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ABSTRACT
The Austrian hadron therapy center MedAustron is currently under construction
with patient treatment planned to commence in 2015. Tumors will be irradiated
using proton and carbon ions, for which the steeply rising Bragg curve and finite
range offer a better conformity of the dose to the geometrical shape of the tumor
compared to conventional photon irradiation.

The current trend is to move from passive scattering toward active scanning using
a narrow pencil beam in order to reach an even better dose conformation and limit the
need of patient specific hardware. The quality of the deposited dose will ultimately
depend on the performance of the beam delivery chain: beam profile and extraction
stability of the extracted beam, accuracy and ramp rate of the scanning magnet power
supplies, and precision of the beam monitors used for verifying the delivered dose.
With a sharp lateral penumbra, the transverse dose fall-off can be minimized. This
is of particular importance in situations where the lesion is adjacent to critical and
radiosensitive structures. Multiple Coulomb scattering upstream of the patient in
e.g. air gap, monitors and vacuum windows will limit the sharpness of the beam, in
particular for protons in the lower therapeutic energy range.

In this work, clinical requirements on target dose distribution are translated into
specifications along the beam delivery chain. By using an analytical model for third
integer resonant extraction in combination with particle tracking, the effect of power
supply ripple in the main ring magnets on extraction stability has been analyzed.
A model for calculating beam growth caused by scattering in a heterogeneous slab
geometry along a transfer line (taking focusing and defocussing of the beam into
account) has been implemented and used for optimizing the MedAustron nozzles
and proton gantry with respect to beam growth at the isocenter. By combining the
scattering model with parameterized proton and carbon ion Bragg curves, a three
dimensional dose calculator for spot scanning has been implemented to perform a
dose distribution error analysis with respect to the combined effect of various beam
delivery imperfections and limitations. This approach enables for identification of
”bottlenecks” at an early stage in the design procedure while avoiding unnecessarily
strict specifications. Different scanning modes have been compared and preven-
tive means of suppressing the impact of beam delivery imperfections already on the
treatment planning stage are discussed.

Keywords: Hadron therapy, particle therapy, beam delivery system, scattering, scattering
model, dose homogeneity, ridge filter, nozzle
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Chapter 1

Introduction and motivation

1.1 Proton and carbon ion therapy

Photons have been used for treatment of cancer since 1896, when Emil Grubbe
applied X-rays to a female patient suffering from breast cancer, only weeks after
Röntgen’s publication of the newly discovered rays [1]. Half a century later, Robert
Wilson published a seminal paper on the advantages of using protons instead of
X-rays for irradiation of cancer [2]. The fundamental difference is illustrated by
the depth-dose curves shown in Fig. 1.1. While X-rays (and electrons) deposit the
highest dose close to the surface, the proton dose is lowest at the surface, ending in
a sharp peak - the Bragg peak. For non-superficial tumors, the Bragg curve of ions
allow for a superior dose localisation, i.e. the dose can be concentrated to where
the tumor is: the dose given to healthy tissue in front of the tumor can be reduced,
and, unlike photons which show an exponential dose reduction with depth, protons
deposit virtually no dose at all beyond the Bragg peak due to their finite range.

Since the sharp Bragg peak typically is much smaller than the actual size of
the tumor, the energy of the incoming beam must be modulated to create a Spread
Out Bragg peak (SOBP). Up until the 1990’s, proton therapy was mainly executed
by means of passive scattering: a mono-energetic beam is passed through a range
modulator (e.g a fast rotating wheel with varying thickness), introducing an energy
spread, and then scattered and collimated such that the lateral extent of the field
matches the transverse shape of the tumor. Although this provides dose sparing of
normal tissue, compared to photons, there are disadvantages: patient-specific hard-
ware is required and there are limitations in conforming the dose in three dimensions
to the tumor [4].

Since 1994, proton therapy by means of active scanning has been performed
at PSI (Paul Scherrer Institute), Switzerland [5]. A cyclotron delivers a mono-
energetic proton beam to the irradiation room, where it passes through a stack of
range shifters. By inserting or removing range shifters, the penetration depth of the
beam in the patient can be controlled in steps of about 5 mm. The entire tumor is
thus divided into layers, where each layer corresponds to the penetration depth of a
particular beam energy. Each layer, in turn, is divided into a two-dimensional map

1



1 Introduction and motivation

Figure 1.1: Depth dose of electrons, X-rays and protons entering human tissue for
the purpose of cancer treatment [3].

of spots, where each spot is to receive a certain number of particles at a certain en-
ergy. Dipole magnets upstream of the patient direct the beam towards a spot until it
has received its prescribed dose, and then moves the beam to the next spot. Once all
spots in a layer are fully irradiated, the energy of the beam is changed by inserting or
removing range shifters, and irradiation continues with the next layer. A conceptual
overview of an active scanning system is shown in Fig. 1.2.

Beam 

Scanning magnets Monitors Target 

Figure 1.2: Active scanning principle. A narrow beam is deflected horizontally and
vertically by two scanning magnets towards the current spot. Beam monitors in front
of the target verify that the beam intensity, position and size is correct. When one
spot is fully irradiated, the scanning magnets move the beam to the next spot.

Active scanning offers a better dose conformation than passive scattering, with-
out the need of patient-specific hardware in the beam path. Additionally, the patient

2



1.1 Proton and carbon ion therapy

will not receive any neutron dose from scattering elements [4]1.
One way of quantifying the biological effect of an ion beam is its Relative Bi-

ological Effectiveness (RBE). The RBE is defined as the ratio between the photon
dose, DX , given under some reference conditions, and the ion beam dose, Dion, that
is required to achieve the same biological effect as the photon dose:

RBE =
DX

Dion
(1.1)

The biological effect to be reached could be e.g. 50% survival of irradiated cells, or
a certain probability to develop tumors.

The exact RBE value depends on a multitude of variables such as cell type, tissue
type, dose rate, fractionation scheme (how often and in which portions the total dose
is delivered), biological effect under investigation, and the beam energy. The RBE
of protons is typically taken to be close to unity (around 1.1 [4]) along the Bragg
curve, i.e. the biological effect of protons and photons is similar. For carbon ions,
on the other hand, the RBE values in use show a larger variation: in [6], RBE values
between 0.2 and 9.6 are mentioned. HIMAC (Heavy Ion Medical Accelerator in
Chiba) - an active scanning carbon ion facility in Japan - reports using RBE values
between 2 and 4: the higher value in the distal part of the SOBP and around 3 in the
center of the SOBP [7]. With an RBE that increases with depth, carbon ions offer a
potential advantage over protons (similarly to protons over photons) in that the same
biological effect can be achieved in the tumor while reducing the effective dose to
surrounding healthy tissue.

Regardless of the type of radiation, the goal is the same: to kill the cancerous
cells by influcting irreparable damage to their DNA, while keeping the dose given to
healthy tissue at an acceptable level. Damage to only one strand of the DNA double
helix can be repaired while if both strands are broken, the chance of repair is much
smaller. Carbon ions are advantageous in that their ionization tracks are about the
same size as the DNA double helix, as illustrated in Fig. 1.3. The effect of this is
that carbon ions have a higher probability of breaking both sides of the DNA helix
(a ”double strand break”) [8].

Proton

Carbon	ion

DNA

Figure 1.3: Proton and carbon ionization track and DNA double helix.

1If the range shifters are placed far away from the patient
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1 Introduction and motivation

1.2 Cyclotrons vs. synchrotrons

Existing active scanning hadron therapy facilities can primarily be sorted in two cate-
gories: cyclotron facilities and synchrotron facilities. To date, all cyclotron facilities
produce proton beams exclusively. This is due to technical limitations: the energy
required for a carbon ion beam to reach the same penetration depth as a proton beam
is many times higher. Most synchrotron facilities provide carbon ion beams (and
possibly other ions up to neon) for therapeutic use2. While synchrotrons have the
advantage of energy selection directly from the synchrotron, cyclotrons allows for
more flexibility in beam intensity control and stability. This makes it possible to
turn the beam off between spots (”discrete scanning” [4]) while verifying that the
last spot was delivered correctly. Pausing the extraction on a spot-to-spot basis with
a synchrotron is more challenging, and the beam is therefore kept on while moving
from spot to spot (”quasi-discrete scanning” [4]).

Cyclotron Synchrotron

Facilities

PSI, Switzerland MedAustron, Austria
Skandion, Sweden (un-
der construction)

CNAO, Italy

HIMAC, Japan
HIT, Germany
Loma Linda, USA
M.D. Anderson, USA

Particles p p, C (He,Ne,O)
Scanning technique Discrete scanning Quasi-discrete scan-

ning
Energy selection Range shifter, movable

wedges
Via synchrotron

Table 1.1: Comparison between active scanning cyclotron and synchrotron facilities.

1.3 The MedAustron project

MedAustron is a synchrotron based hadron therapy facility currently under con-
struction in Wiener Neustadt, Austria, 40 km south-west of Vienna. The decision
for construction was taken in 2006 by the County of Lower Austria in partnership
with the Austrian federal government.

With a capacity of 24,000 fractions per year, between 1200 and 1400 patients
per year (depending on fractionation scheme) can be treated with protons and carbon
ions. Irradiation of the patients will be performed in three different treatment rooms
(see Fig. 1.4):

IR2: Fixed horizontal + fixed vertical beam line (protons and carbon ions)
2One exception is Loma Linda, Houston, which uses a synchrotron for proton use only [9]

4



1.4 The goal of this thesis

IR3: Fixed horizontal beam line (protons and carbon ions)

IR4: Gantry (protons only)

In addition, one irradiation room (IR1) is dedicated to non-clinical research.

Figure 1.4: Layout of the MedAustron beam lines.

Collaboration with several other actors in the field of hadron therapy and syn-
chrotrons has been established [10]: the design, construction and follow-up of the
manufacturing of the MedAustron accelerator facility is carried out in partnership
with the CERN, the world’s largest particle physics research laboratory, located
in Geneva, Switzerland3. From the Italian hadron therapy facility CNAO (Cen-
tro Nazionale di Adroterapia Oncologica4, documentation concerning injector, syn-
chrotron, high-energy transfer line and technical infrastructure has been made avail-
able: both CNAO and MedAustron are based on the PIMMS (Proton Ion Med-
ical Machine Study) design [11, 12]. A collaboration agreement has also been
signed with PSI5 (PSI) for construction of the MedAustron proton gantry, which
will be a hardware copy of the state-of-the-art Gantry 2, designed and developed at
PSI [13, 14].

1.4 The goal of this thesis

The quality of the dose delivered to the patient is ultimately determined by the per-
formance of all components preceding the patient: the quality of the beam extracted
from the accelerator, the transport line from the accelerator to the treatment room
and the Beam Delivery System (BDS) (scanning magnets, beam monitors and pas-
sive elements in the nozzle). Although clinical specifications on the patient dose
quality are readily available, a direct translation into performance requirement on
the beam delivery chain is elusive: a requirement that the delivered dose should be
accurate to so and so many percent tells little about how fast the scanning magnet

3http://www.cern.ch/
4http://www.cnao.it/
5http://p-therapie.web.psi.ch
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1 Introduction and motivation

must move the beam, or the required stability of the extracted particle flux. Even less
apparent is the combined effect of different kinds of beam delivery imperfections,
such as beam positioning errors at the patient or beam flux fluctuations, on target
dose quality.

The goal of this thesis is to link the clinically motivated dose requirements to
performance specifications on the different parts of the beam delivery chain. This
obviously includes active elements, such as the scanning magnets and the accelerator
itself, but also evaluation of e.g. beam growth due to scattering in the nozzle and
other passive elements upstream of the patient, since the shape of the beam reaching
the patient affects the dose distribution.

Having linked the performance of different parts of the the beam delivery chain
to resulting target dose quality, one can produce a consistent set of requirements
along the beam delivery chain. Consistent here means that different parts of the
beam delivery system contribute about equally to dose inaccuracies (within clini-
cal specifications). This approach avoids specifications that are unnecessarily strict
and costly. Additionally, one can early identify and avoid ”bottlenecks”. One such
example is the velocity of the scanned beam: if the beam movement is too slow,
the highest beam fluxes the accelerator is designed for cannot be utilized without
causing systematic overdosage.

Alternatively, if requirements on one part of the beam delivery chain are already
fixed (for example, in an existing facility that considers upgrading e.g. the scanning
magnets), a direct link between performance of the different beam delivery compo-
nents and dose quality is a useful tool for determining whether an upgrade would
have any substantial improvement on dose quality or scanning performance.

The details of unraveling the relation between beam delivery components and
dose quality obviously depends on the scanning facility. However, the methods used
in this thesis are general and can be applied to any hadron therapy facility.

1.5 Thesis outline

Chapter 2 describes the relevant clinical requirements for active scanning.
Chapter 3 describes the theoretical models used for evaluating the target dose

distribution: extraction from the synchrotron, multiple coulomb scattering (causing
lateral beam growth) and a parameterized Bragg curve model. This chapter also
describes the MedAustron scanning technique, the proton gantry and the nozzle el-
ements.

A schematic overview of the beam delivery chain is shown in Fig. 1.5. The
synchrotron delivers a beam with a certain shape and time profile, described and
evaluated in Chapter 4. From the synchrotron, the beam is guided either to one of
the fixed beam line rooms or the proton gantry where two scanning magnets deflect
the beam in the proper direction, before entering the nozzle.

Chapter 5 contains an evaluation of different nozzle and proton gantry options,
with respect to transverse and longitudinal beam profile at the patient.

Finally, an error analysis of the resulting target dose distribution is made in Chap-

6



1.5 Thesis outline

ter 6, resulting in requirements on the beam delivery chain.

Extraction
(Chapter 3 & 4)

Gantry and nozzles
(Chapter 5)

Patient dose
(Chapter 6)

Scanning
(Chapter 3 & 6)

Synchrotron

Figure 1.5: Schematic overview of the beam delivery chain (not to scale) and
overview of thesis layout.
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Chapter 2

Clinical requirements

2.1 Beam range

A beam range of up to 25 g/cm2 (25 cm in water) is sufficient to satisfy most ther-
apeutic requests - even for deep seated tumors in obese patients [15]. The available
beam ranges in water for the MedAustron synchrotron are up to 27 cm for carbon
ions and up to 37 cm for protons. Since protons are lighter than carbon ions, they can
be accelerated to higher energies in the synchrotron, which enables a longer proton
range.

2.2 Irradiation time

A fractional dose of 2 Gy must typically be given to a 2 liter volume in less than
3 minutes.

2.3 Dose homogeneity

Dose homogeneity requirements set a limit on how much the delivered dose in the
target volume is allowed to deviate from the approved treatment plan. Many different
formulations of dose homogeneity specifications exists; both in terms of formulation
and in terms of limits.

For example, the Tera1 report Clinical requirements and physical specifications
of therapeutical proton beams [15] from 1994 requires that the ratio between max-
imum and minimum absorbed dose, Pmax/Pmin, in a plane transverse to the beam is
between 1 and 1.05. The term absorbed dose here refers to the averaged absorbed
dose in an area not larger than 0.25 cm2.

In the longitudinal direction, the Tera report requires a homogeneity better than
111%.

In discussion with the medical expertise of MedAustron, it has been decided not
to adopt these requirements for two reasons:

1http://www.tera.it/

9
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2 Clinical requirements

• From a medical point of view, there is no apparent reason to employ different
homogeneity requirements in the transverse and longitudinal directions. One
target is typically irradiated from different angles in the same fraction, so a
target plane that is transverse with one beam entrance angle can very well be
a longitudinal plane when using a different beam entrance angle.

• Minor random beam delivery system errors in e.g. beam positioning or spot
weight accuracy will result in a target dose distribution that is normal-distributed
around some value (see Chapter 6). With the Tera requirements, even the tails
of this dose distribution must be within specified limits, regardless of how
small fraction of the target the tails contain. More natural would be to specify
a maximum width of the resulting dose error distribution.

The Performance Specifications for a Proton Medical Facility [16] from 1993
by Chu et. al does not discern between transverse and longitudinal direction and
recommends a dose compliance (maximum variation from specified dose) better
than 2.5% within the treatment field (excluding the lateral, distal and proximal target
edges). Like the Tera requirements, this is an absolute requirement that does not take
into account the dose error distribution tails caused by random beam delivery system
or uncertainties in the determination of the absorbed dose.

To address these issues, the principles outlined in the document What accuracy
is required and can be achieved in radiation therapy by Wambersie [17] has been
used as a starting point in determining feasible dose homogeneity requirements for
MedAustron. These requirements on dose homogeneity will be the basis for techni-
cal specifications on various aspects of, on the one hand, the beam delivery system
and the synchrotron, and, on the other hand, the Beam Verification System (BVS)
that ensures that the beam specifications are within tolerances.

Wambersie considers two types of dose uncertainties: Type A (random) and
Type B (systematic).

Type A errors (random) can be estimated from repeated independent measure-
ments and quantified by e.g. the standard deviation, σA. A typical Type A error
is beam position errors caused by dipole current fluctuations, or spot weight errors
caused by fluctuations in the particle flux2 from the accelerator.

The influence of systematic uncertainties (Type B) remains the same in repeated
observation and an interval which contains the ”true” value in about 70% of the cases
(the 70%-interval corresponds roughly to the ±1σ interval of a normal distribution)
can therefore not be estimated statistically. An appropriate interval should therefore
be based on a careful analysis of the procedures used. A typical Tybe B error source
would be systematic extraction energy errors. Another source is the RBE values
used in the treatment planning which influence the biological dose delivered to the
tumour.

Another source of dose uncertainty is patient positioning: if the patient is mis-
placed with respect to the beam (or the beam with respect to the patient), the entire

2Flux is defined as particles per second, dN/dt [s−1] [18].
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2.3 Dose homogeneity

dose distribution will be shifted. Depending on the amplitude of misalignment, this
can increase the dose given to healthy tissue and reduce the dose given to the tumor.

For proton or carbon ion therapy, range uncertainty is of high importance. One
element of uncertainty stems from converting Hounsfield units from CT-images
to water equivalent density. This uncertainty is typically about 1-2% (1 s.d.) [4,
Sec. 6.4.6.1.4], which corresponds to a range uncertainty of 1-2 mm for proton beam
with 10 cm water equivalent range. Uncertainties in the CT-measurements them-
selves can add another 1-2% of uncertainty. Furthermore, density heterogeneities
along the beam path can degrade the sharp distal falloff of the Bragg peak dramat-
ically, as demonstrated by Urie et.al [19]. The main effects of this is that (a) a
relatively high dose can be deposited beyond the assumed location of the most distal
Bragg peak - something to carefully consider if the orientation of the incident beam
is chosen such that the distal part of the target is adjacent to a critical organ - and (b)
the flatness of the Spread Out Bragg Peak (SOBP) is deteriorated.

The capability of ions to spare healthy tissue distal to the target from dose, com-
pared to photons, and the range uncertainty can be summarized in: ”The advantage
of ions is that they stop. The disadvantage is that we don’t always know where”
(Anthony Lomax, PSI [20]).

Range uncertainty can also be caused by beam energy uncertainties: an SOBP
is generated by a superposition of many individual Bragg curves, weighted such that
the total (biological) dose is flat in the target region (see Sec. 3.3.6). Systematic or
random errors of the entrance energy of each individual Bragg curve can cause dose
inhomogeneities along the SOBP.

In active scanning, each iso-energy layer is divided into several spots, the dis-
tance between two neighboring spots being smaller than the Full Width at Half Max-
imum (FWHM) of the beam. The treatment planning system assigns each spot a
transverse width, weight (number of particles) and a lateral coordinate (x,y) to pro-
duce a homogeneous dose in the target. If any of the delivered spots deviates from
one or several of these prescribed quantities due to imperfections of the BDS, the
target dose distribution will be inhomogeneous and/or systematically over- or under-
dosed. Inhomogeneities could thus be caused by e.g. inaccurate scanning magnets,
while a systematic over- or under-dosage could be the effect of wrongly calibrated
beam intensity monitors.

Based on the steepness of dose-response curves (i.e. the change in either tumor
control or normal tissue damage due to a change in dose), Wambersie recommends
a total dose uncertainty better than 3.5% (1 s.d.) at the ”ICRU Reference Point”,
and 5% in other points. The ICRU (International Commission on Radiation Units
and Measurements) Reference Point is a term that has been used in conventional
radiotherapy for a long time and is defined as [21]:

• The dose at that point should be clinically relevant and representative of the
dose distribution throughout the Planning Target Volume (PTV).

• The point should be easy to define in a clear and unambiguous way.

• The point should be selected where the dose can be accurately determined.

11



2 Clinical requirements

• The point should be in a region where there is no large dose gradient.

The purpose of the ICRU Reference Point is to simplify prescription and report-
ing of dose. The ”ICRU Reference Dose” is simply the dose to be delivered to the
ICRU Reference Point. For conventional radiotherapy (photons), recommendations
for choosing the Reference Point are [22]:

• For a single beam: the point on the central axis at the center of the target
volume.

• For parallel opposed equally weighted beams: the point on the central axis
midway between the beam entrance points.

• For parallel opposed unequally weighted beams: the point on the central axis
at the center of the target volume.

• For other combinations of intersecting beams: the point at the intersection of
the central axes (insofar as there is no dose gradient at this point).

These recommendations are adapted to conventional radiotherapy, where the in-
coming radiation field is uniform in intensity and energy, and compensation for e.g.
patient contour irregularities and ”missing tissue” is made by use of e.g. wedges and
boluses [22]. However, more modern irradiation techniques, such as Photon Inten-
sity Modulated Radiation Therapy (IMRT), offer an ”improved dose homogeneity
inside the target volume and the potential for limited irradiation of surrounding sen-
sitive structures” [22, Sec. 15.7.6]. In IMRT, the treatment is performed using a
large number of beams from different angles. Each individual beam delivers a non-
uniform dose to the PTV, but together they produce a (near-)uniform dose within
the PTV [4, Sec. 6.6.2.2]. With IMRT, it is therefore difficult to choose a point in
the target volume which is ”representative of the dose distribution throughout the
PTV” [23]. Dose prescription and reporting is therefore moving towards a volumet-
ric approach, using e.g. dose-volume histograms and requiring that e.g. the entire
PTV should receive at least 95% of the prescribed dose and/or that the homogeneity
of the planned dose distribution should be such that 95% of the PTV receives within
-5% to +7% of the prescribed dose [4, Sec. 6.6.1.3]. This is the case for photon
IMRT, but even more so for actively scanned protons beams, which have an extra
degree of freedom - the penetration depth - compared to photon beams.

To conclude, the relaxed conditions in other points than the ICRU Reference
Point, as proposed by Wambersie, will not be adopted by the active scanning facility
MedAustron. Instead, an overall dose homogeneity requirement of 3.5% (1 s.d.) in
all points of the target volume is aimed for, taking both Type A and Type B uncer-
tainties into account. Treating all uncertainties as independent random variables, the
combined, or total, uncertainty, σtot , can be estimated by quadratic addition of all
sources of dose uncertainty [17]:

σtot =
√

σ2
CT-conversion +σ2

Patient positioning +σ2
Energy errors +σ2

BDS + ...

≤3.5% (2.1)
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2.3 Dose homogeneity

A thorough evaluation of all the individual components contributing to σtot is
beyond the scope of this thesis. Focus in put on uncertainties originating from im-
perfections of vital parts of the beam delivery system:

• Beam energy errors

• Spot weight errors

• Beam size errors

• Beam positioning errors

The impact of these types of errors on dose homogeneity will be investigated, based
on the specific properties of the MedAustron facility: synchrotron extraction mech-
anism technique, beam properties at the isocenter and beam delivery nozzles. Once
these relations are known, acceptable error tolerances can be defined. These error
tolerances form the basis for performance requirements of e.g. synchrotron extrac-
tion stability and beam delivery system. But in order for these requirements to be
meaningful, they must also be verifiable: this means that specifications must also be
made on the BVS, which is responsible for verifying the properties of the scanned
beam during patient irradiation. The resulting dose distribution from the measured
beam properties should still satisfy the clinical requirements on dose homogeneity.
This procedure is outlined in Fig. 2.1.

Accelerator
&	BDS

Errors

Real	Dose
distribution

Clinical
RequirementsBVS

Measurement
Uncertainties

Specifications

Measured
Dose	Distribution

Figure 2.1: Schematic requirement specification process.

2.3.1 Uncertainty weighting

As seen in Eq. 2.1, the overall uncertainty of the target dose is given by the quadratic
sum of all contributions, σi. Two contributors are considered in this thesis: σBDS
and σ∆E , which concern the following beam properties, discussed in the previous
section:

σBDS :


Beam positioning
Beam size
Spot weight

σ∆E :
{

Energy errors (2.2)
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Setting an upper limit on one source of uncertainty without knowing the magni-
tude of all the other is impossible. However, as a starting point, the following limits
have been set:

σBDS ≤2.0%
σ∆E ≤1.0% (2.3)

These numbers are chosen somewhat arbitrarily, but:

• They leave a margin of
√

3.52−2.02−1.02 = 2.7% to other sources of dose
uncertainty, which is not a severe restriction compared to the maximum 3.5%.

• Choosing too small values would be pointless, since σtot then would either be
unnecessarily small, or completely dominated by other sources of uncertainty.

Nevertheless, the exact numbers chosen in Eq. 2.3 can always be discussed,
and should be taken as a starting point of an iterative procedure where deduced
requirements on e.g. synchrotron extraction stability or scanning magnet accuracy
are checked against technical feasibility. Specifications that can be tightened without
any (significant) additional cost leave room for a relaxation on other parts.

For this reason, dose error analysis will be done in a manner such that all result-
ing specifications easily can be rescaled to another choice of initial constraints.

2.4 Range accuracy

An energy error ∆E of the extracted beam will cause an error in range, ∆R, of the
beam as it is stopped in the patient, causing the Bragg peak to be shifted toward the
surface or deeper into the patient. The effect of an energy error would be largest for
the most distal, high weighted, Bragg curve of an SOBP: if the energy is too high,
the sharp Bragg peak could be moved into healthy tissue behind the tumor; if the
energy is too low, the distal part of the target could be severely under-dosed. The
sharper the Bragg peak (carbon ions, low energy protons), the stronger the effect of
an energy error.

Apart from extraction energy errors, uncertainties in conversions from CT-images
to beam range also contribute to uncertainties of the beam range in the patient. In
order not to risk e.g. irradiation of critical organs in the proximity of the tumor, the
beam entrance angle(s) is preferably chosen such that critical organs are not at risk
in case of beam range errors.

Beam energy errors can not only damage healthy organs distal to the tumor, or
cause significant underdosage in the distal part of the tumor; they will also deteri-
orate the homogeneity of the SOBP, since the peak-to-peak distances of the Bragg
peaks no longer correspond to the planned ones.

The beam range accuracy required varies between different centers. One exam-
ple is CNAO, which in their functional specifications [24] require an accuracy of
±0.025 g/cm2 (±0.25 mm in water), one quarter of the minimum range adjustment
step.

14



2.4 Range accuracy

Another example is the proton therapy facility Loma Linda [25], which describe
two differently deduced energy precision requirements in [26]. On the one hand, the
range accuracy is required to be better than 0.5 mm for patch fields. Patch fields are
combinations of fields where the distal edge of one field overlaps the lateral edge of
another field. On the other hand, the relative energy accuracy - i.e. the maximum
energy error when switching from one energy to the next when building up the SOBP
- specified by the same center varies between ±0.1 MeV for the sharp, low-energy
Bragg peaks, to ±0.25 MeV for the broadened, high-energy Bragg peak.

While the conversion from range accuracy (given in g/cm2 or mm in water) to
energy accuracy is straightforward (see Sec. 3.3.3), energy accuracy requirements
for energy stacking requires a more careful analysis, since it will depend on the
shape of the Bragg peak and the ridge filter used (carbon ions). An analysis of this
is made in Sec. 6.3.2.2
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Chapter 3

Theory and main concepts

3.1 Accelerator physics

3.1.1 Coordinate system and nomenclature

The horizontal, vertical and longitudinal coordinates of a single particle, with re-
spect to the trajectory of an ideal zero-amplitude, on-momentum particle, in the
synchrotron or along a transfer line are denoted x, y and s, respectively. The trans-
verse direction of a single particle is defined as the derivative of x and y with respect
to s:

x′ =
dx
ds

y′ =
dy
ds

(3.1)

The relative momentum offset of a single particle is denoted δp
p (zero for on-

momentum particles). Each particle i is represented by the vector~ri:

~ri = (xi,x′i,yi,y′i,δpi/p)T (3.2)

In this section, z and z′ are general coordinates used for either x and x′ or y and
y′.

3.1.2 Betatron motion

The transverse motion of a single particle around the equilibrium orbit in the syn-
chrotron is called betatron motion, and has been parameterized by Courant and Sny-
der [27]:

z(s) = Az
√

βz(s)cos
[∫ s

0

1
βz(s)

ds+ϕz

]
(3.3)

Az and φz are two constants determined by the starting coordinate of the particle.
βz(s) is defined by the optics of the synchrotron. The three derived auxiliary vari-
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3 Theory and main concepts

ables, αz(s), γz(s) and µz(s), to be used later, are defined as1:

αz(s) =−
1
2

dβz

ds
(3.4)

µz(s) =
∫ s

0

1
βz(s)

ds (3.5)

γz(s) =
1+α2

z

βz
(3.6)

(3.7)

with which the oscillatory particle motion in the transverse plane (z,z′) can be writ-
ten as:

z(s) =Az
√

βz(s)cos(µz(s)+ϕz) (3.8)

z′(s) =− Az√
βz(s)

[αz(s)cos(µz(s)+ϕz)+ sin(µz(s)+ϕz)] (3.9)

The normalized coordinates (Z,Z′) are defined as:

Z = Az cos(µz(s)+ϕz) (3.10)
Z′ =−Az sin(µz(s)+ϕz) (3.11)

and in normalized phase space, (Z,Z′), it is clear that all particles with a given
amplitude Az will lie on a circle of radius Az. Az is denoted the (normalized) particle
amplitude. The transformation from real phase space to normalized phase space is
linear and can be written as (omitting the argument s):(

Z
Z′

)
=

(
1/
√

βz 0
αz/
√

βz
√

βz

)(
z
z′

)
(3.12)

or, ~Z = B~z. The inverse transformation,~z = B−1~Z, is given by:(
z
z′

)
=

( √
βz 0

−α/
√

β 1/
√

βz

)(
Z
Z′

)
(3.13)

Fig. 3.1 shows the possible locations of particles of a given amplitude Az in real
and normalized phase space. Since det(B) = 1, the area enclosed by the circle in
normalized phase space is preserved by the linear transformation. This area is called
the single-particle emittance, εz, and, since it depends only on the particle amplitude
Az, it is constant in both phase spaces:

εz = πA2
z (3.14)

Via Eq. 3.12, this gives a motion invariant in real phase space:
εz

π
= Z2 +Z′2 = . . .= βzz′2 +2αzzz′+ γz2 (3.15)

where the latter is the equation for an ellipse.
Note that particles with the same amplitude Az but different phase ϕz will follow

the same trajectory.
1α(s), β(s) and γ(s) are called Twiss functions.
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Figure 3.1: Permissible coordinates for particles of a given amplitude Az in real and
normalized phase space. The single particle emittance is 1.0 π mm mrad, βz =1.0 m
and αz=1 (subscript z omitted in figure).

3.1.3 Gaussian beam distribution

Prior to extraction, the distribution of particles in the synchrotron is well described
by a two-dimensional Gaussian in the horizontal and in the vertical plane. The
density of particles in either plane, denoted ρz(z,z′), is in normalized phase space
given by:

ρz(Z,Z′) =
1

2πσ2
norm

exp
(
−Z2 +Z′2

2σ2
norm

)
(3.16)

which in real phase space transforms to:

ρz(z,z′) =
1

2πσ2
norm

exp
(
−γzz2 +2αzzz′+βz′2

2σ2
norm

)
(3.17)

where αz, βz and γz are the Twiss parameters, which describe the tilt, stretch and
height of the elliptical phase space distribution, and σnorm defines the width of
the distribution in phase space. An example of a particle distribution is shown in
Fig. 3.2, where color indicates particle density. The isoline

√
Z2 +Z′2 = σnorm ⇔

ρz = e−1/2/2πσ2
norm has been indicated as a black curve.

The area enclosed by this isocurve is called the 1σ-emittance of the Gaussian
beam, denoted εz. Note that the emittance is here defined as the total area enclosed
by the curve: √

Z2 +Z′2 = σnorm (3.18)

In other literature, the emittance can be defined as the enclosed area divided by
π. This thesis follows the recommendation by e.g. Phil Bryant [28] and explicitly
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Figure 3.2: Example of beam distribution in a transverse plane. The 1σ-emittance,
εz, is 1.0 π mm mrad, βz =1.0 m and αz=1 (subscript z omitted in figure). The solid
line indicates the isolevel where ρ = e−0.5/2πσ2

norm.

writes out the emittance in units of π mm mrad, or π m rad. The factor π shows that
emittance is defined as the area of the circle, and not the radius squared.

A projection of the beam distribution on the z-axis gives the 1σ-beam width:

σz =

√
βz×

εz

π
(3.19)

while a projection on the z′-axis gives the 1σ-beam divergence:

σz′ =

√
γz×

εz

π
(3.20)

Note that the division by π simply cancels out the factor π present in the unit of
the emittance (π m rad or π mm mrad).

If not explicitly mentioned otherwise, the term emittance always means the 1σ-
emittance. One could equally well choose the area of e.g. the circle

√
Z2 +Z′2 =√

5σnorm as an emittance definition, which would include a larger fraction of the
beam.

3.1.4 Amplitude distribution

Particles with the same amplitude Az =
√

Z2 +Z′2 are distributed along a circle with
radius Az in normalized phase space. The number of particles within the amplitude
range [Az,Az + dAz] (dAz small) is given by the number of particles in the circular
band with width

∫
dAz and radius Az. The amplitude distribution ρ(Az) can thus be

20



3.1 Accelerator physics

calculated from the 2-dimensional Gaussian distribution ρ(Z,Z′):

ρ(Az)dAz =2πAzdAz×ρ(
√

Z2 +Z′2 = Az)⇒

ρ(Az) =
Az

εz/π
exp
(
− A2

z

2× εz/π

)
(3.21)

where εz/π is the transverse 1σ-emittance of the beam (horizontal or vertical). The
amplitude distribution is shown schematically in Fig. 3.3a for a truncation level at
Az =

√
5εz/π. Particles with a single-particle emittance larger than 5εz are assumed

to be collimated.

3.1.5 Momentum distribution

The momentum spread of the beam, just before extraction, is assumed to be uniform,
with a total spread of ∆p/p, as shown in Fig. 3.3b.
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(a) Amplitude distribution, ρ(Az), truncated at
Az =

√
5εz/π.
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Figure 3.3: Amplitude and momentum distribution examples.

3.1.6 Transfer matrix formalism

Since Eq. 3.3 governs the motion of all particles along the synchrotron, the Twiss
functions along the synchrotron can be used to calculate the particle motion from
s = s1 to s = s2. The transfer matrix of (z,z′) from s1 to s2 for uncoupled motion is
given by [28]: (

z
z′

)
s2

=

(
m11 m12
m21 m22

)(
z
z′

)
s1

= Ms1→s2~z1 (3.22)

21



3 Theory and main concepts

where the elements of the transfer matrix are (subscript z omitted):

m11 =

√
β2

β1
(cos(∆µ)+α1 sin(∆µ))

m12 =
√

β1β2 sin(∆µ)

m21 =−
1√
β1β2

((1+α1α2)sin(∆µ)+(α2−α1)cos(∆µ))

m22 =

√
β1

β2
(cos(∆µ)−α2 sin(∆µ)) (3.23)

Subscript 1 or 2 on β and α indicates their value at s1 or s2 and ∆µ is the phase
advance from s1 to s2:

∆µ = µ(s2)−µ(s1) (3.24)

When applied to a single turn around the synchrotron (i.e. α1 = α2, β1 = β2), the
transfer matrix becomes, in real phase space (subcript z):

M1
z (Qz) =

(
cos(2πQz)+αsin(2πQz) βsin(2πQz)

−γsin(2πQz) cos(2πQz)−αsin(2πQz)

)
(3.25)

where 2πQz = ∆µ, i.e. the phase advance over one turn. Q is the (horizontal or ver-
tical) betatron tune of the synchrotron: the number of betatron oscillations a single
particle makes per turn. In normalized phase space (subscript Z), the corresponding
transfer matrix for a single turn is:

M1
Z(Qz) = BM1

z B−1 = . . .=

(
cos(2πQz) sin(2πQz)
−sin(2πQz) cos(2πQz)

)
(3.26)

which is the standard matrix for a clock-wise rotation 2πQ radians. Thus, the transfer
matrix for n turns around the synchrotron in normalized phase space coordinates is:

Mn
Z(Qz) =

(
cos(2πnQz) sin(2πnQz)
−sin(2πnQz) cos(2πnQz)

)
(3.27)

3.1.7 Dispersion

The magnetic rigidities of off-momentum particles are different to on-momentum
particles. The deflection angle of an off-momentum particle through e.g. a dipole
will be different from that of an on-momentum particle. The orbit of a zero-amplitude,
off-momentum particle will therefore be different from the reference orbit. The ra-
tio between the phase space displacement and momentum deviation is the dispersion
vector, (Dz,D′z):

∆z = Dz
δp
p

(3.28)

∆z′ = D′z
δp
p

(3.29)
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3.2 Third integer resonance extraction

3.1.8 Chromatic tune shift

The deflection and focusing strength in the synchrotron magnets depends on the en-
ergy of the particle. Therefore, off-momentum particles will behave differently to
on-momentum particles. The chromaticity (horizontal or vertical) of the synchrotron
is the ratio between the tune shift of an off-momentum particle and its relative mo-
mentum deviation, δp/p:

Q′z =
∆Qz

δp/p
(3.30)

where ∆Q is the difference between the particle tune and the synchrotron tune (on-
momentum particle tune). The momentum dependent tune of a single particle can
thus be written as:

Qz = Qres +Q′z
δp
p

(3.31)

assuming an on-momentum, zero-amplitude, particle (δp/p = 0) has the resonance
tune, Qres.

The MedAustron synchrotron has a negative horizontal chromaticity, i.e. during
acceleration (increasing δp/p) the horizontal tune of the beam decreases. Before
extraction, the horizontal tune of the beam is thus above the resonance tune.

3.2 Third integer resonance extraction

3.2.1 Resonance sextupole

The magnetic elements of the MedAustron synchrotron are tuned such that an on-
momentum particle has a horizontal tune close to 5/3 (Qx = 1.6666). The beam is
extracted by using a resonance sextupole, which introduces a perturbation to the ma-
chine. Every time a particle passes through the resonance sextupole, it will receive
a ”kick” that shifts its horizontal and vertical direction (x′ and y′) by ∆x′ and ∆y′.

The horizontal and vertical components of a magnetic field , Bx, By, can always
be written as the differentiation of scalar magnetic potiential Φ:

Bx(x,y) =−
∂Φ

∂x

By(x,y) =−
∂Φ

∂y
(3.32)

The scalar potential of a field with 2m poles can be written as the sum of two com-
ponents:

Φ(x,y) = Amℜ{(x+ iy)m}︸ ︷︷ ︸
Skew component

+Bmℑ{(x+ iy)m}︸ ︷︷ ︸
Normal component

(3.33)

where the relative weights of the terms Am and Bm determines the orientation of the
field in the transverse plane. For a normal magnet, Am = 0, while for a skew magnet
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Bm = 0. The magnetic field components of the resonance sextupole (m = 3, normal
magnet) thus are:

Bx(x,y) =−B3
∂

∂x
(3x2y− y3) =−6B3× xy

By(x,y) =−B3
∂

∂y
(3x2y− y3) =−3B3× (x2− y2) (3.34)

A Taylor expansion of e.g. By(x,y = 0) around x = 0 gives the term B3:

−3B3(x2−02)≡
∞

∑
k=0

xk

k!

(
∂kBy

∂xk

)
0
⇒ B3 =−

1
6

(
∂2By

∂x2

)
0

(3.35)

and the horizontal and vertical magnetic fields can be rewritten as:

Bx(x,y) =
(

∂2By

∂x2

)
0

xy

By(x,y) =
1
2

(
∂2By

∂x2

)
0
(x2− y2) (3.36)

The bending angle α of a positively charged particle passing through a dipole
field of strength B and length l is, using a thin lens approximation:

α =
Bl
|Bρ| (3.37)

|Bρ| is the magnetic rigidity of the particle, related to the particle momentum p
and charge number q as:

|Bρ|= p
q

[Tm] (3.38)

Since the variation of the transverse displacement in a sextupole is negligible, a
thin lens approximation can be used. The ”kick” (change in direction, ∆x′ and ∆y′)
is given by [11, 29]:

∆x′ =
1
2

ls
|Bρ|

(
d2By

dx2

)
0
(x2− y2) =

1
2

lsk′× (x2− y2)

∆y′ =− ls
|Bρ|

(
d2By

dx2

)
0

xy =−lsk′× xy (3.39)

where ls is the length of the sextupole magnet and k′ is the normalized sextupole
gradient:

k′ =
1

Bρ

(
d2By

dx2

)
0

(3.40)

Combining Eq. 3.12 and Eq. 3.40 gives the kick in normalized phase space:

∆X ′ =β
3/2
x

lsk′

2
(X2− βy

βx
Y 2) = S(X2− βy

βx
Y 2)

∆Y ′ =−βyβ
1/2
x lsk′XY =−2S

βy

βx
XY

(3.41)
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where the normalized sextupole strength, S, has been introduced:

S =
1
2

β
3/2
x lsk′ (3.42)

The resonance sextupole will introduce a coupling between the horizontal and
vertical plane if Y > 0. However, in the MedAustron synchrotron, Y is small com-
pared to X at the resonance sextupole and, to a first order, the vertical motion can be
neglected2. The simplified normalized sextupole kick thus becomes:

∆X ′ =SX2

∆Y ′ =0 (3.43)

3.2.2 Kobayashi Hamiltonian

The horizontal tune of the MedAustron synchrotron is close to 5/3, i.e. after three
turns, a particle is close to previous phase space coordinates. Let the horizontal tune
of a particle be:

Q = Qres +δQ (3.44)

where Qres = 5/3 is the resonance tune and δQ a small tune deviation. The operator
Ŝ is the effect of the resonance sextupole on a single particle, i.e:

Ŝ
(

X
X ′

)
=

(
X
X ′

)
+

(
0

SX2

)
(3.45)

The shift of a particle’s position in horizontal phase space over three turns can,
to a first order, be estimated by adding the effect of:

1. A non-zero δQ over three turns (if zero, the particle returns to its original
position)

2. the sextupole kick after the first turn (neglecting δQ)

3. the sextupole kick after the second turn (neglecting δQ)

4. the sextupole kick after the third turn (neglecting δQ)

The total coordinate shift over three turns, ∆~X , can be calculated from:

∆~X =M3
Z(Qres +δQ)~X−~X+

M2
Z(Qres)Ŝ

{
M1

Z(Qres)~X
}
−~X+

M1
Z(Qres)Ŝ

{
M2

Z(Qres)~X
}
−~X+

Ŝ
{

M3
Z(Qres)~X

}
−~X = . . .

=

(
6πδQX ′+ 3

2SXX ′

−6πδQX + 3
4S(X2−X ′2)

)
(3.46)

2The optics has been designed to achieve exactly this.
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The term 6πδQ is called modified tune distance and is in this document denoted ξ3:

ξ = 6πδQ (3.47)

Thus, the change of a particle’s coordinates in horizontal phase space over three
turns is, to first order:

∆X3 Turns =ξX ′+
3
2

SXX ′ (3.48)

∆X ′3 Turns =−ξX +
3
4

S(X2−X ′2) (3.49)

where ∆X3 Turns is known as the spiral step and ∆X ′3 Turns the spiral kick. During
slow extraction, the spiral step and kick are small and the time needed for a particle
to travel around the synchrotron is short compared to the overall spill time. One can
therefore treat X and X ′ as continuous variables with a time derivative of (omitting
the subscript ”3 Turns”):

Ẋ ≈∆X
∆t ′

= ξX ′+
3
2

SXX ′

Ẋ ′ ≈∆X ′

∆t ′
=−ξX +

3
4

S(X2−X ′2) (3.50)

where the time t ′ is time in units of three times the revolution period:

t ′ =
t

3× trev
(3.51)

Now, assume there is a Hamiltonian H of which X and X ′ are the canonical vari-
ables. Then [30]:

Ẋ =
∂H
∂X ′

Ẋ ′ =− ∂H
∂X

(3.52)

H (X ,X ′) can be resolved by partial integration of Eq. 3.50 (setting the integration
constant to zero):

H (X ,X ′) =
ξ

2
(X2 +X ′2)+

S
4
(3XX ′2−X3) (3.53)

This is the Kobayashi Hamiltonian.

3In other literature the letter ε is used [11] for modified tune distance, but to avoid confusing it
with the emittance, the symbol ξ is used in this document.
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3.2 Third integer resonance extraction

3.2.3 Stable region

Of particular interest are the isocurves of the Kobayashi Hamiltonian where H =
(2ξ/3)3/S2, for which the equation is [29]:(

S
4

X +
ξ

6

)(√
3X ′+X− 4ξ

3S

)(√
3X ′−X +

4ξ

3S

)
= 0 (3.54)

This is the equation for three straight lines, forming a triangular region. These lines
are called the separatrices and the size of the triangular region is determined by the
ratio |ξ/S|.

The particle trajectories in normalized phase space will follow the isocurves of
H , shown in Fig. 3.4. Inside the triangular region, the curves are closed - the parti-
cles are stable. Outside the triangle, the trajectories continue to infinity - the particles
are unstable, as they will spiral outwards from the origin. There are four fixed points
P0−P3 where Ẋ = Ẋ ′ = 0:

h =
2ξ

3S
;


P0 = (0,0)
P1 = (2h,0)
P2 = (−h,−

√
3h)

P3 = (−h,
√

3h)

(3.55)

and the area of the stable triangle is given by:

εtriangle = 3
√

3h2 =
48
√

3π

S2 (δQ)2
π (3.56)

Particles that are close to the fixed points will move slower than particles that are in
the mid-region of the sides of the triangle. Due to this effect, the density of particles
will be higher at the corners of the triangle than along the sides of the triangle.

Note that a change of sign of ξ will flip the triangle 180◦ in phase space.
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Figure 3.4: Left: Particle trajectories in normalized horizontal phase space (S = 1.0,
ξ = 0.01). Right: The stable triangle defined by the separatrices and fixed points
P0−P3.

The resonance sextupole is located in a dispersion-free region (Dz = D′z = 0 in
the horizontal and vertical plane) of the synchrotron.
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3 Theory and main concepts

3.2.4 Adiabatic ramping of resonance sextupole

The resonance sextupole will distort the elliptical phase space trajectories into trian-
gular ones. In order to preserve the emittance, the sextupole must be ramped up to
its nominal value S slowly enough that the elliptical beam distribution in horizontal
phase space is ”squeezed” into a triangular distribution. If the single particle emit-
tances are preserved, the sextupole is ramped adiabatically. In order not to extract
any particles during ramping, the full emittance of the beam εx,beam must be smaller
than the area of the stable triangle after ramping:

εx,beam ≤ εtriangle (3.57)

An example of a single-particle trajectory during adiabatic and non-adiabatic
ramping is shown in Fig. 3.5 (see Sec. 4.3 on particle tracking).
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(a) Adiabatic ramping (50,000 turns).
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(b) Non-adiabatic ramping (200 turns).

Figure 3.5: Phase space trajectory of a single particle at the resonance sextupole
during ramping of resonance sextupole. Closed trajectories before and after ramp-
ing are indicated with dashed and dotted lines. εx in π mm mrad. Color indicates
sextupole strength.

3.2.5 Steinbach diagram

The area of the stable triangle in Fig. 3.4 depends on the modified tune distance
ξ = 6πδQ. The factor δQ, in turn, depends on the particle momentum (Eq. 3.30):

δQ = Q′x
δp
p

(3.58)

Combining this with Eq. 3.56 gives the following stability criterion for a particle
with emittance εx and momentum deviation δp/p:√

48
√

3π

∣∣∣∣Q′xS
δp
p

∣∣∣∣≥√εx/π (3.59)
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3.2 Third integer resonance extraction

The linear relation between |δp/p| and
√

εx/π = Ax can be illustrated in a Stein-
bach diagram (Fig. 3.6), where the abscissa is the single-particle tune (or, via the
chromaticity, momentum offset). The ordinate is the normalized particle amplitude.
Particles inside the ”V”-shaped region are unstable.

Stable	region

Un
st
ab
le
	re
gi
on

Stable	region

Figure 3.6: Steinbach diagram: graphical representation of Eq. 3.59. Particles with
a given tune and amplitude Ax are stable only if they are outside the ”V”-shaped
region. Projected beam distribution in momentum and amplitude space shown below
and to the left of the Steinbach diagram.

3.2.6 Acceleration-driven extraction

One way to extract the beam is to change its momentum (energy) such that the par-
ticles, via the chromaticity, are pushed into the resonance (the ”V”-shaped region
in the Steinbach diagram). In MedAustron and the Italian hadron therapy facility
CNAO, this is done with an inductive element called betatron core. The principle
is shown in Fig. 3.7: current coils parallel to the beam path induce a magnetic field
B(t), coaxial with the beam path. By gradually increasing the current, the mag-
netic field will increase and an electric field that accelerates the beam is induced via
Maxwell’s 3rd equation:

∇×E =−∂B
∂t

(3.60)

When a stable particle is accelerated, the stability criterion (Eq. 3.59) will at
some point be violated. The particle is then inside the unstable region, spiraling out-
ward. In principle, the particle can be anywhere along the triangular border when
this happens, but as seen in Fig. 3.4, the trajectory of the particle will asymptoti-
cally approach one of the separatrices. The smaller the single-particle emittance, the
closer to the resonance momentum the particle must be before it becomes unstable.

3.2.7 Electrostatic and magnetic septa

Downstream of the resonance sextupole is an electrostatic septum (ES) (see Fig. 3.8a),
where a horizontal electric field E = Ex̂, is present at x > xES. The stable particles
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3 Theory and main concepts

Figure 3.7: Betatron core principle: current coils parallel to the beam trajectory
induces a coaxial magnetic field. Increasing the current induces an electric field
parallel to the beam, which is accelerated.

are not affected by the septum, but unstable particles which have reached a horizon-
tal coordinate larger than xES will be accelerated outwards, i.e. receive a ”kick” ϕ in
horizontal phase space, as illustrated in Fig. 3.9. The amplitude of the kick is given
by:

ϕ =
qEESLES

pv
(3.61)

where q is the charge of the beam, EES the electric field, LES the length of the field
(along s). p and v are the beam momentum and velocity.

Further downstream, the phase advance has transformed this kick into a spatial
jump, which creates a horizontal gap void of particles. At this location, a magnetic
septum (MS) is inserted, which deflects the previously kicked particles into the High
Energy Beam Transfer line (HEBT). The schematics of the magnetic septa is shown
in Fig. 3.8b.

+ -

Septum
wires

(a) Electrostatic septa, principle.

Coils

(b) Magnetic septa, principle.

Figure 3.8: Principle of electrostatic and magnetic septa.

Some particles will inevitably hit the wires of the electrostatic septum, and be
lost. To maintain a high extraction efficiency, the thickness, ∆xES must be small.
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3.3 The Bragg curve

This limits the electric field that can be sustained, and a second kick by the magnetic
septum is necessary to deflect the beam to the HEBT. However, if only a MS were
used, the extraction efficiency would be reduced, since the inner coils of the MS are
significantly thicker than the wires of the ES.
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4
MS

1

2

3

4

To HEBT

ES

MS

HEBT

RS

1

2

3

4

RS

Figure 3.9: Schematic location of the resonance sextupole (RS), electrostatic sep-
tum (ES) and magnetic septum (MS) in the synchrotron (top right) and the phase
space coordinates over the last three turns of a particle that is to be extracted to
the High Energy Beam Transfer line (HEBT). For simplicity, the separatrices for an
on-momentum particle (ξ = 0) are shown (i.e. the area of the stable triangle is zero).

3.3 The Bragg curve

3.3.1 Stopping power

Charged particles moving through matter lose their energy primarily by ionization
and atomic excitation. The stopping power is defined as the average energy loss per
unit length traversed (MeV/cm). For therapeutic energies, electronic interactions
is the dominant contributor to energy loss. Toward the end of the particle range -
where the energy is low - nuclear interactions become more important. An example
of electronic and nuclear stopping power is shown in Fig. 3.10.
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3 Theory and main concepts

Figure 3.10: Electronic and nuclear stopping power of aluminum ions in alu-
minum [31].

The following expression (the Bethe formula) for energy loss was derived by
Hans Bethe, using relativistic quantum mechanics [32]:

− dE
dz

=
4πk2

0Q2e4n
mec2β2

[
ln

2mec2β2

I(1−β2)
−β

2
]

(3.62)

where:

• k0 = 8.99×109 N m2 C−2

• Q = the atomic number of the charged particle

• e = the electron charge

• n = number of electrons per unit volume in the medium

• me = the electron mass

• c = speed of light in vacuum

• β = v/c = speed of particle relative to c

• I = the mean excitation energy of the medium

The mass stopping power is the stopping power divided by the density of the ma-
terial, −dE/ρdz. The mass stopping power is often useful since it is independent of
e.g. the pressure of a gas. Additionally, materials with a similar atomic composition
have similar mass stopping power.
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3.3 The Bragg curve

The mean excitation energy, I, for a material with atomic number Z can be esti-
mated to:

I ≈


19.0 eV Z = 1
11.2+11.7×Z eV 2≤ Z ≤ 13
52.8+8.71×Z eV Z > 13

(3.63)

For compound materials, I can be estimated by adding the individual contribu-
tions as:

ln I =
1
n ∑

i
NiZi ln Ii (3.64)

where n is the total number of electrons cm−3 and Ni the number of atoms cm−3.
This gives for water (H2O, Z1 = 1, Z2 = 8, N1/n = 2/10, N2/n = 8/10):

ln Iwater ≈
2×1

10
ln19+

1×8
10

ln105 = 4.312⇒ Iwater ≈ 74.6 eV (3.65)

The stopping power for protons, helium and carbon ions in water, as calculated
with the Bethe formula, are shown in Fig. 3.11.
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Figure 3.11: Stopping power for protons, helium and carbon ions in the energy range
1-1000 MeV/n. Proton and carbon ion data points from [4] and [33].

3.3.2 Analytical Bragg curve

In the therapeutic energy range (up to a few hundred MeV per nucleon), the stop-
ping power increases with decreasing particle energy. The energy deposition will
therefore be lowest at the entrance region. Just before the particle is stopped, it will
deposit its remaining energy in a ”spike”. This spike is referred to as the Bragg peak.
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3 Theory and main concepts

When the kinetic energy of a particle has been reduced from the initial energy
T0 to T0−T , its current depth can be calculated by integrating the inverse stopping
power:

z(T0−T ) =
∫ T0

T0−T

(
−dE

dz

)−1

dE (3.66)

Eq. 3.66 gives the particle energy at any depth, from which the linear energy trans-
fer, LET can be calculated. The LET is the average energy deposited along the
particle track and is equal to the stopping power4.

An example of the Bragg curves (LET vs. depth) received by integration of the
Bethe formula is shown in Fig. 3.12. The flat region close to the entrance is called
the plateau region. As the particle loses energy, the LET increases, and ends in a
sharp Bragg peak.
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Figure 3.12: Example of proton, helium and carbon ion Bragg curves, calculated by
integration of the Bethe formula.

3.3.3 Range

Analytically, the range R of a particle with initial kinetic energy T0 is given by inte-
grating Eq. 3.66 from zero kinetic energy:

Rcsda =
∫ T0

0

(
−dE

dz

)−1

dE (3.67)

This definition of range is called the continuous slowing down approximation range,
or csda range [33].

4If not explicitly mentioned otherwise, the LET always refers to the unrestricted LET [32], L∞,
which is equal to the stopping power.
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3.3 The Bragg curve

However, the ionization and excitation processes which primarily cause energy
loss are random. When two initially identical particles reach a certain depth, they
will not necessarily have undergone the same number of interactions, and will there-
fore not have the same residual energy. This process is called energy straggling.
Additionally, multiple scattering will randomly deflect the ions at each collision,
with the result that the path taken by different ions will differ, as shown in Fig. 3.13.
As a result, there will be a spread in the total path length when a group of initially
mono-energetic particles reaches a depth d. This process is referred to as range
straggling5. Both energy straggling and range straggling cause a spread in the final
range of a group of particles with identical starting conditions.

Figure 3.13: Beam path of a scattered particle.

A phenomenological expression for the standard deviation of the energy strag-
gling is [34, 35]:

σstrag = 0.012×R0.95
0 A−0.5 (3.68)

where R0 is the mean range and A the particle mass number. Thus, for proton (A= 1)
and carbon ion (A = 12) beams of equal range, the energy straggling will be about a
factor

√
12≈ 3.5 higher for the proton beam, compared to the carbon ion beam.

In order to estimate the mean ranges for beams of different energies, the SRIM6

program [36] has been used, rather than analytical integration of the stopping power.
SRIM produces e.g. range and stopping power tables for ions of different energies
in different materials. The difference in range compared to e.g. ICRU energy-range
tables [33] is below 2-3% [35].

Shown in Fig. 3.14 is the mean range, as calculated by SRIM [36], with expo-
nential fits (R0 in cm and E in MeV/n):

R0 = α×Ek
{

Protons: α = 0.00262, k = 1.734
Carbon ions: α = 0.00123, k = 1.675 (3.69)

One effect of straggling is that the sharp Bragg peak calculated by integration of
the Bethe formula will be ”smoothed”, since not all particles will stop at the same
depth.

3.3.4 Water equivalent thickness

The Water Equivalent Thickness (WET) of a slab of some material with thickness
dm is defined as the required thickness of a water column to cause the same energy

5Note that the term range straggling sometimes is used for what is here called energy straggling.
This document follows the terminology of [32].

6Available at http://www.srim.org
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Figure 3.14: Range vs. energy for protons and carbon ions in water (SRIM). Error
bars indicate ±σstrag. Solid lines are exponential fits.

loss as when a beam passes through the slab:

WET = dm
ρm

ρw

S̄m

S̄w
(3.70)

ρm and ρw are the density of the slab and water, and S̄m and S̄w are the average stop-
ping power for the incoming beam in the slab and in water. If the beam enters and
exits the slab with kinetic energies Tin and Tout , respectively, the average stopping
power is defined as [37]:

S̄ =

∫ Tout
Tin

(dE
dz

)
dT∫ Tout

Tin
dT

(3.71)

3.3.5 Bragg curve parameterization

In order to model the depth-dose distribution from a proton or carbon ion beam in
water, Monte Carlo simulations in GEANT4 have been performed over the thera-
peutic energy ranges by Dr. F. Moser [38]. The simulated Bragg peaks have been
parameterized according to Bortfeld’s model [39]. An example of the parameterized
Bragg curves is shown in Fig. 3.15. As seen, the widening of the Bragg peak due to
straggling is more pronounced for protons than carbon ions.

3.3.6 Spread Out Bragg Peak

In active scanning, a homogeneous target dose is produced by superposition of sev-
eral Bragg curves of different weights and energies. Assume a target located be-
tween depths zmin and zmax, with infinite transverse dimensions. In depth, the target
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Figure 3.15: Proton and carbon ion Bragg curves parameterized from GEANT4
simulations [38]. Legends indicate initial beam energy in MeV/n.

is divided into N layers, each layer corresponding to the penetration depth of a beam
with initial kinetic energy Ti, with a weight λi (particles per unit area). The LET of
each Bragg curve is denoted Li(z) (energy deposition per unit length). The target
dose, D(z), is given by:

D(z) = ∑
i

λiLi(z)/P [
particles

cm2 × J
cm
× cm3

kg
= Gy] (3.72)

where P is the target density. There are different ways of optimizing the layer
weights, but the simplest method is to aim at a dose that is as flat as possible be-
tween zmin and zmax

7. For carbon ions beams, or low energy proton beams, the
Bragg peaks are very sharp: the distance between two consecutive layers must then
be short in order to avoid ”spikes” in the longitudinal dose distribution. An example
of a ”Spread Out Bragg Peak” (SOBP) for a carbon ion target between 10 and 14 cm
depth is shown in Fig. 3.16, using layer thicknesses of 1 and 2.5 mm. In the former
case, the target dose is homogeneous to ±1%, while in the latter case, the layers are
so sparsely spaced that the sharp Bragg peaks cause local ”hot” and ”cold” spikes at
up to ±20%.

7In fact, it is the biological dose that should be optimized, for which the RBE must be taken into
account. This is neglected here, since, from a beam delivery system point of view, it is the quality of
the measurable (physical) dose that is primarily of interest.
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Figure 3.16: Carbon ion SOBP (zmin =10 cm, zmax =14 cm).

3.4 Scattering

In this section, a model for scattering along a beam line (taking beam optics into ac-
count) and in the patient will be elaborated. This model will be used for evaluating
different nozzle designs, with respect to achievable beam sizes (and lateral penum-
bra) at the patient, and to model the dose distribution in the patient during active
scanning.

3.4.1 Theory

An ion traversing a slab of some material will repeatedly change its direction mainly
due to collisions with the nuclei of the slab. Most collisions result in small-angle
deflections, but the accumulated effect will at some penetration depth d have led to a
transverse displacement z and shift in angular direction z′, as illustrated in Fig. 3.13.

The primary cause of deflection is Coulomb scattering from the nuclei, but there
is also a contribution from strong interaction between the incoming ion and the nu-
clei [6, 40].

3.4.1.1 Molière theory

Consider a mono-energetic point-beam that passes through a slab that is thick enough
that the average number of collisions is sufficiently high to allow for a statistical
treatment of the distribution of z′ at the exit, but thin enough that the energy lost
is negligible. According to the scattering theory of Molière [41] (a condensed sum-
mary can be found in [42]), the distribution of the space angle, θ=

√
x′2 + y′2 can be

expressed as a power series in 1/B, a beam and material dependent constant (taking
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only the first three terms):

f (θ′) =
1

2πθ2
M

1
2

[
f (0)(θ′)+

f (1)(θ′)
B

+
f (2)(θ′)

B2

]
(3.73)

The constant B is given by solving the equation:

B− lnB = b (3.74)

where b is the logarithm of the effective number of collisions in the target (see [42]
for details) and the reduced angle θ′ is a scaling of the space angle θ:

θ
′ =

θ√
2θM

(3.75)

θM is the characteristic (projected) multiple scattering angle, using Gottschalk’s no-
tation [42], and related to B as:

θ
2
M =

1
2

χ
2
cB (3.76)

The term χc is the characteristic single scattering angle, proportional to:

χ
2
c ∝

(
Q

pcβ

)2

× Z2

A
Dρ (3.77)

Here, Q is the charge number of the particle, p its momentum and cβ its velocity. Z
and A are the atomic number and weight of the material and Dρ the target thickness
multiplied by its density.

The functions f (n) are defined as:

f (n) =
1
n!

∫
∞

0
yJ0(θ

′y)e−y2/4
(

y2

4
ln

y2

4

)n

dy (3.78)

where J0 is a Bessel function of the first kind. The first term in Eq. 3.73 is a central
Gaussian:

f (0)(θ′) = 2× e−θ′2 (3.79)

At small angles, f (θ′) is nearly Gaussian. However, the best fit to f (θ′) at small
angles is not given by simply omitting the two terms f (1) and f (2), since the central
part of f is somewhat narrower than f (0) ( f (1) and f (2) can be negative). A better fit
to the 1/e space angle, θ1/e is given by:

θ1/e = θM×
√

B−1.2
B

(3.80)

with which the fitted Gaussian of the projected angular distribution has a standard
deviation θ0 of:

θ0 =
θ1/e√

2
(3.81)
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An example of f (θ′), the dominant Gaussian term f (0) and the Gaussian fit to
f (θ′) is shown in Fig. 3.17 (160 MeV protons scattered by 30 µm copper). The
total distribution is slightly more narrow than the Gaussian term, and exhibits longer
tails. The Gaussian fit, using θ0, agrees well with the central part of the Moliere
distribution, and it is only at large angles that the difference is visible. However, at
large angles, the angular density is only a few percent of the central peak, and for
any practical purposes the Gaussian fit using Eq. 3.81 is adequate.

The angle θ0 is in this document simply called the scattering angle, referring to
the standard deviation of the fitted Gaussian to the projected angular distribution of
a point beam after being scattered.
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Figure 3.17: f (θ′), fitted Gaussian and f (0)(θ′) for a 160 MeV proton beam scattered
in 29 µm copper (B = 8.761, θM = 1.651 mrad [42]).

3.4.1.2 Highland formula

The scattering theory of Molière is fairly complicated and in 1975, Higland sug-
gested a considerably simpler empirical expression for ”the average experimentalist”
to quickly calculate the scattering angle (of a proton beam) [43]:

θ0 =
13.9 MeV

pβc

√
Dρ

X0

(
1+

1
9

log10
Dρ

X0

)
(3.82)

X0 is the radiation length of the material (see Sec. 3.4.1.3) (g/cm2, independent
of beam). The constant value 13.9 MeV would in fact depend on the material but
Highland suggests using a single value, fitted to an element in the middle of the
periodic table (silver, Z=47). The accuracy of this empirical fit is claimed to be
about 5%, ”except for very light elements, or low velocity, where it is 10-20%”.

The Highland formula should not be applied to thick scatterers where the energy
loss is significant, but is otherwise accurate to 11% in the range 10−3 < Dρ/X0 <
100 [40]8.

8Singly charged particles, β = 1.
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3.4 Scattering

3.4.1.3 Radiation length

The radiation length X0 is a material dependent constant with units of g/cm2. Ma-
terials with a short radiation length scatter a beam more than materials with a long
radiation length. In general, materials with a high atomic number have a short ra-
diation length (see Eq. 3.77). Tab. 3.1 displays the radiation lengths and nominal
densities of the materials used in this thesis.

Material X0 [g/cm2] ρ [g/cm3] X0/ρ [cm]
Water 36.08 1.00 36.08
Air 36.66 1.205 g/l 304 m
Copper 12.86 8.96 1.43
Mylar 39.95 1.39 28.7
Kapton (polyimide) 40.56 1.42 28.6
Helium 94.32 0.1786 g/l 5280 m
Aluminum 24.01 2.7 8.89

Table 3.1: Radiation length, density (ρ) and their ratio in cm. Numbers are taken
from [40, Chapter 6].

3.4.2 Scattering power

Although Highland’s formula is accurate and easy to use, two things are missing:

• For thick scatterers (e.g. the patient, where the beam stops completely), the
energy loss must be taken into account.

• It is not applicable to heterogeneous geometries, such as a nozzle with differ-
ent materials (monitors, air gap, ridge filters etc.), where the radiation length
X0 varies longitudinally.

It may be tempting to divide the geometry into smaller parts, each of a homo-
geneous material and reducing the beam energy only negligibly, and calculate the
scattering angle dθi for each part individually. Since the Highland formula returns
the standard deviation for a Gaussian beam, the contributions could be added in
quadrature to yield the total scattering angle:

θ
2
0 = ∑

i
dθ

2
i (3.83)

However, this approach will give erroneous results, since (a) the logarithmic term
diverges if the scatterer is divided into too thin parts, and (b) the Molière theory
does not describe a Gaussian beam: straightforward (quadratic) addition of small
angles will always lead to a Gaussian beam [42].

To take energy loss into account, Gottschalk proposed in 1992 [42] an extension
of Highland’s formula, by moving the beam energy dependence inside an integral:

θ0 =

(
1+

1
9

log10
Dρ

X0

)√∫ D

0

(
14.1 MeV ×Q

p(s)cβ(s)

)2
ρds
X0

(3.84)
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Note that the beam charge number Q is apparent, and that Gottschalk uses 14.1 MeV,
instead of Highland’s 13.9 MeV.

With negligible energy loss, Gottshalk’s expression reproduces Highland’s for-
mula9. Gottschalk’s choice of keeping the logarithmic term outside the integral is
somewhat arbitrary, but necessary in order to make the integral converge. Gottschalk’s
formula agrees with measurement within a few percent.

Still, an integral formulation of the resulting scattering angle would be conve-
nient for modeling of scattering along an arbitrary geometry. This is the purpose of
the scattering power, S(s), which is a measure of how quickly the 1-σ divergence
of a beam increases due to scattering. With a Gaussian beam model, the standard
deviation of the projected angle is equal to:

σz′ =
√
〈z′2〉 (3.85)

i.e. the rms width of the beam divergence is (for a Gaussian beam) the expecta-
tion value of z′2. The scattering power S is defined as the derivative of 〈z′2〉 with
longitudinal coordinate s:

S(s) =
d〈z′2〉

ds
(3.86)

The scattering power should be formulated such that an integration of S(s) over e.g.
a single, thin, slab yields the same result as e.g. the Highland formula.

At the heart of the Highland formula and Gottschalk’s integral formulation is the
beam specific term 1/pcβ and the material dependent term 1/X0. In [44], Kanematsu
formulates the scattering power accordingly:

S(s) = fdH(l)
E2

s
X0

(
Q

pcβ

)2

(3.87)

The term fdH(l) is a correction term, defined below, and the constant Es used by
Kanematsu is:

Es = 15.0 MeV (3.88)

which is also the value used throughout this thesis.
The correction term is a function of l, which is defined as the integral path length

in radiation lengths:

l(s) =
∫ s

0

ρ(s′)ds′

X0(s′)
(3.89)

The correction term is given by the extra condition that the average correction term
over a homogeneous slab should coincide with the square of Highland’s original cor-
rection (apart from a factor 14.1 MeV, as used by Gottschalk, instead of 13.9 MeV,

9Apart from the different values used for the constant energy.
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as used by Highland). This gives:

1
l

∫ l

0
fdH(l′)dl′ =

(
1+

1
9

log10 l
)2

×
(

14.1
Es

)2

⇒

fdH(l) =
(

14.1 MeV
Es

)2(
1+

log10 l
9

)(
1+

2
9ln10

+
log10 l

9

)
(3.90)

with which the scattering power S(s) is completely defined, and the scattering angle
θ0 of a scattered point beam is:

θ0 =

√∫ d

0
S(s)ds =

√
〈z′2〉(d) (3.91)

Note that the scattering power as defined here is non-local: the scattering power
at one point depends not only on the beam energy and material at that point, but
also on how much material the beam has already traversed via Eq. 3.89. Physically,
this does not make sense, but one should keep in mind that the scattering power
formulation is an extension of the Highland formula, which in itself is an empirical
fit.

3.4.3 Scattering in a drift space

The transverse phase space of a Gaussian beam is uniquely defined by the three
statistical quantities 〈z′2〉, 〈zz′〉 and 〈z2〉:

〈z′2〉= 1
N ∑

i
z′2i =

∫∫
z′2ρ(z,z′)dzdz′

〈zz′〉= 1
N ∑

i
ziz′i =

∫∫
zz′ρ(z,z′)dzdz′

〈z2〉= 1
N ∑

i
z2

i =
∫∫

z2
ρ(z,z′)dzdz′ (3.92)

where the sum is a sum over all N particles and ρ(z,z′) is the particle density in
the horizontal or vertical phase space (see Eq. 3.17). Carrying out the integrals in
Eq. 3.92 gives the simple relations between the expectation values and the conven-
tional Twiss parameters:

〈z′2〉= . . .=
εz

π
× γz

〈zz′〉= . . .=−εz

π
×αz

〈z2〉= . . .=
εz

π
×βz (3.93)

For beam modeling whenever scattering is present, it is in general more convenient
to work with the expectation values than the Twiss functions, since the emittance is
not conserved.
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The three quantities 〈z′2〉, 〈zz′〉 and 〈z2〉 are in the following referred to as the
(squared) divergence, covariance and (squared) width of the beam.

Scattering in a thin slab increases the divergence of the beam, but not covariance
nor the beam width: it is only further downstream that the scattering is measurable
as an increase in beam size. A beam with initial phase space given by 〈z′2〉a, 〈zz′〉a
and 〈z2〉a at s = a going through some multi-slab geometry has at s = b reached a
phase space [45]:

〈z′2〉b = 〈z′2〉a +
∫ b

a
S(s′)ds′

〈zz′〉b = 〈zz′〉a +(b−a)〈z′2〉a +
∫ b

a
(b− s′)S(s′)ds′

〈z2〉b = 〈z2〉a +2(b−a)〈zz′〉a +(b−a)2〈z′2〉a +
∫ b

a
(b− s′)2S(s′)ds′ (3.94)

3.4.4 Energy loss

In order to calculate the scattering power at s = s′, the kinetic energy of the particle
at that point must be known. The momentum, p, and velocity, v, can be calculated
from the kinetic energy T :

p =
√

T 2 +2E0T (3.95)

v = c×
√

1− 1
(1+Ek/E0)2 (3.96)

c is the speed of light and E0 =m0c2, with m0 being the particle rest mass. In order to
calculate the energy at any depth, energy-range tables from SRIM have been used,
which (by interpolation) provides the beam range as a function of initial energy,
R(T0), and the inverse, R−1(R0), in any homogeneous material. The method for
calculating the beam energy at any depth is illustrated in Fig. 3.18: at a depth s = a,
the residual range is R0−a, and the remaining kinetic energy of the beam at depth a
is thus given by:

T (a) = R−1(R0−a) = R−1(R(T0)−a) (3.97)

The same principle is applied to heterogeneous multi-slab geometries, but re-
quires calculating the beam energy at the exit of each slab, which is used as initial
energy for the next slab. One example of the energy loss for a proton beam in a
multi-slab geometry is shown in Fig. 3.19.

3.5 Beam profile terminology

The term beam size, or beam width is, if not explicitly mentioned otherwise, used
for the FWHM of the beam. The beam FWHM is denoted W . A Gaussian beam
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Figure 3.18: Energy as a function of depth.
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profile can be described as:

ρ(x) =
1√
2πσ

exp
(
− x2

2σ2

)
(3.98)

where σ is the standard deviation of the beam width. The FWHM is related to σ as:

W = 2
√

2ln2≈ 2.35σ (3.99)

The lateral penumbra of the beam is defined as lateral distance from 20% to 80%
of the peak dose:

Penumbra =
√

2

(√
ln

1
0.2
−
√

ln
1

0.8

)
σ≈ 1.13σ≈ 0.48W (3.100)

i.e. the 80-20 penumbra of a Gaussian beam is roughly half the FWHM.

3.6 Active scanning

3.6.1 General

In depth, the target is divided into layers of a few mm, each layer corresponding
to the penetration depth of a specific extraction energy. Every layer is divided into
spots and two orthogonal dipoles (scanning magnets) guide the beam from spot to
spot during irradiation. Apart from the particle type (proton or carbon ions), every
spot is defined by:

1. The extraction energy Ei

2. The transverse beam size (FWHM), W . Although the horizontal and vertical
beam size can be set individually, it is in this work assumed that the beam is
symmetric, i.e Wx = Wy = W , and that the same initial beam size is used for
all layers of the target.

3. The transverse coordinates (Xi,Yi) of the spot center at the Bragg peak in a
plane orthogonal to the direction of the non-scanned beam.

4. The prescribed spot dose (number of particles), ni

If the accelerator is a cyclotron, the beam is typically switched off when the
prescribed dose to a single spot has been delivered. While the beam is turned off,
the current through the scanning magnets is updated to match the position of the next
spot. Also, it is verified that the delivered dose was within tolerance. If this is the
case, the dose counter is reset to zero10, and irradiation of the next spot is permitted
as soon as the scanning magnet current matches the position of the next spot. This

10Private communication with the Proton Therapy team at PSI.
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typically requires turning the beam on and off at a high rate (in the kHz range) with
a switching time of 100 µs or less.

With a synchrotron using a betatron core for extraction, it is challenging to pause
the extraction at such a high frequency. The alternative would be to insert a kicker
magnet (a fast ramped dipole) somewhere along the extraction line to deflect the
beam onto a beam dump to create a beam-pause between spots. The disadvantage
with this is that a large fraction of the accelerated and extracted beam would be
dumped. Since there is a dead time of about 1.5 s between every layer11, it is im-
portant to utilize the extracted beam as efficiently as possible to reduce the overall
irradiation time. Therefore, therapeutic synchrotron beams are typically not turned
off when moved from spot to spot.

Scanning step The distance between two neighboring spots, the scanning step, is
denoted ∆. To produce a homogeneous dose, the scanning step must be smaller
than the extent of the beam. For a Gaussian beam profile, the following con-
dition is sufficient to produce a homogeneous dose within 0.1% [46]:

∆≤ 1.6σ≈ 0.7W [Gaussian profile] (3.101)

This condition applies to the vertical profile of the beam extracted from the
MedAustron synchrotron (see Sec. 4.3.3). In the horizontal plane, however,
the beam profile is more trapezoidal, with sharp edges. In order for the hor-
izontal beam profiles produce a homogeneous dose, it is necessary that the
edges of one spot coincides with another spot. This can be expressed as:

∆ =
W
m

[Rectangular or trapezoidal profile] (3.102)

where m is an integer number. For an equal scanning step in x and y, it follows
that W/m≤ 0.7W , i.e. m= 2,3,4, . . . are valid steps. The scanning step should
thus be half, one-third, etc. of the beam FWHM.

Spot weight Assuming that the target is rectangular, and that layer i is to be irradi-
ated homogeneously with λi particles/cm2, the number of particles per spot,
ni, is related to the scanning step as:

ni = λi

(
W
m

)2

[Spot weight] (3.103)

The tighter the spot grid (i.e. the larger the value of m), the lower the number
of particles per spot.

Single spot irradiation time With a nominal particle rate Ṅ0, the nominal irradia-
tion time of a single spot (including the time it takes to move between spots)
is:

Tspot =
ni

Ṅ0
=

λi

Ṅ0

(
W
m

)2

(3.104)

11Between two spills, a hysteresis cycle of the synchrotron magnets is performed. This cycle takes
about 1 s.

47



3 Theory and main concepts

Transition time When the trigger to move the beam to the next spot is given, there
will be a delay τ before the beam starts to move (see Sec. 3.6.2.2). The tran-
sition time is the time between trigger and the beam being centered upon the
next spot:

Ttrans = τ+Tmove = τ+
∆

vbeam
(3.105)

vbeam is the beam velocity during ramping. In order not to systematically
overdose any spots, it must be ensured that Tspot ≥ Ttrans. With Tspot = Ttrans,
the beam must be swept continuously in order not to overdose.

Dose rate at Bragg peak The dose rate, in a small mass element ∆m at the Bragg
peak is given by:

∆D
∆t

=
∆E/∆t

∆m
=

∆E/∆t
P∆V

(3.106)

with P being the target density. ∆E/∆t is the energy deposition per unit time:

∆E
∆t

=
Ṅ∆tδE

∆t
= ṄδE (3.107)

where Ṅ is the particle rate and δE the energy deposition of a single particle
at the Bragg peak:

δE =

∣∣∣∣dE
ds

∣∣∣∣
BP

∆s (3.108)

With ∆s≈5 mm, δE is approximately 21 MeV for a single proton, and about
40 MeV/n for a carbon ion. Now, let ∆V be a small volume element, 5 mm in
depth (∆s), with transverse dimensions similar to the beam size, W 2. The dose
rate at the Bragg peak is then given by:

∆D
∆t

=
ṄδE

PW 2∆s
(3.109)

Numerical values of the dose rate at highest extraction intensity are shown
in Tab. 3.2.

Sweeping dose In a real treatment plan, the spots in one layer can be clustered
into spatially separated ”islands”, depending on the geometry of the target. If
no dose is prescribed to the region between islands, the beam should ideally
be turned off. If it is not, a ”sweeping dose” will be deposited along a line
between two consecutive, but separated, spots. A volume element at the Bragg
peak, with dimensions W 2∆s is exposed to the beam during a time:

∆t =
W

vbeam
(3.110)

where vbeam is the velocity of the scanned beam. The dose deposited along a
line is:

Dsweep =
∆D
∆t
× W

vbeam
=

ṄδE
PW∆svbeam

(3.111)

Numerical values for proton and carbon ions at highest extraction intensity are
shown in Tab. 3.2.
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Protons Carbon ions
Energy deposition around Bragg
peak (∆s =5 mm)

δE 21 MeV 40 MeV/n

Max beam intensity (A.2) Ṅ 2×1010 s−1 1×109 s−1

Dose rate in 10×10×5 mm volume
at Bragg peak

∆D/∆t 133 Gy/s 154 Gy/s

Sweeping dose Dsweep 7 cGy 8 cGy
Time to deposit 2 Gy 15 ms 13 ms

Table 3.2: Dose rate and sweeping dose at highest extraction intensity, 10×10 mm
beam.

3.6.2 Scanning magnets

3.6.2.1 Accuracy

A hypothetical scanning magnet current profile during irradiation of a spot is shown
in Fig. 3.20. An average current error of δI is present during the flat part, as well
as some high-frequency ripple12. δI results in a beam position error, while the high-
frequency ripple will effectively broaden the spot size.

Beam	width	error

Beam	position	error

Time

Figure 3.20: Example of scanning magnet current profile during one spot.

Since the deflection angle of a beam passing through the scanning magnets is
inversely proportional to its magnetic rigidity Bρ, the relation between transverse
beam position at the isocenter, x, and scanning magnet current I is:

I(x,Bρ) =
Bρ

(Bρ)max

Imax

xmax
x (3.112)

Here, xmax is the coordinate at the edges of the scanning field (10 cm) and Imax the
required current to move a 400 MeV/n carbon ion (with magnetic rigidity (Bρ)max)
to xmax.

12High frequency compared to the inverse spot time.
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3.6.2.2 Agility

The communication rate with the scanning magnet power supplies, fPS, sets the limit
to how often a ”Move Beam”-trigger can be acknowledged. The foreseen communi-
cation rate is 50 kHz, which means that triggers will only be registered with a time
granularity of:

TPS =
1

fPS
= 20 µs (3.113)

The trigger to move the beam is generated by the beam delivery system, based on
the delivered dose registered by the beam intensity monitors in the nozzle. Since
the sampling rate of these monitors is higher than the power supply communication
rate13, the trigger can be assumed to occur anywhere within one period TPS, assum-
ing the control system for the monitors is fast enough. This means that it will take
between 0 and 1 periods before the trigger is acknowledged. An additional period is
then required before the current is ramped to the next set point, which corresponds
to the center position of the next spot. Thus, the delay between trigger and ramp
start is uniformly distributed as:

τ ∈U[TPS,2TPS] (3.114)

with mean and max values of:

〈τ〉= 1.5TPS

τmax = 2TPS (3.115)

The required current step ∆I to move the beam a distance ∆x at the isocenter is:

∆I =
Bρ

(Bρ)max

Imax

xmax
∆x (3.116)

Fig. 3.21a shows the time profile of a typical current step (∆I =15 A, which in
this case corresponds to about 3 mm for a 400 MeV/n carbon ion beam) and the ap-
plied magnet voltage. After an initial delay of about 20 µs (TPS), the magnet voltage
ramps up to maximum value (which takes about another 20 µs). Then, the maximum
voltage is applied for some time, in order to ramp the current as fast as possible. Be-
fore the beam reaches the next spot, the voltage is successively reduced, which slows
down the scanning velocity as the beam approaches the next spot. Overall, it takes
about 160 µs (subtracting the initial delay) to reach the next spot, including the initial
delay and round-off at the end of the step. This is the transition time Tmove.

Smaller current steps can be completed faster, but the relation between ∆I and
Tmove is not linear. The voltage rise time and the round-off at the end of the step
will take approximately the same time for all current steps. An example of a smaller
current step (∆I =1 A) is shown in Fig. 3.21b. Although this step is 15 times smaller,
the transition time is only reduced by a factor 2, approximately.

13E.g. the CNAO beam intensity monitors work at about 1 MHz [47].
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Figure 3.21: Simulation of current step time profile. Top: magnet voltage. Mid-
dle: current step. Bottom: current step (zoom). Courtesy of Philippe Fraboulet,
MedAustron.

3.6.3 Effect of beam intensity fluctuations

3.6.3.1 Quasi-discrete scanning

The tolerance to beam intensity ripple is closely linked to the dynamic performance
of the scanning magnets. Beam intensity fluctuations that occur while waiting for
the current spot dose to reach the threshold value for ”Move Beam”-trigger will not
affect the final dose of the spot: if the beam intensity is too high, the trigger will
simply occur earlier, and vice versa. If the spot is to receive ni particles, the trigger
should be issued when a dose of:

ntrigger = ni−nlag (3.117)

has been delivered. While the beam moves between spots, the particles are dis-
tributed between the two spots: 100% to the current spot at the start of the ramping,
and 0% when the beam is centered upon the next spot. During beam movement, the
ratio decreases linearly. The dose nlag corresponds to the average number of par-
ticles delivered during the delay and the time it takes to reach halfway to the next
spot:

nlag = Ṅ0×
(
〈τ〉+ Tmove

2

)
= Ṅ0×Tlag (3.118)

However, if the beam intensity Ṅ(t) is higher or lower than anticipated during the
transition, the final dose of the spot will be too high or too low, as illustrated in
Fig. 3.22. Likewise, the uncertainty of the delay τ will influence the final spot dose.
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1 
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Figure 3.22: Beam intensity fluctuation causing a spot weight error δn.

An upper limit of the final excess of particles given to one spot can be estimated
by the following:

δn =

Particle excess during delay︷ ︸︸ ︷
t0+τ∫
t0

Ṅ(t)dt− Ṅ0〈τ〉 +

Particle excess during beam movement︷ ︸︸ ︷
t0+τ+Tmove∫

t0+τ

Ṅ(t)×
[

1− t− (t0 + τ)

Tmove

]
︸ ︷︷ ︸

Decreases from 1 to 0 during transition

dt− Ṅ0×
Tmove

2

≤ (1+ξmax)Ṅ0τmax− Ṅ0〈τ〉+(1+ξmax)Ṅ0×
Tmove

2
− Ṅ0×

Tmove

2
(3.119)

ξmax is to be interpreted as the maximum relative beam intensity deviation during an
integration window in the order of 100 µs (the time scale for moving between spots).

The relative spot weight error, ηi, is given by the ratio between δn and the pre-
scribed spot weight ni = Ṅ0Tspot :

ηi =
δn

Ṅ0Tspot
≤ (1+ξmax)× τmax−〈τ〉+ξmax× Tmove

2
Tspot

= ηmax = En (3.120)

The term En is the maximum relative spot weight error, estimated as a function of
the scanning magnet agility (τ, Tmove) and the synchrotron extraction ripple.

The lower limit can similarly be estimated to −En if En ≤ 1.0 (a spot can natu-
rally not be underdosed by more than 100%).

3.6.3.2 Discrete scanning

With discrete scanning, the impact of beam intensity fluctuations can be analysed in
a similar manner: the decision to turn off the beam is taken slightly before the spot
has been fully irradiated. The term nlag then corresponds to the number of particles
typically delivered during the time it takes to turn off the beam, rather than the time
it takes to move halfway to the next spot. Tmove/2 should therefore be replaced by
the switch-off time.
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3.6.4 Scanning mode and weight error

As explained in Sec. 3.6.1, once a spot is finished, one typically resets the dose
counter before starting irradiation of the next spot. Spot weight errors are caused by
variations of the switch-off time and beam intensity fluctuations during the switch-
off time. If, for example, the beam intensity is systematically higher than anticipated,
every single spot will be overdosed. Resetting the dose counters between spots
consequently has the effect that all spot dose errors are independent:

n′i = nnom(1+ηi) (3.121)

With quasi-discrete scanning, however, one does not reset the dose counter per
se. If too few particles were delivered during the transition from spot i−1 to spot i,
spot i−1 will be underdosed. However, the beam will still remain at spot i until the
proper integral dose to trigger movement to spot i+ 1 has been reached. A lack of
particles at one spot will therefore cause an excess of particles at the next spot. This
is illustrated schemtically in Fig. 3.23.

Spot

}
}

}
Dose

#1 #2 #3

Figure 3.23: Integral dose-driven scanning: the trigger to move from one spot is
only generated when the proper integral dose has been delivered.

The effect of integral-dose driven scanning is that a weight error made at spot
i−1 is automatically compensated for at spot i:

n′1 = nnom(1+η1)

n′2 = nnom(1+η2−η1)

. . .

n′i = nnom(1+ηi−ηi−1) (Quasi-discrete scanning) (3.122)

From this, it follows immediately that with integral-dose driven scanning, static,
or slow beam intensity variations, where ηi ≈ ηi−1 will have no or little effect on
the dose homogeneity, since these error are canceled out from one spot to the next.

53



3 Theory and main concepts

This is obviously an important advantage. However, for more random spot-to-spot
variations of the beam intensity, the effect is not obvious. Subtracting the error made
at one spot from the next spot intuitively seems like a reasonable strategy if the spots
are very close to each other, with a high degree of overlap. However, if the spots are
sparsely placed, this sort of feedback with ”spatial delay” could even make things
worse.

In principle, it would be possible to implement an advanced quasi-discrete scan-
ning mode algorithm that mimics the behavior of discrete scanning (i.e. no automatic
spot-to-spot correction). In order to judge whether such an effort would be use-
ful, the resulting dose homogeneity from an easy-to-implement integral-dose driven
scanning (n′i = nnom(1+ηi−ηi−1)) and discrete scanning mode (n′i = nnom(1+ηi))
have been compared for different spot-to-spot distances in Chapter 6.

3.6.5 Spot grid styles

The spot coordinates (Xi,Yi) are generally arranged in a Cartesian grid by the treat-
ment planning system [4]. For homogeneous irradiation, the horizontal spot-to-spot
distance must exactly match the horizontal FWHM (Eq. 3.102). This does not only
pose strict requirements on the scanning magnet beam positioning accuracy, but also
on the extracted beam profile and optics along the transfer line, since the actual beam
width must match the spot grid. Minor errors of the horizontal beam FWHM will
cause hot and cold ”spikes”, where the edges no longer overlap, as illustrated in
Fig. 3.24. A width error of the Gaussian beam profile has no effect on the homo-
geneity of the dose; only the penumbra of the field is affected.

In a Cartesian spot grid, the lateral edges of the trapezoidal beam profile are
aligned vertically. Minor width errors would then result in hot and cold ”stripes”,
where the edge matching is disrupted. A minor modification of the spot grid would
mitigate the effect of a static (i.e. persistent over all spots in one spill) horizontal
beam width error. By moving every second row half a scanning step to the right, as
shown in Fig. 3.25, all the edges would no longer be aligned, which would reduce
the amplitude of the hot and cold ”stripes”.

The Cartesian and shifted spot grid will be compared in Sec. 6.3, as well as
different scanning steps.

3.7 Nozzle

3.7.1 General

The nozzle contains beam intensity and position monitors for verifying the delivered
dose and position of the scanned beam. Additional passive elements are ridge filters,
for widening of the Bragg peak, and (optionally) a range shifter for irradiation of
superficial tumors.
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Figure 3.24: The impact of a fixed beam width error (Nominal width is 10 mm,
black lines, actual width is 9 mm, red lines). Scanning step is 10/3 mm (blue curves
indicated dose profile of each spot) Left: trapezoidal beam profile. Right: Gaussian
beam profile (pristine, non-scattered, beam profile).
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3 Theory and main concepts

3.7.2 Monitors

Beam intensity monitors are used to monitor the dose delivered to the patient. Par-
allel plate ionization chambers with a short drift time compared to the typical irradi-
ation time per spot are normally used [47–49].

3.7.3 Range shifter

For superficial tumors close to the skin, the penetration depth of even the lowest
energy beams is too high. To reduce the range of the beam, one can insert a range
shifter into the beam path, which reduces the energy of the beam entering the patient.
The range shifter is a rectangular slab of constant thickness. In order to minimize
lateral beam growth due to scattering, one typically uses a low-Z material, such as
Plexiglas. However, the divergence caused by a few centimeter thick range shifter
is still severe, and the range shifter must therefore be as close to the patient as pos-
sible, in order to keep the beam width (and lateral penumbra) small. The impact on
isocenter beam size from a range shifter is evaluated in Chapter 5.

3.7.4 Ridge filter

Every time the extraction energy of the synchrotron is changed, the remaining parti-
cles must be dumped, the synchrotron dipoles must complete a hysteresis cycle and
the new beam must be injected and accelerated. This causes a beam-off time of about
1.5 seconds between two layers. Since the irradiation time should be kept short to
reduce the inconvenience for the patient (and to increase patient throughput), it is of
interest to reduce the total number of layers that the tumor is divided into. In order
to do this without compromising the dose homogeneity (compare figures 3.16a and
3.16b) one uses a ridge filter

A ridge filter is a static device that the pencil beam passes through before reach-
ing the patient. It is typically constructed as a rectangular plate, with parallel grooves,
or ridges, which have a width a few times smaller than the beam (see. Fig. 3.26). In
the case of MedAustron, with beam sizes as small as 4 mm FWHM (W ), the width
of each ridge should not be larger than about 1 mm:

dRF ≈ 1 mm�W (3.123)

The particles that crosses the thickest part of the ridge filter will lose some energy,
and their range is reduced by the water equivalent peak thickness of the ridge filter.
Particles passing through the thinner part of the ridge filter will lose less energy. The
ridge filter thus introduces a range spread. As mentioned, this occurs naturally in the
target by range and energy straggling, but the ridge filter provides a way of widening
the Bragg peak even for carbon ions and low energy proton beams, thereby reducing
the number of layers required to produce a homogeneous dose.

Mathematically, the effect of the ridge filter on the Bragg curve can be modeled
as a convolution between the pristine Bragg curve, L(s) and a function w(t) that
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3.7 Nozzle

Figure 3.26: Sketch of ridge filter and the impending pencil beam.

describes the distribution of range reduction caused by the ridge filter [46]:

Lmod(s) =
∫ tmax

tmin

w(t)×L(s+ t)dt (3.124)

Lmod(s) is the Bragg curve filtered by the ridge filter (see Sec. 5.3 for examples).
The function w(t) is referred to as the range reduction distribution and depends on
the shape of the ridges. The fraction of the beam with a range reduction in the
interval [t, t + dt] is given by w(t)dt. tmin and tmax are the minimum and maximum
water equivalent thickness of the ridge filter, and Lmod(s) the filtered Bragg curve
(in water).

The range reduction distribution of a range shifter is a dirac delta function,
w(t) = δ(T ), which simply shifts the Bragg curve a distance T towards the surface.

An example of a triangular ridge profile and resulting range reduction distribu-
tion is shown in Fig. 3.27. If the ridge filter height t is expressed as a function of the
transverse coordinate x, the range reduction distribution is given by the derivative of
the inverse function, x(t):

w(t) = κ× d
dt

x(t) (3.125)

where κ is a normalization constant (for the integral in Eq. 3.124 to be physically
meaningful, the integral of w(t) must be equal to one). Note that the transverse
dimension, x, is plotted in arbitrary units: as long as the ridges are more narrow
than the beam, the range reduction distribution will be the same (apart from the
normalization constant).

The thicker the ridge filter, the fewer layers are necessary to produce a homo-
geneous SOBP, which reduces the overall irradiation time. The disadvantage with a
thick ridge filter is that it inevitably scatters the beam, causing large beam sizes at
the patient - especially if used with low energy protons (see Chapter 5). A compro-
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Figure 3.27: Left: triangular ridge filter profile, 2 mm peak height. Right: resulting
range reduction distribution, w(t).

mise must therefore be found between the number of layers and the resulting beam
sizes at different energies.

3.8 Proton gantry

The proton gantry is a 15.6 m long (beam path), rotating construction that allows
for irradiation of the patient from any direction. Fig. 3.28 shows the MedAustron
proton gantry, which is a hardware copy of the state-of-the art Gantry 2 developed
at PSI [13, 14]. The rotating vacuum pipe of the gantry needs to be separated from
the fixed vacuum pipe upstream. Two solutions have been considered:

1. Separation of the vacuum pipes by breaking the vacuum. This is the simplest
solution, used at PSI, but requires two vacuum windows.

2. Using a windowless joint. This is a more expensive solution (but commer-
cially available), but avoids scattering of the proton beam.

The 90◦ bending dipole at the end of the gantry, just before the nozzle, has no
dedicated vacuum chamber. Instead, the magnet yoke serves as vacuum chamber
in order to increase the aperture and maximize the scanning area. In the event of a
vacuum leakage, reparations of the 70 ton heavy dipole could be time-consuming.
By filling the entire dipole with helium under atmospheric pressure (which has a
lower scattering power than air), it would be robust against minor leakage. The
helium could be contained by a large ”balloon”, or by a helium chamber.

Even though helium has a lower scattering power than air, the total beam path
across the dipole is 2.36 m (402 cm from start of dipole to isocenter), which is a
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3.8 Proton gantry

considerable distance, which calls for an evaluation of the impact on the isocenter
beam size.

Nozzle 

? 

Under vacuum 
or 

Helium filled 
Target 

Figure 3.28: The PSI/MedAustron proton gantry and scattering considerations. At
the coupling point: windowless joint or broken vacuum with two vacuum windows.
The 90◦ degree bending dipole: under vacuum or filled with helium. Total beam
path from coupling point to isocenter is 15.58 m.
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Chapter 4

Characteristics of extracted beam

4.1 Spill characteristics

4.1.1 Spill profile

The transit time is the time it takes for an unstable particle to reach the electrostatic
septum after it has become unstable. Fig. 4.1 shows the horizontal phase space at
the electrostatic septum during extraction. The acceleration pushes the beam closer
to the resonance tune, shrinking the area of the stable triangle. Shown in the figure
is one band of particles (between A and B) with identical amplitude and momentum
that become unstable at the same moment. These particles will follow more or
less the same trajectory and finally reach the electrostatic septum where they are
extracted. However, they will not reach the electrostatic septum at the same moment.
Particles becoming unstable close to B will reach ES first, followed by particles
becoming unstable in the center region of the side AB.

Particles becoming unstable close to point A are still close to the fix-point, mov-
ing very slowly in the horizontal phase space (if tracked every 3 turns). But as the
beam is accelerated, the separatrices are constantly shrinking the stable triangle. The
moving separatrices will ”catch up” on particles that became unstable close to point
A, moving them into region 1 (indicated in the figure). Two turns later, these parti-
cles will be in region 2, close to the fixed point B. From there, they will soon reach
the electrostatic septum and be extracted.

The density of particles along the line AB is as highest close to the corners of
the triangle. An example of the horizontal particle distribution at the electrostatic
septum before and after ramping of the sextupole is shown in Fig. 4.2. Particles are
piling up close to the corner, due to their slower motion, whereas they are sparsely
spaced along the sides of the triangle.

Quantitatively, the time profile of a group of particles with the same horizontal
amplitude and momentum that are extracted can be described as an initial ”spike”,
followed by a longer ”tail”. The spike corresponds to the corner particles, which
reaches the septum first, followed by the particles along the side of the triangle,
which taker a longer time to reach the septum. This profile is referred to as the spill
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Figure 4.1: Horizontal phase space at electrostatic septum during extraction. Accel-
eration of the beam shrinks the stable triangle and the strip of particles between A
and B becomes unstable. Note that the dispersion at the ES shifts the center of the
stable triangle away from the origin.
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Figure 4.2: Horizontal particle distribution at the electrostatic septum before and
after ramping of the resonance sextupole. All particles have initially the same emit-
tance (εy = 0) and momentum. Note that dispersion at the septum shifts the stable
triangle away from origin.
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4.1 Spill characteristics

profile.
A rigorous mathematical analysis of the spill profile can be found in e.g. [11,29],

leading to the conclusion that about half the particles will reach the septum in a spike
after a time T (ξ), whereas the other half will be distributed over a tail between T (ξ)
and 2×T (ξ), as shown in Fig. 4.3.

Waiting	beam Un
sta
ble
	re
gio
n

(a) Two groups of particles of different emittance and momen-
tum becoming unstable at the same moment.

(b) Resulting spill profiles.

Figure 4.3: Resulting spill profiles from two groups of particles along the limit of
stability that become unstable at the same moment.

T (ξ) is called the transit time, and is the time it takes a corner particle to reach
the electrostatic septum:

T (ξ) =
3Trev√

3ξ
ln

∣∣∣∣∣3
√

3

|ξ̇′0|
ξ

2

∣∣∣∣∣ (4.1)

Using normalized time units, t ′:

t ′ =
t

3Trev
(3.51)

the transit time formula is:

T ′(ξ) =
1√
3ξ

ln

∣∣∣∣∣3
√

3

|ξ̇′0|
ξ

2

∣∣∣∣∣ (4.2)

ξ̇′0 is the nominal modified tune velocity - a measure of how fast the betatron core
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shifts the tune of the beam:

ξ̇
′
0 =

dξ

dt ′

= 3Trev×
dξ

dt
=

= 3Trev×
d
dt
(6πδQ)

= 3Trev×6πQ′x
d
dt

(
δp
p

)
≈ 3Trev×6πQ′x

∆p/p
Textr

(4.3)

where the final approximation is made by setting the ramp rate of the betatron core
such that the momentum increment during the extraction time, Textr, is equal to the
momentum spread of the beam, ∆p/p. Note that, since the chromaticity of the
MedAustron synchrotron is negative (Tab. A.2), ξ̇′0 is also negative. This means
that accelerating beam will approach the resonance tune from a higher tune. This
technicality is neglected in the Steinbach diagrams, where the waiting beam is drawn
below the resonance tune.

The transit time formula is divergent at ξ = 0, and in order for it to be valid, the
ratio between the change of the area of the stable triangle during transition and the
tune distance to the resonance should not be too large. This is formulated by the
condition [11]:

|ξ̇′0|
ξ2 < 0.05 (4.4)

Fig. 4.4 shows an example of the transit time as a function of the modified tune
distance, using parameters from App. A and 1 s extraction time.
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Figure 4.4: Transit time as a function of modified tune distance.
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4.1 Spill characteristics

4.1.2 Instantaneous tune shift

The effect of an instantaneous, infinitesimal tune shift ∆Q (either by shifting the tune
of the machine, or the tune of the beam by accelerating it towards the resonance) is
illustrated in the Steinbach diagram in Fig. 4.5. A band of particles along the limit
of stability will enter the resonance and be extracted.

Figure 4.5: At an instantaneous tune shift, a ”band” of particles (marked red) along
the limit of stability becomes unstable.

The time profile of the extracted band can be calculated by integrating the spike
and tail profiles along the entire band in the Steinbach diagram [11, 29]. Assuming
the number of particles in the band is Nband , the extracted time profile is:

Nband×ζ(t) = Nband×
∫

ξmax

ξmin

ρ(ξ)[ζspike(t,ξ)+ζtail(t,ξ)]dξ

= Nband× (ζspike(t)+ζband(t)) (4.5)

where ρ(ξ) is the particle density at a modified tune distance ξ. Note that since the
particle distribution is uniform in momentum, the particle density along the limit of
stability is completely defined from the particle distribution in Ax. Since:

ρ(Ax) =
Ax

εx/π
exp
(
− A2

x
2× εx/π

)
(3.21)

and, along the limit of stability (Eq. 3.59):

Ax =

√
48
√

3π

∣∣∣∣δQ
S

∣∣∣∣=
√

4√
3π

∣∣∣∣ξS
∣∣∣∣ (4.6)

the particle density along the limit of stability as a function of ξ is:

ρ(ξ) =
ξ

σξ

exp

(
− ξ2

2σ2
ξ

)
(4.7)
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where:

σξ = S

√√
3π

4
× εx

π
(4.8)

The upper integration limit, ξmax, is given by the truncation level Ax =
√

5εx/π:

Ax,max =
√

5εx/π⇒ ξmax =
√

5σξ (4.9)

In order for the transition formula to be valid, Eq. 4.4 must not be violated for
the lower integration limit. A lower limit of:

ξmin = κ×ξmax (4.10)
κ = 0.07 (4.11)

has been used in this document. With this value of κ, Eq. 4.4 is fulfilled for all fore-
seen beam configurations (highest and lowest proton and carbon energies, shortest
and longest extraction time). This creates a ”hollow” beam, where particles with
an amplitude lower than κ

√
5εx/π are neglected. However, this approximation has

little effect since the neglected fraction is only about 1.3% of the total beam:

Neglected fraction:
∫ ξmin

0 ρ(ξ)dξ∫ ξmax
0 ρ(ξ)dξ

≈ 1.3% (4.12)

The spike profile, ζspike(t,ξ) is modeled as a Dirac-delta function, and the tail
ζtail(t,ξ) as a flat plateau, each with weight 1/2:

ζspike(t,ξ) =
1
2

δ(t−T (ξ))

ζtail(t,ξ) =
1
2
× H(t−T (ξ))−H(t−2T (ξ))

T (ξ)
(4.13)

H(t) is the Heaviside step function:

H(t) =
{

0 t < 0
1 t ≥ 0 (4.14)

The sum of the spike and tail is the spill profile, ζ(t,ξ), shown in Fig. 4.3b:

ζ(t,ξ) = ζspike(t,ξ)+ζtail(t,ξ) (4.15)

The integration of all spikes along the limit of stability can now be calculated to:

ζspike(ti) =
∫

ξmax

ξmin

ρ(ξ)δ(ti−T (ξ))dξ =

=


1
2 ×

ρ(ξi)
dT
dξ

∣∣∣
ξi

if T (ξmax)≤ ti ≤ T (ξmin)

0 otherwise
(4.16)
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4.2 Tune ripple spill generator

where ξi is given by the inverse transit time:

ξi = T−1(ti) (4.17)

and the derivative of the transit time is:

dT
dξ

= 3Trev×
2√
3ξ2
×
[

1− ln

∣∣∣∣∣
√

3
√

3

|ξ̇′0|
ξ

∣∣∣∣∣
]

(4.18)

The tail profile can be rewritten as:

ζtail(ti) =
∫

ξmax

ξmin

1
2
× H(ti−T (ξ))−H(ti−2T (ξ))

T (ξ)
ρ(ξ)dξ

=

{ ∫ ξhigh
ξlow

ρ(ξ)
T (ξ)dξ if T (ξmax)≤ ti ≤ 2T (ξmin)

0 otherwise
(4.19)

where ξlow and ξhigh are given by the inverse of the transit time formula:

ξlow = max{ξmin,T−1(ti)}
ξhigh = min{ξmax,T−1(ti/2)} (4.20)

Fig. 4.6 shows ζ(t), ζspike(t) and ζtail for highest and lowest proton and carbon
ion extraction energies. ζspike(t) and ζtail have been calculated numerically from
Eq. 4.16 and Eq. 4.19.

High energy carbon ions exhibits the narrowest spill profile, while it is as widest
for low energy proton beams.

4.2 Tune ripple spill generator

Current fluctuations in the synchrotron magnets will transform into ripple of the
machine tune. The analytical spill model in [11] has been extended in order to
evaluate the effect of current ripple on extraction stability.

4.2.1 Tune ripple

As mentioned previously, the beam is extracted by acceleration, pushing the particles
into the unstable region in the Steinbach diagram. However, this is in principle
equivalent to shifting the machine tune towards the waiting beam. As mentioned,
the chromaticity of the MedAustron synchrotron is negative: during extraction, the
beam approaches the resonance tune from above. In the analytical spill model, the
beam is instead extracted by changing the tune of the machine1.

1The momentum (energy) of the extracted beam would then be time dependent, since the chang-
ing machine tune ”scrapes” the but for a study of the extraction stability, this difference has no
importance.
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Figure 4.6: ζ(t) (black) is the extraction time profile from a narrow band of parti-
cles along the limit of stability. Red is contribution from spikes, ζspike(t) and blue
contribution from tails, ζtail(t). Subfigures show cases for highest and lowest proton
and carbon extraction energies.

With no tune ripple, the horizontal tune of the machine is:

Q0(t) = Q0 + Q̇0t (4.21)

where Q0 is the resonance tune and Q̇0 the nominal tune velocity, estimated to
(see Eq. 4.3):

Q̇0 ≈−Q′x
∆p/p
Textr

(4.22)

The minus-sign is inserted since it is now the machine tune moving towards the
beam (increasing tune), instead of the beam being pushed towards the resonance
tune via the chromaticity (decreasing tune of the beam). The relative movement
between beam and resonance tune is unaffected.

During a short time ∆t, the tune shifts by an amount:

∆Q = Q̇0∆t (4.23)

This is the tune width of the red band shown in Fig. 4.5. The number of particles
contained in this band is:

∆Nin =
dN
dQ
×∆Q (4.24)

Since the particle density is taken to be uniform in momentum space, dN/dQ is also
taken to be constant due to the interchangeability of tune and momentum via the
chromaticity.

Now, assume that a sinusoidal tune ripple with frequency fr = ωr/2π and ampli-
tude and phase δQr and ϕr is added to the nominal tune. The tune and tune velocity
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are:

Q(t) = Q0 + Q̇0t +δQr sin(ωrt +ϕr)

Q̇(t) = Q̇0 +ωrδQr cos(ωrt +ϕr) (4.25)

If |ωrδQr| ≥ |Q̇0|, the tune velocity will periodically be zero, or even negative.
When this happens, the beam does not come closer to the resonance tune and no new
particles will enter the resonance. As soon as all particles still inside the resonance
have been extracted, the extraction intensity will be zero, and the beam is said to be
chopped.

A schematic example of the tune curve is shown in Fig. 4.7. At t = t1, the tune
velocity is zero, and a band containing Nin particles have just entered the resonance.
At t = t2, the tune is moving away from the beam, and no particles are entering the
resonance (Ṅin = 0). At t = t3, the tune moves towards the beam, but no particles
will be extracted until the tune has returned to its previous maximum, Q(t1).

Figure 4.7: Schematic illustration of tune ripple, when |ωrδQr| ≥ |Q̇0|: while the
tune is lower than any previous value, no particles will enter the resonance.

4.2.2 Extracted particle rate

In order for any particles to enter the resonance, the tune must change to a new
maximum level. Mathematically, the rate of particles entering the resonance, Ṅin(t)
(particles per second) can thus be described by:

Ṅin(t) = Q̇(t)×H
[

Q(t)−max
t ′

{
Q(t ′ ∈ [0, t[)

}]
× dN

dQ
(4.26)

The Heaviside function is equal to 1 only when the tune is increasing to a new
maximum value, otherwise it is zero.
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4 Characteristics of extracted beam

The extracted spill profile ζ(t) from an instantaneous tune shift has been de-
scribed in Sec. 4.1.2. By treating the synchrotron as a linear system with impulse
response ζ(t) and input signal Ṅin(t), the extracted particle rate, Ṅextr(t) is given by
a convolution between Ṅin(t) and ζ(t):

Ṅextr(t) = (Ṅin ∗ζ)(t) (4.27)

The width of the spill response ζ(t) is, as seen in Fig. 4.6 around 0.5 ms, which
has the effect that ripple frequencies above a few kHz will be filtered by the finite
spill response, while the extracted particle rate at lower frequencies is close to the
rate of particles entering the resonance.

4.2.3 Current ripple to tune ripple conversion

4.2.3.1 Overview

Ripple in the current of the synchrotron magnets causes ripple in the magnetic field,
which is transformed into tune ripple of the synchrotron. A simplified block diagram
of how the reference current, I0, given to the synchrotron magnet power supplies, is
transformed into beam tune is shown in Fig. 4.8. A current reference value, I0, is
given to the magnet power supplies, which calculate the voltage (Ure f ) that needs to
be applied over the magnet in order to reach I0. The voltage is generated via pulse
width modulation (PWM).

Current loop

Feed forward
from network

PWM

LP filter
(BW ~100 Hz)

Voltage loop

Dipole or 
Quadrupole

Noise
(50 Hz)

(a) Overview of the magnet power supply functionality

Eddy current
damping

(b) Current to tune conversion

Figure 4.8: Sources of current ripple and transformation into tune ripple.

In order to suppress voltage ripple due to the finite frequency of the PWM
(kHz range), it is followed by a low-pass filter with a bandwidth in the order of
100 Hz. Further noise reduction is made by using the output voltage in a feedback
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4.2 Tune ripple spill generator

loop (voltage loop, Fig. 4.8a). Additionally, the network voltage is continuously
monitored and fluctuations are taken into account when calculating Ure f .

The resulting voltage U(t) is applied over the magnets to generate a current I(t).
Measurement of I(t) is used in another feedback loop (current loop, Fig. 4.8a) into
which additional noise may seep.

The current flowing through the magnet generates a magnetic field, B(t). Fluc-
tuations in the current will be damped by eddy currents, with a time constant τ.

Finally, the field in the magnetic elements of the synchrotron will determine the
tune of the beam. Ripple in the magnetic field will be transformed to tune ripple.

The bandwidth of the voltage loop is about 1 kHz, while the bandwidth of the
current loop is in the order of 1 kHz2.

4.2.3.2 Main current ripple source

The magnets of the synchrotron are divided into families, according to their type
(one dipole family, three quadrupole families etc.). All magnets belonging to the
same family are powered in series, such that the current of e.g. all dipole magnets is
the same.

The dominant current ripple source is expected to be that from the pulse width
modulation in the magnet power supplies, which have a known frequency. For the
synchrotron dipoles, the frequency fPWM is assumed to be 2 kHz, while the power
supplies for the main ring quadrupoles are assumed to have a PWM frequency of
about 12 kHz.

4.2.3.3 Power converter accuracy

Typically, the accuracy of the current generated by the power supplies is specified
to be better than some fraction δIr,max/Imax of the maximum operating current that
the power supplies can deliver. The required current is proportional to the magnetic
rigidity of the beam. For a beam with magnetic rigidity Bρ, nominal current I0 and
a current accuracy of δIr, the relative current accuracy can be written as:

δIr

I0
=

δIr

Imax
× (Bρ)max

(Bρ)0
(4.28)

where (Bρ)max is the highest foreseen magnetic beam rigidity (that of 400 MeV/n
carbon ions). If the power converter follows specifications, the fraction δIr/Imax will
never be larger than the specified current accuracy δIr,max/Imax.

The magnetic rigidity ratio between the foreseen lower energy proton beams and
highest energy carbon ion beams is about 6 (see Tab. A.3). Thus, the relative power
supply accuracy for low energy proton beams will be 6 times worse compared to a
carbon ion beam at highest extraction energy.

2Private communication, Power Converter group.
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4 Characteristics of extracted beam

4.2.3.4 Eddy current damping

Sinusoidal ripple of the current I(t) will be transformed into sinusoidal variations
of the magnetic field, B(t). However, the relative amplitude of the ripple will be
damped by eddy currents in the magnets’ yoke-lamination and the vacuum chamber.
The magnitude of the damping is frequency dependent. Assume that the steady-state
current I0 gives a static magnetic field of strength B0, and that a sinusoidal ripple of
amplitude δIr and frequency fr = ωr/2π is added to the current:

I(t) = I0 +δIr sin(ωrt) (4.29)

The magnetic field will follow the current (with some phase shift φr):

B(t) = B0 +δBr sin(ωrt +φr) (4.30)

The relation between δIr/I0 and δBr/B0 is given by the eddy current time con-
stant τ (see e.g. [11, Sec. 5.11]):

δBr

B0
=

δIr

I0

1√
1+(ωrτ)

2
(4.31)

where the factor
√

1+(ωrτ)
2 is referred to as the damping factor. The time constant

τ is estimated to about 100 µs, which gives a damping factor of about 1.6 at a ripple
frequency of fr = 2 kHz, and 7.6 at fr = 12 kHz.

4.2.3.5 Magnetic field to tune conversion

Fluctuations in the magnetic field, δBr, are assumed to be instantaneously trans-
ferred to variation in the beam tune, δQr. The ratio is assumed to be linear, with a
proportionality constant kQB:

δBr

B0
= kQB

δQr

Q0
⇔ δQr =

Q0

kQB

δBr

B0
(4.32)

The constant kQB depends on magnet type and the lattice parameters of the syn-
chrotron. The lower the value of kQB, the higher the impact on particle rate stability
(given by δQr/Q0) for a given value of δIr/Imax. It is estimated that kQB will be two
orders of magnitude larger for the synchrotron sextupoles, compared to the dipoles
and quadrupoles [12]. For this reason, current ripple in the sextupoles has not been
evaluated.

Values of kQB for the dipoles and quadrupole families (from [11]) are cited in
Tab. 4.1.

4.2.3.6 Summary

To summarize, the tune ripple caused by a current ripple of relative amplitude δIr/I0
and frequency fr = ωr/2π in one of the magnet families can be written as:

Qr(t) =
Q0

kQB

(Bρ)max

Bρ

sin(ωrt +ϕr)√
1+(ωrτ)2

δIr

Imax
(4.33)
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4.2 Tune ripple spill generator

Combining this with Eq. 4.25 gives:

Q(t) = Q0 + Q̇0t +
Q0

kQB

(Bρ)max

Bρ

sin(ωrt +ϕr)√
1+(ωrτ)2

δIr

Imax
(4.34)

and a tune derivative of:

Q̇(t) = Q̇0 +
ωr√

1+(ωrτ)2

Q0

kQB

(Bρ)max

Bρ

δIr

Imax
cos(ωrt +ϕr) (4.35)

which sets the rate of particles entering the resonance. The tune ripple amplitude
δQr is equal to:

δQr =
1√

1+(ωrτ)2

Q0

kQB

(Bρ)max

Bρ

δIr

Imax
(4.36)

The width of the spill profile, ζ(t) is in the order of half a millisecond (Fig. 4.6).
At low frequency tune ripple (�2 kHz), the convolution between the narrow spill
profile and the rate of particle entering the resonance (Eq. 4.27) will leave Ṅin(t)
more or less unaffected, i.e. Ṅextr(t)≈ Nin(t).

At lower frequencies, the width of the spill profile ζ(t) is negligible, and the
extracted particle rate is approximately equal to the rate of particles entering the
resonance. Fluctuations of the extracted particle rate are then approximately given
by the ratio between ωrδQr and Q̇(t):

Low frequencies:
Ṅextr(t)

Ṅ0
≈
(

1+
ωrδQr

Q̇0

)
cos(ωrt) (4.37)

where Ṅ0 is the nominal particle extraction rate. Beam chopping (Ṅextr = 0) can
occur if: ∣∣∣∣ωrδQr

Q̇0

∣∣∣∣> 1 (4.38)

If relative fluctuations of the particle rate must be smaller than εṄ (e.g. max
50% variations of the particle rate) at a particular frequency fr = ωr/2π in order to
guarantee a homogeneous target dose distribution, the accuracy of the synchrotron
magnet power supplies must meet the following condition:

δIr

Imax
<

Q̇0

Q0

√
1+(ωrτ)2

ωr

Bρ

(Bρ)max
kQBεṄ (4.39)

As an example, consider a 400 MeV carbon ion beam restricted to 50% intensity
fluctuations at fr =100 Hz. Using tune ripple parameters from Tab. 4.1 and con-
sidering only contribution from the quadrupoles (QF1+QF2+QD) gives (kQB = 1,
τ = 60 µs, Bρ/(Bρ)max = 1, ωr = 200π s−1, Q0 = 5/3, Q̇0 = 4.4×10−3):

δIr

Imax
< 2.1 ppm

At higher frequencies, the finite width of the spill profile will filter out the tune
ripple, and the maximum fluctuations of Ṅextr should be evaluated via Eq. 4.27.
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4 Characteristics of extracted beam

Fig. 4.9 shows an example of the particle rate entering the resonance and the
extracted particle rate when a 60 MeV proton beam is subject to a tune ripple caused
by 0.5 ppm sinusoidal current ripple in the synchrotron dipoles. The rate of particles
entering the resonance varies between 0% and more than 2.5 times the nominal
rate. The extracted particle rate, however, is filtered by the spill response, and varies
”only” between arond ±30% of nominal particle rate. It takes, in this case, about
1 ms for Ṅextr to stabilize around the nominal value.

0 1 2 3 4 5
Time [ms]

0.0

0.5

1.0

1.5
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a
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.

ζ(t)

Ṅin(t)

Ṅextr(t)

Figure 4.9: Comparison between Ṅin(t) and Ṅextr(t) for a 60 MeV proton beam sub-
ject to 0.5 ppm tune ripple at 2 kHz tune ripple and resulting particle rates entering
and leaving the resonance (60 MeV protons). For comparison, the spill response
ζ(t) is also shown.

4.2.4 RF-Channelling

A detailed description of RF-channelling can be found in [11, 50]. The general idea
is to increase the local value of the tune velocity Q̇0 for particles that are close to
the resonance, as illustrated in Fig 4.10. The impact of tune ripple caused by power
supply ripple would then be mitigated, since the ratio δQr/Q̇0 is reduced for particles
close to the resonance.

A simplified model of RF-channelling is to multiply the nominal tune velocity
Q̇0 with a factor KRF , where KRF is the relative increase in tune velocity introduced
by RF-channelling. The expression for the tune then becomes:

Q(t) = Q0 +KRFQ̇0(t)+
Q0

kQB

(Bρ)max

Bρ

sin(ωrt +ϕr)√
1+(ωrτ)2

δIr

Imax
(4.40)

From this, one can calculate the rate of particles entering the resonance exactly
as before. However, the transition formula will no longer be valid, since the time the
particles spend in the resonance is expected to be significantly shorter than before
due to the increased tune velocity. To take this into account, the spill response ζ(t) is
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4.2 Tune ripple spill generator

Figure 4.10: Principle of RF-channelling: particle close to the resonance tune have
a higher tune velocity

replaced by a dirac-delta function, which has the effect of making the rate of particles
leaving the resonance (extracted) exactly equal to the rate of particles entering the
resonance:

ζRF(t) = δ(t) (4.41)

The maximum relative fluctuations in the extracted particle rate is then given by
the ratio between the amplitudes KRFQ̇0 and Q̇r:

max
(

Ṅextr

Ṅ0

)
=

max(Q̇r)

KRFQ̇0
=

1
KRFQ̇0

Q0

kQB

δIr

Imax

(Bρ)max

Bρ

1√
1+(ωrτ)2

(4.42)

The factor KRF is given by [11]:

KRF =

√
π

sinϕs
(4.43)

where:

sinϕs =
C×Bρ

∆p
p

VRFTextr
(4.44)

C is the synchrotron circumference and VRF the voltage used for the RF-channelling.
KRF is typically of the order of 100 (see Tab. 4.1 for numerical values for different
beam configurations). The value of VRF = 3 kV is equivalent to the voltage anyway
required for the foreseen beam acceleration at a dipole ramp rate of 3 T/s. Up to
5 kV may be available.

4.2.5 Tune ripple evaluation

Using the described spill generator, the impact of magnet current ripple on extraction
rate has been evaluated for different current ripple frequencies and amplitudes.

75



4 Characteristics of extracted beam

Comment Value
|Q̇0| 0.016 s−1

fPWM
Dipoles 2 kHz
Quadrupoles (QF1, QF2, QD) 12 kHz

|kQB|

Dipoles 1.5
QF1 0.5
QF2 0.7
QD 0.4
QF1+QF2+QD ≈1

τ
Dipoles ≈100 µs
Quadrupoles ≈60 µs

ξmax

60 MeV protons 0.0866
250 MeV protons 0.0592
120 MeV carbon ions 0.0866
400 MeV carbon ions 0.0620

VRF 3 kV

KRF

60 MeV protons 166
250 MeV protons 114
120 MeV carbon ions 98
400 MeV carbon ions 70

Table 4.1: Tune ripple parameters (Textr = 1.0 s).

The maximum extraction ripple amplitude for a sinusoidal current ripple am-
plitude of 2 ppm is shown in Fig. 4.11 for the protons and carbon ions at lowest
and highest extraction energy. Dipole parameters from Tab. 4.1 have been used.
The 2 ppm current ripple causes the largest extraction ripple in the region around
1 kHz. Most sensitive (highest extraction ripple amplitude) is the 60 MeV proton
beam. This is to be expected, due to its low magnetic rigidity. At lower frequen-
cies, the extraction ripple increases linearly with ripple frequency, as predicted in
Eq. 4.38. At higher frequencies, eddy current damping and the filtering effect of the
spill response suppresses the current ripple.

A contour plot of the extraction ripple amplitude as a function of both current
ripple frequency and amplitude (in the dipoles) is shown in Fig. 4.12. In general, low
energy protons are the most sensitive to power supply ripple. An exception is at high
frequencies (above ∼10 kHz), where the wider proton spill response (see Fig. 4.6)
has a stronger filtering effect on the current ripple, compared to carbon ions.

At high frequencies (few kHz), the extraction ripple saturates: an increased cur-
rent ripple amplitude for a given frequency does not affect the beam intensity ripple
noticeably. This is due to the filtering effect of the spill response. In the extreme
case, Ṅin(t) is a ”dirac comb” (periodic spikes of infinite amplitude). A convolution
with ζ(t) still gives a finite response Ṅextr(t). As seen in the figure, an increment of
the current ripple from 10−5 to 10−4 barely affects the particle rate ripple amplitude
for frequencies above 1 kHz.
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4.2 Tune ripple spill generator
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Figure 4.11: Maximum relative extraction ripple amplitude in percent for dipole
current ripple frequencies between 50 Hz and 20 kHz. The current ripple amplitude
is 2 ppm.
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Figure 4.12: Maximum relative extraction ripple amplitude in percent for dipole
current ripple amplitudes between 0.1 and 100 ppm of Imax and frequencies between
50 Hz and 20 kHz. Dipole fPWM indicated as a dashed line.
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4 Characteristics of extracted beam

Fig. 4.13 shows a similar evaluation for defocussing quadrupole ripple (QD). The
general characteristics are similar to the dipole evaluation. However, the quadrupole
PWM frequency (12 kHz) is sufficiently high that quadrupole current ripple will
have a limited effect (.10%) on the extraction stability, compared to dipoles at
2 kHz.
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Figure 4.13: Maximum relative extraction ripple amplitude in percent for defocusing
quadrupole current ripple amplitudes between 0.1 and 100 ppm of Imax and frequen-
cies between 50 Hz and 20 kHz. Quadrupole fPWM indicated as a dashed line.

Quadrupole current ripple at 12 kHz will have a negligible effect on the particle
rate stability (see Fig. 4.13).

At a given current ripple amplitude, frequencies in the 1 kHz region will have
the largest impact on extraction stability, and it is therefore concluded that the syn-
chrotron dipole power supplies with PWM frequency of 2 kHz will be the most
critical element for a stable extraction.

Using RF-channelling, the situation is significantly improved at low and medium
frequencies, where the extraction ripple is small compared to the case without RF
channelling (shown in Fig. 4.14). At higher frequencies, RF-channelling lacks the
filtering effect from the finite width of the spill response and only Eddy current
damping limits the sensitivity to very high frequency ripple.

4.3 Particle tracking

Particle tracking has been performed in order to complement and verify the analyt-
ical model of the extraction mechanism, with respect to e.g. the effect of dipole
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Figure 4.14: Same as Fig. 4.12, but with RF channelling (dipole parameters).

current ripple on extraction stability. The change in phase space coordinates and
momentum of a single particle over one turn in the synchrotron can be modeled
by applying the effect of the resonance sextupole (Eq. 3.39), a chromatic rotation
(Eq. 3.25 and Eq. (3.30)) and the acceleration by the betatron core. By doing this
repeatedly for a large number of particles from a suitable initial distribution, the
quality of the extracted beam can be studied.

Singe particle representation The phase space coordinates and momentum of
each particle are bundled into one vector r, which represents the particle at the res-
onance sextupole:

r =


x
x′

y
y′

δp/p

 (4.45)

Sextupole kick Using a thin lens approximation, the change in particle direction
when passing through the resonance sextupole is (operator Ŝ):

Ŝ(t)r =


x
x′

y
y′

δp/p

+


0

1
2 lsk′(t)× (x2− y2)

0
−lsk′(t)× xy

0

 (4.46)
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4 Characteristics of extracted beam

Note that the resonance sextupole ramps up from zero strength before extraction,
which is why the normalized sextupole gradient k′ is time dependent.

Betatron kick The effect of the betatron kick (B̂) is modeled as an increment in
momentum, δp(t):

B̂(t)r =


x
x′

y
y′

δp/p+δp(t)

 (4.47)

Single turn chromatic rotation Finally, after the particle has passed through the
infinitesimally thin resonance sextupole and being accelerated by the betatron core,
it is transported one turn round the synchrotron, M̂RS→RS(t), back to the resonance
sextupole:

M̂RS→RS(t)r =


m11,x(t) m12,x(t) 0 0 0
m21,x(t) m22,x(t) 0 0 0

0 0 m11,y(t) m12,y(t) 0
0 0 m21,y(t) m22,y(t) 0
0 0 0 0 1




x
x′

y
y′

δp/p

 (4.48)

where (Eq. 3.25):

m11,z(t) = cos(2πQz(t))+αRS sin(2πQz(t))
m12,z(t) = βRS sin(2πQz(t))
m21,z(t) =−γRS sin(2πQz(t))
m22,z(t) = cos(2πQz(t))−αRS sin(2πQz(t)) (4.49)

and the time dependent tune Qz(t) given by:

Qz(t) = Q0,z +Qr,z(t)+Q′z×
δp
p

(4.50)

Q0,z is the nominal synchrotron tune (i.e. 5/3 in the horizontal plane). The term
Qr,z(t) is introduced to allow for tune ripple of the synchrotron, which can be caused
by e.g. current ripple in the synchrotron magnets.

At the electrostatic septum To determine whether a particle will exit the syn-
chrotron, or continue circulating, its coordinates must be transferred from the reso-
nance sextupole to the electrostatic septum, using the general transfer matrix from
Eq. 3.22. If, at the electrostatic septum, x > xES, the particle will be extracted.

As mentioned, the resonance sextupole is placed in a dispersion free region, but
the electrostatic septum is not. The transfer matrix will therefore contain dispersion
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4.3 Particle tracking

terms:

rES =


k11,x k12,x 0 0 Dx
k21,x k22,x 0 0 D′x

0 0 k11,y k12,y Dy
0 0 k21,y k22,y D′y
0 0 0 0 1

rRS (4.51)

where ki j,z are given by inserting the horizontal/vertical Twiss functions at the reso-
nance sextupole and electrostatic septum into Eq. 3.23. A particle will be extracted
if:

k11,xx+ k12,xx′+Dx
δp
p

> xES (4.52)

Summary The phase space trajectory of a single particle k at the resonance sex-
tupole is given by:

rk(t +Trev) = M̂RS→RS(t)B̂(t)Ŝ(t)rk(t) = R̂(t)rk(t) (4.53)

where Trev is the time it takes for the particle to circulate the synchrotron once.
Discretization gives:

ri+1
k = Riri

k (4.54)

4.3.1 Initial and final distribution

The initial horizontal and vertical distribution of particles are given by inserting
the resonance sextupole twiss functions into Eq. 3.17 (the momentum distribution
is assumed to be uniform). An example of the initial and final distribution (after
extraction) in amplitude-momentum space of 3000 particles is shown in Fig. 4.15.
The slope of the initial distribution is exactly that of the theoretical limit of stability.
As seen, the extracted particles are distributed along the limit of stability, except at
higher amplitudes where they deviate slightly.

The (intentional) momentum gap between the initial distribution and the limit
of stability ensures that no particles are extracted during ramping of the resonance
sextupole, while the initial width of the momentum distribution is wide enough to
produce a ”flat top” of extracted particle rate3.

4.3.2 Tune ripple

The time profile of the extracted beam during tune ripple of amplitude δQr = 10 ppm,
fr = 200 Hz from tracking is shown in Fig. 4.164. After a ”build up” phase of about
10 ms, where the initial particles reach the resonance and are extracted, the extrac-
tion rate oscillates regularly around the nominal level.

3The slight deviation between the limit of stability and the particle momenta after extraction
causes the high-amplitude particles of the initial distribution to be extracted later than the low-
amplitude particles.

4Extracted particle rate is a sliding average over 100 µs.
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Figure 4.15: Initial (blue) and final (red) particle distribution in horizontal ampli-
tude/momentum space. Dashed line shows the theoretical limit of stability. Particles
are plotted vs. their initial horizontal amplitude, i.e. the increased amplitude during
extraction is not shown.

From Eq. 4.36, this corresponds to a current ripple of about 1.6 ppm (dipole
parameters). The peak ripple amplitude is about 80%, which is well in agreement
with the low frequency approximation (79%, Eq. 4.38) and the evaluation shown in
Fig. 4.12 (about 70%).

At higher frequencies, the spill model fails to account for particles that are
thrown in and out of the resonance by the high amplitude tune velocity Q̇r. A
comparison of the extraction ripple amplitude as calcualted by the spill model and
tracking is shown in Tab. 4.2. At low- and medium frequencies, tracking confirms
the accuracy of the spill model, but at higher frequencies, the spill model underesti-
mates the ripple amplitude.

fr [Hz] δQr [ppm] δIr
Imax

(D) [ppm] δIr
Imax

(Q) [ppm] Spillgen Tracking
200 1 0.16 0.11 7% 10%
200 10 1.6 1.1 70% 80%
200 100 16 11 420% 550%

2000 1 0.26 0.14 16% 40%
2000 10 2.6 1.4 51% 130%
2000 100 26 14 57% 200%

Table 4.2: Column 1 and 2: tune ripple frequency and amplitude. Column 3 and
4 show corresponding dipole and quadrupole current ripple for a 60 MeV proton
beam. Column 5 and 6 show the resulting extraction ripple (εṄ) in %, using the
analytical spill model and particle tracking.
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Figure 4.16: Ṅ(t), 200 Hz tune ripple of amplitude 10 ppm (60 MeV proton param-
eters).

At 12 kHz tune ripple, the extracted beam is still stable to within±10%5 even at
a tune ripple amplitude of 100 ppm.

4.3.3 Extracted beam profile

The phase space6 of the beam extracted after the ”build up” is shown in Fig. 4.17.
The vertical beam profile is, as expected, a truncated Gaussian, while the horizontal
phase space is a narrow bar of charge of about 10 mm FWHM. Fig. 4.18 also shows
the extracted beam profile, but during 2 kHz tune ripple of 10 ppm. Although this
causes over 100% beam rate modulation, the beam profile is unaffected. The ”skew
trapezoid” horizontal profile is also in agreement with the extracted beam profile at
CNAO [51].

The skewness is largely caused by off-momentum particles taking shorter spiral
steps over the extraction turn. In order to produce a symmetric horizontal beam
profile at the patient, the correlation between skewness and momentum is planned
to be corrected with a dispersion difference from extraction point to isocenter.

5With a 100 µs sliding average.
6At the resonance sextupole.
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Figure 4.17: Horizontal (left) and vertical (right) phase space and projected beam
profiles at the resonance sextupole. No tune ripple.
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Figure 4.18: Horizontal (left) and vertical (right) phase space and projected beam
profiles at the resonance sextupole. 2 kHz tune ripple, δQr = 10 ppm.
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4.4 Results and discussion

A tune ripple spill generator has been implemented to model the extracted spill pro-
file when the synchrotron is subject to tune ripple caused by current ripple in the
main ring magnets. This allows for translating extraction stability requirements into
magnet current stability requirements.

At low and medium frequencies below the kHz range, the spill generator is in
agreement with particle tracking, while at higher frequencies, it underestimates the
extraction ripple.

The impact of synchrotron tune ripple on extracted beam profile is confirmed by
tracking to be negligible.
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Chapter 5

Proton gantry and nozzles

In this chapter, the general layout of the proton gantry and the nozzles will be eval-
uated from a scattering point of view, in order to determine the smallest beam sizes
that can be achieved at the patient. For scattering along the proton gantry, in ele-
ments that are far upstream of the patient, it is important to also take the beam optics
into account, since the beam can be focused and defocussed between the point of
scattering and the patient. For this reason, a general scattering model applicable to
transfer lines will be presented.

A comparison of different kinds of ridge filters and their efficiency is also made.
This chapter ends with an analysis of measurement limitations of the beam po-

sition and beam size, that ought to be considered not only when choosing nozzle
monitors, but also in the treatment plan.

5.1 Scattering model for a transfer line

5.1.1 Matrix notation

Let us start with rewriting the conventional drift space scattering integrals from
Eq. 3.94 in matrix notation:

zb = MDri f t
a→b za +

∫ b

a
MDri f t

s′→b

S(s′)
0
0

ds′ (5.1)

where:

z =

〈z′2〉〈zz′〉
〈z2〉

 (5.2)

and the drift space transport matrix, MDri f t
s→b is defined as:

MDri f t
s→b =

 1 0 0
b− s 1 0

(b− s)2 2(b− s) 1

 (5.3)
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5 Proton gantry and nozzles

In this notation, the interpretation of the scattering integrals is straightforward: the
initial phase space za is simply transported from a to b, while the integral with the
transport matrix transports small divergence increments S(s′)ds′ from s to b. At
s = b, the contribution from the initial phase space and scattering along the transfer
line are added.

The coefficients of the transport matrix are easily resolved by considering the
motion of a single particle in a vacuum drift space, as illustrated in Fig. 5.1:(

zb
z′b

)
=

(
1 b−a
0 1

)(
za
z′a

)
(5.4)

Figure 5.1: Single particle motion in vacuum (drift space).

From the single particle motion matrix, the evolution of z from a to b can be
calculated from:

〈z′b
2〉= 1×〈z′a

2〉
〈zbz′b〉= 〈(za +(b−a)z′a)× z′a〉= (b−a)×〈z′a

2〉+1×〈zaz′a〉
〈zb

2〉= 〈(za +(b−a)z′a)
2〉=

= (b−a)2×〈z′a
2〉+2(b−a)×〈zaz′a〉+1×〈z2

a〉 (5.5)

which gives exactly the coefficients in the elements of MDri f t
a→b .

5.1.2 Generalization to transfer line

In order to generalize the scattering model to a transfer line with known optics, we
modify the transport matrix in accordance with the single particle motion given by
the Twiss functions. Repeating the procedure in Eq. 5.5, but with the general single
particle transfer matrix from Eq. 3.22 gives the elements of the general transport
matrix Ma→b:

Ma→b =

 m2
22 2m21m22 m2

21
m12m22 m11m22 +m12m21 m11m21

m2
12 2m11m12 m2

11

 (5.6)
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5.1 Scattering model for a transfer line

where mi j is given by inserting the Twiss functions at s = a and s = b into Eq. 3.23.
The phase space of the beam at any location b along the transfer line can thus be
written as:

zb = Ma→bz︸ ︷︷ ︸
Unscattered beam

+
∫ b

a
Ms′→b

S(s′)
0
0

ds′

︸ ︷︷ ︸
Contribution from scattering

(5.7)

or even shorter:
zb = z0 + zs (5.8)

where z0 is the unscattered phase space of the beam at b and zs the scattering con-
tribution. The implication of this is that one does not actually need to know the
phase space of the initial beam to evaluate the phase space further downstream. If
b is chosen as the isocenter in one of the irradiation rooms, it suffices to calculate
the scattering integral and add the unscattered beam width quadratically to evaluate
the scattered beam size. Writing out the scattering equation for the beam size only
gives:

〈z2〉b =〈z2〉0 +
∫ b

a
βz(s′)βz(b)sin2(µz(b)−µz(s′))×S(s′)ds′︸ ︷︷ ︸

=σ2
s

(5.9)

The (square root of the) integral is denoted the scattering term,σs and the 1-σ beam
size at b is thus given by a quadratic addition of the unscattered 1-σ beam size and
the scattering term.

5.1.3 Remarks

5.1.3.1 Twiss functions during scattering

The Twiss functions along the transfer line depend on the initial Twiss functions
which are matched to the phase space of the incoming beam. The ideal Twiss func-
tions calculated in an optics program for a vacuum transfer line will therefore be
different from the ”real” Twiss functions of a scattered beam. However, the ideal
Twiss functions used as input for Eq. 5.7 are only used to calculate the single particle
transfer matrices1. If the energy loss due to scattering is negligible (e.g. scattering
in a vacuum window or a short air gap), the single transfer matrices calculated from
the ideal Twiss functions from one point to another are not affected.

If the energy loss due to scattering is considerable, the downstream optics must
in any case be adjusted (e.g. by reducing the focusing strength) such that the ideal
single particle transfer matrices are recovered.

1The Twiss functions along the transfer line depend on the phase space of the initial beam. How-
ever, the single particle transfer matrices calculated from the Twiss functions are independent of the
phace space of the initial beam.
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5 Proton gantry and nozzles

5.1.3.2 Scattering of non-Gaussian beam profile

The scattered non-Gaussian horizontal beam profile at the isocenter is resolved by
convoluting the pristine trapezoidal beam profile, ρx(x), with a Gaussian profile with
a standard deviation corresponding to the scattering term2:

ρ̃(x,s) = ρx(x)∗G(x,σs(s)) (5.10)

5.2 Proton gantry evaluation: scattering

5.2.1 Gantry optics

The Twiss functions along the gantry are shown in Fig. 5.2. The optics are optimized
such that there is a 1:1 image of the vertical phase space of the incoming beam to
the isocenter. This is not the case in the horizontal plane.
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Figure 5.2: Horizontal and vertical Twiss functions along proton gantry (coupling
point at 0 m, isocenter at 15.58 m). The phase advance is shown relative to the
isocenter.

The phase space of the incoming beam is taken to be that which gives the small-
est beam size at the isocenter (4 mm FWHM), for which the incoming phase space

2This is implied in the scattering model, since a convolution between two Gaussians results in a
new Gaussian with quadratic addition of the initial widths.
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ellipses are:

xCP =
εx

π
×

1/3.0
0

3.0

 ; yCP =
εx

π
×

1/2.0
0

2.0

 (5.11)

with dimensions of (rad2, m-rad, m2). The horizontal and vertical emittance, εx and
εy are geometric emittances at 60 MeV, given in Appendix A.

Note that the bar of charge in the horizontal phase space (Fig. 4.17) is not well
represented by an ellipse. The quoted horizontal phase space ellipse refers to the
”unfilled ellipse”, which circumscribes the bar of charge.

At the isocenter (IC), the unscattered phase space ellipses are:

xIC =
εx

π
×

0.139
0

7.12

 ; yIC =
εx

π
×

1/2.0
0

2.0

 (5.12)

5.2.2 Scattering geometry

From a scattering point of view, there are four different combinations to compare:
with/without vacuum windows at the coupling point (CP) and with/without helium
in the dipole.

In the case of no helium in the dipole, the last vacuum window should be placed
at least 92 cm upstream of the isocenter, to give sufficient space for the treatment
nozzle (Sec. 5.4). Likewise, when the dipole is filled with helium, the helium con-
tainer must end at least 92 cm before the isocenter (the last vacuum window being
placed just before the dipole).

Tab. 5.1 summarizes the gantry dimensions and the materials used in the scatter-
ing evaluation.

The last vacuum window must be thicker than the two vacuum windows at the
coupling point. This is required since the vacuum pipe aperture close to the patient
need to be almost as large as the scanning region. The pressure difference and the
larger vacuum pipe cross section requires about 180 µm of mylar, in order not to risk
breaking.

At the proton therapy facility M. D. Anderson, a helium chamber similar to what
is considered here is installed upstream of the nozzle [52]. The reason is that a
beam profile monitor is installed just before the scanning magnets. The monitor
enables continuous monitoring of the beam profile at a stable location, but breaks
the vacuum. The beam profile monitor is directly followed by a helium chamber at
atmospheric pressure, which reduces scattering of the beam compared to air. The he-
lium chamber windows at M.D. Anderson are made of kapton, coated on both sides
with copper and aluminum3. Identical windows have been assumed in the scattering
evaluation of the MedAustron proton gantry. These windows are substantially thin-
ner than typical vacuum chamber windows, which favours using a helium chamber
rather than a second vacuum chamber. An additional disadvantage with a vacuum

3Private conversation with M.D. Anderson employee.
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chamber is that in case the window breaks, it can cause a loud noise which may
frighten the patient.

Dimensions
Total gantry length (beam path) 15.58 m
Start of dipole to isocenter 4.02 m
Dipole length (beam path) 2.36 m
Minimum space required for nozzle 0.92 m

Material
Vacuum windows at CP 2×50 µm kapton
Last vacuum window 180 µm mylar

Helium chamber windows


12.5 µm kapton
2×0.2 µm copper
2×0.1 µm aluminum

Table 5.1: Proton gantry dimensions and material used in the scattering evaluation.

Radiation lengths and nominal densities of all material can be found in Tab B.1.

5.2.3 Beam FWHM along proton gantry

Shown in Fig. 5.3 is the horizontal and vertical FWHM along the gantry, from the
coupling point to the isocenter for the following geometries:

1. Only vacuum

2. Windowless gantry joint, single vacuum window after dipole

3. Vacuum windows at coupling point and after dipole

4. Windowless gantry joint, helium in dipole

5. Vacuum windows at coupling point, helium in dipole

The incoming beam is a 60 MeV proton beam, which is the worst case scenario:
higher energies and carbon ions are less sensitive to scattering.

The beam size along the gantry has been evaluated via Eq. 5.8, approximating the
horizontal bar of charge with a Gaussian beam profile. This is not strictly correct:
one should rather do a convolution between a projection of the bar of charge on
the x-axis and a Gaussian profile with 1-σ width equal to the scattering term, as
mentioned in Sec. 5.1.3.2. However, if the FWHM of the scattering contribution is
approximately equal to, or larger than, the unscattered beam profile, the difference
is negligible.
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(a) Five different geometry scenarios.

(b) Horizontal (upper half) and vertical (lower half) FWHM of a 60 MeV proton beam along
the gantry

Figure 5.3: Scattering along the gantry.
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5.2.4 Gantry design choices

With vacuum all the way to the isocenter (Geometry 1), the beam would be fo-
cused at the isocenter in both the horizontal and vertical plane simultaneously, with
a FWHM of 4 mm. Insertion of a single vacuum window before the nozzle (Geom-
etry 2) increases the isocenter beam size to some 6 mm in both planes, and shifts
the focal point (local beam size minimum) from the isocenter towards the vacuum
window. Smaller beam sizes than this can never be achieved for low energy proton
beams in practice, since the vacuum window is absolutely necessary.

Inserting vacuum windows at the coupling point (Geometry 3) dramatically in-
creases the horizontal FWHM, while the vertical FHWM is barely affected. This is
due to the different optics used in the horizontal and vertical plane. Since there is
a 1:1 image in the vertical plane from the coupling point to the isocenter, the ver-
tical isocenter beam size is unaffected by scattering at the coupling point (within
reasonable limits). This can be seen directly in Eq. 5.9: the phase advance is from
coupling point to isocenter is 2π, so the vertical sin-term will be zero, while the
horizontal beam size increases to about 13 mm.

It should be stressed here that the gantry optics of PSI and MedAustron are
different: at PSI, there is a 1:1 image in both planes. This allows for breaking the
vacuum at the coupling point, without affecting the beam size at the isocenter.

Omitting the coupling point vacuum windows, but filling the last dipole with
helium (Geometry 4) has a similar effect in both planes: from 4 mm FWHM to
15 mm (x) and 18 mm (y).

Using both coupling point vacuum windows and dipole helium (Geometry 5)
results in low energy beam sizes of about 20 mm in both planes.

To conclude: in order to produce beam profiles at the proton gantry isocenter
that are both small and symmetric, vacuum should be kept throughout the gantry, all
the way to the nozzle.

5.3 Ridge filter comparison

Three types of ridge filters have been investigated. In principle, they only differ in
characteristic groove profile (and resulting range reduction distribution):

• Triangular ridge filters: used at CNAO, Italy [53]

• Optimized ridge filter: used at GSI, Germany [46]

• Gaussian ridge filter: used in Japan [54]

5.3.1 Single triangular ridge filter

A triangular ridge filter has straight ridge sides, as shown in Fig. 3.27. The straight
ridges produces a uniform range reduction distribution between tmin and tmax.
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5.3 Ridge filter comparison

The main advantage with a triangular ridge filter is that it is relatively easy to
manufacture, compared to ridge filters with curved grooves described in the coming
sections (Gaussian and optimized).

5.3.2 Double triangular ridge filter

The modulated Bragg curves produced by a single triangular ridge filter are not
ideal for energy-stacking [46]. At CNAO, this problem is resolved by using double
parallel triangular ridge filters, which has the equivalent effect of filtering the pristine
Bragg curve with the characteristic range reduction distribution twice. However, in
order to achieve a ”double-filtering” effect from the two ridge filters, they must be
separated by some distance. If the ridge filters placed close together, there will be a
strong correlation between a particle’s range reduction in the first ridge filter and in
the second ridge filter. Placed peak-to-peak, the two ridge filters are equivalent to a
single triangular filter with twice the peak height, as illustrated in Fig. 5.4. Placed
peak-to-valley, they are equivalent to a range shifter.

= =

Figure 5.4: Effect of double ridge filters with parallel ridges, stacked close together.

By separating the ridge filters, one takes advantage of the divergence of the
beam. Some distance after the first ridge filter, the divergence of beam will wash
out the correlation between range reduction in the first ridge filter and position at the
second ridge filter (schematically illustrated in Fig. 5.5).

Figure 5.5: Double parallel ridge filters, separated by some distance.

The double-filtering produces more ”rounded” Bragg peaks. The range reduc-
tion distribution and equivalent single-filter groove profile of double triangular filters

95



5 Proton gantry and nozzles

are shown in Fig. 5.6. Fig. 5.7 shows an example of a carbon ion Bragg curve being
filtered by one and two triangular ridge filters.

Note that there is a minimum distance required to achieve the desired ”double
filtering” effect.
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Figure 5.6: Right: range reduction distribution from double triangular ridge filters,
2 mm peak height. Left: single-ridge filter profile required to generate the equivalent
range reduction distribution.

Rather than aligning the grooves of the two ridge filter, they can instead be ori-
ented orthogonally, as shown schematically in Fig. 5.8. This option has the ad-
vantage that the ”double filtering” effect can be achieved without any drift space
between the ridge filters. This configuration is favorable from a scattering point of
view, as will be elaborated in Sec. 5.4.5.

5.3.3 Gaussian ridge filter

Another ridge profile is described in [54]. The shape is designed to create a Gaussian
range reduction distribution, truncated at ±2-σ. Ridge profile and range reduction
distribution for σ = 1 mm are shown in Fig. 5.9, while a filtered Bragg curve is
shown in Fig. 5.10. The filtered Bragg curve is similar to the one produced by
double ridge filters.

The Gaussian ridge filter as described in [54] is intended for broad proton beams
with a Gaussian transverse profile (60 mm FWHM). The peak height of the ridges
are up to 7.2 mm, with a 10 mm peak-to-peak distance. No motivation of the
choice of ridge profile is given, but the Gaussian range reduction distribution mim-
ics the natural Bragg peak widening that occurs in the target, which is also normal-
distributed [46].
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Figure 5.7: Pristine 120 MeV/n carbon ion Bragg curve (”No RiF”) filtered once
and twice with a triangular ridge filter with 2 mm peak height.

(a) Parallel ridge filters. (b) Orthogonal ridge filters.

Figure 5.8: Two ridge filter options.
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Figure 5.9: Ridge profile and range reduction distribution of a Gaussian ridge filter,
truncated at ±2-σ.
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Figure 5.10: Pristine and filtered 120 MeV/n carbon ion Bragg curve, Gaussian ridge
filter (σ = 1 mm, truncated at ±2-σ).
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5.3.4 Optimized ridge filter

Weber et.al [46] propose a ridge filter shape that is optimized to transform the pris-
tine Bragg peak of a 90 MeV/n carbon ion beam into a Gaussian peak with a 1-σ
width of 1 mm. Apart from the shape of the non-filtered Bragg curve, the exact ridge
profile will depend on a number of input parameters to the optimization algorithm.

The desired shape of the Bragg peak is a Gaussian centered at depth s = s0, with
a standard deviation σ0: G(s− s0,σ). With the modulated Bragg curve as defined in
Eq. 3.124, the aim is to optimize w(t) such that the modulated Bragg peak mimics a
Gaussian in some fitting region [sa,sb]:

min
w(t)

{
1

sb− sa

∫ sb

sa

(
C×G(s− s0,σ0)−

∫ tmax

tmin

L0(s+ t)w(t)dt
)2

ds

}
(5.13)

The constant C scales the normalized Gaussian function to the height of the
filtered Bragg curve. Weber et.al choose an asymmetric fitting interval around the
peak of the filtered Bragg curve:

sa =s0−0.4×σ0 (5.14)
sb =s0 +1.6×σ0 (5.15)

(5.16)

For the optimization procedure, the range reduction distribution w(t) has in this work
been modeled as a polynomial of degree (N−1) with N fit parameters ai:

w(t) =
N−1

∑
i=0

ait i (5.17)

and normalized such that: ∫ tmax

tmin

w(t)dt = 1 (5.18)

Note that this method is different from the one used in [46], where w(t) is discretized
in steps of 10 µm and then least-square optimized.

Fig. 5.11 shows the pristine and optimized Bragg curve, using σ0 =1 and 3 mm
and N = 5. The ridge profiles (Fig. 5.12) are essentially identical, which means that
a ridge filter optimized to widen the Bragg peak to a Gaussian peak, 1 mm σ, can
simply be scaled on the height by a factor 3 to produce 3 mm σ peaks.

The motivation for aiming at a Gaussian-shaped Bragg peak is that the com-
bined dose of Gaussian profiles regularly juxtaposed by a distance λ is homogeneous
(within 0.1%) for all values of λ in the interval ]0,1.6σ]. However, this is only the
case for pure Gaussian profiles. Weber et.al do not address the fact that only the peak
of the filtered Bragg curve is Gaussian: at the distal side of the fit region, the filtered
Bragg curve is steeper than a Gaussian, while at the proximal edge it is flatter.

With the ridge filter profile described in [46], up to 2 mm layers can be used,
guaranteeing a dose ripple below 4% along the SOBP.
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Figure 5.11: Pristine and filtered Bragg curve, 90 MeV/n carbon ions, optimized
ridge filter (σ0 =1 and 3 mm). Fit region, sa and sb indicated with squares. Dashed
line is Gaussian target function.

5.3.5 Evaluation

5.3.5.1 Average thickness

The characteristics of each type of ridge filter depends primarily on its average thick-
ness: the thicker it is, the more filtered the Bragg curve will be, which enables for
fewer target layers, which in turn means a shorter irradiation time. On the other
hand, a thick ridge filter comes at the cost of scattering, resulting in larger beam
sizes. Thus, when comparing different ridge filters, it is required that they have the
same average thickness 〈t〉:

〈t〉=
∫ tmax

tmin

t×w(t)dt (5.19)

For evaluation of different ridge filters, an average water equivalent ridge filter
thickness of 〈t〉=1 mm has been used, which is the same as that used in [46], allowing
for a layer thickness of about 2 mm.

Note that a double triangular ridge filter with 〈t〉=1 mm is equivalent to two
triangular ridge filters with 〈t〉=0.5 mm.

5.3.5.2 Distal falloff

The distal falloff is defined as the longitudinal distance between the distal 80% and
20% levels of the Bragg peak. The distal falloff for the different types of ridge filters
is shown in Fig. 5.13 for protons and carbon ions over the available energy range.
With no ridge filter, the distal falloff exhibits a linear increase with beam range.

It is clear that a ridge filter for protons would only be useful at the lowest ener-
gies: at higher energies, the Bragg peak widening in the patient will be dominant,
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Figure 5.12: Ridge profile and range reduction distribution of an optimized ridge
filter, 1 and 3 mm σ. The ridge profiles are practically identical, only scaled on the
height.
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and the distal falloff is almost the same whether or not a ridge filter is used.
For carbon ions, there is a significant widening of the Bragg peak over the entire

therapeutic energy range, resulting in a longer distal falloff.

0 5 10 15 20 25 30
Range [cm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
is

ta
l 
fa

llo
ff

 [
m

m
]

Carbon ions

No Rif
Double triang
Gaussian
Optimized
Single triang

0 5 10 15 20 25 30 35 40
Range [cm]

0

1

2

3

4

5

6

D
is

ta
l 
fa

llo
ff

 [
m

m
]

Protons

No Rif
Double triang
Gaussian
Optimized
Single triang

Figure 5.13: Distal falloff (80-20%) vs. beam range in water. 〈t〉=1 mm.

5.3.5.3 SOBP homogeneity

All ridge filters The SOBP for a given ridge filter is constructed by weighting
the individual layers such that the dose along the SOBP is as homogeneous ”as
possible”. ”As possible” is here defined as minimizing the (normalized) integral S2

of the relative dose error between the SOBP, D(s), and the nominal dose D0:

S2 = min
λi

{
1

smax− smin

∫ smax

smin

(
D(s)
D0
−1
)2

ds

}
(5.20)

D(s) is defined as in Eq. 3.72. smin and smax are set to the depth of the Bragg peak of
the lowest and highest energy.

Apart from the dose error variance S2, the maximum relative dose error, εmax,
along the SOBP is also of interest:

εmax = max
{∣∣∣∣D(s)

D0
−1
∣∣∣∣} ; s ∈ [smin,smax] (5.21)

√
S2 and εmax for carbon ions are plotted vs. layer thickness in Fig. 5.14, as-

suming an average ridge filter thickness of 1 mm4, and a target from smin=4 cm to
smax=9 cm. Some conclusions that can be drawn from the figure are:

4In the case of double triangular ridge filter, this means that 〈t〉= 0.5 mm for the individual ridge
filters.
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5.3 Ridge filter comparison

• All ridge filters improve the quality, in terms of
√

S2, of the SOBP by about
an order of magnitude, compared to the case without any ridge filter.

• The maximum local dose deviation (εmax) is fairly insensitive to the layer
thickness for the optimized ridge filter up to about 2 mm layers.

• With 2 mm layers, a single triangular ridge filter is actually the best choice.
This can be explained by the fact that its peak height (2 mm) then coincides
with the Bragg peak spacing: the triangular ridge filter effectively filters the
SOBP with a rectangular window. When the window width is exactly equal to
the Bragg peak spacing, the dose peaks are highly suppressed.

• The Gaussian ridge filter is the better choice for suppressing S2 at layer thick-
nesses up to about 1.5×〈t〉.

• The quality of the SOBP from a double triangular ridge filter is comparable to
(or only slightly ”worse” than) that from a Gaussian ridge filter.
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Figure 5.14:
√

S and εmax for different ridge filters (carbon ions) and layer thick-
nesses between 1 and 3 mm (smin=4 cm, smax=9 cm). 〈t〉=1 mm.

Triangular ridge filters Due to the difficulties in manufacturing ridge filters with
curved profiles (see Sec. 5.3.6), and the fact that a single triangular ridge filter is
comparable to an optimized ridge filter if the layer thickness is similar to the ridge
filter peak height, it is of interest to have an extra look at triangular ridge filters.

A ridge filter used for low-energy protons should be as thin as possible, in order
not to scatter the beam. Carbon ions are less sensitive to scattering. One solution
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5 Proton gantry and nozzles

could therefore be to equip the dual particle nozzles with two individually remov-
able triangular ridge filters. During proton operation, one or both ridge filters are
removed, while both ridge filters are inserted for carbon operation.

A study of the SOBP quality for 0, 1 and 2 triangular ridge filters for a target at
depth 4 to 9 cm is shown in Fig. 5.15.

Up to about 2 mm layers, the maximum dose deviation εmax is below 3% for sin-
gle and double triangular ridge filters. At 3 mm layers, the gain with a double ridge
filter for carbon ions is significant (εmax =3% vs. εmax =15%). Likewise, the dose
variance is smaller than 1% for layers up to 3 mm (0.5% at 2.5 mm) for the double
filter, while a single filter causes

√
S2 =3% at 3 mm layers. Thus, double triangular

ridge filters for carbon ions is strongly motivated to allow for layers of 3 mm. At
2 mm layers (the ridge filter peak height), a single triangular ridge filter is sufficient.
However, to allow for some flexibility in the treatment planning system (other layer
thicknesses than 2 mm), two triangular ridge filters is preferred for carbon ions.

For protons, the difference between single and double triangular ridge filter is
smaller than for carbon ions. The SOBP variance is similar with and without ridge
filter up to about 2.5 mm layer thickness, and the maximum dose deviation up to
about 3.5 mm. To keep the dose variance below 1%, layers up to 3 mm are ac-
ceptable with a single triangular ridge filter (εmax below 3%). Thus, when small
beam sizes and short irradiation times are important during proton beam irradiation
of superficial tumors, a single triangular ridge filter would be a good compromise.
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Figure 5.15:
√

S2 and εmax for no ridge filter, one triangular (〈t〉=1 mm) ridge filter
and one double triangular ridge filter (〈t〉=2 mm), protons (p) and carbon ions (C).
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5.3 Ridge filter comparison

5.3.6 Manufacturing

Accurate manufacturing of ridge filters with curved ridges (i.e. all except the tri-
angular ones) can prove difficult, considering the relatively short peak-to-peak dis-
tances. Weber et.al mentions that the required profile accuracy is in the order of
5-10 µm [46]. A comparison between the optimized ridge profile and the triangular
one is shown in Fig. 5.16. The tiny difference illustrates that the homogeneity of the
SOBP is very sensitive to the exact shape of the ridge profile.
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Figure 5.16: Comparison between optimized and triangular ridge profile (1 mm
average thickness).

The ridge filter profile manufactured by Weber et. al deviates somewhat from
the ideal, optimized shape, which can be seen in measurements of the filtered Bragg
curve [46, Fig. 2]. In [53], the main motivation for choosing triangular ridge filters
is motivated by the difficulties in producing optimized ridge filters accurately.

The manufactured Gaussian ridge filter described in [54] is intended for uni-
form scanning with proton beams, and tested with beam sizes much larger than the
smallest beams foreseen in MedAustron (60 mm vs. 4 mm).

Although an optimized ridge filters theoretically is the best choice, it may be a
safer option to use triangular ridge filters which are easier to manufacture5.

5.3.7 Ridge filter choices

Due to the strict requirements of a few micrometer accuracy in manufacturing of the
ridge filters with curved profiles, ridge filters with triangular profiles are preferred.
During irradiation with carbon ion beams, double triangular ridge filters with a water
equivalent peak height of at least 2 mm are recommended, allowing for layers up to
about 3 mm. Thicker ridge filters with a higher peak would allow for even thicker
layers.

5Confirmed in private discussion with workshop engineers at CERN.
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For protons, ridge filters are only necessary for superficial tumours, since the
natural widening of the Bragg peak is dominating at higher energies. Since low en-
ergy protons are sensitive to scattering, a single triangular ridge filter is a reasonable
compromise between the desired longitudinal broadening of the Bragg peak and the
undesired lateral widening of the beam profile.

5.4 Nozzle optimization

5.4.1 Nozzle options

Fig. 5.17 shows schematic models of the considered nozzle options, containing
beam intensity, position and profile monitors (1.1 mm water equivalent thickness
(WET) [47] in total.). Ridge filters to widen the Bragg peak can be inserted when
irradiating with carbon beams. The overall length from the last vacuum window to
the IC is 92 cm. It ends with a 0.5 mm thick Plexiglas window, preventing the patient
from accidentally reaching into the nozzle. Two methods for minimizing the beam
growth in the nozzle are considered:

1. Minimizing the nozzle-to-isocenter air gap by moving the monitors as close
as possible to the patient (Nozzle 1)6.

2. Inserting a helium-filled bellow between the vacuum window and the monitors
to reduce scattering in air (Nozzle 2).

Additionally, the use of a movable Plexiglass Range Shifter (RS) to reduce the beam
range below the limit set by the minimum extraction energy is evaluated (Nozzle 3).
The RS thickness (3 cm) roughly corresponds to the minimum proton and carbon
ion beam penetration depths, which allows for irradiation of superficial tumors. For
safety reasons, the gap between nozzle (or RS) and patient should be at least 10 cm.

5.4.2 Beam size at isocenter, in air

The horizontal and vertical beam FWHM at the isocenter, in air, have been calculated
for the three nozzle options for all beam energies. Results are presented in Fig. 5.18.
With Nozzle 1, beam sizes of 9-11 mm can be achieved for low-energy protons,
depending on air gap. Adding the helium chamber reduces the beam sizes by at
most 2 mm. At higher energies, the scattering effect decreases and the FWHM at
the IC approaches 4 mm.

Fig. 5.18 also shows beam sizes for Nozzle 3 for RS-IC air gaps of 0, 10 and
20 cm (No air gap would be equivalent to attaching the range shifter/pre-absorber
directly on the patient’s skin). Although the primary purpose of the range shifter is
to reduce the penetration depth, it could also be used to beam sizes of target sizes
up to 6-7 cm depth, if the RS-IC air gap can be made sufficiently small (compare
curves for Nozzle 1 and Nozzle 3 at 0 cm air gap).

6This functionality is available in Gantry 2 at PSI [13].
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Figure 5.17: Different nozzle options. 1: Movable monitors. 2: Movable moni-
tors and helium chamber after vacuum window. 3: Fixed monitors, movable (and
removable) range shifter.

10 cm air gap

45 cm air gap

Figure 5.18: Proton beam FWHM (horizontal and vertical) in air vs. residual beam
range in water, Rres, at the IC. The three dotted lines indicate IC beam sizes for
Nozzle 3, assuming 0, 10 and 20 cm air gap between RS and IC. Colored bands
indicate the FWHM span achievable by moving the nozzle.
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The primary use of the RS is to reduce the penetration depth below 3 cm, but,
compared to Nozzle 1, it could also be used to reduce beam sizes of targets at up to
6-7 cm depth, if the RS-IC air gap is short enough.

5.4.3 Beam size at Bragg peak

By placing a water phantom at the IC, as shown in Fig. 5.19, the beam sizes at the
Bragg peak (in water) can be evaluated. The amount of water in front of the IC is
matched to the energy of the incoming beam such that the Bragg peak is located
exactly at the IC, where the unscattered beam is focused. Resulting beam sizes at
the IC are presented in Fig. 5.20.

ICWaterNozzle

Figure 5.19: A water slab is placed over the isocenter. The amount of water upstream
of the IC is matched to the energy of the beam such that the beam stops at the IC.

At low energies, the beam size is approximately equal to the beam size in air:
scattering in the nozzle and air gap is dominant. With increasing energy, scattering
in the nozzle decreases and the Bragg peak beam sizes feature a minimum at a depth
of 5-8 cm. At high energies, scattering in the water phantom is dominant. The gain
in optimizing the nozzle and reducing the air gap would be less than 1 mm for proton
Bragg peaks deeper than 10 cm.

As shown in the figure, carbon ions are largely insensitive to the layout of the
nozzle. Even at the lowest energy (120 MeV/n), the difference between the ”best”
and ”worst” case is less than 1 mm.

5.4.4 Scattering contribution from individual elements

In order to better understand the different nozzle models, and clearly see which ele-
ments have the largest impact on beam size, it is of interest to evaluate the scattering
term from individual elements. Fig. 5.21 shows the scattering term σs (scaled by a
factor 2.35 for conversion to Gaussian FWHM) for single elements as a function of
x, where x is defined in Tab. 5.2. For most elements, x is simply the distance between
the element and the isocenter, but for the helium/air column in front of the monitors,
x denotes the thickness of this column.

The vacuum window, at x = 92 cm has an individual scattering contribution just
above 4 mm. The air gap between vacuum window and monitors (air gap 1) also
shows a comparatively large scattering contribution: 4 to 5.5 mm depending on
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Protons

Carbon ions

Figure 5.20: As Fig. 5.18, but at IC, in water (at Bragg peak). Upper bands: 60-
250 MeV protons, lower bands: 120-400 MeV/n carbon ions.

Element Sketch Range x (movable nozzle)

Vacuum window
IC

92 cm

Monitors
IC

10-45 cm

Protection window
IC

10-45 cm

Helium window
IC

35-92 cm

Helium
IC92	cm 22-57 cm

Ridge filter
IC

10-45 cm

Air gap 1 (before monitors)
IC92	cm 22-57 cm

Air gap 2 (after monitors)
IC

10-45 cm

Table 5.2: Individual nozzle elements, sketch of the parameter x in Fig. 5.21 and
nominal values of x.
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Figure 5.21: Scattering term (multiplied by 2.35) for single elements as a function
of x (60 MeV proton beam). Nominal values are indicated with squares and the
unscattered beam width (4 mm) by a dashed line.
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nozzle position. The air gap between monitors and patient (air gap 2) has a minor
effect on the beam size, just like the helium and helium windows.

5.4.5 Ridge filter placement in nozzle

In an evaluation of the CNAO ridge filters [53], it is mentioned that a distance of
several decimeters between the two triangular parallel ridge filters is necessary in
order to achieve the desired modulation of the pristine Bragg peak. These ridge
filters are parallel, as shown in Fig. 5.8a. As explained in Sec. 5.3.2, a minimum
distance between the two parallel ridge filters is necessary to ”blur” the correlation
between position at the second ridge filter and range reduction introduced by the first
ridge filter. A similar reasoning can be applied to the minimum distance required
between double orthogonal ridge filters and the patient. If the patient is too close to
the ridge filter, the structure of the grooves will be reflected in the dose distribution
in the patient - something that should be avoided.

The minimum distance condition for a homogeneous target dose distribution is
as follows: a point beam leaving a ridge filter ”valley” must have grown to a 1-σ
width of at least λ/1.6 when reaching the target. A conservative estimate of the
minimum distance can be made by considering the 1-σ beam divergence, σx′ , of a
point beam leaving the last ridge filter. Neglecting further divergence increase due
to scattering in air, this beam will at the target entrance have grown to a 1-σ beam
size of (linear beam growth in a drift space) [46]:

σx = σx′×L (5.22)

where L is the distance from last ridge filter to target. The minimum distance is thus:

σx ≥
λ

1.6
⇔ L≥ λ

1.6σx′
(5.23)

For a completely homogeneous dose distribution, one should consider σx′ for
the particles that have passed through the valley part of both ridge filters (minimum
amount of scattering). For a zero-emittance incoming beam, σx′ after the last ridge
filter is given by scattering in the nozzle and vacuum window. At this stage, one
should also take into account the non-zero divergence of the incoming beam. How-
ever, since the horizontal phase space distribution is a bar of charge, the incoming
horizontal beam divergence will be very small for large beam sizes, when the bar of
charge is ”lying down”.

Tab. 5.3 summarizes the minimum distances required between last ridge filter
and target, in order to produce homogeneous entrance doses. The beam divergence
has been calculated by taking scattering in the main nozzle elements into account
(see Sec. 5.4):

• 180 µm mylar vacuum window

• monitors with a water equivalent thickness of 1.1 mm
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• Ridge filter base plate

– 2×0.3 mm Plexiglas (minimum base plate thickness of ridge filters [46])
for carbon ions

– 1×0.3 mm Plexiglas for protons

Beam type Energy σx′ [mrad] Lmin [cm]
Carbon ions 120 MeV/n 1.7 36
Carbon ions 400 MeV/n 0.57 109
Protons 60 MeV 6.1 10
Protons 100 MeV 3.7 17

Table 5.3: Required distance from last ridge filter to isocenter.

From Tab. 5.3, it is clear that for protons, the minimum distance is easily achiev-
able, and the proton ridge filter is preferrably placed as the last nozzle element. For
low energy carbon ions, the minimum distance is achievable as well. High energy
carbon ions, on the other hand, require a longer distance (about 1 m to generate
a homogeneous surface dose for high energies). To resolve this, the following is
proposed:

Proposal: Place the two ridge filters at the end of the nozzle. One ridge
filter (to be used for protons and carbon ions) should have a thin base
plate. The other one, used exclusively for carbon ions, has a thicker base
plate to intentionally increase the beam divergence in order to reduce
Lmin to approximately 45 cm.

The base plate thickness of the carbon ion dedicated ridge filter would have to
be 7 mm to allow a Lmin of 45 cm for 400 MeV/n. Unfortunately, such a thick
base plate would inevitably blow up a 120 MeV/n point beam to 4.6 mm FWHM
at the isocenter (

√
4.02 +4.62 = 6.1 mm minimum beam size, adding the 4 mm

unscattered beam size in quadrature). But this drawback is difficult to circumvent:
if one of the ridge filters are moved back to 109 cm upstream of the isocenter, the
low energy carbon ion beam size will still be large, due to the longer drift space.

Therefore, the author’s recommendation is to foresee one dual particle ridge
filter with a thin base plate, and one carbon ion ridge filter with a possibly thicker
base plate to increase the beam divergence. Since the exact thickness easily can
be modified any time (e.g. by simply adding millimeter-thick Plexiglas plates until
satisfactory results are achieved), it is best determined at a later stage, when real
depth-dose curves and lateral dose distributions can be measured.
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5.5 Beam position and measurement accuracy: limi-
tations

Even if the beam position and profile monitors were perfectly accurate, there are
two fundamental limitations in measuring the beam position and width. The first
is the pitch: the strip width (if strip chambers are used), or the wire spacing (if
wire chambers are used). The second is the number of particles upon which the
measurement is based. With a low number of particles, the granularity of the beam
is apparent. This causes a larger uncertainty of the number of particles per strip
which will affect the accuracy of the evaluated beam position and beam size. For
completeness, a brief evaluation of the achievable beam position and beam width
accuracy and precision will be made, with respect to these two factors.

Method For a given value of pitch and number of particles, a total of Nmeas inde-
pendent measurements are simulated. At each measurement, particles are randomly
distributed over the strips (following a normal distribution with a given FWHM),
giving a number of particles per strip. The beam position and width is calculated
from the number of particles per strip. The accuracy and precision of the measure-
ment is deduced from the distribution of measured values.

Monitors The monitors are assumed to be strip ionization chambers with a pitch
∆x and Ns strips (a similar reasoning can be applied to wire scanners). The coor-
dinates of the strip edges are denoted e0,e1, . . . ,eNs , with strip center coordinates,
ci:

ci =
ei + ei−1

2
(5.24)

Beam profile The beam profile at measurement k is assumed to be Gaussian with
a standard deviation σbeam, centered at µk and containing M particles:

Mρk(x) =
M√

2πσbeam
exp
(
−(x−µk)

2

2σ2
beam

)
(5.25)

During irradiation, the beam moves and the central position of the beam (µk) is not
correlated to the strip edges. The center of the beam profile, µk, is therefore taken
from a uniform distribution over one strip width:

µk ∈U[−∆x
2
,
∆x
2
] (5.26)

The probability of a particle to hit strip i at measurement k, pki, is:

pki =
∫ ei

ei−1

ρk(x)dx = Φ

(
ei−µk

σ

)
−Φ

(
ei−1−µk

σ

)
(5.27)
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where Φ is the cumulative distribution function of a normal distribution. The number
of particles detected on one strip, nki follows a binomial distribution:

nki ∈ Bin[M, pki] (5.28)

Since nki are drawn from a random distribution, the exact number of particles in one
measurement (the sum of all strips) will be:

Mk =
Ns

∑
i=1

nki (5.29)

Beam position evaluation At each measurement, the beam position is evaluated
via a Center-Of-Gravity (COG) calculation:

x̄k =
1

Mk

Ns

∑
i=1

cinki (5.30)

Beam width evaluation The beam width (1-σ) is evaluated as:

σmeas,k =

√√√√ Ns

∑
i=1

nki

Mk
(ci− x̄k)2 (5.31)

A multiplication by 2.35 gives the FWHM of the beam (Sec. 3.5). Note that other
ways of evaluating the beam width are possible (e.g. by fitting, or by using only a
few strips close to the beam center). The advantage with a simple rms-calculation,
compared to fitting, is that x̄k is in any case evaluated for the beam position.

Measurement accuracy The average error in the COG measurement over Nmeas
measurements is:

∆(COG) =
1

Nmeas

Nmeas

∑
k=1

x̄k−µk (5.32)

Likewise, the average error in the beam width (1-σ) measurement is:

∆(RMS) =
1

Nmeas

Nmeas

∑
k=1

σmeas,k−σbeam (5.33)

Measurement precision The standard deviation (rms) of the beam COG measure-
ment error is:

σ(COG) =

√√√√ 1
Nmeas

Nmeas

∑
k=1

(x̄k−µk−∆(COG))2 (5.34)

and the rms of the beam width measurement error is:

σ(RMS) =

√√√√ 1
Nmeas

Nmeas

∑
k=1

(σmeas,k−σbeam−∆(RMS))2 (5.35)
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Random strip gain error The impact of random gain errors of the strips can been
evaluated by multiplying each strip weight nki with a factor 1+ gki, where gki is
drawn from a normal distribution.

Evaluation Shown in Fig. 5.22 and 5.23 are ∆(COG), ∆(RMS), σ(COG) and
σ(RMS) for a 4 and 10 mm beam (FWHM) without gain errors (gki = 0). Within
the given pitch range (0.5-4 mm) and spot weight range (103-106 particles), the ac-
curacy of the COG calculation is in the µm range: there is no reason that the COG
algorithm should systematically over- or under-estimate the beam position.

The precision (standard deviation) of the calculated COG is more or less inde-
pendent of the pitch, up to about 3.5 mm pitch for a 4 mm beam. Below 3.5 mm
pitch, the wider beam shows the ”worst” precision (σ(COG) is proportional to beam
size).

The beam width - as calculated via the standard deviation of the strip weight
distribution - shows a systematic over-estimation (∆(RMS) > 0). This systematic
offset is fairly constant if the number of particles is more than 1000, though, and can
therefore simply be subtracted from the estimated beam width (Eq. 5.31). As with
the beam position, the uncertainty in the beam width measurement is proportional
to the beam width.
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Figure 5.22: Lower limit of beam position and width measurement accuracy and
precision, 4 mm beam. ∆(COG)≈ 0 for all cases.

The accuracy and precision of the beam position and beam size measurement
have also been evaluated with non-zero random gain errors. The conclusion is that
gain errors up to ∼2% has a negligible impact on the results shown in Figures 5.22
and 5.23
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Figure 5.23: Lower limit of beam position and width measurement accuracy and
precision, 10 mm beam. ∆(COG)≈ 0 for all cases.

5.6 Results and discussion

With the foreseen beam optics along the proton gantry, vacuum windows at the cou-
pling point would increase the horizontal beam FWHM by about 1 cm at the isocen-
ter, while leaving the vertical beam size unaffected. An even larger increase would
be caused by filling the 90◦ dipole at the end of the gantry with helium. Thus, in or-
der to produce isocenter beam profiles that are small and symmetric, vacuum should
be kept all the way to the nozzle.

In order to reduce the number of scanning layer for carbon ions, double triangu-
lar ridge filters with a ridge peak height of 2 mm WET (about 1.7 mm Plexiglas),
or 〈t〉 = 1 mm, are recommended, as these are easiest to manufacture. Maximum
dose ripple along the SOBP would be less than 2% for 2.5 mm layers. Nothing
prevents using double triangular ridge filters also for low energy protons, but since
they are more sensitive to scattering, a single triangular ridge filter would suffice, in
situations where both small beams and few layers are important.

No distance between the ridge filters is required if they are positioned orthogo-
nally. The proposed solution is to put both ridge filters at the end of the nozzle, after
the monitors. The main advantage with this solution is that double calibration of the
beam monitors is avoided: beam profile and energy deposition at the monitors will
differ if a ridge filter is inserted upstream. This would require up to three sets of
calibrations for 0, 1 or 2 ridge filters inserted.

A minimum distance from ridge filter to patient is necessary to avoid reflecting
the ridge filter structure in the dose distribution. For protons and low-energy carbon
ions, an air gap of 45 cm between ridge filter and isocenter (maximum available) is
fully sufficient to ”blur” the correlation between range reduction and beam position
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5.6 Results and discussion

caused by the ridge filters. This would permit placing the ridge filters after the
monitors. However, in the high-energy carbon ion case, additional scattering would
be necessary, since 45 cm is not enough. Additional scattering can easily be achieved
by making the base plate of one of the ridge filters thicker. This ridge filter is moved
out for proton use.

The question whether is is clinically necessary to produce homogeneous doses
at the target entrance for high energies (i.e. deep-seated targets) must be raised,
though. If not, the thicker base plate could be omitted.

The reduction of beam size growth due to scattering that can be achieved by
movable monitors and a helium chamber for a 60 MeV proton beam can also be
achieved (within 1 mm) by placing a range shifter directly on the patient skin, and
extract at a higher energy. Although this would require some patient-specific hard-
ware, it could in the end be a simpler solution than using moving monitors. Moving
monitors without a helium chamber would ”only” gain about 2 mm FWHM, or about
1 mm lateral penumbra. With movable monitors, the deflection angle of the scanned
beam (ϕ, Fig. 5.17) necessitates correlating the measured beam position to the longi-
tudinal position of the monitors. This increases the complexity of beam verification
during scanning and certification of the beam delivery system. In the proton gantry,
though, the optics is such that ϕ≈ 0, even when irradiating at the edges of the field.
A compromise could therefore be to use moving monitors in the proton gantry only.
Patients for which small, low-energy protons beams are important could be treated
in the gantry, while deep-seated tumors could be irradiated in any of the other rooms.

By gathering the removable ridge filters and (re-)movable range shifter at the end
of the nozzle, construction could possibly be simplified and movable parts inside the
nozzle avoided. If the ridge filters were simply sliding in and out of the beam path,
the transverse dimensions of the nozzle would have to be at least twice the scanning
field size. With the ridge filters (and range shifter) at the end of the nozzle, they could
simply be installed as ”flaps”, resting flat along the external sides of the nozzle when
not used, and inserted into the beam path by a 270◦ rotation, to allow for a compact
nozzle that can be brought close to the patient.
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Chapter 6

Patient dose evaluation

In this chapter, the scattering model and Bragg curve parameterization will be com-
bined to a single spot dose model, which allows for evaluation of the dose distribu-
tion at the patient, taking scattering in the optimized nozzle and patient and ridge
filter Bragg peak modulation into account. With this dose model, the relation be-
tween different kinds of beam delivery imperfections and dose inhomogeneities can
be studied systematically. These relations are the basis for the requirements on the
entire beam delivery chain.

6.1 Target dose calculator

A module for 3-dimensional dose calculations has been implemented in Python,
using the framework previously described. This module (”dosecalc”) allows for
performing dose calculations on a spot-by-spot basis with the following input:

• Longitudinal slab geometry (material, density, thickness of each slab)

• Beam optics (Twiss function or simple drift space)

• Ridge filters

• Unscattered horizontal and vertical beam profile

6.1.1 Single spot

The longitudinal dose profile of a single spot is given by the Bragg peak parameter-
ization described in Sec. 3.3.5. The 2-dimensional transverse profile at any depth s
(taking multiple Coulomb scattering in nozzle, air gap and patient into account) can
be calculated via Eq. 5.10. Combining the longitudinal and transverse beam mod-
els gives the 3-dimensional dose distribution, Di(x,y,s) of a single spot with initial
energy Ei containing ni particles:

Di(x,y,s) = ni×ρx(x,s)×ρy(y,s)×
Li(s)

P
(6.1)
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Figure 6.1: Deposited dose per proton. Incoming beam is 6 mm FWHM in both
planes. Range from 5 to 25 cm.
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Figure 6.2: Deposited dose per carbon ion. Incoming beam is 6 mm FWHM in both
planes. Range from 5 to 25 cm.

with units of: cm−1× cm−1× J/cm× cm3/kg = Gy.
Examples of the spot profiles in a transverse plane are shown in Fig. 6.1 (protons)

and 6.2 (carbon ions). For low energy proton beams, the longitudinal Bragg peak is
very pronounced, while at higher energies, multiple coulomb scattering and range
straggling diffuses the Bragg peak so much that the physical dose is very low. Range
straggling is in fact the main contributor to this effect [55].

The Bragg peak of carbon ions, on the other hand, is clearly visible even for high
energies.

In order to reduce calculation time, the transverse beam profiles ρx(x,s) and
ρy(y,s) (trapezoidal/Gaussian) are interpolated from pre-calculated beam profile ta-
bles1.

13D-interpolation, where scattering term, initial beam FWHM and transverse coordinate are input
parameters. The implemented module supports parallel computing. Time-consuming computations
are made in C++, embedded in Python.
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6.2 Dose calculation assumptions

6.1.2 Target volume

For dose calculation of an entire target, the nominal weights (particles/cm2) of each
layer is first calculated by making an SOBP optimization according to the desired
depths of the Bragg peaks of each layer and the specific ridge filter to be used. From
this the nominal number of particles per spot, ni, are calculated, and the total target
dose is given by a sum over the dose contribution from each spot:

Dtot(x,y,s) = ∑
i

ni×Di(x−Xi,y−Yi,s) (6.2)

(Xi,Yi) are the transverse center coordinates of spot i.

6.2 Dose calculation assumptions

6.2.1 Target volume definitions

The quality of the target dose depends not only on the beam delivery system, but
also on the target type. A superficial tumor treated with carbon ions will be more
sensitive to e.g. beam size errors than a deep-seated tumors irradiated with protons:
in the latter case, initial beam width errors are ”washed away” by multiple coulomb
scattering in the patient, and the degree of overlap between neighboring spots is
high.

A target with a large extent in depth will be divided into many layers. While
the dose to the most distal layer can be delivered during a single spill, the dose to
the proximal layers will be delivered over several spills, as the SOBP is built up.
Statistically, random errors will therefore be more suppressed in the proximal part
of the target, roughly as 1/

√
N, where N is the number layers behind the considered

layer. A ”worst case” would be a target that is narrow in depth, where the total dose
can be delivered in a single spill, and the ”statistical smoothing” of random errors is
low.

In order to evaluate the sensitivity to different types of beam delivery errors, two
”standard targets”, with an extent of 5 cm in depth have been studied:

1. Superficial target at 3.5 - 8.5 cm depth. 3.5 cm is the minimum beam range in
water for carbon ions (120 MeV/n).

2. Deep-seated target at 22 - 27 cm depth. 27 cm is the maximum beam range in
water for carbon ions (400 MeV/n).

Additionally, the dose homogeneity in a transverse plane of a single-layer target has
also been studied:

3. At the Bragg peak at 7 cm depth. Bragg peak beam sizes around this depth
are as smallest for proton beams.

For Target 1 and Target 2, the layer thickness has been set to 4 mm for protons
and 2.5 mm for carbon ions.
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6 Patient dose evaluation

6.2.2 Nozzle

The design of the nozzle will influence the transverse beam size at the patient: the
more the nozzle scatters the beam, the larger the spot sizes at the patient will be,
resulting in more overlap between neighboring spots (for any given spot-to-spot dis-
tance). As mentioned previously, higher overlap will mitigate the effect of random
errors. Therefore, a ”minimal” nozzle design (Nozzle 2, 10 cm air gap, Fig. 5.17) has
been used in the following dose error analysis, to reach conservative requirements on
the beam delivery chain. Any beam delivery requirements deduced from a minimal
nozzle design will hold also for other nozzle designs, which scatter the beam more.
The 0.5 mm Plexiglas protection window at the end of the nozzle has been omitted
in these simulations, as it is not decided whether it is absolutely necessary during
irradiation. However, as seen in Fig. 5.21, this has a negligible effect on the lateral
beam profile, even for low energy proton beams, for which the vacuum window and
the monitors are the main contributors to beam growth before the patient.

6.3 Dose error analysis

6.3.1 Method

6.3.1.1 Relative dose error

Not even the dose distribution of a perfectly executed irradiation, without any kinds
or errors, will be homogeneous. The primary cause of unavoidable dose inhomo-
geneities will be longitudinal dose variations along the SOBP, due to the limited
number of layers. Minor transverse dose variations will also occur due to the non-
straight slopes of the trapezoidal beam profile. However, these dose variations are
known in advance and can (at least in principle) be taken into account already in
the treatment plan. For a dose error analysis, we are only interested in dose inho-
mogeneities that are due to imperfections of the beam delivery system. In order to
isolate the effect of the beam delivery imperfections, the relative dose error, ε, in
any point (x,y,s) in the target volume is defined as the relative deviation from the
nominal dose distribution:

ε(x,y,s) =
D(x,y,s)−Dnom(x,y,s)

Dnom(x,y,s)
(6.3)

6.3.1.2 Target dose inhomogeneity: definition

The inhomogeneity of the target dose, H, is in this work defined as the standard
deviation of the relative dose error in the entire target volume V , i.e:

H =

√∫
V
(ε− ε̄)2dV (6.4)

The inhomogeneity is used to compare target dose distributions resulting from dif-
ferent types of beam delivery errors. The transverse size of the target is large enough
to give statistically reliable values.
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6.3 Dose error analysis

6.3.1.3 Lateral dose frame

In each layer, spots are placed in a cartesian or shifted grid from (Xmin,Ymin) to
(Xmax,Ymax). At the edges of the field, the dose will drop to zero, where the relative
dose error potentially can be very large due to the low nominal dose D0. To avoid
extremely large values of ε, which would affect the homogeneity evaluation, a lateral
frame is introduced, such that the dose is only calculated in the center region of the
target, where the nominal dose is reasonably flat. The width of the frame Fz is
defined as:

Fz = 3.7
Wz

2.35
(6.5)

where Wz is the horizontal or vertical FWHM of the unscattered beam and the term
Wz/2.35 corresponds to the initial 1-σ beam width. In the case of a staggered grid,
an extra margin of ∆/2 is added to the horizontal frame.

The dose frame is illustrated schematically in Fig. 6.3

Figure 6.3: Lateral dose frame example (not to scale). Spots (spot centers indicated
as rings) are placed in a transverse grid, Cartesian or shifted. The dose is only
calculated in the central region (shaded) to avoid edge-effects.

6.3.2 Beam energy errors

6.3.2.1 Range accuracy

The displacement in range ∆R to an energy error ∆E can be calculated via the expo-
nential energy-range fit from Eq. 3.69:

∆R = αkEk−1
∆E (6.6)

For a given tolerance in range, the energy error must be smaller than:

∆E ≤ ∆R
αkEk−1 (6.7)

Tab. 6.1 summarizes the resulting energy requirements for proton and carbon
ions for a range accuracy of ∆R = 0.25 mm in water, i.e. identical to the clinical
requirements of the CNAO hadron therayp facility (see Sec. 3.3.3). It is notable that
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6 Patient dose evaluation

the resulting energy accuracy is stricter at higher energies. This can be understood
from the 1/β2-term in the Bethe-Block formula: the lower the initial energy of the
particle, the higher the stopping power. An energy error at 60 MeV will thus have
a lower impact on the particle range than the same (absolute) energy error at a high
energy.

Beam ∆R ∆E ∆E/E
Proton, 60 MeV 0.25 mm 0.27 MeV 4.5×10−3

Proton, 250 MeV 0.25 mm 0.10 MeV 0.4×10−3

Carbon ion, 120 MeV/n 0.25 mm 0.48 MeV/n 4.0×10−3

Carbon ion, 400 MeV/n 0.25 mm 0.21 MeV/n 0.5×10−3

Table 6.1: Energy accuracy requirements for a range accuracy of 0.25 mm.

The required energy accuracy of down to 0.1 MeV for the specified range ac-
curacy is much stricter than e.g. the 0.4 MeV specified by Chu et.al in [16], but
still more relaxed than the 80 keV seen in the TERA report [15], or the 40 keV by
Arduini et.al in [56]2.

6.3.2.2 SOBP homogeneity

The impact of random energy errors on the SOBP homogeneity has been studied
for the superficial and deep-seated target (Target 1 and 2), using the parameterized
Bragg curves from Sec. 3.3.5. For carbon ions, the Bragg curve has been filtered
with double triangular ridge filters (each with a 2 mm water equivalent peak height).

For a given target (deep-seated or superficial, protons or carbon ions), the dose
along ideal SOBP (no energy errors) is first calculated according to:

Dnom(s) = ∑
i

λi
−dE

ds

∣∣∣∣
E0=E j

× 1
P

(6.8)

where the layers weights λi are optimized to give as flat dose as possible. Then,
random energy errors ∆Eik are applied to each layer (not changing the layer weights)
and the resulting dose along the SOBP, Dk(s) is then given by:

Dk(s) = ∑
i

λi
−dE

ds

∣∣∣∣
E0=Ei+∆Eik

× 1
P

(6.9)

where the energy errors are randomly distributed:

∆Eik ∈ [−∆E,+∆E] (6.10)

The relative dose error along the SOBP, εk(s) is calculated from Eq. 6.3 (transverse
variations are not considered in the energy error analysis).

240 keV corresponds to 10% of the smallest energy step.
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6.3 Dose error analysis

To quantify the impact of energy errors on the SOBP quality, we consider the
maximum over- and under-dosage anywhere along the SOBP, max{εk(s)} = εmax,k
and −min{εk(s)} = εmin,k, as well as the SOBP inhomogeneity, Hk. As the energy
errors ∆Eik are chosen randomly, these three quantities will vary significantly from
time to time, due to the limited number of layers.

For a given value of maximum energy error amplitude, ∆E, a large number of
SOBPs have been calculated, which allows for evaluation of the mean value and
standard deviation of the maximum and minimum dose error and dose inhomogene-
ity, respectively.

Figures 6.4 to 6.7 show the mean maximum over- and under-dosage, and the
SOBP homogeneity as a function of maximum energy error amplitude for a super-
ficial and deep-seated target, protons and carbon ions. The mean of the maximum
dose error and the inhomogeneity are linear to ∆E, but the spread (standard devia-
tion) is considerable, especially for εmax and εmin.

A superficial proton target (Fig. 6.6) is more sensitive to energy errors than a
deep-seated targets (Fig. 6.4). This may seem to contradict the findings in Tab. 6.1,
where the energy accuracy requirements are higher at high energies. However, one
should keep in mind that the unfiltered low-energy proton Bragg peaks are signifi-
cantly sharper than the high-energy Bragg peaks. A longitudinally misplaced Bragg
peak will therefore have a larger impact on dose homogeneity at lower energies,
compared to higher energies.
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Figure 6.4: Protons, deep-seated target. Left: highest relative over- and under-
dosage along SOBP vs. ∆E. Right: SOBP inhomogeneity vs. ∆E. Error bars
indicate ± one standard deviation.

One way to specify energy accuracy requirements for the homogeneity of the
SOBP (which has been set to better than 1% in Sec. 2) would be to specify an upper
limit of ∆E such that H̄ ≤ 1% for all four target configurations. However, about half
of the SOBP’s would then have a inhomogeneity worse than 1%. For this reason,
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Figure 6.5: As Fig. 6.4, carbon ions, deep-seated target.
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Figure 6.6: As Fig. 6.4, protons, superficial target.
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Figure 6.7: As Fig. 6.4, carbon ions, superficial target.

the energy accuracy with respect to SOBP homogeneity is chosen such that:

H̄ +σH ≤ 1% (6.11)

In this case, the SOBP homogeneity will be better than 1% in about 86% of all cases.
Tab. 6.2 summarizes the mean inhomogeneity, H̄ and the max/min dose error at the
1-σ level, for a 1% dose homogeneity at the 1-σ level (H̄ +σH = 1%).

Target ∆E H̄ H̄ +σH ε̄max +σεmax |ε̄min|+σεmin

p, Superficial 0.18 MeV 0.8% 1.0% 4.9% 4.7%
p, Deep-seated 0.28 MeV 0.8% 1.0% 3.1% 3.0%
C6+, Superficial 0.40 MeV/n 0.8% 1.0% 6.5% 6.6%
C6+, Deep-seated 0.30 MeV/n 0.8% 1.0% 4.7% 4.8%

Table 6.2: Energy accuracy requirements to achieve a 1% dose homogeneity at the 1-
σ level. The two last columns show the resulting maximum over- and under-dosage
error at the 1-σ level.

6.3.3 Transverse errors: distribution

For a given target volume, an optimized treatment plan for a rectangular target has
been generated. To evaluate the impact of errors in spot weight, beam positioning
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and beam size, intentional errors were added to every spot:

n′i =
{

ni× (1+ηi) Discrete mode
ni× (1+ηi−ηi−1) Integral-dose driven

X ′i = Xi +δxi

Y ′i = Yi +δyi

W ′x,i =Wx +δWx,i +∆Wx

W ′y,i =Wy +δWy,i +∆Wy (6.12)

ηi, δxi, δyi, δWx,i, δWy,i are random errors that vary from spot to spot while ∆Wx,
∆Wy are static beam width errors that are the same at all spots. The random errors
are assumed to be uniformly distributed:

ηi ∈U[−En,+En]

δxi ∈U[−Epos,x,+Epos,x]

δyi ∈U[−Epos,y,+Epos,y]

δWx,i ∈U[−EW,x,+EW,x]

δWy,i ∈U[−EW,y,+EW,y] (6.13)

The motivation for choosing a uniform distribution deserves an explanation. The
simplest possible beam verification strategy would be to accept all spots with an
error (spot weight, position or size) within some tolerance band ±Ek and generate
an interlock for all spots with an error larger than Ek. The goal of this evaluation
is to find an upper limit of acceptable spot errors, Ek,tol . At the moment, we do not
care how often an interlock would occur, only that the ”approved” spots guarantee
an acceptable target dose homogeneity. If the distribution of spot weight errors were
normal distributed, the approved spots would be distributed as a Gaussian curve
truncated at±Ek,tol . Now, the acceptance limit Ek,tol would obviously depend on the
width of the Gaussian: the narrower the error distribution, the larger the acceptable
value of Ek,tol . A very narrow distribution would even allow for infinite values of
Ek,tol , which makes sense: if large amplitude errors are very rare, they will not affect
the global homogeneity of the target. However, relating the error tolerance limit to
the width of the error distribution has this problem: in order to guarantee that the
delivered dose is homogeneous, it is not enough to verify that the error of all spots
are within ±Ek,tol . One must also verify - while scanning - that the distribution
of the spot errors is sufficiently narrow. This would be complicated - especially at
the beginning of a spill, when only a few spots have been delivered and there is no
reliable statistics available on the error distribution.

Thus, the conservative assumption is made that the distributions of spot errors
(weight, position and width) are wide enough that they are practically uniform within
±Ek,tol . Of course, in practice, one must ensure that it is more narrow in order to
have a sufficiently low number of spots causing an interlock.

128



6.3 Dose error analysis

6.3.4 Effect of individual errors

We first look at the effect of a single type of error, setting all other errors to zero.

6.3.4.1 Weight errors

Fig. 6.8 shows an example of ε(x,y,s = 7 cm) in the center region of Target 3 (single
layer) for carbon ions (discrete scanning mode). Each spot is subject to a random
weight error of up to ±20%, causing a few local hot and cold spots with about 8%
dose error.
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Figure 6.8: ε(x,y,s = 7 cm), Target 3, carbon ions, discrete scanning mode (Wx =
Wy = 1.0 cm, Cartesian grid, δx= δy= 3.33 mm). ”+” indicate spot center positions.

A histogram over the relative dose error, ε, is shown in Fig. 6.9. Although the
individual spot weight errors are uniformly distributed, the dose error distribution is
more Gaussian, due to the overlapping between spots.

With a multi-layer target, the total dose to the proximal layers is given in several
smaller portions. Statistically, random errors are therefore ”smoothed out” in the
proximal part. This is clearly seen in Fig. 6.10a, where ε(x,y,s) for Target 1 (super-
ficial) in a large number of randomly selected target points are plotted as a function
of depth (spot weight errors up to±10%). The spread is smaller at the proximal part
of the target, compared to the distal part, which behaves more like a single-layer
target. The overall distribution is still well described by a Gaussian, as shown in
Fig. 6.10b.

The target inhomogeneity H has been evaluated for different spot weight er-
ror amplitudes En, showing that the inhomogeneity is linear to the error amplitude.
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Figure 6.9: Histogram of ε from Fig. 6.8.
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Figure 6.10: Relative dose error, Target 1, carbon ions, W = 10 mm, En = 10%,
discrete scanning mode. Points are chosen randomly in target volume.
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6.3 Dose error analysis

Thus, the inhomogeneity in a target that is subject to only spot weight errors can be
predicted by the simple relation:

Hn = kn×En (6.14)

The coefficient kn will depend on target type (1-3), beam type, beam size, spot-to-
spot distance and scanning mode (quasi-discrete or discrete).

For all considered spot-to-spot distances and beam sizes, integral-dose driven
scanning is superior to a discrete scanning mode (lower values of kn). As expected,
the gain with integral-dose driven scanning decreases with an increasing spot-to-
spot distance, but Fig. 6.11 clearly shows that the integral-dose driven scanning sup-
presses the effect of random spot-to-spot errors even at longer values of δx,δx.

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
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k
n

Integral-dose driven
Discrete scanning

Figure 6.11: kn vs. scanning step for the two scanning modes (carbon ions, 10 mm
FWHM, Target 3.

Since integral-dose driven scanning is both the simplest and best scanning method
to implement, a discrete scanning mode has been discarded in the following. All co-
efficients for Target 3 (single layer) are summarized in Tab. 6.3.

For a given value of En, a tight spot grid will produce a more homogeneous
dose, which would imply that a tight spot grid (δ/W = 4) is always preferred. How-
ever, reducing the spot-to-spot distance also reduces the number of particles per spot
(quadratically). With low-weighted spots, the relative weight error tends to be larger.

The deep-seated target is less sensitive to random errors than the single-layer
and superficial target. This is due to the larger spot sizes deeper in the target
(see Fig. 5.20), which results in a higher degree of overlap between spots: random
errors from spot to spot are then more smoothed out.

6.3.4.2 Beam position errors

Since the horizontal and vertical beam profiles are not identical, they have been eval-
uated independently to determine whether positional errors in one direction cause
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larger dose inhomogeneities than in the other direction. An evaluation similar to the
spot weight errors was made, revealing that the target inhomogeneity is linear to the
maximum amplitude of the positional error:

Hpos,x = kpos,x×Epos,x

Hpos,y = kpos,y×Epos,y (6.15)

The positional error coefficients are summarized in Tab. 6.3 (Cartesian and shifted
grid give similar results).

Notable is that the horizontal beam position errors cause a slightly larger dose
inhomogeneity than vertical beam position errors, in particular for carbon ion beams.
This is due to the sharp horizontal beam profiles.

6.3.4.3 Random beam width errors

Random beam width errors in x and y have been evaluated like the positional errors,
and again the inhomogeneity is linear to the maximum beam width error amplitude:

HW,x = kW,x×EW,x

HW,y = kW,y×EW,y (6.16)

Tab. 6.3 summarizes the width error coefficients (Cartesian and shifted grid give
similar results).

Notable is that proton beams, which are more smeared out due to scattering,
are less sensitive to random beam width error; particularly for deep-seated targets,
where the Bragg peak beam size is completely dominated by scattering, and thus
insensitive to initial beam width errors.

6.3.4.4 Static beam width errors

Fig. 6.12 shows two example of the transverse dose distribution for Target 3 (carbon
ions), being subject to a static horizontal beam width error of ∆Wx =−0.5 mm, using
a Cartesian (left) and shifted (right) grid. With the Cartesian grid, the width error
causes stripes of systematic over- and under-dosage of up to about 1.3%, while these
errors are significantly suppressed with the shifted grid.

The dose error distribution from a static beam width error is not normal dis-
tributed. The ”hot” and ”cold” stripes formed where the horizontal edges no longer
overlap produce two spikes at the edges of the dose error distribution, with a more
or less flat plateau in between. A conservative, but simple, model of this dose distri-
bution is two dirac-delta funtions at the maximum dose error, ±εmax:

f (ε)≈ 1
2
[δ(−εmax)+δ(εmax)] (6.17)

An example of the relation between the ∆Wx and εmax is shown in Fig. 6.13 for a
Cartesian grid, 8 mm beam, 3.33 mm spot-to-spot distance. εmax periodically drops
to zero whenever the beam width Wx+∆Wx is an integer multiple of the spot-to-spot
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Figure 6.12: ε(x,y) at Bragg peak, Target 3. ∆Wx =-0.5 mm, ∆ =W/3.

distance. For smaller-amplitude width errors, though, the relation is linear and εmax
can be conservatively estimated to:

εmax = k∆W ∆W (6.18)
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Figure 6.13: Max. relative dose error vs. ∆Wx (W = 8 mm).

Coeffients for Cartesian and shifted spot grids are presented in Tab. 6.3.
Moderate static beam width errors in the vertical direction will not cause any

dose inhomogeneities, since periodic superposition of Gaussian profiles yield a ho-
mogeneous dose for spot-to-spot distances of up to [46]:

∆≤ 1.6×
W ′y

2.35
≈ 0.7× (Wy +∆Wy) (6.19)

With a vertical spot-to-spot distance δy = ∆Wy/m, this gives:

∆Wy

Wy
≥ 1

0.7m
−1 (6.20)
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For a moderate spot grid (m = 3):

∆Wy

Wy
≥−0.52 (6.21)

The vertical beam profile can thus be up to 52% more narrow than planned,
without affecting the dose homogeneity. Positive beam width errors (larger spots
than planned) are primarily not limited by dose homogenity restrictions, but the
width of the lateral penumbra.

6.3.5 Normal distributed errors

For completeness, the impact of normal-distributed errors has also been evaluated.
The inhomogeneity remains linear to the error amplitude. Replacing the maximum
error amplitude of the uniform error, Ei, with the standard deviation of the error type,
σi gives a inhomogeneity of (from simulations):

Hi ≈ 1.73kiσi ≈
√

3kiσi = kiEi (6.22)

i.e. a uniformly distributed spot weight error within ±10% causes the same dose
inhomogeneity as a normal-distributed spot weight error with standard deviation
5.8%3.

6.3.6 Combination of different errors

When different random errors are combined, the total effect can be calculated by
adding their individual contributions quadratically (confirmed by dose calculations),
i.e:

H =
√

H2
n +H2

pos,x +H2
pos,y +H2

W,x +H2
W,y (6.23)

With only random errors, the dose error distribution f (ε) is Gaussian centered at
ε = 0 with a standard deviation of H:

f (ε) =
1√

2πH
exp
(
− ε2

2H2

)
≡ G(0,H) [Random errors] (6.24)

However, static horizontal beam width errors ∆Wx approximately shifts half the field
by −εmax and the other half by +εmax:

f (ε) =
1
2
[G(−εmax,H)+G(+εmax,H)] (6.25)

For a shifted grid, εmax will be small, and f (ε) is then well approximated with a
single Gaussian.

3The factor 1/
√

3 concides with the standard deviation of a uniform distribution within ±Ei,
which is Ei/

√
3.
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6.3.7 Error coefficients

Error coefficients from individual errors (smallest and largest beam sizes) are pre-
sented in Tab. 6.3.

Table 6.3: Error coefficients (neg=negligible).

Target ∆/W W [mm] Proton Carbon
kn [%/%] (integral-dose driven)

1 1/4 4 0.010 0.018
1 1/4 10 0.022 0.023
1 1/3 4 0.018 0.029
1 1/3 10 0.033 0.035
1 1/2 4 0.031 0.063
1 1/2 10 0.072 0.080
3 1/4 4 0.015 0.043
3 1/4 10 0.039 0.061
3 1/3 4 0.027 0.077
3 1/3 10 0.075 0.100
3 1/2 4 0.061 0.162
3 1/2 10 0.151 0.207

kpos [%/mm], x/y
1 1/4 4 1.00/0.70 1.62/1.36
1 1/4 10 0.97/0.69 1.00/0.68
1 1/3 4 1.41/1.16 2.22/1.82
1 1/3 10 1.12/0.90 1.39/0.86
1 1/2 4 1.83/1.69 3.32/2.71
1 1/2 10 1.73/1.44 1.33/1.30
3 1/4 4 1.52/1.46 4.41/3.43
3 1/4 10 1.68/1.35 2.67/1.78
3 1/3 4 2.13/1.96 6.10/4.89
3 1/3 10 2.15/1.86 3.73/2.48
3 1/2 4 3.33/2.85 8.93/7.30
3 1/2 10 3.43/2.79 5.41/3.67

kW [%/mm], x/y
1 1/4 4 0.20/0.30 0.71/0.65
1 1/4 10 0.35/0.27 0.51/0.34
1 1/3 4 0.26/0.41 1.00/0.88
1 1/3 10 0.46/0.44 0.67/0.47
1 1/2 4 0.42/0.59 1.50/1.25
1 1/2 10 0.68/0.68 0.96/0.65
3 1/4 4 0.29/0.44 1.74/1.71
3 1/4 10 0.62/0.61 1.33/0.98
3 1/3 4 0.39/0.60 2.31/2.31

Continued on next page
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Table 6.3 – continued from previous page
Target W [mm] ∆/W Proton Carbon

3 1/3 10 0.86/0.85 1.75/1.30
3 1/2 4 0.55/0.85 3.57/3.37
3 1/2 10 1.29/1.26 2.56/1.96

k∆Wx [%/mm], Cartesian/Shifted
3 1/4 4 neg/neg neg/neg
3 1/4 10 neg/neg 0.48/neg
3 1/3 4 neg/neg neg/neg
3 1/3 10 neg/neg 2.67/neg
3 1/2 4 neg/neg 1.00/neg
3 1/2 10 neg/neg 9.3/0.90

6.4 Beam delivery chain requirements

6.4.1 Longitudinal: Extraction energy accuracy

To achieve a longitudinal dose homogeneity of 1% rms or better in 86% of the cases,
an energy accuracy of 0.18 MeV is required for protons, and 0.3 MeV/n for carbon
ions, as shown in Sec. 6.3.2.2.

With a range accuracy of 0.25 mm, an energy accuracy of down to 0.1 MeV
is required for (high energy) protons. The corresponding figure for carbon ions is
0.21 MeV/n.

6.4.2 Transverse: Permissible error amplitudes

As stipulated in Chapter 2, the combined effect of errors in beam size, positioning
and spot weight should not exceed σtol = 2% (rms). With static beam width er-
rors present, the relative dose error distribution is not Gaussian, so this condition is
reformulated as a maximum dose error variance of σ2

tol:∫
∞

−∞

ε
2 f (ε)dε≤ σ

2
tol (6.26)

Insertion of the expression for f (ε) and integration gives the following simple con-
straint on all incoming errors:

H2 + ε
2
max ≤ σ

2
tol ⇔∑

i
(kiEi)

2 ≤ σ
2
tol (6.27)

where ki are the error coefficients for error type i and Ei the maximum error ampli-
tude (including static beam width error).

What we want is a set of permissible error amplitudes Ei that ensures a homo-
geneous dose for all foreseen beam sizes (4-10 mm). At a first unbiased stage, we
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assume that all kinds of errors (6 in total) contribute equally to the dose inhomo-
geneity, i.e:

H2
pos,x = H2

pos,y = H2
W,x = H2

W,y = H2
n = ε

2
max (6.28)

which yields:
kiEi =

σtol√
6
≈ 0.82% (6.29)

From this, permissible error amplitudes Ei can be calculated.
The coefficients shown in Tab. 6.3 would give in total 24 different sets of per-

missible error amplitudes, depending on beam type, beam size, target and scanning
step. In order to reduce this to a manageable amount, only two sets of coefficients is
kept:

• Leave out the more relaxed coefficients for Target 1 and Target 2. The cal-
culated permissible amplitudes Ei for Target 3 will be valid for all targets.
Although Target 3 is somewhat ”unrealistic”, it is not unreasonable to design
the beam delivery system such that it is capable of producing a homogeneous
dose in a single layer. Furthermore, if the distal layer of a tumor is only painted
once, the dose inhomogeneity in the distal part of the tumor would be similar
to that of Target 3.

• With some hindsight, the 1/2 scanning step is also omitted, since the coef-
ficients are too high (in particular for the spot weight errors, kn). It is then
sufficient to deduce requirements for the 1/3 scanning step, since these re-
quirements will also satisfy the 1/4 scanning step.

• Due to the high sensitivity to static horizontal beam width errors with a Carte-
sian grid (1 mm width error causes hot and cold ”stripes” of up to 2.7% for a
scanning step of 1/3, carbon ions, 10 mm beam), it is strongly recommended
that a shifted spot grid is used. Static beam width errors are then completely
negligible up to the level where they either cause an unacceptably large lateral
penumbra or make the beam smaller than the scanning step.

• The two error coefficient sets left are those for proton and carbon ions, shifted
spot grid and a scanning step of 1/3.

In order for the permissible error amplitudes to be valid for all foreseen beam sizes,
the largest of the 4-mm FWHM and 10-mm FHWM coefficients have been used, i.e.
kpos,x = 6.10 %/mm for carbon ions (4 mm FWHM) etc.

The resulting requirements on spot weight beam position and beam width accu-
racy are summarized in Tab. 6.4.

To verify that the delivered dose was acceptable, one can only rely on the infor-
mation given by the beam intensity, position and profile monitors: the reconstructed
dose from the information given by these monitors should be within clinical specifi-
cations. The implication of this is that the uncertainty of the beam monitors should
somehow be included into the permissible error amplitudes in Tab. 6.4. Two al-
ternative methods have been used to this: one yielding strict conditions, assuming
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Error type
Protons Carbon ions

Ei σi Ei σi
Spot weight 11.8% 6.8% 8.9% 5.1%
Pos, x 0.41 mm 0.24 mm 0.15 mm 0.087 mm
Pos, y 0.45 mm 0.26 mm 0.18 mm 0.10 mm
FWHM, x 1.03 mm 0.59 mm 0.39 mm 0.23 mm
FWHM, y 1.05 mm 0.61 mm 0.39 mm 0.23 mm

Table 6.4: Permissible error amplitudes, protons and carbon ions, Target 3 (σi indi-
cates rms of Gaussian error).

uniformly distributed errors, and a more relaxed, assuming normal-distributed er-
rors.

6.4.2.1 Requirements for uniformly distributed errors

The beam verification system should guarantee that the reconstructed dose of all ap-
proved spots yield an acceptable dose. The measurement error must thus be small
enough that the fraction of ”falsely approved” spots is sufficiently low. Falsely ap-
proved spots are all spots with an error larger than Ei (Tab. 6.4), but subject to mea-
surement errors such that they are measured to be within tolerance. To account for
measurements error, we introduce an acceptance interval for all error types of:

Ai = [−κEi,+κEi] (6.30)

where κ ≤ 1. Spots measured to be outside the acceptance interval are discarded.
Depending on the measurement accuracy, some spots will still be falsely approved.
Let qe be the measured spot error, and q the ”true” value. Since only qe is available,
f (q|qe) denotes the probability density function of the true value. The probability
that a spot is falsely approved is thus (see ”Consumer’s risk” in [57]):

R(qe) =
∫ −Ei

−∞

f (q|qe)dq+
∫

∞

Ei

f (q|qe)dq; |qe| ≤ κEi (6.31)

Furthermore, let f (qe) be the distribution of measured spot errors. The total fraction
of falsely approved spots is then:

Rtot =

∫
Ai

R(qe) f (qe)dqe∫
Ai

f (qe)dqe
(6.32)

With a normal-distributed measurement error, f (q|qe) is a Gaussian centered at
qe and a standard deviation of σBV S. As for the distribution of measured values,
f (qe), we make the conservative estimation that these are also normal-distributed
around zero, but with a very large spread, σBDS. Even in that case, one could require
that the fraction of falsely approved spots is low. With σBDS → ∞, the distribution
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of measured values within the acceptance interval is approximately uniform, which
gives:

Rtot(σBDS→ ∞) =
1

2κEi

∫
Ai

R(qe)dqe (6.33)

For an upper limit of 5% falsely approved spots, one possible combination of accep-
tance interval and measurement precision are:{

σBV S = 0.28Ei
κ = 0.8 (6.34)

That is, without making any assumptions on the performance of the beam de-
livery system, the uncertainty of the measurement should not be larger than 0.28Ei
(Tab. 6.4), for ensuring that the accepted spots will result in an homogeneous dose
distribution.

Of course, if the accuracy of the beam delivery system is low, a large fraction of
the spots will be rejected. This probability is given by:

γre jected =
∫ −κEi

−∞

f (qe)dqe +
∫

∞

κEi

f (qe)dqe (6.35)

where f (qe) is the probability distribution of measured values, qe. With uniformly
distributed errors within ±αEi and a measurement precision of σBV S = 0.28Ei, the
probability of a measurement outside the acceptance interval±κEi is less than 0.1%
if:

γre jected ≤ 0.1%⇒ α≤ 0.4Ei (6.36)

i.e. the accuracy of the beam delivery system should be 40% of the values in Tab. 6.4
to ensure that the probability of a spot to be measured outside the acceptance interval
is less than 0.1%. A ”typical” tumor size of the size of a fist (∼0.3 l) requires about
10000 spots (W=1 cm, ∆=3.3 mm.). This would imply about 10 rejected spots per
target.

Of course, if all of these requirements (σBV S ≤ 0.28Ei, κ = 0.8Ei, α = 0.4Ei) are
fulfilled simultaneously, the dose homogeneity will be significantly better than the
one stipulated in Chapter 2.

6.4.2.2 Requirements for normal-distributed errors

The other approach is to take the combined uncertainty of the beam delivery system
and the measurements into account from the start. Since no exact data is available,
we make the assumption that all measurement are normal-distributed around the true
value4 with a standard deviation σBV S,i, where i indicates the type of measurement
(spot weight, beam position or beam width). Likewise, the true value is assumed to
be normal-distributed around the specified value with a standard deviation of σBDS,i.
The combined uncertainty is:

σtot,i =
√

σ2
BDS,i +σ2

BV S,i (6.37)

4Systematic measurement errors are assumed to be eliminable via calibration.
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and for a homogeneous distribution, σtot,i should be less than the standard deviation
in Tab. 6.4. Setting the measurement precision to:

σBV S,i ≤
σtot,i

2
(6.38)

gives:
σBDS,i ≤ 0.87×σtot,i (6.39)

Tightening the measurement precision further will have small effect on σBDS,i. Re-
quirements for proton and carbon ion are summarized in Tab. 6.5, and in the follow-
ing, it is these requirements that will be used for performance specifications on the
beam delivery system and the measurement precision (apart from the spot weight
error, see Sec. 6.4.5).

Error type
Protons Carbon ions

σBDS,i σBV S,i σBDS,i σBV S,i
Spot weight 5.9% 3.4% 4.5% 2.6%
Pos, x 0.21 mm 0.12 mm 0.075 mm 0.043 mm
Pos, y 0.23 mm 0.13 mm 0.090 mm 0.052 mm
FWHM, x 0.52 mm 0.30 mm 0.20 mm 0.11 mm
FWHM, y 0.53 mm 0.30 mm 0.20 mm 0.11 mm

Table 6.5: Required precision (rms) of the beam delivery system and measurement.

6.4.3 Nozzle monitors

6.4.3.1 Precision

From Tab. 6.5, the rms error of the beam position measurement should not be larger
than about 40 µm (carbon ions). From Fig. 5.23, this primarily sets a lower limit of
the number of particles per beam position measurement:

Npos ≥ 104 (6.40)

Beam movement during spot transition and finite monitor drift time will smear out
the measured signal. For an accurate statement on the beam position, no spot should
thus be shorter than:

Tspot ≥ Tmove +Tdri f t +
Npos

Ṅ
(6.41)

Assuming Tmove ≈ 200 µs and Tdri f t ≈ 100 µs gives minimum spot times, at highest
and lowest foreseen extraction intensities, according to values in Tab. 6.6.

At Nspot ≥ 104, the beam width measurement precision is sufficient to meet the
0.11 mm precision in Tab. 6.5.

As for the beam intensity monitor precision, the 2.6% required in Tab. 6.5 (car-
bon ions) is well above what is technically feasible. Since extraction stability fluc-
tuations is expected to be the main contributor to dose inhomogeneities, this figure
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6.4 Beam delivery chain requirements

Ṅ [part/s] Tspot,min [ms]

Protons
1×108 0.4
2×1010 0.3

Carbon ions
4×106 2.8
1×109 0.31

Table 6.6: Minimum spot times to make an accurate beam position measurement,
assuming Tmove = 200 µs and Tdri f t = 100 µs.

can safely be tightened to σBV S,n ≤ 1% (see e.g. [48]), which leaves almost the full
spot weight error margin to beam intensity fluctuations.

Random gain errors of up to 2% (rms) per strip will not affect the calculated
center-of-gravity and beam width noticeabley, as evaluated in Sec. 5.5.

6.4.3.2 Sampling rate

The sampling rate of the beam intensity monitors should be high enough that the
sampling granularity does not cause significant weight uncertainty. With spot times
down to 300 µs, a sampling rate of 500 kHz is sufficient (±0.33% sampling granu-
larity for 300 µs spots).

The beam position should be evaluated on a spot-to-spot basis, i.e. at about 3 kHz
(300 µs minimum spot times). However, with a transition time of Tmove ≈ 200 µs, a
higher rate is needed, since the monitor signal will be ”blurred” while the beam is
moving. A spot position evaluation at 10 kHz could avoid this problem. If there are
reasons to believe that the beam size varies more than acceptable during extraction
(see Sec. 6.4.4), the beam width should be evaluated at the same rate as the beam
position, i.e. at 10 kHz.

6.4.4 Scanning magnet precision

The beam position precision is slightly stricter in the horizontal plane (sharper beam
profile). By specifying an overall current precision based on the required horizontal
beam position precision, the beam width precision requirement is met automatically
(since it is more relaxed). Insertion of σpos,x from Tab. 6.4 as ∆x into Eq. 3.116
to determine acceptable current ripple in the scanning magnet dipoles for protons
(Bρ/(Bρ)max≥ 0.18) and carbon ions (Bρ/(Bρ)max≥ 0.51) gives a scanning magnet
current precision of (xmax = 10 cm):

∆I
Imax
≤
{

380 ppm (carbon ions)
380 ppm (protons) [rms, 1st iteration] (6.42)

By chance, the required ppm accuracy of the scanning magnets is the same for
both carbon ions and protons, due to the broader and less sharp proton spots.

As mentioned, there are other potential sources of beam position and size errors
(e.g. magnetic field errors along the extraction line), which have not been evaluated.
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6 Patient dose evaluation

To leave room for these errors, the scanning magnet power supply requirement can
be further tightened to some 200 ppm:

∆I
Imax
≤ 200 ppm (carbon ions) [rms, 2nd iteration] (6.43)

The scanning magnet agility (delay and ramp rate) are considered in the next
section, along with extraction stability.

6.4.5 Extraction stability and scanning magnet agility

With the intensity monitor uncertainty negligible, one can just as well use the origi-
nal En from Tab. 6.4 to specify the extraction stability, rather than σn. In Eq. 3.104,
En is given as a function of the scanning magnet agility (delay and beam velocity)
and the synchrotron extraction stability. At writing moment, the foreseen communi-
cation rate with the scanning magnet power supplies is 50 kHz, so:

fPS = 50 kHz⇒


TPS = 20 µs
〈τ〉= 30 µs
τmax = 40 µs

(6.44)

Reshuffling Eq. 3.104 gives the minimum irradiation time per spot for homogeneous
irradiation:

Tspot ≥
(1+ξmax)τmax−〈τ〉+ξmaxTmove/2

En
(6.45)

Contour plots of Tspot as a function of ξmax and vbeam is shown in Fig. 6.14. In
order to evaluate it, we first need an estimate of how long a single spot is allowed to
take:

Single spot, 2 liter target From Chapter 2, it should not take more than 3 minutes
to give a dose of 2 Gy to a 2 liter target. For such a large target, the largest
available spot size will be used (W=10 mm). Assuming the target is cubical
with 126 mm sides and a layer thickness of 4 mm gives about 31 layers and
1800 spots per layer. With a dead time of about 1.5 s between layers, the
average irradiation time per spot is:

180 s/31−1.5
1800

= 2.4 ms [Average, large target] (6.46)

Spot in distal layer, Target 2 The optimized layer weight of Target 2 (deep-seated)
is approximately 5×108 protons/cm2 and 4×106 carbon ions/cm2. At highest
foreseen extraction intensity (see Tab. A.2), and fractional doses of 2.0 Gy and
0.7 Gy for protons and carbon ions, respectively, the irradiation time per spot
(W = 10 mm) would be:

Tspot =

{
2.8 ms (protons)
0.44 ms (carbon ions) [Distal layer, Target 2] (6.47)

142



6.4 Beam delivery chain requirements

Spot in proximal layer, Target 2 In the proximal layer, Target 2, the optimized
layer weighs are 3×107 protons/cm2 and 3.5×105 carbon ions/cm2, resulting
in spot times at highest extraction intensity of:

Tspot =

{
160 µs (protons)
40 µs (carbon ions) [Proximal layer, Target 2] (6.48)
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Figure 6.14: Minimum spot time to ensure a homogeneous dose distribution (En =
9%).

With an average spot time of 2.4 ms (Fig. 6.14), one could accept up to 160%
beam intensity ripple (vbeam=20 m/s). However, the lower fractional dose of carbon
ions is somewhat problematic. Already in the most distal, high-weighted layer of
Target 2 is the irradiation time per spot as low as 0.44 ms at highest extraction
intensity. This is only marginally more than the minimum foreseen spot time of
0.3 ms. Taking into account that in a real treatment plan (non-rectangular target),
high- and low-weighted spots are present in almost every layer [58], which means
that the highest foreseen carbon ions extraction intensities can rarely be used at all:
in most layers, a lower extraction intensity would have to be used in order not to
systematically overdose the low-weighted spots. This is purely a limitation caused
by the scanning magnets.

Nevertheless, to achieve the desired 9% spot weight accuracy for carbon ions,
ξmax should be less than 160% to safely irradiate spots at an average rate of 2.4 ms
per spots (from the ”2 Gy to 2 liters in 3-min” requirement).

The corresponding ripple tolerance for protons (En = 12%) is ξmax ≤ 220%. The
required power supply accuracy for this is summarized in Tab. 6.7. The spill model
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6 Patient dose evaluation

∆I/Imax (.1 kHz) ∆I/Imax (&1 kHz)
D QD D QD

Protons (ξmax ≤ 220%) 5 ppm 1 ppm 16 ppm 10 ppm
Carbon ions (ξmax ≤ 160%) 5 ppm 1 ppm 8 ppm 5 ppm

Table 6.7: Max relative current ripple amplitude of the main ring magnet chains
(D=Dipoles, QD=Defocusing quadrupoles, lowest kQB).

has been used for medium frequencies (up to the kHz region), while results from
particle tracking at 2 kHz are used for higher frequencies.

As mentioned in Sec. 4.3.2, ξmax is below 10% at the quadrupole PWM fre-
quency (12 kHz), so current ripple of several kHz are of little concern for the dose
homogeneity.

6.4.6 Feasibility and possible improvements

The CNAO scanning magnet power supplies show an accuracy of 100 ppm (peak-to-
peak) [59], so the here specified value of±200 ppm is technically feasible. As men-
tioned, this is also the case for the 1% beam intensity monitor precision, σBV S,n [48].

Spot-to-spot beam width variations due to scanning magnet current ripple will
be negligible with a ±200 ppm precision, leaving some margin to other beam width
error sources. The influence of static beam width errors (constant over the entire
spill) will have limited effect on dose homogeneity if a shifted grid is used.

In [51], CNAO achieves an extraction stability equivalent to ξmax ≈ 200%. Since
the CNAO synchrotron (still under commissioning) is similar to the MedAustron
synchrotron, this at least shows that the previously specified intensity stability of
ξmax = 160% is not unreasonable. However, the CNAO figure is achieved with RF-
channelling and an air-cored quadrupole [12]. These techniques are also foreseen
in the MedAustron ring, but primarily as a back-up solution: they are preferably
avoided, in order to have an extraction mechanism that is as simple and fail-safe
as possible. This uncertainty of technically achievable extraction stability makes
the spot weight accuracy the most uncertain parameter and motivates tightening the
requirements on the beam width and position. With the scanning magnets as only
sources of beam position and width errors, the specified spot weight accuracies of
12% and 9% (protons and carbon ions) can be relaxed by approximately a factor 2,
since the scanning magnet accuracy is tightened to 200 ppm instead of 380 ppm.

If the extraction stability requirements can not be met, the dynamic performance
of the scanning magnets must be improved. Even if it can be met, improving the
scanning magnet would be motivated for utilization of the highest foreseen extrac-
tion intensities. The relation between scanning magnet performance and minimum
spot times and extraction ripple tolerance is shown in Fig. 6.15.

Increasing the scanning velocity to 50 m/s and fPS to 100 kHz would be a vast
improvement, allowing for 1 ms spots (or 400% beam intensity ripple). Such a
scanning velocity is not unreasonable, but may come at the price of reduced beam

144



6.4 Beam delivery chain requirements

40 60 80 100 120 140 160 180 200
fPS [kHz]

10

20

30

40

50

60

70

80

90

100
v b
ea
m
 [

m
/s

]

160

240

320

400

480

560

640

720

ξmax [%] (Tspot=2.4 ms)

40 60 80 100 120 140 160 180 200
fPS [kHz]

10

20

30

40

50

60

70

80

90

100

v b
ea
m
 [

m
/s

]

0.6

0.8

1
.0

1.2

1
.4

1.6
1.82.0

2.22.4

min
{
Tspot

}
 [ms] (ξmax=160%)

Figure 6.15: Permissible extraction ripple (left) and minimum spot times (right) as
a function of scanning magnet agility.

positioning accuracy (the scanning magnets of e.g. HIMAC provide scanning veloc-
ities of up to 100 m/s [60]). Still, since the highest foreseen carbon ion extraction
intensities can not be used safely without improving the scanning magnet perfor-
mance, an improvement is motivated. Faster scanning magnets would in any case
reduce the sensitivity to beam intensity fluctuations, and is therefore an alternative
to supplementing the extraction mechanism with RF-channelling and an air-cored
quadrupole.

6.4.7 Relaxation

By tightening the spot grid to ∆ = W/4, the requirements could be relaxed by
roughly 30% (Tab. 6.3). However, this would reduce the spot weight by almost 50%
(9/16), and the sensitivity to beam intensity ripple would be more or less the same.
The lower spot weights would require reducing the beam intensity from maximum
even further, causing longer irradiation time.

For Target 1, statistical ”smoothening” in the proximal layers would also allow
for a relaxation of the beam delivery requirements. For carbon ions, the require-
ments could be relaxed by at least a factor 2.3 (kW,x, Tab. 6.3), while for protons,
the requirements can be relaxed by between 1.5 (horizontal position) and 2.3 (spot
weight).

6.4.8 Beam verification strategy and interlock conditions

If the error of some beam property at one spot is measured to be too large, an inter-
lock to turn off the beam should be generated. However, with the assumption that
errors are normal-distributed, occasional large-amplitude errors are to be expected,

145



6 Patient dose evaluation

but they will have little effect on the overall dose homogeneity.
Interlock conditions could be set e.g. at a 3-σ level of the expected error dis-

tribution (from Tab. 6.4). In order to verify that the error distribution is reasonably
normal-distributed, one could set an upper limit of the number of spots per irradia-
tion that is allowed to be between e.g. 2 and 3 σ of the tolerated standard deviation
of the error (about 4%).

6.5 Dose model benchmarking at PSI, Gantry 2

Measurements have been made in Gantry 2 [13, 14] at PSI in order to benchmark
the dose calculator presented in this work. Since the dose calculations are the basis
for requirements along the beam delivery chain, the primary aim of the measure-
ments was to confirm that the transverse dose distributions simulated at different
target depths agreed with measurements. For this, an accurate modeling of the beam
growth with depth is a prerequisite.

It should be stressed that when these measurements were made, Gantry 2 was
still in the commissioning phase.

6.5.1 Preparations

Several single-layer treatment plans were prepared, consisting of spots in a Cartesian
grid, 10×10 cm2, with a beam energy of 173 MeV (about 20 cm range in water) and
a dose of about 3 Gy at the Bragg peak. Four different spot-to-spot distances were
used: 2, 3, 4 and 5 mm. The proton beam at PSI is approximately Gaussian in both
planes, and the chosen spot-to-spot distances correspond roughly to 1/4 to 2/3 of the
beam FWHM.

For each spot-to-spot distance, a reference plan with equal spot weight was gen-
erated, as well as plans with intentional random spot weight errors, in a discrete and
integral dose driven manner. The maximum amplitude of the intentional random
weight errors was set to 20% or 40% - high enough to overshadow any unintentional
beam delivery imperfections.

6.5.2 Setup

A setup of the measurement is shown in Fig. 6.16: a CCD camera was positioned on
the patient table, with the scintillating screen in a transverse plane at the isocenter.
The resolution of the CCD camera is 17 pixels per cm.

To measure the transverse dose distribution at different depths Plexiglas plates
were positioned on top of the CCD camera cover (5 mm plastics). In the first mea-
surement series, the thickness of the Plexiglas plates were 80 mm, and in a second
measurement 160 mm. The range of a 173 MeV proton beam in Plexiglas is about
17.9 cm, so the chosen thicknesses allow for a measurement of the transverse dose
distribution in the plateau region (where the beam is largely unscattered) and closer
to the Bragg peak (where scattering is more pronounced).
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CCD-camera 

Beam 

Plexiglas 

Figure 6.16: Setup in Gantry 2, PSI.

6.5.3 Data analysis

Fig. 6.17 shows the measured dose distribution from a reference plan, without any
intentional spot weight errors (ηi = 0). Globally, the dose appears homogeneous, but
a zoom on the center region and change of color scale reveals a granularity of a few
percent. For this reason, the relative dose error when ηi > 0 is calculated according
to Eq. 6.3.

A median filter (3×3) was applied to the CCD images to filter out malfunctioning
pixels.

6.5.4 Measurements results

6.5.4.1 Beam growth due to scattering

Fig. 6.18 shows the measured profiles of 10 single spots, placed in a 5×5 cm grid5,
with 80 (left) and 160 (right) mm Plexiglas. The horizontal and vertical 1-σ widths
of all spots (from fitting) are presented in Fig. 6.19a. The spread in spot sizes (1-σ)
is in the order of 0.1 mm, and the horizontal beam profile is slightly wider than the
vertical.

Fig. 6.19b shows a comparison between the simulated beam growth in Plexiglas
of a 173 MeV proton beam, and the measured beam sizes at 8.5 and 16.5 cm depth6.
The agreement between simulated beam sizes and measured is excellent.

5The 10th asymmetrically placed spot helps identifying which direction is horizontal and which
is vertical in the CCD image files.

6The 5 mm thick plastic camera cover is modeled as Plexiglas.
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(a) Raw image (b) Center region, median-filtered.

Figure 6.17: CCD image of reference dose distribution (ηi = 0). The anomaly
around coordinates (63,87) in the right figure is caused by a few malfunctioning
pixels.

(a) 80 mm Plexiglass (b) 160 mm Plexiglass

Figure 6.18: Spot profiles at different depths.
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Figure 6.19: Horizontal and vertical beam size (1-σ) with, 80 and 160 mm Plexiglas.

6.5.4.2 Field comparison

The agreement between measured and simulated transverse dose distributions was
also good. One example is shown in Fig. 6.20 (8 cm Plexiglas, 3 mm spot-to-spot
distance and up to 40% spot weight errors). Although there are minor differences in
the dose distribution, the qualitative agreement is very good, as seen in Fig. 6.21.
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Figure 6.20: Measured and simulated transverse dose distribution

An analysis of the measured dose homogeneity for different spot-to-spot dis-
tances is not included here, since the results were identical to those already presented
in this chapter.
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Figure 6.21: Simulated (Sim.) and measured (CCD) dose error histogram, discrete
scanning mode (No corr) and integral-dose driven scanning (Corr).

6.6 Results and discussion

By combining the model of transverse beam growth due to scattering with param-
eterized Bragg curves, the impact of beam delivery system imperfections on target
dose distribution has been evaluated. The dose calculation model was benchmarked
in Gantry 2, PSI and agreed well with measured data.

With integral-dose driven scanning, slow beam intensity variations are automat-
ically compensated for. Compared to discrete-scanning mode, random spot weight
errors are suppressed more efficiently, which calls for implementation of a simple,
integral-dose driven scanning algorithm.

Sufficient beam positioning accuracy for all foreseen beam sizes can be reached
by a 200 ppm scanning magnet accuracy.

Beam intensity fluctuations should be kept below some 160% to ensure homo-
geneous irradiation. This results in a synchrotron power supply current accuracy of
a few ppm at frequencies below the kHz range, while the required accuracy is more
relaxed at higher frequencies.

For multi-layer targets, the constraints can be relaxed by at least a factor 1.5
(more than 2 for carbon ions). However, to ensure a homogeneous irradiation of the
distal part of the tumor, Target 3 (single layer at 7 cm depth) requirements apply.

To avoid that small errors of the horizontal beam width cause significant dose
errors, a shifted spot grid should be used.

By using a tighter spot grid (∆ = W/4), an even better suppression of random
beam delivery errors can be achieved. The disadvantage is that the spot weights are
reduced, which sets an upper limit on the extraction intensity. However, if the target
is small, the irradiation time per spot is not crucial: the total irradiation time will
then be dominated by the time it takes to switch energy.
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Allowing for 160% beam intensity fluctuations is based on the assumption that
spots are irradiated in 2.4 ms, on average.

With 160% beam intensity fluctuations, spot irradiation times should on average
be about 2.4 ms to ensure a homogeneous dose. This is more than five times longer
than the nominal irradiation time of a single spot in the distal layer of a carbon ion
target at highest foreseen carbon ion extraction intensity (0.44 ms at ×109 ions/s).
In other words: only a fifth of the maximum design intensity can safely be used.
When taking into account that most layers of a ”real” treatment plan contain spots
of very low weight, this figure becomes even smaller. In an analysis of the treatment
plans for over 600 fields for patient treatment at PSI, more than 90% of all spots had
a weight which was less than 10% of the highest weighted spot [58]. To make use
of the highest synchrotron extraction intensities, the dynamic performance of the
scanning magnets must be improved: the gain with an improved scanning velocity
and higher communication rate with the scanning magnet power supplies is shown
in Fig. 6.15.

Increasing the scanning velocity to 50 m/s and fPS to 100 kHz would be a vast
improvement, allowing for 1 ms spots. Such a scanning velocity is not unreason-
able (the scanning magnets of e.g. HIMAC provide scanning velocities of up to
100 m/s [60]), but may come at the price of reduced beam positioning accuracy7.
Still, since the highest foreseen carbon ion extraction intensities can not be used
safely without improving the scanning magnet performance, an improvement is mo-
tivated. Faster scanning magnets would in any case reduce the sensitivity to beam
intensity fluctuations, and is therefore an alternative to complex corrections of the
extraction method, such as RF-channelling and air-cored quadrupole.

7In [60], a current ripple and drift within ±500 ppm is reported.

151



6 Patient dose evaluation

152



Chapter 7

Conclusions

In this work, a framework for linking target dose homogeneity to technical perfor-
mance of the beam delivery chain has been developed. In Chapter 2, the clinical
requirements were specified. In the following chapters (Chapter 3 to Chapter 5),
the tools needed for understanding how different elements and processes affect the
patient dose were developed. The current stability of synchrotron magnet power
converters was translated into extraction stability; errors in spot position, size and
weight were linked to the stability and agility of the scanning magnet power con-
verters.

Different nozzle layouts and their impact on target beam size have been studied
using a semi-empirical scattering model, which was extended to take beam optics
into account, using standard Twiss functions. The optics extension made it possible
to evaluate different options for the proton gantry with respect to beam size at the pa-
tient and discarding solutions with a significantly inferior penumbra. Vacuum win-
dows at the gantry coupling point were consequently discarded due to the specifics of
the MedAustron proton gantry optics. The implemented scattering model was also
used to study different nozzle layouts with respect to minimum achievable beam
sizes at the isocenter: in air and at the Bragg peak in a water phantom. Low energy
beam sizes of 7 mm FWHM are achievable, but requires monitors that can be moved
towards the patient, combined with helium bellows that reduce beam blow-up com-
pared to air.

Using parameterized Bragg curves made it possible to study the impact of extrac-
tion energy errors on SOBP homogeneity, but also to evaluate and compare different
kinds of ridge filters. For MedAustron, a solution with two orthogonal triangular
ridge filters has been selected. This allows placing both ridge filters downstream
of the monitors, avoiding double-calibration of the monitors depending on whether
the ridge filters are used or not. An absolute energy accuracy of about 0.3 MeV/n
is required for carbon ions to produce a sufficiently homogeneous SOBP: for pro-
tons, the corresponding accuracy is 0.3 MeV for deep-seated targets and 0.2 MeV
for superficial targets. For a range accuracy of 0.25 mm, a relative energy accuracy
(∆E/E) of down to 0.4×10−3 is needed for both protons and carbon ions.

In Chapter 6, the impact of various beam delivery errors (wrong beam position,
wrong spot weight or wrong beam width) on target dose quality was investigated, us-
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ing the implemented dosecalc module. The module joins the transverse scattering
model with parameterized Bragg curves. This makes it possible to calculate the tar-
get volume dose distribution from a spot scanning session subject to various kinds of
errors. Upper limits on acceptable beam delivery errors could thereby be set, based
on clinical requirements. Using the previously developed framework, these lim-
its could be directly translated into requirements on e.g. synchrotron and scanning
magnet power converters, beam monitor performance or extraction energy accuracy.
Requirements on synchrotron magnet power converter stability were estimated to be
in the ppm region to limit beam intensity fluctuations to 160%. In practice, this is
considered very strict. For the fast ramping scanning magnets, a power converter
stability in the order of 200 ppm was deemed sufficient. The agility of the scanning
magnet power converters - ramp rate and delay - determines the robustness of the
scanning system with respect to beam intensity fluctuations. Faster scanning mag-
nets would relax the constraints on the extraction stability, but also allow for using
the full potential of the synchrotron more frequently: with the configuration param-
eters presented in this work, the highest available extraction intensities could rarely
be used without risking unacceptable spot weight errors.

Several of the topics discussed in this work relates not only to the hardware
of the beam delivery chain, but also to the software used in the preceding step:
the treatment planning. It has been shown that the use of a ”shifted grid” would
dramatically reduce the sensitivity to static beam width errors in the horizontal plane.
The treatment planning system should also aim at minimizing the number of spots
of very low weight. The lowest weighted spot in a layer determines the maximum
beam intensity that can be used, since the irradiation time of a single spot should
never be shorter than the transition time. Very low weighted spots would thus put
further restrictions on the extraction intensities that can be used which, in the end,
makes the irradiation longer than necessary.
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Appendix A

MedAustron synchrotron parameter
list

The Twiss functions at the resonance sextupole (RS) and at the electrostatic septum
(ES) are summarized in Tab. A.1. Main parameters of the MedAustron synchrotron
and relativistic beam figures are presented in Tab. A.2 and A.3, respectively.

RS ES
βx 8.89864882 16.69113436 m
βy 3.317467258 7.577337623 m
αx -0.1729102443 0.4283717337 -
αy -0.627889158 -0.2609741363 -
γx 0.11573 0.070906 m−1

γy 0.42073 0.140961 m−1

µx 5.40704126 9.38210643 rad
µy 6.18148638 9.64965671 rad
Dx 0.0 -3.954919 m
Dy 0.0 0.0 m
D′x 0.0 0.6272660 rad
D′y 0.0 0.0 rad

Table A.1: Twiss functions at resonance sextupole (RS) and electrostatic septum
(ES).
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Horizontal tune Qx 1.6666
Vertical tune Qy 1.78916
Horizontal chromaticity Q′x -4.0
Vertical chromaticity Q′y -1.09
Circumference C 75.24 m
Resonance sextupole length ls 0.2 m
Normalized resonance sextupole gradient k′ 11.245 m−3

Normalized sextupole strength S 27.79 m−1/2

ES position xES -35 mm
Momentum spread of beam ∆p

p 4×10−3

Extraction duration Textr 1-10 s
Minimum proton extraction intensity 1×108 s−1

Maximum proton extraction intensity 2×1010 s−1

Minimum carbon ion extraction intensity 4×106 s−1

Maximum carbon ion extraction intensity 1×109 s−1

Beam size at isocenter (FWHM) Wx, Wy 4, 6, 8, 10 mm

Table A.2: Main synchrotron parameters

Protons Carbon ions
60 MeV 250 MeV 120 MeV/n 400 MeV/n

εx, 1σ [π mm mrad] 1.4286 0.6679 1.4286 0.7325
εy, 1σ [π mm mrad] 1.4286 0.6679 1.4286 0.7325
βrel 0.3415 0.6136 0.4640 0.7146
γrel 1.0639 1.2665 1.1289 1.4295
Bρ [Tm] 1.14 2.43 3.25 6.34
Trev [ns] 734 409 541 351

Table A.3: Geometric emittance, relativistic beam parameters βrel and γrel , magnetic
rigidity and revolution time for highest and lowest extraction energies.
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Appendix B

Scattering parameters

Material X0 [g/cm2] P [g/cm3] X0/P [cm]
Water 36.08 1.00 36.08
Air 36.66 1.205 g/l 304 m
Copper 12.86 8.96 1.43
Mylar 39.95 1.39 28.7
Kapton (polyimide) 40.56 1.42 28.6
Helium 94.32 0.1786 g/l 5280 m
Aluminum 24.01 2.7 8.89

Table B.1: Radiation length, density and radiation length divided by density. Num-
bers are taken from [40, Chapter 6].
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Appendix C

Benchmarking of scattering model

C.1 Comparison with experimental results

Gottshalk [42] publishes a list of experimentally measured values of θM and θ0 (fit)
for different materials and thicknesses. A comparison between a few values of the
fitted scattering angle, as measured in experiments, and that calculated with the scat-
tering module mpscatter are presented in Tab. C.1. The agreement is within a few
percent.

C.2 FLUKA

In order to validate the output from mpscatter, it has also been compared to sim-
ulation results from the MonteCarlo simulation package FLUKA [61, 62], using the
graphical user interface Flair.

An example of the FLUKA input is shown in Fig. C.1, for a 250 MeV proton
beam. The default parameters used are NEW-DEFA. In order to calculate the proton
beam size at different longitudinal coordinate, the command EVENTBIN has been
used. One such example is shown in Fig. C.2, where a 1-dimensional grid in steps
of 0.2 cm perpendicular to the beam direction is defined 150 cm downstream of
where the geometry starts. Using several EVENTBINS at different locations give the
evolution of the beam size, which is initially taken to be zero.

Figure C.1: The first Flair input cards.
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C Benchmarking of scattering model

Thickness t [g/cm2] θ0 [mrad], Measured θ0 [mrad], Calculated
Lexan (ρ =1.2 g/cm2)

0.094 1.762 1.58
1.455 7.436 7.45

Aluminum (ρ =2.7 g/cm2)
0.216 3.53 3.42

11.957 39.99 39.96
Copper (ρ =8.96 g/cm2)

0.045 2.204 2.02
10.13 49.068 47.8

Table C.1: Column 1: density normalized target thickness. Column 2: θ0 as fitted to
experimental results. Column 3: θ0 as calculated using Kanematsu’s integration of
the scattering power.

Figure C.2: EVENTBIN card in Flair.

C.2.1 FLUKA analysis

The FLUKA simulations are done on a particle-by-particle basis. As soon as a proton
passes through one of the segments in the defined EVENTBINSs, the track length
in that particular segment is written to a file. If the proton trajectory is exactly
perpendicular to the grid, the track length is equal to the longitudinal thickness ∆z
of the grid (∆z = 0.01 cm in Fig C.2). Protons with a non-zero divergence will yield
a track length larger than ∆z. An example of the output from one primary proton is
shown below:

Binning n: 5, " ", Event #: 80, Primary(s) weight 1.0000E+00
Number of hit cells: 1
507 0.0100211296

This means that during the 80th simulated proton, a proton track length of 0.010211296 cm
was recorded in segment number 507 in the 5th EVENTBIN.

The lateral proton beam profile is given by the number of protons (not the track
length) recorded at each segment. A Gaussian beam profile can then be fitted to the
central 98% of the protons. An example of the EVENTBIN histogram for a 60 MeV
proton beam after passing through 2.4 cm water is shown in Fig. C.3. As seen, the
Gaussian fit is a good approximation for the lateral beam profile, with a 1-σ beam
width of 0.45 mm. In this case, mpscatter calculates the corresponding 1-σ beam
width to be around 0.42 mm, an under-estimation of less than 10%.
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C.2 FLUKA
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Figure C.3: Horizontal beam distribution of an initially zero emittance 60 MeV
proton beam after traversing 2.4 cm water.

C.2.2 Beam widening in a homogeneous material

The widening of a 60 MeV proton beam in water is shown in Fig. C.4. As seen,
FLUKA and mpscatter are in agreement to within a few percent. In Fig. C.5, the
water has been replaced with helium and the initial beam energy raised to 250 MeV.
The beam range is around 2.2 km, but the beam sizes from mpscatter and FLUKA
are still in agreement within 10%.
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Figure C.4: Left axis: the 1-σ beam width versus depth for a zero-emittance 60 MeV
proton beam entering water. Right axis: the beam energy as a function of depth.

C.2.3 Beam widening in a multi-slab geometry

mpscatter and FLUKA are still in agreement when the geometry is heterogeneous.
Shown in Fig. C.6 is the beam widening of a 250 MeV proton beam. The geometry
consists of a repeated pattern of 5 cm water, 1 cm copper followed by 96 cm helium.
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Figure C.5: Beam widening of 250 MeV proton beam in helium
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Figure C.6: Beam widening of a 250 MeV proton beam in a mixed-slab geometry
(5 cm water, 1 cm copper and 94 cm helium repeated).
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