5 2.3 5.7 15.5

B0
s → K0

S
K+π−

50.8 8.5 0.0 0.1 0.1 0.0 2.7 0.7 3.1 9.5

B0
s → K0

S
K+K−

1.9 6.4 0.0 0.0 0.1 0.0 0.6 0.3 0.2 6.4

B0
s → K0

SK
+K−

6.0 4.9 0.0 0.0 0.1 0.0 0.8 0.1 0.1 4.9
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Table 4.20 � Signal yields for 2012 post-June data samples, along with unertainties (loose BDT optimization). Comb1 and Comb2

refer to systemati unertainties related to the ombinatorial bakground shape and to ommon parameters in the ombinatorial

bakground model, respetively.

Yield Stat Bias Sig.

model

CF.

model

PartRe Comb.

model

Comb.

shape

Sig.

shape

Total

B0→ K0
S
π+π−

1409.5 46.0 2.6 1.7 2.0 0.2 13.6 7.7 20.7 52.9

B0→ K0
Sπ

+π−

653.6 30.1 1.5 0.9 0.9 0.1 17.9 1.8 7.1 35.9

B0→ K0
S
K−π+

90.6 15.6 0.0 0.2 0.8 0.1 5.6 3.7 10.4 19.9

B0→ K0
S
K−π+

55.7 10.5 0.0 0.1 0.4 0.1 5.3 0.9 4.6 12.6

B0→ K0
SK

+π−

72.9 14.1 0.0 0.2 0.8 0.1 5.3 3.5 9.5 18.2

B0→ K0
S
K+π−

29.8 9.0 0.0 0.1 0.4 0.0 5.3 1.0 4.4 11.4

B0→ K0
S
K+K−

671.4 29.9 0.0 0.8 0.7 0.3 10.1 0.2 6.8 32.3

B0→ K0
SK

+K−

343.8 19.8 0.0 0.7 0.4 0.6 0.4 1.9 1.8 20.0

B0
s → K0

S
π+π−

83.3 21.6 0.0 0.6 0.4 0.0 5.4 8.5 6.7 24.8

B0
s → K0

Sπ
+π−

41.7 13.9 0.0 0.3 0.2 0.0 8.4 3.3 2.6 16.8

B0
s → K0

S
K−π+

306.8 22.1 0.0 0.5 0.6 0.1 5.7 6.1 11.6 26.3

B0
s → K0

S
K−π+

143.4 13.9 0.0 0.3 0.3 0.2 5.0 2.1 5.0 15.8

B0
s → K0

SK
+π−

255.3 19.2 0.0 0.4 0.6 0.2 6.1 7.1 12.0 24.5

B0
s → K0

S
K+π−

118.2 12.8 0.0 0.3 0.3 0.2 5.5 2.3 5.0 15.0

B0
s → K0

S
K+K−

25.5 12.9 0.0 0.2 0.3 0.1 3.8 1.3 0.6 13.6

B0
s → K0

SK
+K−

7.5 6.5 0.0 0.3 0.1 0.2 0.0 0.3 0.1 6.6

1
0
0



4.7 Modelling the signal distribution over the Dalitz

plot using sPlots
The e�ieny of signal events is estimated using Monte-Carlo samples, and varies aross

the Dalitz plane. As disussed in Se. 4.1, we need to estimate the distribution of signal

events over the Dalitz plane in order to properly orret the signal yields for the e�ienies.

For this purpose, we use the sPlots method desribed in Se. 4.2.3.

A speial �t is performed in order to extrat these sPlots. Firstly, the mass interval

limit on the left is taken as 5200MeV/c2 instead of 5150MeV/c2 in order to redue the im-

pat of the partially reonstruted bakground. Furthermore, the sPlots method does not

inlude ases where Gaussian onstraints are present in the model. Yields of ross-feeds

and partially reonstruted bakgrounds are thus �xed to the value obtained from the nom-

inal �t. As partially reonstruted bakgrounds are negligible in the 5200�5800MeV/c2

invariant-mass window, we only onsider the e�et of ross-feeds when orreting the

sPlots following Eq. 4.16.
The distributions of signal and ross-feeds events over the square Dalitz plane depend

on eah other, and must thus be determined simultaneously. Indeed, by de�nition the

distribution Mn(m
′
m, θ

′
m) of events from a signal mode n over the square Dalitz plane

orresponding to the signal mode m is

Mn(m
′
m, θ

′
m) = sMn(m

′
m, θ

′
m) =

∑

sPn(e) + cn.M0,n(m
′
m, θ

′
m), (4.31)

where cn is the parameter de�ned in Eq. 4.16, and M0,n(m
′
m, θ

′
m) is the estimated dis-

tribution of the ross-feeds events that ontribute to the invariant-mass spetrum of the

signal n over the square Dalitz plot orresponding to the signal mode m. As there are

ross-feeds in eah invariant-mass spetrum, we use the following iterative proedure:

• all distributions M i
0,n(m

′
m, θ

′
m) are set to 0 for i = 0;

• for eah step i > 0, we extrat the distribution of eah signal speies n over the

square Dalitz plane orresponding to the signal mode m using

Nn.sM
i
n(m

′
m, θ

′
m).δm

′
mδθ

′
m =

∑

sPn(e) + cn.M
i−1
0,n (m′

m, θ
′
m), (4.32)

where Nn, cn, and sPn(e) are the same variables as de�ned in Eq. 4.16, sM i
n is the

estimated distribution of the signal n over the Dalitz plane for iteration i, andM i−1
0,n

is the Dalitz-plot distribution estimated in iteration i− 1 of all the ross-feeds that

ontribute to the invariant-mass spetrum of the signal mode n;

• the proedure is stopped when the χ2
alulated between the sM i+1

n and sM i
n distri-

butions reahes a predetermined lower threshold for eah n and m. In pratie, the

onvergene of the proedure is fast and this threshold is reahed at i = 2 or i = 3.

Figure 4.17 shows examples of distributions of sWeighted signal events over the square

Dalitz plot. Table 4.21 shows the total e�ienies of all signal modes for the loose and

tight optimizations, exept for B0
s → K0

SK
+K−

.
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Figure 4.17 � Distributions of sWeighted signal events over the Dalitz plot for B0 → K0
Sπ

+π−

(top,left), B0
s → K0

Sπ
+π−

(top, right), B0 → K0
SK

+π−
(middle, left), B0

s → K0
SK

+π−
(middle,

right), and B0→ K0
SK

+K−
(bottom), in 2011 Down-Down data samples.

4.8 Measurement of the branhing frations

4.8.1 Internal onsisteny

The measurement of a physial observable suh as a branhing fration does not depend on

K0
S
reonstrution mode or data-taking period. In order to hek the internal onsisteny

of the model, we ompare ratios of yields in di�erent ategories, orreted for e�ienies.

Table 4.22 shows the ratios of the di�erent modes with respet to B0→ K0
Sπ

+π−
. They

are obtained separately for the two K0
S
reonstrution modes and the three data-taking

periods. The agreement between data ategories as indiated by the χ2
of the ombination
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Table 4.21 � Integrated signal e�ienies, using distributions obtained from sWeights in units of

10−4
.

Signal hannel (seletion) 2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

B0→ K0
S
π+π−

(loose) 4.90 1.89 4.25 1.66 4.57 1.62

B0
s → K0

S
K±π∓

(loose) 3.62 1.48 3.23 1.14 4.02 1.39

B0→ K0
SK

+K−
(loose) 2.93 1.57 2.64 1.50 3.96 1.29

B0
s → K0

S
π+π−

(tight) 3.18 1.75 4.98 1.46 3.36 1.08

B0→ K0
S
K±π∓

(tight) 3.24 1.60 4.17 1.23 4.05 1.00

Table 4.22 � Measured ratios of branhing frations orresponding to di�erent data ategories.

The denominator is the branhing fration of the B0 → K0
Sπ

+π−
mode. Quoted unertainties

inlude statistial unertainties on yields and e�ienies, along with unertainties on fs/fd. The
χ2

of the ombination is indiated for eah hannel.

Branhing fration 2011 2012 pre-June 2012 post-June χ2

DD LL DD LL DD LL

B0→ K0
S
π+π− 1.0 1.0 1.0 1.0 1.0 1.0

B0
s → K0

Sπ
+π− 0.49±

0.14
0.23±
0.12

0.10±
0.09

0.23±
0.13

0.31±
0.09

0.38±
0.13

6.8

B0→ K0
S
K±π∓ 0.20±

0.04
0.15±
0.03

0.23±
0.04

0.20±
0.05

0.13±
0.02

0.22±
0.04

9.6

B0
s → K0

S
K±π∓ 2.25±

0.26
2.23±
0.28

1.59±
0.21

1.50±
0.24

1.81±
0.18

1.86±
0.22

12.5

B0→ K0
SK

+K− 0.62±
0.05

0.60±
0.06

0.55±
0.06

0.49±
0.06

0.58±
0.03

0.70±
0.05

7.2

shows some tensions, although the global p-value remains above the perent level. The

largest χ2/ndf (2.1) is observed for B0
s → K0

S
K±π∓

, and there is no lear trend aross the

di�erent hannels and data ategories.

4.8.2 Combination of branhing frations

The measurements of branhing frations from eah data-taking period andK0
S
reonstru-

tion modes are ombined. The entral value is the average of all measurements weighted

by

wi =
1

σ2
i

, (4.33)
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where wi is the weight assoiated by the measurement in ategory i and σi is the total

unertainty assoiated with that measurement.

The total unertainty of the ombination is obtained by propagating the total un-

ertainties of eah measurement, exluding the systemati unertainty related to fs/fd,
whih is 100% orrelated between all data ategories. The statistial unertainty of the

ombination is omputed under the hypothesis of the absene of a systemati unertainty,

and the total systemati unertainty is evaluated as

∆sys =
√

∆2
tot −∆2

stat, (4.34)

where ∆tot and ∆stat are the total and statistial unertainties of the ombination, respe-

tively.

The ratios of branhing frations for eah previously observed mode are

B (B0
s → K0

Sπ
+π−)

B (B0→ K0
S
π+π−)

= 0.26± 0.04(stat.)± 0.02(syst.)± 0.01(fs/fd),

B (B0→ K0
S
K±π∓)

B (B0→ K0
S
π+π−)

= 0.17± 0.02(stat.)± 0.00(syst.),

B (B0
s → K0

S
K±π∓)

B (B0→ K0
S
π+π−)

= 1.84± 0.07(stat.)± 0.02(syst.)± 0.04(fs/fd),

B (B0→ K0
S
K+K−)

B (B0→ K0
Sπ

+π−)
= 0.59± 0.02(stat.)± 0.01(syst.),

(4.35)

4.8.3 B0
s → K0

S
K+K−

observation signi�ane

The signi�ane of the observation of the B0
s → K0

SK
+K−

mode is derived from a likeli-

hood san of eah B0
s → K0

S
K+K−

yield in the loose BDT optimization. The distribution

of likelihood is �tted using a bifurated Gaussian, smeared by a Gaussian to aount for

systemati unertainties. Figure 4.18 shows these likelihood sans for eah data-taking

period and K0
S
reonstrution mode.

In order to estimate the signi�ane in eah ategory, we evaluate the di�erene be-

tween the log-likelihood of the nominal �t and that of a �t where the branhing fration

is set to 0 (this di�erene is referred to as �likelihood ratio� and an be diretly read from

the likelihood sans of Fig. 4.18).

Table 4.23 shows the signi�anes derived from likelihood ratios in eah of the orre-

sponding sans. These signi�anes are then summed in quadrature to obtain the global

signi�ane of the B0
s → K0

S
K+K−

observation.

4

4

Statistial orrelations would make this approah invalid. They are however evaluated as below the

perent level, and are thus ignored.
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Figure 4.18 � Likelihood sans of B0
s → K0

SK
+K−

yields. The blue line indiates the total

likelihood (inluding systematis), whereas the red, dotted line is statistial only. The dashed,

vertial line indiates the N(B0
s → K0

SK
+K−) = 0 hypothesis. Left: Down-Down K0

S reonstru-

tion mode. Right: Long-Long K0
S reonstrution mode. Di�erent data-taking periods are shown

on top (2011), middle (2012 pre-June), and bottom (2012 post-June).

4.8.4 Comparison with previous measurements

All reported branhing frations have already been measured with the 1 fb

−1
LHCb dataset

from 2011, and the B0→ K0
S
K+K−

branhing fration has been aurately measured by

B fatories. We perform a naive omparison with previous measurements negleting

orrelations between datasets for the previous LHCb measurement.

5

5

These orrelations need a spei� treatment as the stripping, trigger, and seletion are di�erent in

the two analyses.
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Table 4.23 � Signi�ane of B0
s → K0

SK
+K−

yields for eah data ategory, inluding systematis.

Global signi�ane is obtained by summing individual signi�anes in quadrature.

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

Signi�ane 2.6σ 0.7σ 0.2σ 1.2σ 2.0σ 1.2σ
Global 3.7σ

Figure 4.19 � Measured branhing frations relative to that of B0→ K0
Sπ

+π−
for eah previously

observed B0
d,s→ K0

Sh
+h

′−
mode, in arbitrary units (a.u). The �PDG� measurement is omputed

negleting orrelations between B0→ K0
SK

+K−
and B0→ K0

Sπ
+π−

measurements. The entral

value is set to the PDG result when existing, otherwise it is set to the weighted average of the

LHCb measurements.

Figure 4.19 shows the omparison between available measurements for signal modes,

exept for B0
s → K0

SK
+K−

. The branhing frations are represented in arbitrary units,

and only the size of unertainties and distane between entral values are meaningful. The

agreement between the two LHCb results is satisfatory for all modes, with the exeption

of the B0→ K0
SK

+K−
mode. Table 4.24 shows the signi�anes of the di�erene between

the two LHCb results, assuming a orrelation of 30% between the two datasets.
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Table 4.24 � Signi�ane of the di�erene between the LHCb measurement with 2011 data only

and the urrent measurement.

B(B0
s→K0

Sπ
+π−)

B(B0→K0
Sπ

+π−)
B(B0→K0

SK
±π∓)

B(B0→K0
Sπ

+π−)
B(B0

s→K0
SK

±π∓)
B(B0→K0

Sπ
+π−)

B(B0→K0
SK

+K−)
B(B0→K0

Sπ
+π−)

Signi�ane (σ) 0.4 2.2 2.1 4.3

4.9 Conlusion

We have observed the B0
s → K0

S
K+K−

deay using the 3 fb

−1
dataset from Run I with a

signi�ane of 3.7 σ. One the e�ieny of this signal deay is omputed, we will report

a branhing fration measurement relative to that of B0→ K0
S
π+π−

.

The measurements of all previously observed B0
d,s → K0

S
h+h

′−
modes have been up-

dated, and is in good agreement with previous measurements, with the exeption of

B0 → K0
S
K+K−

. Indeed, the measurement of the B0 → K0
S
K+K−

branhing fration

with the referene B-fatory measurement is good, but it is 4.3 σ away from the measure-

ment performed with LHCb 2011 data.

107



Chapter 5

Dalitz-plot analysis of B0→ K0
SK

+K−

In this hapter, I desribe the Dalitz-plot analysis of B0→ K0
S
K+K−

deays. In Se. 5.1,

I present the strategy of this analysis. I then desribe the reoptimization of the seletion

riterion on the BDT output variable in Se. 5.2 and the event speies present in the

dataset in Se. 5.3. The study of bakground soures and their distributions over the

Dalitz plot is presented in Se. 5.4, and the modelling of e�ieny variation over the

Dalitz plane is detailed in Se. 5.5. I then present the data �t model in Se. 5.6, and

the �t validation proedure in Se. 5.7. The evaluation of systemati unertainties on the

isobar parameters is disussed in Se. 5.8, and the results of the �t to data are presented

in Se. 5.9.

5.1 Analysis ontext and strategy

The BaBar and Belle experiments have performed a time-dependent �avour-tagged ampli-

tude analysis of B0→ K0
S
K+K−

deays, and measured the angle βeff in this mode [40,67℄.

These measurements are onsistent with the value of β extrated from b→ cc̄s transi-

tions. A partiularity of the B0 → K0
S
K+K−

mode is that the amplitude is dominated

by a nonresonant omponent that is not learly understood. The analysis of this mode

in the LHCb environment will provide another insight into this nonresonant omponent.

Additionally, a wide resonant struture has been seen by both BaBar and Belle in the

K+K−
spetrum. While Belle modelled it by the f0(1500), the BaBar experiment used a

ombination of the f0(1500), the f0(1710), and the f
′

2(1525). In the following, we take as

a referene the BaBar result [40℄, whih inludes the resonanes shown in Table 5.1 along

with their lineshapes.

We aim at measuring the amplitude of B0→ K0
S
K+K−

deays over the Dalitz plane

using the isobar model desribed in Se. 1.3.4. We do not onsider CP violation in

the model for this iteration of the analysis. Indeed, performing a CP -sensitive analysis
requires either �avour tagging or the presene of �avour-spei� strutures suh as K∗±

resonanes. The seond option is not relevant to this analysis as the baseline model only

inludes K+K−
resonanes and no K0

S
K+

or K0
S
K−

ontributions. The size of the urrent
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Table 5.1 � List of the resonanes omposing the BaBar result [40℄ and of their lineshapes.

�Relativisti BW� stands for Relativisti Breit-Wigner.

Resonane Lineshape

φ0
Relativisti BW

f0(980) Flatté

f0(1500) Relativisti BW

f
′

2(1525) Relativisti BW

f0(1710) Relativisti BW

χc0 Relativisti BW

NR(S-wave) Seond-order polynomial

NR(P -wave) Seond-order polynomial

data sample does not allow the use of �avour tagging. As the dataset is untagged, the B0

and B0
amplitudes are added inoherently, and the deay rate as a funtion of the Dalitz

plot is

I(m2
K0

SK
+, m

2
K0

SK
−) =

∣

∣

∣
A(m2

K0
SK

+, m
2
K0

SK
−)
∣

∣

∣

2

+
∣

∣

∣
A(m2

K0
SK

+, m
2
K0

SK
−)
∣

∣

∣

2

, (5.1)

where A and A are the deay amplitudes of the B0
and the B0

, respetively. Replaing

these amplitudes by their expressions in the isobar model, we get

I =

∣

∣

∣

∣

∣

(

∑

j

cje
iφjFj(m

2
K0

SK
+, m

2
K0

SK
−)

)∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

(

∑

j

cje
iφjF j(m

2
K0

SK
+, m

2
K0

SK
−)

)∣

∣

∣

∣

∣

2

. (5.2)

The lineshapes Fj and F j are related by

Fj(m
2
K0

SK
+, m

2
K0

SK
−) = F j(m

2
K0

SK
−, m

2
K0

SK
+). (5.3)

The exhange operator between K+
and K−

has a signature

η = (−1)LK+K− , (5.4)

where LK+K−
is the orbital angular momentum between K+

and K−
. In the deay of a

pseudosalar partile to three pseudosalars, and in the ase of a K+K−
resonane j, this

signature is

ηj = (−1)Sj , (5.5)

where Sj is the spin of the resonane. This means that for a K+K−
resonane j,

Fj(m
2
K0

SK
+, m

2
K0

SK
−) = (−1)SjF j(m

2
K0

SK
+, m

2
K0

SK
−). (5.6)
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We de�ne

δjk = arg(FjFk), (5.7)

Cjk =
cjck
cjck

, (5.8)

βjk = φjk − φjk, (5.9)

ηjk = (−1)Sj+Sk . (5.10)

(5.11)

The parameter δjk is impliitly a funtion of the Dalitz plot. The Cjk and βjk terms ontain

information on the diret and indiret CP violation, respetively.

1

Developing the sums

and looking only at the interferene term between a resonane j and a resonane k, we
obtain

Ijk = 2cjckFjFk [(1 + Cjkηjk) cos(φjk + δjk) cos(βjk)− Cjkηjk sin(φjk + δjk) sin(βjk)]
(5.12)

where Fj,k is impliitly funtion of m2
K0

SK
+ and m2

K0
SK

−.

In the ase of the urrent analysis, we do not expet su�ient statistial power to mea-

sure the Cjk and βjk parameters. Considering the ase where no CP violation ours and

detetion asymmetry is negligible (Cjk = 1 and βjk = 0), we observe that the interferene
term is

Ijk ∝ (1 + ηjk) cos(φjk + δjk). (5.13)

This means that in our partiular ase of an untagged analysis of B0 → K0
SK

+K−
,

onsidering only K+K−
resonanes, we are not sensitive to the relative phase between

even and odd partial waves (φjk). The residual sensitivity originates from CP violation,

possibly, whih allows in priniple to measure these e�ets even in an untagged, time-

independent analysis. A similar alulation has been performed in [68, 69℄. Setion 5.6

disusses the adaptations of the baseline model that we implement to address this issue.

The amplitude analysis of B0→ K0
SK

+K−
deays uses the following inputs from the

branhing fration measurement:

• the same stripping, trigger requirements, preseletion, and BDT training;

• tight PID seletion riteria are applied;

• yields of signal and bakground speies are extrated using the same B-meson an-

didate invariant-mass �t model;

• the distribution of ross-feed events over the Dalitz plane is estimated using the

sPlot method desribed in Se. 4.2.3.

1

In this expression, the possible prodution or detetion asymmetry between B0
and B0

is absorbed

in a di�erent magnitude onvention for ck and ck. This e�et has to be taken into aount before any

statement is issued from a measurement of Cjk.
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We reoptimize the BDT seletion riteria in order to get better unertainties on the

parameters of the isobar model. We also estimate the variations of the e�ieny aross

the Dalitz plane using a similar method to that of the branhing fration measurement.

Using the Laura++ pakage [70℄, we perform an extended maximum likelihood �t to

data events seleted in a window of ±2.5σ around the B0
invariant mass. In order to

respet the Dalitz-plot boundaries, both the B-meson andidate mass and that of the K0
S

are onstrained to their nominal values, and momenta of the daughters are re�tted taking

these onstraints into aount.

Due to the large number of parameters in the �t model and the small sensitivity to some

of them, eah �t to data is performed 1000 times with randomized initial parameters in

order to �nd the best minimum. Multiple solutions ould appear in an amplitude analysis

due to many di�erent reasons. In partiular, this ould happen due to interferene between

two broad salar resonanes. In that ase solutions typially appear in pairs: one with

larger �t frations of the two resonanes and destrutive interferene between them, and

another with smaller �t frations and onstrutive interferene. We onsider all solutions

within 4.5 NLL units from the best minimum, and study the assoiated �t frations.

2

We onsider variations of the �t model by adding and removing resonanes, or hanging

their distribution aross the Dalitz plane. We ompare the agreement of eah model

with the data using the minimum negative log-likelihood and goodness-of-�t estimators.

Details of this proedure are given in Se. 5.6.

5.2 Reoptimization of the BDT seletion

5.2.1 Strategy of the reoptimization

The BDT method desribed in Se. 4.1 produes an output variable on whih we apply

a seletion to rejet ombinatorial bakground events. Our goal is to use an optimized

BDT seletion riterion that yields the smallest unertainties on the isobar parameters

extrated from the �t to the Dalitz plane. While there exist widely used optimization

methods adapted to the measurement of branhing frations, this is not the ase for

Dalitz-plot analyses. In this study, we �rst perform simpli�ed Dalitz plot �ts to several

datasets obtained with di�erent BDT seletions and ompare the unertainties on the

isobar parameters. We then attempt to �nd a simple �gure of merit that yields similar

onlusions in order to failitate exporting the the results of this study to future Dalitz-

plot analyses of this mode.

In the ase of the measurement of the branhing fration of an already-observed mode,

the �gure of merit

FoM(NS, NB) =
NS√

NS +NB

, (5.14)

2

4.5 negative log-likelihood units orrespond to three Gaussian standard deviations.
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where NS (NB) is the number of signal (bakground) events, is frequently adopted to

maximise the signi�ane of the measurement. In the ase of an unobserved mode, the

Punzi �gure of merit

FoM(NS, NB) =
ǫsig

√

a
2
+NB

(5.15)

is adopted, where ǫsig is the estimated e�ieny of the signal, and a is a parameter to

determine by the analyst. Although in the ase of a Dalitz-plot analysis, no suh standard

solution exists, the �gure of merit

FoM(NS, NB) =
N2

S

(NS +NB)3/2
(5.16)

is sometimes used.

3

In order to optimize the ut value on the BDT output variable for the Dalitz-plot

analysis, we de�ne a series of lower uts, λWP, on the BDT variable λ (i.e. utting out

events with λ ≤ λWP). We refer to the di�erent values of λWP as �working points�. They

orrespond to values in between those from the loose and the tight optimizations (λloose
and λtight, respetively)

λWP = λloose + αWP(λtight − λloose). (5.17)

The parameter αWP
, whih has a di�erent value for eah working point, runs between 0

and 1.

4

We perform separate invariant-mass �ts on the samples orresponding to eah

working point, and extrat the number of signal, ombinatorial bakground, and ross-feed

events as desribed in Se. 5.3. We then use these yields and isobar parameters extrated

in the BaBar study of the B0 → K0
S
K+K−

mode [40℄ as a baseline model to generate

pseudo-data distributions over the Dalitz plot for eah working point. We �nally perform

a simpli�ed amplitude analysis on the pseudo-data orresponding to eah working point

using the BaBar results as a signal model, with the following guidelines:

• the same Dalitz-plot distribution of ombinatorial bakground is used for all working

points, as a relaxed BDT seletion riterion (desribed in Se. 5.4) is applied to

samples from whih we extrat this distribution;

• Gaussian onstraints in the invariant-mass �t model used to extrat the yields of

the partially reonstruted bakgrounds and ross-feeds are re-evaluated for eah

working point, as the orresponding e�ienies vary;

3

The optimum value obtained by this �gure of merit typially lies between those from NS/
√
NS +NB

and Punzi-type �gures of merit.

4

The tight optimization of the BDT is then stritly equal to the working point de�ned using αWP = 1.
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Table 5.2 � Values of the parameter αWP
for eah working point, along with the number of

signal events and the proportion of signal events in the signal region. We onsidered all together

data-taking periods and K0
S reonstrution modes.

WP0 WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 WP9

αWP
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.85 0.95

NS 1474.2 1438.8 1377.8 1323.2 1271.0 1212.4 1152.5 1086.3 986.1 905.0

NS/Ntot(%) 89.2 90.4 91.2 92.1 93.0 94.0 94.6 95.2 96.0 96.0

• as we apply tight PID seletion riteria for all working points, we use tight PID

e�ieny maps;

• seletion e�ieny maps are estimated using a linear interpolation between the loose

and the tight seletion e�ieny maps, using the parameter αWP
;

5

• only the systemati unertainties related to biases, e�ieny modelling, bakgrounds

distributions modelling, and the knowledge of the yields of the di�erent event speies

are estimated;

• when varying the yields within their unertainties in order to evaluate the or-

responding systemati unertainty, only their statistial unertainties, whih are

dominant, are taken into aount.

From this simpli�ed analysis, we extrat the total unertainties on all the isobar pa-

rameters for eah working point.

5.2.2 Results of the reoptimization

Table 5.2 shows the values of αWP
used in the study and the names of the assoiated

working points. The same table details the orresponding proportion of signal events

and the number of signal events, both extrated from an invariant-mass �t to data. To

obtain these numbers, we onsidered all together the di�erent data-taking periods and

K0
S
reonstrution modes. As the working points get loser to the tight optimization, the

purity of the samples stabilize while the numbers of signal events ontinue to diminish.

Figure 5.1 shows the total relative unertainties on the �t frations of eah resonane,

with respet to values obtained for �WP0�. The main onlusion of this study is that it is

di�ult to point a lear overall optimum, as variations are observed between resonanes

and as, with the urrent dataset, unertainties are large. For instane, we notie that

optima of nonresonant ontributions tend to orrespond to tighter BDT seletion riteria

than those of resonant ontributions. Indeed, nonresonant ontributions are ompeting

with ombinatorial bakground over large parts of the Dalitz plane.

5

The absolute value of the e�ieny of the BDT seletion is not linear between the loose and the tight

seletion ut values, but only the variations of the e�ieny aross the Dalitz plane are relevant here.
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Figure 5.1 � Total relative unertainties on �t frations of di�erent isobars (see the legend in eah

graph) for eah of the working points. Unertainties are saled with respet to those of �WP0�.

Left: Resonant ontributions. Right: nonresonant ontributions; where S and P orrespond to

S and P -waves, respetively, followed by the degree of the polynomial term attahed to that

ontribution. The onstant term of the S-wave (�PolNR_S0�) is the �xed referene amplitude

and thus it is not shown here.

Table 5.3 � Values of the BDT seletion uts that are hosen for the di�erent data-taking periods

and K0
S reonstrution modes.

2011 2012 pre-June 2012 post-June

DD LL DD LL DD LL

Seletion ut value -0.025 -0.104 0.081 0.01 -0.027 -0.055

Figure 5.2 shows the values of four di�erent �gures of merit evaluated for eah working

point, relative to the values obtained for �WP0�. As expeted, the optimum values for

the NS/
√
NS +NB and Punzi-type �gures of merit are lose to �WP0� and �WP9�, re-

spetively.

6

The �gure of merit N2
S/(NS +NB)

3/2
is maximal between �WP1� and �WP3�,

thus pointing to a seletion lose to the loose BDT optimization. The pro�le of this �g-

ure of merit and the orresponding optimal seletion are the most similar to the pro�le

of unertainties shown in Fig. 5.1. The �gure of merit that we hose for this analysis is

therefore that de�ned in Eq. 5.16. Table 5.3 summarizes the orresponding BDT seletion

ut values for the di�erent data-taking periods and K0
S
reonstrution modes.

6

The loose and tight optimizations of the BDT have been obtained using an approximate invariant-

mass �t model and in eah spetrum separately. It explains the fat that the optimum for the Punzi

�gure of merit is not �WP9�.
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Figure 5.2 � Values of di�erent �gures of merit evaluated in eah of the working points. The �BR�

label (blak points) refers to the NS/
√
NS +NB �gure of merit, whereas �Dalitz� (red points)

refers to N2
S/(NS +NB)

3/2
. The �Punzi2� (blue points) and �Punzi5� (yellow points) labels refer

the to Punzi �gures of merit alulated with a = 2 and a = 5, respetively.

5.3 Yields of the signal and bakground speies

Data events are seleted in a invariant-mass window around the B0
signal peak. As we do

not perform an extended �t, yields of signal and bakground speies are estimated from

the invariant-mass �t. The estimated number of events Nwindow
i for an event speies i in

a mass window de�ned between mmin and mmax is

Nwindow
i = Ni

∫ mmax

mmin
fi(m)dm

∫ 5800

5150
fi(m)dm

, (5.18)

where Ni is the number of events from the event speies i extrated from the mass

�t in the whole mass range, de�ned as the 5150�5800MeV/c2 interval, and fi(m) is the
distribution of the event speies i. As mentioned in Se. 5.1, we de�ne signal mass windows

following

mmin = µ− 2.5σ,mmax = µ+ 2.5σ, (5.19)

where µ and σ are the values of the orresponding parameters in the double Crystal-Ball

distribution that desribes the B0→ K0
SK

+K−
signal.

Table 5.4 shows the estimated number of events for eah event speies, K0
S
reonstru-

tion mode, and data-taking period. In the following, we neglet events from the partially
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Table 5.4 � Number of events for eah event speies for the di�erent data-taking periods and K0
S

reonstrution mode. Purity is de�ned as the proportion of signal events in the sample. �B0

CF� refers to the ross-feed from B0 → K0
SK

±π∓
events, whereas �B0

s CF� refers to the ross-

feed from B0
s → K0

SK
±π∓

events. Similarly, �PR1� and �PR2� refer to harmed and harmless

partially reonstruted bakgrounds, respetively.

Year K0
S re. mode Signal Comb. B0

CF B0
s CF PR1 PR2 Purity(%)

2011 DD 271.5 39.2 6.1 0.0 0.0 0.0 85.7

2011 LL 210.5 39.5 3.8 0.0 0.0 0.0 82.9

2012a DD 176.1 29.9 5.2 0.0 0.0 0.0 83.4

2012a LL 114.9 10.0 2.2 0.0 0.0 0.0 90.3

2012b DD 649.9 88.8 11.2 0.1 0.0 0.0 86.7

2012b LL 330.1 23.1 4.9 0.0 0.0 0.0 92.2

reonstruted bakground. Due to the blinding of the B0
s → K0

S
K+K−

yield in the mass

�t, we an only estimate the number of events in the mass window through an eduated

guess. Postulating that

N(B0
s )(Year)(K

0
S) =

N(B0)(Year)(K0
S
)

λ2
, (5.20)

where λ is the sine of the Cabibbo angle, we �nd fewer than two events of B0
s → K0

S
K+K−

in the signal window for all data-taking periods and K0
S
reonstrution modes ombined.

We thus ignore this ontribution in the following.

5.4 Bakground distributions

5.4.1 Combinatorial bakground modelling

The nature of ombinatorial bakground in this analysis is disussed in Se. 4.3.5. We

expet that events with a B andidate mass larger than 5550MeV/c2 originate only from

ombinatorial bakground,

7

thus we use the distribution over the Dalitz plot of events

from this sideband to model the ombinatorial bakground distribution.

The small number of upper-mass sideband events limits the understanding of the

ombinatorial bakground. In order to estimate more aurately the distribution of these

events over the Dalitz plot, we relax the BDT seletion. We hek the dependeny of

this distribution with respet to the BDT output value by splitting the dataset in the

upper-mass sideband in ten samples with roughly the same number of events in di�erent

7

This threshold is larger than that used for the BDT training as in the K0
S
K+K−

mode ross-feeds

from B0
s → K0

S
K±π∓

are not negligible at 5450MeV/c2.

116



Table 5.5 � Values of the BDT output variable used to split the 2011, Down-Down dataset, and

number of events in eah dataset.

Minimum BDT value -0.12 -0.10 -0.09 -0.06 -0.04 -0.01 0.02 0.06 0.12 0.22

Number of events 35 28 32 29 30 37 24 32 32 29

0 1.32879 1.76684 1.22134 0.95044 1.33461 0.788159 0.852551 0.993128 1.04696

1.32879 0 0.742006 1.42472 1.12517 1.4122 0.892134 1.17179 0.875465 1.53665

1.76684 0.742006 0 1.19314 1.167 1.43951 0.544585 1.49659 0.911559 1.52532

1.22134 1.42472 1.19314 0 0.822118 1.19435 0.848266 0.942575 1.28277 1.20279

0.95044 1.12517 1.167 0.822118 0 0.656304 0.723035 0.642815 0.836509 0.926649

1.33461 1.4122 1.43951 1.19435 0.656304 0 0.667184 0.956314 1.0316 1.38601

0.788159 0.892134 0.544585 0.848266 0.723035 0.667184 0 0.598707 0.70904 0.75438

0.852551 1.17179 1.49659 0.942575 0.642815 0.956314 0.598707 0 0.968396 0.622912

0.993128 0.875465 0.911559 1.28277 0.836509 1.0316 0.70904 0.968396 0 0.744651

1.04696 1.53665 1.52532 1.20279 0.926649 1.38601 0.75438 0.622912 0.744651 0
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Figure 5.3 � Calulated χ2/ndf between distributions of upper-mass sideband events from 2011,

Down-Down data samples. Eah distribution orresponds to an interval of BDT output variable.

BDT intervals. Table 5.5 shows the BDT seletion ut values used to split the dataset and

Fig. 5.3 shows the alulated χ2/ndf between pairs of these distributions for 2011, Down-

Down events. As there is no lear trend, we relax the BDT seletion to that orresponding

to the loose optimization of the BDT.

Figure 5.4 shows the distribution of ombinatorial bakground events over the Dalitz

plane for all K0
S
reonstrution modes and data-taking periods, using the relaxed BDT
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ut value.

5.4.2 Cross-feeds modelling

The sWeighting proedure that is desribed in Se. 4.7 an be used to estimate the distribu-

tion of ross-feed events aross the Dalitz plane as well. Figure 5.5 shows the distribution

aross the Dalitz plot of the two ross-feed speies that are present in the mass window,

along with the unertainties on these distributions for 2011, Down-Down events.

5.5 E�ieny variations aross the Dalitz plot

As disussed in Se. 4, the e�ieny of signal events is not �at aross the Dalitz plane, for

instane beause of the limited geometrial aeptane of the LHCb detetor. This non-

uniformity has to be taken into aount in the �t to data, as it results in a distortion of

the observed distribution of signal events over the Dalitz plane. We use a similar approah

as in Se. 4.1, breaking down the total e�ieny into three multipliative ontributions:

• ǫgen is the e�ieny of the generator-level uts applied to the Monte-Carlo samples

that are used to evaluate the rest of the e�ienies;

• ǫsel|gen is the e�ieny of the trigger, reonstrution, stripping, and seletion methods.

It is evaluated using signal Monte-Carlo samples, orreted for disrepanies between

simulation and data. Vetoes on harmed ontributions are removed if they do not

inlude a mis-ID hypothesis, as they are taken into aount in the Dalitz-plot �t;

• ǫPID|(sel|gen)
is the e�ieny of the PID requirements. It is evaluated by a data-driven

approah on signal Monte-Carlo samples, using the PIDalib pakage.

These three ontributions are then multiplied together to get the total e�ieny

ǫtot = ǫgenǫsel|genǫPID|(sel|gen)
(5.21)

In the following setion, I detail the alulation of these e�ienies and their uner-

tainties. Firstly, I present the methods used in the evaluation of unertainties, then the

extration of generator-level e�ienies, of the seletion e�ieny along with all the rel-

evant orretions of data/MC disrepanies, and �nally of PID e�ienies. As there is

no soure of sti� variation of e�ieny aross the Dalitz plane

8

, we smooth e�ieny

histograms using a two-dimensional ubi interpolation (�spline�).

8

Vetoes on harmed resonanes onstitute suh a soure but are onsidered independently.
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5.5.1 Unertainty estimation proedure

We evaluate the asymmetri unertainty on the e�ieny in eah bin of the Dalitz plot

independently. In the simple ase where the e�ieny is

ǫ =
Npassed

Ntotal
, (5.22)

the unertainty on the e�ieny ǫ an be determined using Clopper-Pearson intervals,

implemented in the TEffiieny pakage [71℄. These intervals provide a overage of the

unertainty that is always onservative, thus suitable for the evaluation of systemati

unertainties. However, this tehnique does not extend to weighted events, espeially if

the unertainty on the weights has to be taken into aount. In that ase, we evaluate

the unertainty as follows:

• reate 500 new samples using the bootstrapping method. This method reates a new

sample out of an original one by randomly resampling the events. Event weights

are randomized within their unertainties;

• evaluate the e�ieny histogram for eah sample;

• in eah bin of the e�ieny histograms, �t the distribution of e�ienies in the

500 samples using a bifurated Gaussian. The upper and lower unertainties are

assigned to the right and left width parameters values, respetively.

All soures of unertainties are onsidered as unorrelated, and are thus summed in

quadrature to estimate the total unertainty for a given ontribution. Likewise, the total

unertainty on the e�ieny is alulated by propagating the unertainties on ǫgen, ǫsel|gen,
and ǫPID|(sel|gen)

assuming no orrelation between them.

5.5.2 Aeptane of the generator-level ut

In order to save CPU, we apply in this analysis a generator-level ut requiring that both

the K+
and the K−

are generated inside of the detetor aeptane. This aeptane is

modelled as the θ ∈ [0.01 rad, 0.4 rad] interval, θ being the angle formed between a trak

and the z axis. Setion 2.5 presented the priniple of generator-level uts.

We generate a sample of 50,000 B0 → K0
S
K+K−

events with no generator-level ut

applied and a �at distribution over the square Dalitz plane. The K0
S reonstrution

mode is not relevant here, nor is the di�erene between pre-June and post-June trigger

on�gurations in 2012. The generator-level e�ieny in eah bin of the Dalitz plot is the

ratio of the number of events that pass the ut

θK+,K− ∈ [0.01 rad, 0.4 rad]. (5.23)
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Figure 5.6 shows the results of this proedure for both 2011 and 2012 onditions, along

with the generated distributions. The non-uniformity of the generated distribution aross

the Dalitz plane is a well-known feature of the flatSqDalitz generation, and does not

impat the extration of e�ienies. Figure 5.7 shows the asymmetri unertainties on

the generator-level e�ienies, alulated using Clopper-Pearson intervals.

5.5.3 Seletion e�ieny

The seletion e�ieny is determined in eah bin of the Dalitz plot following

ǫsel|gen =
Nsel

Ngen

, (5.24)

where Nsel is the number of events that pass the stripping, trigger, preseletion, and

BDT seletion. Corretion fators are applied to aount for data/MC di�erenes in the

traking and trigger e�ienies.

Re-weighting of the MC

Traking e�ieny in LHCb depends, among other variables, on the momentum p and the

pseudorapidity η of eah partile, along with the number of traks in the event. These

variables are not exatly modelled by the Monte-Carlo simulation. We use data events in

the signal mass window as a referene for the distribution of these variables in data, and

reweight Monte-Carlo samples to math these distributions. The unertainty on these

weights is estimated using the bootstrap method desribed in Se. 5.5.1.

Traking e�ieny orretion

The LHCb experiment disposes of referene tables to orret for data/MC disrepanies

in traking e�ieny of Long traks. These tables are produed using deays that have

both a large prodution rate and large branhing frations. Weights depending on a

two-dimensional binning of p and η are alulated using these tables.

Figure 5.8 shows the traking-e�ieny orretions that we apply depending on the

Dalitz-plot oordinates. These orretions are lose to unity, but show a dependeny on

the Dalitz plot.

L0Hadron trigger e�ieny orretion

As desribed in Se. 2.4, the trigger system in LHCb onsists of three steps: L0, Hlt1,

and Hlt2. The e�ieny of the Hlt1 and Hlt2 is well modelled in the simulation, but

there are signi�ant di�erenes in the L0Hadron_TOS line e�ienies that we use in this

analysis.

9

Indeed, this line is �red up eah time there is a large enough deposit of trans-

verse energy ET in one luster of the hadroni alorimeter, and modelling the response of

9

There are also data/MC di�erenes in the L0Eletron_TOS line, but we do not use it.
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this alorimeter requires an exellent understanding of hadroni showers in thik materials

and of the aging of these materials.

In order to orret the e�ienies for the data/MC di�erenes in L0Hadron_TOS e�-

ieny, we split the sample between trigger-on-signal (TOS) and trigger-independent-of-

signal (TIS) samples. We require that events in the TIS sample do not �re L0Hadron_TOS

in order to build exlusive samples.

We dispose of tables where the e�ieny of the L0Hadron_TOS trigger as a funtion of

the energy of a given luster formed in the alorimeter. Clusters an be formed by one or

several partiles, and also partially overlap. Eah luster i having a probability p(ET,i) of
�ring the trigger depending on its transverse energy ET,i, the total data-driven e�ieny

estimation of the L0Hadron_TOS trigger is

ǫTOS
data = 1−

∏

i

(1− p(ET,i)), (5.25)

whereas the e�ieny of the L0Global_TIS&!L0Hadron_TOS trigger is

ǫTIS&!TOS
data =

∏

i

(1− p(ET,i)). (5.26)

We estimate in eah bin of the Dalitz plot the orretion fator on L0Hadron trigger

e�ieny for TIS(TOS) events as

k
TIS(TOS)
L0 =

ǫ
TIS(TOS)
data

ǫ
TIS(TOS)
MC

, (5.27)

where ǫ
TIS(TOS)
MC is the L0Hadron trigger e�ieny alulated on Monte-Carlo samples as

the proportion of events that do not pass the L0Hadron_TOS trigger.

We onsider possible unertainties originating from limited statistis and from tables

values. Both are estimated using the bootstrap method desribed in Se. 5.5.1, and are

summed in quadrature. Figure 5.9 shows alulated orretions for Down-Down simulated

events in the TOS trigger ategory, where all data-taking periods are onsidered together,

along with upper and lower unertainties on these orretions. The orretion fator

varies signi�antly aross the Dalitz plot, thus stressing the importane of applying this

orretion.

Total seletion e�ieny

The total seletion e�ieny is alulated by summing the TOS and TIS ontributions

following
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Table 5.6 � Binning on the momentum and transverse momentum of eah partile used in the

PIDalib method.

Variable Binning

p 3000�9300�15600�18515�28325�40097�59717�100000

η 1.5�2.4975�2.7075�3.0575�3.3725�3.7225�4.0025�5.

ǫsel|gen =
fTOS
data

fTOS
MC

kTOS
L0 ǫsel|gen,TOS +

1− fTOS
data

1− fTOS
MC

kTIS&!TOS
L0 ǫsel|gen,TIS&!TOS

(5.28)

where f
TOS(TIS&!TOS)
data(MC) is the fration of events in data (Monte-Carlo) for whih

L0Hadron_TOS is (not) �red, and ǫsel|gen,TOS(TIS&!TOS)
is the seletion e�ieny alulated

using Eq. 5.24 on the subset of Monte-Carlo samples in whih L0Hadron_TOS is (not)

�red.

Figure 5.10 shows the seletion e�ieny for 2011, Down-Down events, along with

the unertainties on e�ienies, in the TOS and TIS&!TOS trigger ategories. Large

strutures that an be seen aross the Dalitz plane are expeted to originate from stripping

and trigger, while the BDT seletion method itself was designed not to bias the Dalitz

plot.

5.5.4 PID e�ieny

As desribed in Se. 2.5.3, a realisti estimate of the e�ieny of a PID requirement

on Monte-Carlo samples an be estimated by the PIDalib pakage. This tehnique

attributes a weight to eah event that estimates the expeted e�ieny of the PID re-

quirement on this event. In eah bin A of the Dalitz plot, the e�ieny is then

ǫPID|(sel|gen)(A) =

∑

e∈A
we

Ne∈A
, (5.29)

where we is the weight attributed by the PIDalib method to event e.

The PIDalib method takes into aount the dependeny of PID e�ieny on the

momentum p and pseudorapidity η of eah partile, and on the number of traks in the

overall event. We deide to integrate out the dependeny on the number of traks, and

onsider the binning desribed in Table 5.6.

Figure 5.11 shows the PID e�ieny of events of the 2011 data-taking period, in the

Down-Down K0
S
reonstrution mode, along with the unertainties on these e�ienies.
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5.5.5 Total e�ienies

We ombine all the e�ienies previously alulated using Eq. 5.21, and propagate the

unertainties aordingly. Figure 5.12 shows the results of the e�ieny alulation for

2011 events reonstruted in the Down-Down mode.

The prinipal soure of unertainties on the total e�ieny is the seletion e�ieny,

and espeially the orretion on the L0Hadron e�ieny.
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Figure 5.4 � Distributions of ombinatorial bakground events over the Dalitz plane. Events

from Down-Down (Long-Long) K0
S reonstrution mode are shown on the left (right). Top: 2011

events. Middle: 2012 pre-June events. Bottom: 2012 post-June events.
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Figure 5.9 � Top, left: orretion fators for TOS, Down-Down events. Top, right: splined

orretion fators. Bottom: upper (lower) unertainties on orretion fators are shown on the

left (right).

129



’m0 0.2 0.4 0.6 0.8 1

’θ

0

0.2

0.4

0.6

0.8

1

0.001

0.002

0.003

0.004

0.005

’m0 0.2 0.4 0.6 0.8 1

’θ

0

0.2

0.4

0.6

0.8

1

0

0.0005

0.001

0.0015

’m0 0.2 0.4 0.6 0.8 1

’θ

0

0.2

0.4

0.6

0.8

1

0.1

0.15

0.2

0.25

0.3

3−10×

’m0 0.2 0.4 0.6 0.8 1

’θ

0

0.2

0.4

0.6

0.8

1

0.05

0.1

0.15

3−10×

’m0 0.2 0.4 0.6 0.8 1

’θ

0

0.2

0.4

0.6

0.8

1

0.1

0.15

0.2

0.25

0.3

3−10×

’m0 0.2 0.4 0.6 0.8 1

’θ

0

0.2

0.4

0.6

0.8

1

0.05

0.1

0.15

3−10×

Figure 5.10 � Top: total seletion e�ieny for 2011, Down-Down events, in the TOS (left) and

TIS&!TOS (right) trigger ategory. Middle: upper unertainty on the seletion e�ieny for
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Down events. Bottom: upper (lower) unertainties on the total signal e�ieny are shown on
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5.6 Data-�t model

The main goal of this analysis is to provide a starting point for future analyses of the

B0 → K0
SK

+K−
mode in LHCb, as well as bringing additional information that an be

ombined with the latest result from BaBar. The baseline model of our analysis is similar

to that from BaBar, and we present it in Se. 5.6.1. We aim at improving its desription of

the data by adding resonanes, removing resonanes, or hanging their parameterization.

We ompare the quality of di�erent models by means of goodness-of-�t methods, presented

in App. B. Setion 5.6.2 presents the results of this �t to data.

5.6.1 Baseline model

Table 5.7 details the intermediate resonanes omposing the baseline �t model, and their

parameterizations.

The nonresonant (NR) omponent of the amplitude is desribed as the sum of a S-
wave and a P -wave, both modelled as a seond-degree polynomial in the parameter Ω,
de�ned as

Ω =
1

2
(mB +

1

3
(mK+ +mK− +mK0

S
)). (5.30)

Fits to data using di�erent models and sets of �xed parameter onsistently result in

a small (< 0.1%) �t fration for the �rst-degree term of the P -wave. In order to improve

the stability of the �t, we remove this omponent. The nonresonant amplitude is then

the sum of �ve terms, PolNR(S0), PolNR(S1), PolNR(S2), PolNR(P0), and PolNR(P2),

where the �S� and �P� letters stand for S-wave and P -wave, respetively. The indexes 0,
1, and 2 designate the degree of the polynomial term in Ω.

Table 5.7 � Modelling of the resonanes used in the model. Masses and widths are given in

MeV/c2.

Resonane Shape parameters Lineshape

φ0
m = 1019.455 ± 0.020, Γ = 4.26 ± 0.04 Rel. BW

f0(980) m = 965 ± 10, gπ = (0.165 ± 0.018) GeV2/c4, gK/gπ = 4.21 ± 0.33 Flatté

f0(1500) m = 1505 ± 6, Γ = 109 ± 7 Rel. BW

f0(1710) m = 1720 ± 6, Γ = 135 ± 8 Rel. BW

f
′

2(1525) m = 1525 ± 5, Γ = 73+6
−5 Rel. BW

χc0 m = 3414.75 ± 0.31, Γ = 10.3 ± 0.6 Rel. BW
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Figure 5.13 � Distribution of data events from all data-taking periods and K0
S reonstrution

modes over the Dalitz plot (left) and the square Dalitz plot (right).
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Figure 5.14 � (left) Distribution of negative log-likelihood for all onverged �ts on data. (right)

Distribution of negative log-likelihood for onverged �ts lose to the best minimum.

5.6.2 Fit results

Figure 5.13 shows the distribution of data events over the Dalitz plot and the square

Dalitz plot, ombining datasets from all K0
S reonstrution modes and all data-taking

periods.

We perform 1000 �ts to data using randomized initial values for all parameters, and

show the obtained likelihood values in Fig. 5.14. A lear best minimum is present, and

there are 15 seondary minima within a 3σ interval. Table 5.8 shows the isobar parameters

and �t frations for the best minimum, along with the statistial unertainties. The sum of

�t frations is di�erent from 100%, indiating signi�ant interferene between resonanes,

as expeted. Table 5.9 shows the interferene �t frations between all the intermediate

states.

Figure 5.15 shows the �t frations of all the intermediate states for the best minimum
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Table 5.8 � Isobar parameters and �t frations for the best minimum, along with unertainties

as estimated by MIGRAD.

Resonane Fit fration (%) c φ
φ0

(1020) 14.02 0.70±0.14 0.35 (�xed)

f0(980) 28.34 0.99±0.19 1.92±0.62
f0(1500) 4.50 0.40±0.09 -1.77±0.43
f

′

2(1525) 4.28 0.39±0.10 0.14±0.39
f0(1710) 1.70 0.24±0.07 -0.19±0.39
χc0 2.87 0.32±0.07 -1.29±0.30
PolNR(S0) 20.16 0.84 (�xed) 0.00 (�xed)

PolNR(S1) 9.38 0.57±0.11 -3.30±0.30
PolNR(S2) 2.97 0.32±0.13 3.84±0.37
PolNR(P0) 23.86 0.91±0.21 1.13 (�xed)

PolNR(P2) 8.41 0.54±0.15 -2.29 (�xed)

Sum 120.48

Table 5.9 � Measured interferene �t frations orresponding to the best minimum. The A0�

10 indexes orrespond to, in order, φ0
, f0(980), f0(1500), f

′

2(1525), f0(1710), χc0, PolNR_S0,

PolNR_S1, PolNR_S2, PolNR_P0, and PolNR_P2.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A0 14.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -7.24 5.69

A1 28.34 1.17 0.00 -4.56 0.54 -1.80 -3.57 9.99 0.00 0.00

A2 4.50 0.00 2.47 -0.02 3.92 3.35 -1.24 0.00 0.00

A3 4.28 -0.00 0.00 0.00 0.00 0.00 0.00 0.00

A4 1.70 -0.11 -1.17 0.56 -1.01 0.00 0.00

A5 2.87 1.25 -0.13 -0.14 0.00 0.00

A6 20.16 -1.71 -8.31 0.00 0.00

A7 9.38 0.59 0.00 0.00

A8 2.97 0.00 0.00

A9 23.86 -19.02

A10 8.41

and the 15 losest seondary minima. The �t frations of the φ0
orresponding to di�erent

minima are similar, whereas mirror solutions for the χc0 and the f0(1710) are learly

distinguishable. The �t frations of broad salars suh as the f0(980) and the nonresonant
S-wave strongly vary between the solutions. We thus do not extrat a Q2B branhing

fration for these modes.
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Figures 5.16 and 5.17 show projetions of the �t results on di�erent Dalitz-plot vari-

ables and the pulls distribution over the Dalitz plane, all the K0
S reonstrution modes

and data-taking periods taken together. We notie several loalized disrepanies, but an

overall satisfatory agreement, espeially for m′
and θ′.

We also alulate the angular moments, de�ned as

< Pl(cos(θK+K−)) >=

1
∫

−1

dΓPl(cos(θK+K−)d cos(θK+K−)), (5.31)

where Pl is the l
th

Legendre polynomial, Γ is the di�erential deay rate, and θK+K−
is

the heliity angle between K+
and K0

S
. They onstitute an alternative representation

to the ordinary DP projetion, and provide more information as they probe the angular

distribution of data. Indeed, onsidering that there is no partial-wave amplitudes of spin

3 or higher, the amplitude writes as

A(mK+K−, θK+K−) =AS(mK+K−, θK+K−)P0(cos(θK+K−))

+AP (mK+K−, θK+K−)eiφP (m
K+K−)P1(cos(θK+K−))

+AD(mK+K−, θK+K−)eiφD(m
K+K− )P2(cos(θK+K−)), (5.32)
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Figure 5.16 � Distributions of m2
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SK
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in data events (red dots) and in a Monte-Carlo sampled from the �t results (blue dots). Bottom,

right: pull distribution between data events and the �t result.

where AS,P,D and φP,D are real-valued funtions ofmK+K−
(φS is absorbed in the de�nition

of the phases). Using the orthogonality of Legendre polynomials

1
∫

−1

Pi(cos θK+K−)Pj(cos θK+K−)d cos θK+K− =
2

2l + 1
δij , (5.33)
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Carlo sampled from the �t results (blue dots).

we an relate the average of angular moments to the amplitude

10

< P0 > =
|AS|2 + |AP |2 + |AD|2√

2
;

< P1 > =
√
2ASAP cos(φP ) +

2
√
10

5
APAD cos(φP − φD);
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√

2

5
A2

P +

√
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A2

D +
√
2ASAD cosφD;

< P3 > =
3

5

√

30

7
APAD cos(φP − φD);

< P4 > =

√
18

7
A2

D. (5.34)

The analysis is not �avour-tagged, and as a result we observe the sum of B0
and B0

on-

tributions. Assuming no CP violation and as the model only inludes K+K−
resonanes,

the partial-wave amplitudes ful�ll

AS = AS

AP = −AP

AD = AD, (5.35)

where A refers to the B0
amplitude. As a result, terms that are a produt between odd

and even waves anel out. The < P1 > and < P3 > terms only ontain suh terms, and

10

Dependenies on mK+K−
have been dropped for larity purposes.
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Figure 5.18 � Distributions of angular moments as a funtion of mK+K− in data (red points) and

in a Monte-Carlo sampled from the �t results (blue line) for l = 0, 1, 2, 3 (top, left; top, right;

bottom, left; bottom, right).

we thus expet a onstant distribution ompatible with 0 in data.

11

Figures 5.18 and 5.19 show the projetion of data events and of the �t result on

these variables for l < 4 as a funtion of mK+K−
in the entire mass range and in the

mK+K− < 2GeV/c2 interval, respetively. The agreement between data and the model

is satisfying.

5.7 Fit validation

The stability of the �t model is ensured by means of toy studies omparable to those

desribed in Se. 4.5. This proedure also allows to estimate the biases and the statistial

11

This is equivalent to the fat that we are not sensitive to relative phases between even and odd waves,

as < P1 > and < P3 > an be interpreted as the mean e�et of the interferene between even and odd

partial waves.
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Figure 5.19 � Distributions of angular moments as a funtion of mK+K− in data (red points) and

in a Monte-Carlo sampled from the �t results (blue line) for l = 0, 1, 2, 3 (top, left; top, right;

bottom, left; bottom, right), in the mK+K− < 2GeV/c2 interval.

unertainties on �t frations. Table 5.10 summarizes the isobar parameters for whih a

signi�ant bias is observed.

Fit frations are non-linear ombinations of isobar parameters (see Eq. 1.56), and

the estimation of their statistial unertainty from the �t is di�ult. We estimate the

asymmetri unertainty on �t frations using the toy studies previously mentioned, by

�tting the resulting distribution of residuals with a bifurated Gaussian. We hek that

the interval de�ned as suh ontains 68% of toys, and thus that the unertainties are

orretly overed. Figure 5.20 show some of these residual distributions, and Table 5.11

shows the resulting unertainties, along with the measured biases.

Additionally, we perform a likelihood san of eah �t parameter in order to hek

their onsisteny with the unertainties on isobar parameters. Figure 5.21 shows the

result of this proedure on the parameters of the f0(980) ontribution, along with the

unertainty provided by the nominal �t. Table 5.12 details the unertainties as obtained
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Table 5.10 � Summary of signi�ant biases of isobar parameters, along with the values obtained

for the best minimum.

Parameter Value Bias

c(φ0
) 0.6 -0.1

c(f0(980)) 0.7 -0.067

φ(f0(980)) 2.4 -0.95

c(f0(1500)) 0.34 -0.075

φ(f0(1500)) -1.4 -0.49

c(f
′

2(1525)) 0.27 -0.065

φ(f
′

2(1525)) 0.28 -0.55

c(f0(1710)) 0.23 -0.037

φ(f0(1710)) -0.0071 -0.28

c(χc0) 0.25 -0.051

φ(χc0) -1.3 -0.052

c(PolNR(S1)) 0.47 -0.0049

φ(PolNR(S1)) -3.1 -0.62

c(PolNR(S2)) 0.42 -0.0037

φ(PolNR(S2)) 3.9 0.34

c(PolNR(P0)) 0.79 -0.18

c(PolNR(P2)) 0.39 -0.073

φ(PolNR(P2)) -2.3 0.26

Table 5.11 � Statistial unertainties and biases of �t frations estimated by �tting the distribu-

tion of residuals of toy experiments with a bifurated Gaussian.

Parameter Value (%) Bias (%) Lower un. (%) Upper un. (%)

FF (φ0
) 13 -0.32 1.4 2

FF (f0(980)) 18 -9.6 3.6 21

FF (f0(1500)) 4.2 -0.97 0.96 2.3

FF (f
′

2(1525)) 2.7 -0.52 0.64 1.8

FF (f0(1710)) 1.9 -0.65 0.46 2.1

FF (χc0) 2.3 -0.31 0.28 0.79

FF (PolNR(S0)) 26 2.3 5.7 16

FF (PolNR(S1)) 7.9 0.17 2.2 9

FF (PolNR(S2)) 6.6 -2.6 1.8 11

FF (PolNR(P0)) 23 -2.6 5.1 4.7

FF (PolNR(P2)) 5.5 -0.63 3.6 3.7
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Figure 5.20 � Distributions of residuals of the φ0
and χc0 �t frations (left and right, respetively).

from MINOS and the unertainties from the likelihood sans for eah isobar parameter.

12

We notie that unertainties from the likelihood sans are systematially larger than the

unertainties from MINOS. The values are however lose, and the signi�ant asymmetry

of the unertainties for ertain parameters justi�es the use of MINOS unertainties in the

following rather than those from MIGRAD.

5.8 Evaluation of systemati unertainties

5.8.1 Fit-bias estimation

As desribed in Se. 5.7, the model is validated using pseudo-experiments. For eah

parameter, we extrat the average bias and, in ase it is signi�ant, assign the systemati

unertainty

∆X =| δX
2

|, (5.36)

where δX is the bias measured on the parameter X .

5.8.2 General method to evaluate systemati unertainties

The method to extrat systemati unertainties is similar to that exposed in Se 4.6. We

divide systemati unertainties in two ategories:

12

The 1σ interval around a minimum an be de�ned by the losest values for whih the NLL is 0.5

larger than at that minimum.
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Figure 5.21 � Likelihood sans of the magnitude (left) and the phase (right) of the f0(1500),
shifted by the minimum value and in the [0,12.5℄ interval (orresponding to a 5σ distane from

the minimum). The vertial, dotted red line indiates the minimum found by the nominal �t.

The values for whih the NLL rosses the ∆(NLL) = 0.5 line (1σ) are indiated by the green

line.

• systemati unertainties related to assumptions on �xed parameters, suh as e�-

ienies, resonane parameters, and yields;

• systemati unertainties related to the hoie of the model used to �t the data.

The �rst kind of unertainties is estimated by varying the �xed parameters within

their unertainties, taking orrelations into aount whenever possible, and �tting the

model to data with the randomized parameter. The unertainty ∆X on a parameter X
is then

∆X =

√

σ2
X + (

µX

2
)2, (5.37)

where µX and σX are mean and the rms of the distribution of residuals alulated between

the nominal �t and the �ts using randomized parameters.

The seond kind of unertainties is estimated by �tting the onurrent model to data,

and using the result of that �t to generate pseudo-experiments. These pseudo-experiments

are then �tted using both the nominal and the onurrent model. The systemati uner-

tainty on a parameter X is then alulated using Eq. 5.37, where µX and σX are the mean

and the rms of the distribution of residuals alulated between the �ts using the nominal

model and those using the onurrent model.

143



Table 5.12 � Isobar parameters along with unertainties extrated from MIGRAD, MINOS, or the

likelihood sans.

Parameter Value Stat. (�t) Stat. (san) Stat. (MINOS)

c(φ0
) 0.6 ±0.072 ±0.088

0.096 ±0.062
0.048

φ(φ0
) 0.35 �xed �xed �xed

c(f0(980)) 0.7 ±0.16 ±0.17
0.22 ±0.064

0.062

φ(f0(980)) 2.4 ±0.79 ±0.65
0.71 ±0.41

0.63

c(f0(1500)) 0.34 ±0.054 ±0.058
0.085 ±0.043

0.038

φ(f0(1500)) -1.4 ±0.45 ±0.54
0.46 ±0.37

0.3

c(f
′

2(1525)) 0.27 ±0.056 ±0.063
0.06 ±0.058

0.046

φ(f
′

2(1525)) 0.28 ±0.43 ±0.47
0.45 ±0.37

0.29

c(f0(1710)) 0.23 ±0.044 ±0.048
0.054 ±0.034

0.033

φ(f0(1710)) -0.0071 ±0.4 ±0.47
0.39 ±0.34

0.24

c(χc0) 0.25 ±0.038 ±0.044
0.038 ±0.035

0.027

c(PolNR(S0)) 0.84 �xed �xed �xed

φ(PolNR(S0)) 0 �xed �xed �xed

c(PolNR(S1)) 0.47 ±0.089 ±0.096
0.088 ±0.098

0.14

φ(PolNR(S1)) -3.1 ±0.3 ±−0.034
0.39 ±0.24

0.16

c(PolNR(S2)) 0.42 ±0.11 ±0.12
0.13 ±0.18

0.23

φ(PolNR(S2)) 3.9 ±0.21 ±−0.29
0.20 ±0.22

0.6

c(PolNR(P0)) 0.79 ±0.12 ±0.12
0.13 ±0.11

0.088

φ(PolNR(P0)) 1.1 �xed �xed �xed

c(PolNR(P2)) 0.39 ±0.12 ±0.11
0.13 ±0.065

0.058

φ(PolNR(P2)) -2.3 �xed �xed �xed

5.8.3 E�ienies

The method to evaluate e�ienies aross the Dalitz plot along with the unertainties

on the e�ieny values has been disussed in Se. 5.5. We �t the model to data using

alternative e�ieny maps obtained by varying the nominal e�ieny maps within their

unertainties. We neglet orrelations between data-taking periods and neighbouring bins

in the histograms, and show the results in Table 5.13.

5.8.4 Signal and bakground yields estimations

As explained in Se. 5.3, signal and bakground yields are �xed in the �t to data, and

taken from the invariant-mass �t. In order to take into aount all possible orrelations,

we use the full ovariane matrix from the invariant-mass �t to obtain a set of alternative

yields and shape parameters. The integrals of the ontributions in the signal mass window

are realulated.

Table 5.14 shows the systemati unertainties related to the estimation of signal and
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Table 5.13 � Systemati unertainties on isobar parameters and �t frations related to the esti-

mation of e�ienies.

Resonane Fit fration (%) c φ
φ0

0.17 0.03 �xed

f0(980) 4.5 0.1 0.68

f0(1500) 0.18 0.017 0.25

f
′

2(1525) 0.17 0.017 0.25

f0(1710) 0.12 0.012 0.21

χc0 0.052 0.013 0.14

PolNR(S0) 3 �xed �xed

PolNR(S1) 1.1 0.024 0.12

PolNR(S2) 1.6 0.035 0.16

PolNR(P0) 1 0.047 �xed

PolNR(P2) 1.1 0.049 �xed

Table 5.14 � Systemati unertainties on isobar parameters and �t frations related to the esti-

mations of the yields of event speies.

Resonane Fit fration (%) c φ
φ0

0.044 0.003 �xed

f0(980) 0.23 0.0026 0.026

f0(1500) 0.012 0.0019 0.012

f
′

2(1525) 0.032 0.0032 0.0089

f0(1710) 0.0073 0.0016 0.01

χc0 0.0083 0.0015 0.0045

PolNR(S0) 0.34 �xed �xed

PolNR(S1) 0.072 0.0025 0.008

PolNR(S2) 0.054 0.0039 0.0019

PolNR(P0) 0.42 0.013 �xed

PolNR(P2) 0.11 0.0025 �xed

bakground yields on isobar parameters and �t frations.

5.8.5 Bakground shapes

The distributions of bakground events over the Dalitz plot are onsidered separately for

ombinatorial and ross-feed ontributions. We perform 200 �ts to data, varying the

histograms representing these distributions within their unertainties. Neighbouring bins

are onsidered as unorrelated, as are histograms for di�erent data-taking periods and K0
S

reonstrution modes.
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Table 5.15 � Systemati unertainties on isobar parameters and �t frations related to the mod-

elling of bakgrounds.

Resonane Fit fration (%) c φ
φ0

0.028 0.002 �xed

f0(980) 0.26 0.0051 0.024

f0(1500) 0.015 0.0012 0.012

f
′

2(1525) 0.035 0.0021 0.011

f0(1710) 0.017 0.0012 0.0098

χc0 0.01 0.0011 0.006

PolNR(S0) 0.18 �xed �xed

PolNR(S1) 0.11 0.0036 0.01

PolNR(S2) 0.13 0.0039 0.0066

PolNR(P0) 0.13 0.0043 �xed

PolNR(P2) 0.16 0.0054 �xed

Table 5.15 shows the systemati unertainties on isobar parameters and �t frations

related to the shape of the ombinatorial bakground shape and the ross-feeds.

5.8.6 Total experimental systemati unertainties

The previous systemati unertainties related to the imperfet knowledge of the event yield

speies and experimental setup are summed in quadrature and reported independently

from other soures of systemati unertainties in the �nal result. Table 5.16 shows the

experimental systemati unertainties on the isobar parameters and �t frations for the

preferred solution.

5.8.7 Resonane shape parameters

Resonane parameters suh as masses and widths are rather well-known inputs from other

experiments. We vary the mass and the width of eah resonant omponent of the Dalitz-

plot model, negleting any orrelation, and show the results in Table 5.17.

We also onsider a systemati unertainty related to Blatt-Weisskopf barrier fators,

desribed in Se. 1.3.5. When varying the values of these fators, we assume that it

remains the same for all resonanes. We vary independently the barrier fators of the

mother partile and the resonanes, and add the resulting systemati unertainties in

quadrature. Table 5.18 shows this systemati unertainty.

The overall systemati unertainty related to resonane shape parameters on a given

quantity is the sum in quadrature of all the previously mentioned systemati unertainties.
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Table 5.16 � Summary of systemati unertainties on �t frations arising from the knowledge of

event speies and experimental setup.

Parameter E�ieny Shape f. Shape omb. Yield ratios Total

FF(φ0
) 0.17 TBD 0.028 0.044 0.18

FF(f0(980)) 4.5 TBD 0.26 0.23 4.5

FF(f0(1500)) 0.18 TBD 0.015 0.012 0.18

FF(f
′

2(1525)) 0.17 TBD 0.035 0.032 0.18

FF(f0(1710)) 0.12 TBD 0.017 0.0073 0.12

FF(χc0) 0.052 TBD 0.01 0.0083 0.053

FF(PolNR(S0)) 3 TBD 0.18 0.34 3

FF(PolNR(S1)) 1.1 TBD 0.11 0.072 1.1

FF(PolNR(S2)) 1.6 TBD 0.13 0.054 1.6

FF(PolNR(P0)) 1 TBD 0.13 0.42 1.1

FF(PolNR(P2)) 1.1 TBD 0.16 0.11 1.1

Table 5.17 � Systemati unertainties on isobar parameters and �t frations originating from

�xed parameters in the lineshapes.

Resonane Fit fration (%) c φ
φ0

0.065 0.019 �xed

f0(980) 4.1 0.098 0.19

f0(1500) 0.3 0.018 0.14

f
′

2(1525) 0.13 0.013 0.073

f0(1710) 0.21 0.012 0.086

χc0 0.042 0.0091 0.064

PolNR(S0) 1.7 �xed �xed

PolNR(S1) 0.8 0.017 0.08

PolNR(S2) 1 0.031 0.11

PolNR(P0) 0.38 0.029 �xed

PolNR(P2) 0.19 0.015 �xed

5.8.8 Fixed isobar parameters

As desribed in Se. 5.6, some isobar parameters are �xed in the �t to data as the sensitiv-

ity of an untagged analysis to these parameters is limited.

13

A systemati unertainty re-

lated to the �xed parameters is assigned by varying their values within their unertainties

provided by the BaBar experiment. We neglet orrelations between these unertainties.

Table 5.19 shows the resulting systemati unertainties.

13

The isobar parameters related to the onstant term of the nonresonant S-wave are not inluded in

this, as they set the referene for both the phases and the magnitudes.
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Table 5.18 � Systemati unertainties on isobar parameters and �t frations originating from

Blatt-Weisskopf barrier fators.

Resonane FF c φ
φ0

1.1 0.07 �xed

f0(980) 1.1 0.062 0.092

f0(1500) 0.092 0.034 0.16

f
′

2(1525) 0.99 0.047 0.16

f0(1710) 0.096 0.029 0.088

χc0 0.095 0.031 0.019

PolNR(S0) 5.5 �xed �xed

PolNR(S1) 0.93 0.059 0.025

PolNR(S2) 1.3 0.0098 0.065

PolNR(P0) 5.5 0.12 �xed

PolNR(P2) 1.6 0.093 �xed

Table 5.19 � Systemati unertainties on isobar parameters and �t frations originating from �xed

isobar parameters aside from the parameters of the onstant term of the nonresonant S-wave.

Resonane Fit fration (%) c φ
φ0

0.35 0.073 �xed

f0(980) 6.5 0.07 0.85

f0(1500) 0.13 0.056 0.4

f
′

2(1525) 0.49 0.039 0.38

f0(1710) 0.079 0.035 0.33

χc0 0.1 0.047 0.099

PolNR(S0) 11 �xed �xed

PolNR(S1) 0.82 0.053 0.3

PolNR(S2) 3 0.043 0.064

PolNR(P0) 6 0.19 �xed

PolNR(P2) 2.4 0.13 �xed

5.8.9 Model unertainties

We onsider the possible presene of the following additional resonanes: f0(1370),
f2(1270), f2(2010), f2(2300), and φ(1680). No signi�ant ontribution from any of these

resonanes is found, and they are then only inluded in the model to evaluate systemati

unertainties.

In order to estimate a systemati unertainty related to an alternative model, we

generate 200 toy experiments using the �t of this model to data. We then �t eah of these

toys with the baseline model and the alternative model, and �t the distribution of the
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Table 5.20 � Systemati unertainties on �t frations originating from the addition of a resonane

in the model. They are then summed in quadrature in order to yield the total systemati

unertainty related to the model.

f0(1370) f2(1270) f2(2010) f2(2300) φ1370 Sum

φ0
0.58 0.89 0.67 0.00075 0.64 1.4

f0(980) 13. 8.5 3.4 0.023 3.9 17.

f0(1500) 2.2 0.64 0.39 0.0012 0.48 2.3

f
′

2(1525) 0.59 0.73 0.52 0.00079 1.7 2.0

f0(1710) 1.2 0.58 0.78 0.0011 0.69 1.7

χc0 0.13 0.22 0.17 0.00039 0.16 0.34

PolNR(S0) 14. 12. 8.1 0.018 5.9 21.

PolNR(S1) 8.5 11. 3.8 0.012 1.9 14.

PolNR(S2) 7.0 5.4 2.9 0.010 2.5 9.6

PolNR(P0) 3.7 4.6 4.8 0.0048 4.4 8.8

PolNR(P2) 1.9 3.6 2.2 0.0042 1.4 4.8

di�erenes of the �t frations between the two �ts with a Gaussian. The orresponding

systemati unertainty is then

∆X =

√

(µ

2

)2

+ σ2, (5.38)

where µ and σ are the mean and the width of the Gaussian.

Table 5.20 summarizes the model unertainties on eah �t fration related to the addi-

tion of one of these resonanes in the model. As expeted, this is the largest ontribution

to the systemati unertainties.

The addition of the a00(980) or the a
±
0 (980) auses the �t to onverge to a solution

that is rather far away from the global minimum. We thus do not assign a systemati

unertainty for it.

5.9 Conlusion

We have performed a preliminary Dalitz-plot analysis of the B0→ K0
S
K+K−

deay mode

in LHCb, using 3 fb

−1
of data from Run I, taking the result from BaBar [40℄ as a referene

model. The distribution of events over the Dalitz plot is overall well modelled, as shown

by Figs. 5.16 and 5.17. Table 5.21 shows the �t frations of the di�erent resonanes along

with their statistial and systemati unertainties.
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Table 5.21 � Fit frations of eah resonane, along with their statistial and systemati unertain-

ties. Eah value is in %. The quoted value is orreted for the bias. The �Total� olumn refers

to the total systemati unertainty; �Exp.� refers to the experimental systemati unertainty,

�FixParams� to the systematis unertainty related to �xed isobar parameters, �Res. par.� to

the systemati unertainty related to �xed resonane parameters, and �Add. res.� refers to the

systemati unertainty related to alternative models.

Value Stat. Bias Exp. FixParams Res. par. Add. res. Total

FF(φ0
) 13. ±1.7

2.1 0.090 0.18 0.35 1.1 1.4 1.8

FF(f0(980)) 13. ±23.
2.2 5.5 4.5 6.5 4.3 17. 20.

FF(f0(1500)) 3.7 ±2.3
1.0 0.53 0.18 0.13 0.32 2.3 2.4

FF(f
′

2(1525)) 2.9 ±1.3
1.3 0.15 0.18 0.49 1.0 2.0 2.3

FF(f0(1710)) 2.2 ±1.8
1.8 0.28 0.12 0.079 0.23 1.7 1.7

FF(χc0) 2.2 ±0.67
0.45 0.13 0.053 0.10 0.10 0.34 0.40

FF(PolNR(S0)) 25. ±18.
5.6 0.99 3.0 11. 5.8 21. 25.

FF(PolNR(S1)) 7.3 ±9.0
1.8 0.63 1.1 0.82 1.2 14. 15.

FF(PolNR(S2)) 4.5 ±12.
1.5 2.1 1.6 3.0 1.7 9.6 11.

FF(PolNR(P0)) 21. ±5.9
4.8 2.2 1.1 6.0 5.5 8.8 12.

FF(PolNR(P2)) 4.4 ±5.1
20. 1.0 1.1 2.4 1.7 4.8 5.9

The �t model has many (16) solutions within 4.5 NLL units from the best minimum,

orresponding to di�erent interferene patterns and �t frations. Resolving these solu-

tions, whih ould be made possible with a larger dataset, would help to make a �nal

interpretation of the result. However, the �t fration of the φ0
does not depend on a

spei� minimum, and its value is ompatible with the result from the B fatories. We

thus determine the Q2B branhing fration of this mode

B(B0→ K0
S
(φ0→ K+K−) =

(

1.63±0.2
0.3 (stat)± 0.2(syst)± 0.2(BF)

)

× 10−6, (5.39)

where the unertainties are statistial, systemati, and due to the unertainty on B (B0→
K0

S
K+K−

), respetively. This branhing fration is ompatible with the PDG value

BPDG(B
0→ K0φ0) = (7.3± 0.7)× 10−6. (5.40)

We also extrat branhing frations for the B0 → K0
Sχc0(→ K+K−), B0 →

K0
S
f

′

2(1525)(→ K+K−), and B0→ K0
S
f0(1710)(→ K+K−) modes

B(B0→ K0
S
χc0(→ K+K−)) =

(

0.28±0.08
0.06 (stat)± 0.05(syst)± 0.04(BF)

)

× 10−6,

B(B0→ K0
S
f

′

2(1525)(→ K+K−)) = (0.36± 0.16(stat)± 0.29(syst)± 0.05(BF))× 10−6.

B(B0→ K0
S
f0(1710)(→ K+K−)) = (0.27± 0.22(stat)± 0.21(syst)± 0.03(BF))× 10−6.

(5.41)
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The branhing fration of B0→ K0
S
f

′

2(1525)(→ K+K−) is in good agreement with PDG

values. There is no suh referene for B (B0 → K0
Sχc0(→ K+K−)), but the value is

onsistent with both BaBar and Belle measurements. Finally, the branhing fration of

f0(1710) di�ers signi�antly from the (2.2± 0.45)× 10−6
value of the PDG.
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Conlusion

The Run I dataset from the LHCb experiment, orresponding to 3 fb

−1
reorded at entre-

of-mass energies of 7 and 8TeV, has been analyzed in order to searh for the B0
s →

K0
SK

+K−
deay and update LHCb measurement of the branhing fration of other B0

d,s→
K0

S
h+h

′−
modes. Furthermore, an untagged, time-independent Dalitz-plot analysis of

B0→ K0
SK

+K−
is performed in order to extrat Q2B branhing frations.

The B0
s → K0

S
K+K−

mode is observed for the �rst time with a global signi�ane of

3.7 σ. The results obtained of the other B0→ K0
S
h±h

′∓
relative branhing frations are

B (B0
s → K0

Sπ
+π−)

B (B0→ K0
Sπ

+π−)
= 0.26± 0.04(stat.)± 0.02(syst.)± 0.01(fs/fd),

B (B0→ K0
SK

±π∓)

B (B0→ K0
S
π+π−)

= 0.17± 0.02(stat.)± 0.00(syst.),

B (B0
s → K0

S
K±π∓)

B (B0→ K0
S
π+π−)

= 1.84± 0.07(stat.)± 0.02(syst.)± 0.04(fs/fd),

B (B0→ K0
S
K+K−)

B (B0→ K0
S
π+π−)

= 0.59± 0.02(stat.)± 0.01(syst.),

(5.42)

They are ompatible with results obtained by B-fatories, and oherent with previous

measurements from LHCb, at the exeption of B0→ K0
SK

+K−
. These results are used as

a baseline to extrat signal yields and bakground distributions for the amplitude analyses

of B0→ K0
Sπ

+π−
, B0

s → K0
SK

±π∓
, and B0→ K0

SK
+K−

.

The �rst �avour-untagged, time-independent Dalitz-plot analysis of B0→ K0
S
K+K−

in LHCb is performed with a reoptimized BDT seletion. The amplitude is modelled as

the sum of a φ0
, f0(980), f0(1500), f0(1710), f

′

2(1525), χc0, and a nonresonant omponent.

This nonresonant amplitude is desribed similarly to that from the latest BaBar analysis,

as a sum of an S-wave and a P -wave, both modelled as seond-degree polynomials. Fit

frations are extrated, and quasi-two-body branhing frations are measured for the

Q2B modes B0→ K0
S
φ0
, B0→ K0

S
f

′

2(1525), B
0→ K0

S
χc0, and B

0→ K0
S
f0(1710). These

branhing frations are ompatible with results from B fatories, with the exeption of

the latter.

The study of B0
d,s→ K0

S
h+h

′−
deays will bene�t from a growing dataset in the next

few years; amplitude analyses of the suppressed modes suh as B0
s → K0

Sπ
+π−

ould
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beome possible for the �rst time. Amplitude analyses of the favoured modes suh as

B0→ K0
SK

+K−
will enter a new phase, with the addition of a tagging information that

will allow to disentangle B and B ontributions. Indeed, this information is neessary not

only to perform CP violation measurements, but also to measure the relative phases of

even and odd partial waves.
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Appendix A

Correting sWeights in the presene of

�xed yields

Subtrating bakground from the signal in physis analyses an be performed in several

ways. We desribed in Se. 4.2.3 the sPlots proedure [65℄, whih is an e�ient and

widespread method to do so; it is implemented in the RooStats pakage [72℄. In this

appendix, we fous on the e�et of �xed yields on the results, whih is doumented in

Ref. [73℄, Annexes B.1 and B.2.

Setion A.1 shortly reminds the sPlots subtration proedure and its modi�ations

in the presene of �xed yields that was presented in Se. 4.2.3. Setion A.2 then reviews

the implementation of sPlots in RooStats and the issues it may introdue. Finally, an

alternative onstrutor to the RooStats::SPlot lass that would solve these issues is

proposed in Se A.3, along with some tests.

A.1 sPlots with �xed yields

We onsider a model with NS event speies; the yield of a speies k is noted Nk and

its normalized PDF fk. The sPlots proedure allows to use the information from a

�t performed on a disriminating variable X to extrat the distributions of the ontrol

variable Y for the di�erent speies.

A main ingredient of the sPlots alulation is the ovariane matrix V of the �t, whih

an be taken from the output of a �t routine (e.g. TMinuit [74℄). Alternatively, its inverse

an be diretly omputed using:

V −1
ij =

N
∑

e=1

fi(e)fj(e)

(
NS
∑

k=1

Nkfk(e))2
, (A.1)

where the sum is running over N events, and fi(e) designates the value of the PDF fi for
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the event e. We an then use the ovariane matrix to ompute, for eah event speies n,
the per-event sWeight sPn(e), using:

sPn(e) =

NS
∑

j=1

Vnjfj(Xe)

NS
∑

k=1

Nkfk(Xe)

. (A.2)

The distribution of the event speies n on the ontrol variable Y is then estimated by:

Nn.sMn(Y ).δY =
∑

e⊂[Y−δY,Y+δY ]

sPn(e). (A.3)

We now introdue another event speies in the model, with a �xed yield N0 and a nor-

malized PDF f0. The ovariane matrix hanges, and its inverse beomes:

V −1
ij =

N
∑

e=1

fi(e)fj(e)

(
NS
∑

k=1

Nkfk(e) +N0f0(e))2
, (A.4)

whereas the per-event sWeight beomes:

sPn(e) =

NS
∑

j=1

Vnjfj(Xe)

NS
∑

k=1

Nkfk(Xe) +N0f0(Xe)

=

NS
∑

j=1

Vnjfj(Xe)

NS
∑

k=1

Nkfk(Xe)

NS
∑

k=1

Nkfk(Xe)

NS
∑

k=1

Nkfk(Xe) +N0f0(Xe)

. (A.5)

This expression di�ers from Eq. A.2 only by an event-by-event fator that depends on the

yields Nk and the PDFs fk.
In the ase where the distribution of the ontrol variable for the speies with �xed

yield, M0(Y ), is known, the distribution of the ontrol variable Y for the speies n is:

Nn.sMn(Y ).δY =
∑

e⊂[Y−δY,Y+δY ]

sPn(e) + cn.M0(Y ), (A.6)

where
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cn = Nn −
NS
∑

j=1

Vnj (A.7)

is a oe�ient depending uniquely on the onsidered event speies. It quanti�es the

impat of the speies with �xed yields on sMn(Y ), and vanishes only if N0 = 0.

One of the issues of extrating sWeights using a tool that treats the varied and �xed

yields on an equal footing is related to the alulation of the ovariane matrix. To

illustrate this, we onsider a model inluding three speies: a signal S, a ombinatorial

bakground C, and another bakground B with a �xed yield. Using Eq. A.4, we alulate

the inverse of the ovariane matrix, and obtain:

V −1 =





(V −1)SS (V −1)SC (V −1)SB
(V −1)CS (V −1)CC (V −1)CB

(V −1)BS (V −1)BC (V −1)BB



 , (A.8)

whih inorretly inludes terms related to the speies with �xed yields. As the terms

(V −1)SB and (V −1)CB do not vanish a priori, the inverse of this matrix has no lear link

with the orret ovariane matrix. Also, we notie that in the ase where fB = fC or

fB = fS, the matrix is no longer invertible (it has two idential olumns and lines), whereas

sWeights should still be alulable. This shows that there is something fundamentally

�awed with this approah.

A.2 RooStats implementation of the sPlots method

The RooStats::SPlot method, used to alulate sWeights, omputes the inverse of the

ovariane matrix using Eq. A.1 with a list of yields that the user provides as an argument.

The ovariane matrix itsef is then obtained from its inverse. As shown in Se. A.1, in

the ase where there are some �xed yields in the arguments, this results in an inorret

ovariane matrix.

However, building the RooStats::SPlot objet using only the varied yields is also

inorret, as it would result in using Eq. A.1 and Eq. A.2 rather than Eq. A.4 and

Eq. A.5. Correting the sWeights event-by-event using Eq. A.5 is not possible either, as

the ovariane matrix is not orretly alulated.

A.3 Proposed method and test

It is lear from Se. A.1 that it is neessary to di�ereniate the �xed yields from the others

in the RooStats::SPlot objet. To address this requirement, we propose an alternative

onstrutor to the RooStats::SPlot objet, shown in Fig. A.1 along with the original
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onstrutor. We stress that this alternative onstrutor does not perform the orretion

shown in Eq. A.6. However, it alulates and stores the cn oe�ients in a new attribute of

the lass, as shown in Fig. A.2 and Fig. A.3. We also add a test to the original onstrutor,

to hek if all the arguments are indeed varying yields.

We test this alternative onstrutor and the cn extration tool using a toy model

ontaining 3 event speies: a signal S, a ombinatorial bakground C, and a peaking

bakground B with a �xed yield. The PDFs of these speies on the disriminating variable

X and on the ontrol variable Y are taken as:

• Signal (S): Gaussian (µ = 0, σ = 0.1) for X ; Gaussian (µ = 0, σ = 0.05) for Y .

• Combinatorial bakground (C): Constant for X ; Gaussian (µ = -0.5, σ = 0.05) for

Y .

• Fixed bakground. (B): Gaussian (µ = 0, σ = 0.05) for X ; Gaussian (µ = 0.5, σ =

0.05) for Y .

Both variables X and Y are de�ned in the interval [-1,1℄. This model is hosen in order

to ensure a sizable nuisane of the speies with �xed yield on the disriminating variable,

whereas its impat on the ontrol variable is easy to spot. We generate a sample of

16,000 events, inluding 5,000 signal events, 1,000 �xed bakground events, and 10,000

ombinatorial bakground events. We then assume a wrong hypothesis on the yield of the

�xed bakground (NB = 1200), in order to simulate the general ase where the value of

the �xed yield is not preisely known. We show the result of the one-dimensional �t on

the variable X using this model, along with the projetion of this �t on the variable Y ,
in Fig. A.4.

We onsider two approahes, A and B: the former is the alulation of the sWeights

with the original RooStats::SPlot method, providing only the list of varying yields to

the RooStats::SPlot onstrutor; the latter is the proposed approah, where we use the

alternative RooStats::SPlot onstrutor providing the list of all yields and the list of

�xed yields.

For eah of these two methods, Fig. A.5 shows the samples with signal and bakground

weights applied, both before and after the orretion of Eq. A.6. The results are satis-

fatory for approah B after the cn orretion, for both the signal and the ombinatorial

bakground distributions. On the ontrary, approah A provides an aeptable desription

of the signal shape, but shows large disrepanies for the ombinatorial bakground.

For eah event speies, Table. A.1 also shows the sum of sWeights and of its assoiated

cn, ompared to the �tted yield. Aording to Ref. [73℄, the sum has to be ompatiable

with the yield, whih is learly not the ase for approah A.
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Speies

∑

e sPA(e)+cA
∑

e sPB(e)+cB Fitted yield

Signal -7336.15 4975.27 4975.35

Comb. 16361.5 10007.5 10007.5

Bkg - - 1200.

Table A.1 � Summary of yields and sum of sWeights for the two approahes. As shown in

Ref. [73℄, in both approahes the sum of all yields extrated from the �t is not equal to the total

number of events.
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Changes in the implementation of the usual onstrutor:

SPlot : : SPlot ( onst har ∗ name , onst har ∗ t i t l e ,

RooDataSet& data , RooAbsPdf∗ pdf ,

onst RooArgList &y i e l d sL i s t , onst RooArgSet &projDeps ,

bool in ludeWeights , bool loneData , onst har ∗ newName ) :

TNamed(name , t i t l e )

{

/∗ Or ig ina l body o f the SPlot ons t ru to r . ∗/
// Add hek that y i e l d s L i s t onta in s only vary ing y i e l d s

i t e r = y i e l d s L i s t .  r e a t e I t e r a t o r ( ) ;

RooRealVar ∗var ;
whi l e ( ( var=(RooRealVar∗) i t e r−>Next ( ) ) ) {

i f ( var−>isConstant ( ) ) {

//Throw exept ion and e r r o r message .

}}

d e l e t e i t e r ;

//Cal l method to bu i ld sWeights

th i s−>AddSWeight ( pdf , y i e l d sL i s t , projDeps , in ludeWeights ) ;

}

Implementation of the alternative onstrutor:

SPlot : : SPlot ( onst har ∗ name , onst har ∗ t i t l e ,

RooDataSet& data , RooAbsPdf∗ pdf ,

onst RooArgList &a l lY i e l d sL i s t , onst RooArgList &f ixedYie ld s ,

onst RooArgSet &projDeps ,

bool in ludeWeights , bool loneData , onst har ∗ newName ) :

TNamed(name , t i t l e )

{

/∗ Or ig ina l body o f the SPlot ons t ru to r . ∗/
// Add hek that y i e l d s L i s t onta in s only vary ing y i e l d s

//Chek that f i x ed y i e l d s are in the a l l Y i e l d s arguments

i t e r = f i x edY i e l d s .  r e a t e I t e r a t o r ( ) ;

whi l e ( ( arg=(RooAbsArg∗) i t e r−>Next ( ) ) )
i f ( ! ( a l l Y i e l d s L i s t . onta in s (∗ arg ) ) )
{

//Throw exept ion and e r r o r message .

}

//Cal l new method to bu i ld sWeights , with f i x ed y i e l d s

th i s−>AddSWeight ( pdf , a l lY i e l d sL i s t , f i x edYie ld s , projDeps , in ludeWeights ) ;

}

Figure A.1 � Snippets of ode showing the original (top) and the alternative (bottom) on-

strutors for the RooStats::SPlot lass. Providing an empty RooArgSet as the �xedYieldsList

argument of the alternative onstrutor yields the same results as alling the original onstrutor

with the same arguments.
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void SPlot : : AddSWeight ( RooAbsPdf∗ pdf , onst RooArgList &a l lY i e l d sL i s t ,

onst RooArgList &f ixedYie ld s ,

onst RooArgSet &projDeps , bool in ludeWeights )

{

/∗Usual body o f the method : s t o r e s the onstant parameters ( other than

y i e l d s ) va lue s ∗/
// Sto re s whih indexes o f the a l l Y i e l d sL i s t are the va r i ab l e ones .

TI t e ra to r ∗ i t = a l l Y i e l d s L i s t .  r e a t e I t e r a t o r ( ) ;

RooAbsArg∗ arg ;

unsigned i n t iArg ( 0 ) ;

s td : : vetor<unsigned int> varIndexes ;

whi l e ( ( arg = (RooAbsArg∗) i t−>Next ( ) ) != NULL){

i f ( ! ( f i x edY i e l d s . f i nd ( arg−>GetName ( ) ) ) )

var Indexes . push_bak ( iArg ) ;

iArg++;}

//We now have two indexes over whih we i t e r a t e

Int_t nAllSpe = a l l Y i e l d s L i s t . g e t S i z e ( ) ;

Int_t nVarSpe = a l l Y i e l d s L i s t . g e t S i z e ( ) − f i x edY i e l d s . g e tS i z e ( ) ;

/∗Usual body o f the method :

−s t o r e s the i n i t i a l y i e l d parameters

− a l  u l a t e the va lue o f the omponent pdf f o r eah event and

s p e  i e s . ∗/
// Inve r s e o f the ovar i ane matrix

TMatrixD ovInv ( nVarSpe , nVarSpe ) ;

/∗ I n i t i a l i s a t i o n ∗/
f o r ( Int_t i e v t = 0 ; i e v t < numevents ; ++i e v t ){

fSData−>get ( i e v t ) ;

// Sum f o r the denominator

Double_t dsum ( 0 ) ;

f o r ( Int_t k = 0 ; k < nAllSpe ; ++k)

dsum += pdfva lue s [ i e v t ℄ [ k ℄ ∗ y i e l d v a l u e s [ k ℄ ;

f o r ( Int_t n=0; n<nVarSpe ; ++n)

f o r ( Int_t j =0; j<nVarSpe ; ++j )

i f ( in ludeWeights == kTRUE)

ovInv (n , j ) += fSData−>weight ( )
∗ pd fva lue s [ i e v t ℄ [ var Indexes [ n ℄ ℄
∗ pd fva lue s [ i e v t ℄ [ var Indexes [ j ℄ ℄ / ( dsum∗dsum) ;

e l s e

ovInv (n , j ) +=

pdfva lue s [ i e v t ℄ [ var Indexes [ n ℄ ℄

∗ pd fva lue s [ i e v t ℄ [ var Indexes [ j ℄ ℄ / ( dsum∗dsum) ; }

// Inve r t to get the ovar i ane matrix

TMatrixD ovMatrix (TMatrixD : : kInverted , ovInv ) ;

Figure A.2 � First part of the implementation of the new onstrutor.
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// Create and l a b e l the v a r i a b l e s

// used to s t o r e the SWeights

f o r ( Int_t k=0; k<nVarSpe ; ++k){

/∗Usual v a r i a b l e s ∗/

//_n  o e f f i  i e n t s

wname = std : : s t r i n g ( y i e l dva r s [ var Indexes [ k℄℄−>GetName())+"_" ;

var = new RooRealVar (wname . _str ( ) ,wname . _str ( ) , 0 ) ;

double Val = y i e l d v a l u e s [ var Indexes [ k ℄ ℄ ;

f o r ( Int_t n = 0 ; n<nVarSpe ; ++n)

Val −= ovMatrix [ k ℄ [ n ℄ ;

var−>setVal ( Val ) ;

fSWeightCoefs . add (∗ var ) ; //new a t t r i b u t e o f the  l a s s .

}

// Create and f i l l a RooDataSet with the SWeights

RooDataSet ∗ sWeightData = new RooDataSet ( " data s e t " , "" , swe ight s e t ) ;

f o r ( Int_t i e v t = 0 ; i e v t < numevents ; ++i e v t ){

fSData−>get ( i e v t ) ;

// sum f o r denominator

Double_t dsum ( 0 ) ;

f o r ( Int_t k = 0 ; k < nAllSpe ; ++k)

dsum += pdfva lue s [ i e v t ℄ [ k ℄ ∗ y i e l d v a l u e s [ k ℄ ;

// ovar i ane weighted pdf f o r eah sp e  i e

f o r ( Int_t n=0; n<nVarSpe ; ++n){

Double_t nsum(0) ;

f o r ( Int_t j =0; j<nVarSpe ; ++j )

nsum += ovMatrix (n , j ) ∗ pd fva lue s [ i e v t ℄ [ var Indexes [ j ℄ ℄ ;

i f ( in ludeWeights == kTRUE)

swe ightve [ n℄−>setVal ( fSData−>weight ( ) ∗ nsum/dsum) ;

e l s e

swe ightve [ n℄−>setVal ( nsum/dsum) ;

/∗ F i l l the data s e t with swe ightve ∗/
}}

// Add the SWeights to the o r i g i n a l data s e t

fSData−>merge ( sWeightData ) ;

/∗ R e i n i t i a l i s e a l l parameters and y i e l d s ∗/
return ;

}

Figure A.3 � Seond part of the implementation of the new onstrutor.
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Figure A.4 � Result of the �t on X, projeted on the X dimension (left) and the Y dimension

(right). The signal is displayed in blue, the ombinatorial bakground in red, and the peaking

bakground in blak. As expeted, the projetion of the result on the Y dimension shows that

we overestimated (on purpose) the number of bakground events.
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Figure A.5 � Distribution of Y in data samples sWeighted aording to signal (ombinatorial)

weights. Results of the approah A(B) are shown on the left (right). The red points orrespond

to the distribution of the sum of sWeights, whereas the blue points represent the �nal distribution

(after orretion using Eq. A.6).

163



A.4 Conlusion

Models that inlude an event speies with �xed yields require a spei� treatment when

using the sPlots method, that the RooStats::SPlot implementation does not provide.

In this note, we propose a straightforward modi�ation of this lass that allows to extrat

the orret sPlots in the ase of �xed yields. We also implement some preautions in

the ode to help analysts avoiding the use of the wrong method. These modi�ations do

not remove the need to orret the distributions using Eq. A.6, but allow to alulate

the cn oe�ients inside the RooStats::SPlot objet in a way that is oherent with the

sWeights extration.

We tested this additional ode, both in terms of ompatibility with the former imple-

mentation (not shown here), and in terms of expeted results. The results are satisfatory,

and show a lear improvement ompared to the original approah, espeially in terms of

normalization properties.
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Appendix B

Goodness-of-�t riteria

Estimating the relative quality of two �ts is usually done by a χ2
alulation or a likelihood

estimation. However, while these methods yield a good indiator of the quality of a �t,

they tend not to distinguish a loalized disrepany between two �ts, espeially when the

�t is performed on more than one dimension. The addition or removal of a resonane

in a Dalitz-plot model onstitutes suh a loalized di�erene, and thus we use additional

tools to assess the relative quality of the �t of two models on data. These additional tools

provide us with so-alled goodness-of-�t riteria, de�ned on an event-by-event basis. In

the following, we desribe two of these methods, presented in [75℄.

These methods de�ne for two given samples a statisti T that takes a value of t when
omparing data and a Monte-Carlo sample generated using a model �tted on data. Given

the expeted distribution g of this statisti in the ase where the model is the parent PDF

of data, we de�ne the p-value of a �t

p =

+∞
∫

t

g(T )dT. (B.1)

This p-value is what is used to ompare two di�erent �ts to data.

Mixed-sample estimation

The idea of mixed-sample estimation is that the mixing between two samples is maximal

if and only if f and g have been generated by the same underlying PDF. Figure B.1

shows the example of two samples generated using the same PDF and di�erent PDFs to

illustrate that idea.

A mixing indiator I on two points x and y an be de�ned as

I(x, y) =

{

1 if x and y belong to the same sample,

0 otherwise.

(B.2)
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Figure B.1 � Example of two samples (red and blue points) generated with the same underlying

PDF (left), and di�erent PDFs (right).

The mixing statisti T(A,B) for two samples A and B, ontaining na and nb points, is

de�ned as

T =
1

nk(na + nb)

na+nb
∑

i=1

nk
∑

k=1

I(i, k), (B.3)

where nk is an arbitrary number of neighbours of a point that are onsidered. A large

value of this parameter redues statistial �utuations, but it also redues the resolution

of the method as further points are onsidered.

This statisti is maximal for minimally mixed samples, and an be used to assess the

quality of the �t of a model to data. Indeed, if the �tted model is used to generate a

Monte-Carlo sample, this statisti alulated using data and the simulated sample yields

an indiation on the quality of the �t.

In the ase where the two underlying PDFs are the same, this statisti onverges to a

Gaussian distribution of mean

µT =
na(na − 1) + nb(nb − 1)

(na + nb)(na + nb − 1)
. (B.4)

The width of this distribution depends on the PDF and on the hoie of nk, but has

a limiting value
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lim
n,nk→∞

σ2
T =

1

nnk

(
nanb

n2
+ 4

n4
an

4
b

n4
), (B.5)

where n = na + nb. We assume that this limiting value is reahed in our onditions.

1

The distribution g used to alulate the p-value in Eq. B.1 is then the limit Gaussian

distribution.

Point-to-point dissimilarity methods

In the ase where the real parent distribution f(x) of data is known,

d =
1

2

∫

(f(x)− f0(x))
2dx (B.6)

is a distane between this parent distribution and the �tted model f0(x). In pratial

ases, the real parent distribution f(x) of data is unknown, but Eq B.6 an be generalized

by introduing a orrelation funtion ψ(x, x′), and the funtion

T =
1

2

∫∫

(f(x)− f0(x))(f(x
′)− f0(x

′))ψ(x, x′)dxdx′. (B.7)

is de�ned. This generalization allows to alulate a similar quantity for samples rather

than distributions. Indeed, developing the expression and replaing integrals by sums we

de�ne for two samples A and B the statisti

T =
1

nA(nA − 1)

∑

x∈A

∑

x′∈A
ψ(x, x′)dxdx′ +

1

nB(nB − 1)

∑

x∈B

∑

x′∈B
ψ(x, x′)dxdx′

− 1

nAnB

∑

x∈A

∑

x′∈B
ψ(x, x′)dxdx′. (B.8)

The �rst and seond terms of this expression an be onsidered as statistial unertain-

ties on data and Monte-Carlo samples, the third term being a orrelation term between

the two. Monte-Carlo samples are often generated with large amount of points, so the

seond term an be negleted as it is omputationally heavy.

Two forms of the orrelating funtion ψ(x, x′) have been studied in [75℄:

• ψGaus = exp( (x−x′)2

2σ(x)σ(x′)
)

1

Indeed, the onvergene to this limit is demonstrated as being very fast in [75℄.

167



• ψLog = log(|x− x′|+ ǫ)

The parameter ǫ is an arbitrary number that keeps the ψLog from exhibiting a pole when

x and x′ are too lose. The widths σ(x) and σ(x′) in the Gaussian orrelating funtion are

shown in [75℄ to be optimal in terms of disriminating power when they are proportional

to the inverse of the PDF:

σ(x) =
σ̄

f(x)
. (B.9)

The preferred range for the parameter σ̄ is [Γ̄,2Γ̄℄ where

Γ̄ =

∑

FFiΓi
∑

FFi
, (B.10)

the index i running over all resonanes in the model, and Γi and FFi designate their

widths and �t frations, respetively.

168



Appendix C

Fast MC method for bakground

studies - other hannels

We show in this setion the results of smearing various partially reonstruted bakgrounds

using resolution funtions extrated from a B0→ (K∗0→ K0
Sπ

0)(ρ0→ π+π−) sample.

C.1 B0→ K0
S (η→ π+π−π0)

This hannel belongs to the K0
S
π+π−

spetrum, but its kinematis are di�erent from the

ones of B0→ K∗0ρ0.
Figure C.1 shows the distribution of the mK0

Sh
+h

′
near the threshold for reonstruted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h′
, with a well-reprodued behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC ase. Fig. C.2 shows

the distributions of events over the Dalitz plane for reonstruted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no struture. Overall, the result we

obtain on this hannel are satisfatory.

C.2 B0→ K0
Sπ

+π−γ

This hannel also belongs to the K0
S
π+π−

spetrum. As the missed partile in this hannel

is massless, its mK0
Sh

+h′
distribution goes under the signal peak, whih makes it espeially

dangerous for our analysis.

Figure C.3 shows the distribution of the mK0
Sh

+h
′
near the threshold for reonstruted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h′
, with a well-reprodued behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC ase. Fig. C.4 shows

the distributions of events over the Dalitz plane for reonstruted and fast MC events,
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Figure C.1 � Left: Distributions of mK0
Sh

+h′
for reonstruted (blue) and fast MC (red) B0→

K0
Sη events. Right: Resolutions ofmK0

Sh
+h′

for reonstruted (blue) and fast MC (red) B0→ K0
Sη

events.
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Figure C.2 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B
0→ K0

Sη mode, with DD reonstru-

tion of the K0
S . Left: Reonstruted events. Middle: Fast MC events. Right: Pulls between the

two distributions.

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no struture. Overall, the result we

obtain on this hannel are satisfatory.

C.3 B0→ (K∗0→ K0
Sπ

+)π+π−

In this hannel, we are missing a harged partile (π+
). We expet the mK0

Sh
+h′

distribu-

tion to be similar to that in B0 → K∗0ρ0, but the Dalitz plane distributions of the two

modes are expeted to di�er.

Figure C.5 shows the distribution of the mK0
Sh

+h
′
near the threshold for reonstruted
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Figure C.3 � Left: Distributions of mK0
Sh

+h′
for reonstruted (blue) and fast MC (red) B0→

K0
Sπ

+π−γ events. Right: Resolutions of mK0
Sh

+h′
for reonstruted (blue) and fast MC (red)

B0→ K0
Sπ

+π−γ events.
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Figure C.4 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B0 → K0
Sπ

+π−γ mode, with DD

reonstrution of the K0
S . Left: Reonstruted events. Middle: Fast MC events. Right: Pulls

between the two distributions.

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h
′
, with a well-reprodued behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC ase. Fig. C.6 shows

the distributions of events over the Dalitz plane for reonstruted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no struture. Overall, the result we

obtain on this hannel are satisfatory.

v
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Figure C.5 � Left: Distributions of mK0
Sh

+h′
for reonstruted (blue) and fast MC (red) B+→

K∗+π+π−
events. Right: Resolutions of mK0

Sh
+h′

for reonstruted (blue) and fast MC (red)

B+→ K∗+π+π−
events.
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Figure C.6 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B+ → K∗+π+π−
mode, with DD

reonstrution of the K0
S . Left: Reonstruted events. Middle: Fast MC events. Right: Pulls

between the two distributions.

C.4 B0→ (K∗0→ K0
Sπ

0)(φ→ K+K−)

This mode does not belong the K0
S
π+π−

spetrum. However, it is still interesting to test

the limits of the method with this mode, similar to B0→ K∗0ρ0 but with a φ instead of

the ρ0.
Figure C.7 shows the distribution of the mK0

Sh
+h

′
near the threshold for reonstruted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h′
, with a well-reprodued behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC ase. Fig. C.8 shows

the distributions of events over the Dalitz plane for reonstruted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions
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are similar, and the pulls are rather small and show no struture. Overall, the result we

obtain on this hannel are satisfatory.
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Figure C.7 � Left: Distributions of mK0
Sh

+h′
for reonstruted (blue) and fast MC (red) B0→

K∗0φ events. Right: Resolutions of mK0
Sh

+h
′
for reonstruted (blue) and fast MC (red) B0→

K∗0φ events.
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Figure C.8 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B
0→ K∗0φ mode, with DD reonstru-

tion of the K0
S . Left: Reonstruted events. Middle: Fast MC events. Right: Pulls between the

two distributions.

C.5 B+→ (K∗0→ K0
Sπ

+)(φ→ K+K−)

This mode does not belong the K0
S
π+π−

spetrum. However, it is still interesting to test

the limits of the method with this mode, similar to B0→ K∗0ρ0 but with a φ instead of

the ρ0, and missing a π+
.
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Figure C.9 shows the distribution of the mK0
Sh

+h′
near the threshold for reonstruted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h
′
, with a well-reprodued behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC ase. Fig. C.10 shows

the distributions of events over the Dalitz plane for reonstruted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no struture. Overall, the result we

obtain on this hannel are satisfatory.
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Figure C.9 � Left: Distributions of mK0
Sh

+h′
for reonstruted (blue) and fast MC (red) B+→

K∗+φ events. Right: Resolutions of mK0
Sh

+h
′
for reonstruted (blue) and fast MC (red) B+→

K∗+φ events.
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Figure C.10 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B+→ K∗+φ mode, with DD reon-

strution of the K0
S . Left: Reonstruted events. Middle: Fast MC events. Right: Pulls between

the two distributions.
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C.6 B0
s→ (K∗0→ K0

Sπ
0)(φ→ K+K−)

This mode does not belong the K0
S
π+π−

spetrum. However, it is still interesting to test

the limits of the method with this mode, similar to B0→ K∗0ρ0 but with a φ instead of

the ρ0.
Figure C.11 shows the distribution of the mK0

Sh
+h′

near the threshold for reonstruted

and fast MC events, as well as the resolution distributions of mK0
Sh

+h′
. The distributions

agree quite well onmK0
Sh

+h′
, with a well-reprodued behaviour at the threshold. As before,

the distribution of ∆m
K0

S
h+h

′ is slightly narrower in the fast MC ase. Fig. C.12 shows

the distributions of events over the Dalitz plane for reonstruted and fast MC events,

along with the distribution of the pulls between these two distributions. The distributions

are similar, and the pulls are rather small and show no struture. Overall, the result we

obtain on this hannel are satisfatory.
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Figure C.11 � Left: Distributions of mK0
Sh

+h′
for reonstruted (blue) and fast MC (red) B0

s →
K∗0φ events. Right: Resolutions of mK0

Sh
+h′

for reonstruted (blue) and fast MC (red) B0
s →

K∗0φ events.
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Figure C.12 � Distributions of m2
K0

Sh
versus m2

K0
Sh

′ for the B0
s → K∗0φ mode, with DD reon-

strution of the K0
S . Left: Reonstruted events. Middle: Fast MC events. Right: Pulls between

the two distributions.
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