@ CERN-THESIS-2015-375

European Organization for Nuclear Research (CERN),

LHCb Collaboration, CERN I'T/DB, GEANT4, LCG Technical
University u

Technical University Kosice, of Kodice |
Faculty of Electrical Engineering and Informatics,
Department of Computers and Informatics

Object Databases for Detector
Description

v/

PhD Thesis

Radovan Chytracek

LHC-B detector!
Point-8

Object Databases for Detector Description PhD Thesis
Version/Issue: 1.0/4

@ page ii

7

Object Databases for Detector Description PhD Thesis
Abstract Version/Issue: 1.0/4

Abstract

Database systems play very important role in physics data processing for every High Energy Physics
(HEP) experiment. HEP community in Large Hadron Collider (LHC) project[2] is in the transition from
FORTRAN based software systems to object-oriented (OO) software implemented mostly in C++ and
from data records to persistent objects. Along with that a new physics data management issues will
arise in order to allow for the transition from sequential files approach towards the data access based on
object-oriented selection mechanisms of the required physics contents. In order to conform to
object-oriented paradigm, LHC experiments have to intensively invest into the design and development
of object data storage systems for both the on-line (data acquisition and real-time processing) and
off-line (simulation, reconstruction and analysis) computing environments, e.g. the event data store,
detector description database, calibration and alignment database etc.

In the course of this development effort some of the data has begun to be stored in XML based data
formats. These new formats bring with them new technological solutions as well as new challenges.
One of the challenges the issue of proper serialization of the application data forth and back to XML
form. This work presents some real-life use-cases and the corresponding solutions for these are
described.

@ page iii

7

Object Databases for Detector Description PhD Thesis
Abstract Version/Issue: 1.0/4

@ page iv

7

Object Databases for Detector Description PhD Thesis
Foreword Version/Issue: 1.0/4

Foreword

This work has been done at the European Laboratory for Nuclear Research (CERN). It has started
during my doctoral studentship contract with the CERN LHCb experiment collaboration. After that
time, however the work has been continuously evolving during the next couple of years as my
involvement in the CERN’s LHC research programme was going on.

The work was further gradually extended as I had been assigned to work on more projects and faced
various data processing problems and challenges. It has helped me in resolving many of them. It can not
be concluded yet that the results, I have achieved, do provide the complete solutions to the problems I
was facing but they should at least bring some new light to the research facing the same class of
problems I did and provide guidance and inspiration to newcomers in this domain who might meet such
challenges along their research path.

I want to remind the reader that the solutions presented in this document might not be the definitive
ones nor resolving the problems in place to a full extent. The opposite is true. They often provoke many
open questions for which | have not found an answer. There are various reasons for this, beginning with
the fact that technology has not reached the required level at the time the problem has appeared or the
theoretical understanding at this point in time was not yet mature enough to help in resolution of the
problem. On the other hand there are many reasons due to the environment where the solution was
developed, like software policies of a collaboration, design choices made far before the problem was
known or simply for legacy reasons like maintenance costs. One should not take this as a set of excuses
rather they should be accepted as the environment constraints of large software project(s). Many of
these conditions apply in general to large scale software designs and developments and must be
considered among other influences during software development.

The XML related technologies for data storage have been already briefly introduced in the abstract of
this document. The current state of the affairs is that they became integral part of many High Energy
Physics (HEP) applications today. It was not always like that. At the time of my doctoral studentship
the word XML was not fully understood by many professionals in HEP and not even by many
computing scientists. Since that time, the time of the working draft of XML specification 1.0[60], the
XML technologies have proven their relevance in resolving many problems of data exchange and
application inter-operability not only in the field of World Wide Web (WW W) but they penetrated the
other fields of data processing including the HEP applications. The XML family of technologies is
being used today even for the GRID[9] computing facilities at CERN and the other institutes involved
in GRID technology.

The focus of the work described in this document is a field of detector description which deals with data
sets used to describe very complex HEP detector machines, especially the detectors of the LHC
experiments currently under construction. Detector description data plays a very important role in the
overall data processing chain of HEP applications. It is used by detector simulation systems to populate
their geometrical data models as well as by the event reconstruction frameworks and data analysis
applications where they are for example used to resolve imperfections in detector geometry caused by
construction or to help in analytic calculations to identify the positions of primary vertices during
particle collisions.

This work and the results which have been achieved has been almost entirely bound to the XML and
related technologies. I have decided to choose a particular style of presenting it to the academic
community. The way of presenting the results follows demonstration by example principle which I
believe makes it easier to bring the reader into the problem domain and facilitates the explanations of

@ page v

7

Object Databases for Detector Description PhD Thesis

Foreword

Version/Issue: 1.0/4

the presented challenges and the implementations of solutions for these challenges. The examples come
as real-life use cases on which I was working during my stay at CERN.

The first use-case presented in this document is the detector description sub-system developed in
context of the complex software framework called Gaudi! which forms the foundation stone of the
LHCD[3] and ATLAS[4] experiments data processing systems. I was given the task to design and
develop the first prototype of the detector sub-system in the Gaudi framework. This use-case will show
how the XML processing can be used as a distributed data store technology and the set of technological
challenges, it poses, will be introduced. The set of solutions for most of these will be described together
with the driving forces, constraints and some theoretical and practical background behind them.

In the second use-case we will enter the world of HEP detector simulation applications. We will focus
on a domain of geometrical data models. This world is not separated from the detector description at all
as it might seem at the first look. Although the simulation engines are often developed isolated from the
experiment software frameworks they are usually integrated later on into the experiment software and
their geometry data models are populated directly from the frameworks’ detector description
sub-systems. That is not an easy task and in fact it poses rather heavy integration effort to marry two
independent complex software systems having often nothing in common sometimes not even the
implementation language!.

There are many technical problems to be solved in order to achieve a smooth co-operation of the
simulation engine in one hand and the experiment framework in the other. One of these problems is
related to the population of geometry data into a simulation geometry data model. It is a common that
the geometry data model of the experiment system and that of simulation engine are different in terms
of a type system they use. They may have semantically different handling of the geometry primitives
and different set of features each of them can support. The experiment framework often needs to use
multiple simulation engines which makes this puzzle even more complex, in particular concerning the
population of the corresponding data models. This is where XML comes as very useful tool due to one
of its primary design goals and it is providing application independent data exchange.

The second important issue is related to the native geometry format used by the simulation engines and
experiment frameworks. It is very often in the form of source code written in the implementation
language of the given simulation engine or framework. Any little change required during geometry
setup development, tuning and debugging implies re-compilation and re-linking of libraries and more
likely the whole application. This way the round-trip development time is drastically increased and
developer’s productivity is badly affected. Again, the XML based format can be used in this case to
allow updates to geometry data without a need to re-build the whole application. This makes it even
easier then before to share geometry data among different applications or allows to develop mission
oriented tools for geometry data processing like geometry data editors or visualisation programs.
Having the data in a form outside of the implementation language makes it a free choice of
programming language or toolkit libraries.

These reasons have led me to the application of XML in this field and to launch a project called
GDML?[28]. The GDML use-case is showing a different approach to XML data serialisation and is
closer to the theoretical grounds than the XML processing machinery of the Gaudi detector-description
system.

1. Named after the famous Catalan architect Antonio Gaudi from Barcelona, the father of the famous El Temple Expia-
tori de la Sagrada Familia church in Barcelona.

2. Geometry Description Markup Language.

page vi

7

Object Databases for Detector Description PhD Thesis
Foreword Version/Issue: 1.0/4

In both cases the software solution(s) will be described and will be accompanied by the relevant
theoretical models are either being used by the given solution or they show possible alternatives. On the
other hand it may be shown that there are theoretical limits constraining the given implementation or
making it impractical.

@ page vii

7

Object Databases for Detector Description PhD Thesis
Acknowledgment Version/Issue: 1.0/4

Acknowledgment

This page is dedicated to the people who I owe my warm “Thank you!” for supporting me in making
this work to happen.

At first I want to thank my family for creating the lovely environment in which I could relax and
recover after the long working days. Especially I would like to thank my wife Beata and my daughter
Anna for their comprehension and support during all the long years which was invaluable source of
positive energy in the critical moments of my work. Without this home environment they have built 1
would not be able to keep my work going on.

My thanks go as well to my both supervisors Milan Krokavec and Pavel Binko. Pavel was keeping his
eye on me during my start at CERN and helped me considerably in the initial phase of my work on
Gaudi and had kept me focused on the relevant subjects of my doctoral student duties. The help of my
university supervisor Milan Krokavec was always giving me the right guidelines along which I could
progress towards the goals of my PhD studies and his advises encouraged me many times to be able to
step further in my work.

I can not leave out my colleagues at CERN from LHCb experiment especially the members of the
Gaudi development team. I would like to thank the chief architect of Gaudi framework Pere Mato for
his guidance in implementing the solutions for Gaudi detector description project. Him and my close
colleague Markus Frank helped me to raise my C++ programming skills and component based
programming understanding considerably. I want to thank the other LHCb people as well including
John Harvey the leader of the computing activities in LHCb experiment for his refreshing unforgettable
jokes during morning coffee and Marco Cattaneo for his analytic talent to ask the right questions and
keeping others focused on the relevant subject. I want to thank as well Olivier Callot who taught me
that nothing is perfect and there is still space for improvement as well as that listening to users is the
first item to be kept on the list to become a good and valuable software developer.

As my path at CERN got longer | made nice experience in the Geant4 collaboration when assigned to
improve geometry model of their simulation toolkit. I have learned incredible amount of new
interesting topics and this work helped me to become more professional software developer. I would
like to thank John Apostolakis and Gabriele Cosmo my closest Geant4 colleagues who helped me to
absorb the complexities of the simulation environment and geometry modelling. I can not leave out
madame Maria Grazia Pia for refreshing discussion we had in our office which were amusing and
inspiring at the same time. While working in this group I would like to thank Juergen Knobloch the
leader of the CERN IT/API software development group for his advises and encouragement which let
me grow in my professional career.

I cannot mention all the great people I have met at CERN and I hope they will forgive me not to see
their names explicitly listed here. | want to ensure them that my thanks go to them as well and I let them
know it the next time I see them again.

page viii

7

Object Databases for Detector Description PhD Thesis

Contents Version/Issue: 1.0/4
Contents

Abstract o oL oL Lo s s

Foreword

Acknowledgment .vii

Contents L L L ... L. X
Chapter 1

Introduction . 1

1.1 HEP computing environment e .1

1.2 Generation change (From procedural to Object-Oriented) .2

1.3 The LHCb software infrastructure . Coe e 3

1.4 Role of the detector description in the LHCb architecture .3

1.5 Think twice before you cut? No, simulate instead! .4

1.6 Thesis goals and outline .5
Chapter 2

Use-case: Detector Description in Gaudi Framework . .7

2.1 Gaudi framework i

2.1.1 Major design criteria e e .9

2.1.1.1 Clear separation between “data” and “algorithms” .o .9

2.1.1.2 Three basic categories of data: event, detector and statistical data .9

2.1.1.3 Clear separation between “persistent data” and “transient data” . .9

2.1.1.4 Data centric architectural style10

2.1.1.5 Encapsulated “User code” localised in few specific places: “Algorithms” and
“Converters” . . . (0

2.1.1.6 All components with well defined “interfaces” and as “generic” as possible 10

2.1.1.7 Re-use standard components wherever possible 10

2.1.2 Overview of Gaudi components10
2.1.3 Algorithms and Application Manager 11
2.1.4 Transient data stores .11
2.1.58ervices L L L. L .12
2.1.6 Selectors 12
2.1.7 Main componentso 12

2.2 Gaudi Detector Description . 14
2.2.1 Architecture .15
2.2.2 Transient store structure . 16
2.2.3 Detector data access scenario17
2.2.4 Detector datamodel . 18

2.3 Persistent representation of detectordata. 19
2.4 The Choice: XML ..2

@ page ix

7

Object Databases for Detector Description

PhD Thesis

Contents Version/Issue: 1.0/4
2.4.1 XML features overview . . 21
2.4.2 XML based Detector Description in Gaudl . 23
2.4.2.1 XML conversion services . . 25
2.4.2.2 DTD definition for detector descrlptlon data model . 26
2.4.2.3 C++ to XML mapping strategy 26
2.4.2.4 Implementation of XML converters . 27
2.4.2.5 User defined customizing of detector elements 29
Chapter 3
Use-case: Geometry Description Markup Language (GDML) . 31
3.1 Requirements . 32
3.2 GDML Schema . 33
3.3 Processing Architecture 34
3.3.1 Analysis of data types . 35
3.3.2 Functional decomposition 36
3.4 Implementation of processing components . 38
3.4.1 GDML Reader . . 38
3.4.1.1 XML insulation layer 38
3.4.1.2 C++ element types library 38
3.4.1.3 Processing components . 39
3.4.2 GDML Writer 39
Chapter 4
Gaudi Detector Description versus GDML. 41
4.1 Impact of environment . . 41
4.2 DTD versus W3C XML Schema 41
4.2.1 Syntax . 41
4.2.2 Data types 42
4.2.3 Sub-typing 43
4.3 Maintenance . 43
Chapter 5
Connections to Theory . 45
5.1 XML, trees and hedges . 46
5.2 Hedge automata and XML SAX API . 48
Chapter 6
Related work . 51
6.1 Detector description domain . 51
6.1.1 ATLAS AGDD . 51
6.1.2 CMS DDD 52
6.1.3 GLAST 52
6.2 Data exchange domain . 52
Chapter 7
Summary . 53
page x

7

Object Databases for Detector Description PhD Thesis

Contents Version/Issue: 1.0/4
References .5
Appendix A
C++toXMLmapping .. .06l

Al1Class L. L L. el
A.2 Class data members of base types 6l
A.3 Class data members of a complextype 62
A.4 Class data members of a containertype 62
A5 Classreferences .63
Appendix B
Application Programming Interfacesfor Xm.. 65
B.1 SAX - Simple API for XML[50] 65
B.2 DOM - Document Object Model 67
Definitions. .06
Abbreviations and acronyms .17
Index. L . L L. L. T3

@ page xi

7

Object Databases for Detector Description PhD Thesis
Contents Version/Issue: 1.0/4

page xii
S)

7

Object Databases for Detector Description PhD Thesis
List of Figures Version/Issue: 1.0/4

List of Figures

Figure 2.1 p.8 Processing data flow of the LHCb experiment

Figure 2.2 p. 11 Object diagram of the LHCb software architecture, the kernel of any data
processing application

Figure 2.3 p. 13 Interaction and data flow between algorithms in the Gaudi system
Figure 2.4 p. 15 Gaudi DDDB store

Figure 2.5 p. 16 Detector description transient store snapshot

Figure 2.6 p. 17 Object diagram of detector description components’ interaction

Figure 2.7 p- 19 The detector data model UML diagram

Figure 2.8 p.25 Data model of XML converters in Gaudi detector description framework.
Figure 2.9 p.26 Example of DTD definition in Gaudi detector description framework
Figure 210 p.28 Conversion process for XML based data in Gaudi detector description

framework

Figure 2.11 p.29 Emulation of inheritance by using DTD internal subset

Figure 3.1 p.34 GDML Schema components, implementation status and its adoption sta-
tus.

Figure 3.2 p.37 Schematic view of GDML processing architecture and its components in-
teractions

Figure 5.1 p. 46 XML snippet after transformation

Figure 5.2 p. 46 Inside the content of the top level element <a>

Figure 5.3 p. 47 The content of <a> a bit decorated

Figure 5.4 p. 47 Examples of hedges: a<e>, a<x>, and a<e> b<b<e> x>

Figure 5.5 p.48 Forests or hedges seen as natural formalism for XML

Figure B.1 p.67 Example of DOM model in memory

@ page xiii

7

Object Databases for Detector Description PhD Thesis
List of Figures Version/Issue: 1.0/4

page xiv
’ S}

7

Object Databases for Detector Description PhD Thesis

List of Tables Version/Issue: 1.0/4
List of Tables

Table 1.1 p.2 Raw data volumes and rates of the LHC experiments[21]

Table 2.1 p.27 XML to C++ and vice-versa mapping used in Gaudi detector description

Table 2.2 p.28 Comparison of two common XML APIs

Table 3.1 p.36 Example of mirroring the GDML types into C++

Table 1 p.42 Brief comparison of DTD and W3C XML Schema

Table A1 p.61 Class to XML element mapping

Table A.2 p. 61 Class data members of base type mapped into XML

Table A.3 p.62 Class data members of a complex type mapped into XML

Table A4 p. 62 Class data members of a container type mapped into XML

Table A.5 p. 63 Class references mapped into XML

Table B.1 p. 65 The process of generating SAX events

@ page xv

7

Object Databases for Detector Description PhD Thesis
List of Tables Version/Issue: 1.0/4

page xvi
’ S}

7

Object Databases for Detector Description PhD Thesis
List of Listings Version/Issue: 1.0/4

List of Listings

Listing 2.1 p. 14 Pure abstract class (interface) definition

Listing 2.2 p. 14 Concrete implementation of a pure abstract interface
Listing 5.1 p.46 Simple XML snippet before being transformed
Listing 6 p- 49

Listing B.1 p. 66 DocumentHandler, the base SAX interface

Listing B.2 p.68 Example of creating a DOM document[52]

@ page xvii

7

Object Databases for Detector Description PhD Thesis
List of Listings Version/Issue: 1.0/4

page xviii
’ S}

7

Object Databases for Detector Description PhD Thesis
Chapter 1 Introduction Version/Issue: 1.0/4

Chapter 1
Introduction

CERNTJ1], the European Laboratory for Particle Physics, is currently building a new accelerator, the
Large Hadron Collider (LHC)[2]. Scheduled to enter operation in 2007, experiments at the LHC will
generate some 5PB of data per year with data rates ranging from 100MB to 1.5GB per second. Data
taking is expected to last 15 years or more, leading to a total data sample of some 100PB. Designing a
system that can handle such enormous data volumes implies a solution that can theoretically handle at
least one order of magnitude more data than is currently foreseen, namely 1EB. For some time, the
assumption has been that these new experiments will break with tradition and adopt object-oriented
solutions. In order to understand whether object-oriented technology is really suited to the High Energy
Physics (HEP) environment, a number of research projects have been established. These are addressing
areas such as the development of an OO tool-kit for detector simulation, [10] for example,
understanding how object-oriented technologies could be used to address the data management issues
involved, and to provide the overall offline environment that is required, including analysis and
visualisation tools.

1.1 HEP computing environment

HEP experiments are well known by the fact they gather and process very high volumes of physics data
acquired either during on-line data acquisitions done by detectors or by simulation programs. There are
other data sources in this environment such as detector description data, alignment! data, meta data and
many other types of data. The largest portion of the data volumes is event data measured by particle
detectors. The second in the row is usually the calibration® and slow-control® data.

A data-flow analysis has been made of the computing system in context of LHCb experiment[21][26],
in order to identify the key tasks and data flows. For example, the estimates of computing requirements
are made by analysing existing LHCb simulation, reconstruction and analysis programs, and, in cases
where they do not yet exist, by extrapolations from the similar code developed by other experiments.
Results show that the total CPU requirements needed for simulation, for Level-2 and Level-3 triggers,

1. Actually the better name would be misalignment data because the data describe imperfections in detector geometry
introduced during its assembly.

2. Calibration data are used to suppress the imperfections (such as electronics noise) of a measuring apparatus.

3. The data describe environmental conditions in the experimental area and of the detectors (temperature, pressure or
voltage level of power sources)

1
S) e

7

Object Databases for Detector Description

Chapter 1

Introduction

PhD Thesis
Version/Issue: 1.0/4

Table 1.1 Raw data volumes and rates of the LHC experiments[21]

ATLAS & CMS ALICE LHCb
TIME INTERVAL 1 MB/event, 100 Hz 40 MB/event, 40 Hz 100 kB/event, 200 Hz
1 second 100 MB 1,6 GB 20 MB
1 minute 6 GB 100 GB 1,2 GB
1 hour 360 GB 6TB 75 GB
1 day 8,6 TB 140 TB 1,7TB
1 year? 1 PB 1 PB 0,2PB

a. means the amount of useful information collected during 1 year

and for reconstruction and analysis of simulated and real data, amounts to ~ 5x10% MIPS. The raw data
is written to permanent storage at a rate of 20 MB/s. Expected raw data volume and rates are show in
the Table 1.1.

The high volumes of event data are not coming by themselves. They will be produced by the detectors.
From the size of the data one can guess the detectors being built will be huge and complex measuring
devices. There is a lot of knowledge about the detectors which is required for event data processing and
for design and development of the detectors themselves. The detector description knowledge consists of
the detectors design and construction documents, geometrical description, hardware characteristics (for
example the electronics noise, voltage) etc.

1.2 Generation change (From procedural to Object-Oriented)

It has been already said above that the wind of change is coming to the area of software development in
the HEP community. In the mean time the change has gained already its concrete shapes. During a last
couple of years the huge Fortran based software systems have been or are being replaced by the modern
object-oriented frameworks built by using the well established object-oriented language C++[45]. It did
not happen during one night and the effort was enormous and had spread across the whole HEP
community from on-line, close to the hardware, groups up to the highest levels of pure physics
community working only on the well filtered and prepared data sets holding the information about a
desired new particles discovery of which may gain one a Nobel prize.

After initial mistakes and failures trying to build a new generation software for data processing in HEP,
the community has learned the hard way how to develop robust and flexible object-oriented software
and has learned many of the software engineering practices. During the period, when many of the new
projects have raised and fallen, a few of them have established themselves well on the developer and
user market. Because the trial and fail period took rather long time the HEP community had enough
time to select the ones which best fit their needs and help them to do their job.

When the last generation of OO systems has proven to be strong enough, the next phase has started. The
goal was to replace the old Fortran based system, still in use, by the new generation of OO tools.
Depending on the maturity of a new tool there were basically two strategies applied across the
community, the radical way of stopping usage of the old system and start to use the new one even if it is

page 2

S

7

Object Databases for Detector Description PhD Thesis
Chapter 1 Introduction Version/Issue: 1.0/4

not complete. The second way was to somehow integrate the old system with the new one and
incrementally replace the old modules by the new implementations as soon as the were available.

1.3 The LHCDb software infrastructure

The LHC computing challenges strongly influenced the evolution of software development of each of
the LHC experiments as described above. In the case of the LHCb experiment the foundation stone of
its software infrastructure is based on the architecture centric approach as a way of creating resilient
software framework. The software architecture, called GAUDI[30], covers event data processing
applications in all processing stages from the high level triggers in the on-line system to the final
physics analysis. It is very important that this architecture can work in different environments and
configurations. The implementation of this architecture is the robust, object-oriented, framework called
Gaudi[11]. The implementation strategy chosen by LHCD is the latter approach from the two described
in the previous section. It is based on incremental releases and relying on the architectural patterns
identifying set of functional components which are set up at the beginning from the available code base.
The functionality of the components is wrapped by well chosen abstract interfaces to de-couple them
and keep whole system very flexible. At first this allows to build whole system starting from a minimal
set of available functionality and add more features as they get available and the already existing clients
of these interfaces thus continue to work without noticing any difference in behaviour.

There is one design choice of GAUDI architecture which makes it an outstanding one among its
competitors. The GAUDI architecture maintains separate and distinct description of the transient' and
persistent2 representations of the data objects[31]. One of the motivations for this approach has been
the requirement for a multi-technology persistency solution such that the best adapted technology can
be used for each category of data. The main advantage of this design is that the choice of persistency
technologies that does not need to be fixed at the beginning and it allows to switch technologies later if
needed or even use more of them in parallel.

1.4 Role of the detector description in the LHCb architecture

The LHC detectors are complex devices. They are being built in order to allow measurements of
nuclear particles’ collisions being accelerated to very high energetic levels. These collisions will be
source of huge amount of raw even data but there is already, before this happens, some other types of
data that will be collected or produced. The types of data we talk about here is the data describing the
detector apparatus itself, its dimensions, materials, various (environment) conditions data and
geometrical data used for simulations of these detectors.

Although the data which belong to detector description are not at the orders of magnitude of the event
data but it is still a considerable volume it occupies. All the LHC detectors will consist of millions of

1. The transient data structures live only during the time the program which constructed them is running. Once the ap-
plication is closed these data structures cease to exist, they are destroyed unless they have been made persistent.

2. The persistent data structures can survive the shutdown of the application which has created them and typically are
used later by an instance of the same or a different program which reads the persistified data structures from some storage
media.

3
S) e

7

Object Databases for Detector Description PhD Thesis

Chapter 1

Introduction Version/Issue: 1.0/4

different construction parts and supports, electronic modules as well as hundreds thousands of cables
and connectors. Having this information available is not only for the good of logistics and construction
purposes but considerable portion of the data is used by physics applications performing simulation,
reconstruction and analysis tasks. For example it is very important to know the exact layout of cables to
connectors mappings as these are important for electronic calibration jobs as well in cases of debugging
and recovery procedures.

The detector description system poses a certain technological challenge to have it implemented right
from the beginning. Unlike the event data where the data sources and data flow is planned carefully the
sources of detector data do appear more or less in random places and time during periods the detector
simulation, construction and run. The data come from various sources like slow controls, simulations,
CAD systems and various construction data bases. They are stored various forms and formats like CAD
drawings and construction plans, data bases of cable mappings or even simulation geometries in source
code form. In addition to the data mentioned so far there is another type of data produced by detector
expert groups which are used then later during the reconstruction to optimize this task.

This makes the design of detector description system more complex. What is important however is to
provide a common interfaces for access to detector description data. The GAUDI architecture provides
such mechanisms which allow to design and implement such a solution[32].

1.5 Think twice before you cut? No, simulate instead!

No one can start to build such detectors from day to day. The design process for these complex devices
starts far before the experiment itself may exist! The design of a detector and its functionality depends
strongly on the physics processes it is supposed to measure. To figure out the best estimation and
provide some candidate solution the number of various simulations must happen in order to obtain
some results for decision making about the future detector. And this is usually only the first round of
many more to come. This process is incremental with many iterations and loops of verifications at
various levels. The important fact is that simulations are done almost at each iteration again and again.
It is simply a must have software component in the high energy physics experiment software
machinery.

There is a number of various simulation engines and Monte Carlo generators used across the whole
community. Some of them are very focused into a very specific physics processes and then there are, so
called, general purpose simulation frameworks which offer much broader spectrum of physics
processes and features. Very often the latter ones offer an interface to the specific ones if such a
functionality is needed but the implementation inside the framework is not efficient or does not fully
cover the required area of physics.

Clearly, the general purpose simulation systems provide more features and many of them are targeting
the big collaborations. One of the features is that the simulations jobs can be run in so called mass
production mode. Basically this means that the whole cluster of machines can be running many
simulation events in parallel. This is perfectly possible as the simulation events are statistically
independent units. This does not require support of distributed computing software packages like PVM
or MPI. What is important is a clear way to get access to the input data and parameters so a simulation
job can be properly configured and run after being assigned to a given CPU or a node in a cluster of
workstations. Unfortunately the form or format of the input data is not unified or following a standard.

page 4

7

Object Databases for Detector Description PhD Thesis
Chapter 1 Introduction Version/Issue: 1.0/4

Basically each general purpose simulation engine maintains its own set of input formats for various
types of inputs.

This creates a number of problems inside the experiment’s software chain because it either has to
support multiple formats for each simulation engine in use or to develop an interface to hide the
incompatibility and provide a unified view for its users. The latter is of course more preferable as it
takes away the burden from users to know about multiple input formats required by different systems.

There are not really many of the general purpose simulation engines. One can count on one hand the
ones being used in production. They are, however, all working internally using non-trivial data
structures they use to represent geometry of a simulated device as well as the materials the modules are
built from and finally the physics processes used to model various physics behaviours. The reader
might have guessed already that the situation with the internal data models is not different from that of
the input formats. Exactly! The same kind of troubles is caused by these differences. As in the case of
the input formats the integration efforts on the experiment’s framework side is not ignorable. Some way
of unification or providing a common way to work with the different simulation engines is needed in
order to make life of users easier.

1.6 Thesis goals and outline

The paragraphs above have briefly shown the main characteristics of computing in high energy physics
experiments. The focus was kept on the environment where this work has been done. The previous
section tried to introduce reader to the number of problems which complicate computing tasks of this
community. The use-cases which are supposed to demonstrate this work’s contribution try to deal with
some of these problems and improve the situation. The goals of this work can be briefly summarized by
the following points:

1. Provide a new design of object-oriented data model for detector description
2. Prototype implementation of the object storage based on the data model above

3. Investigate the data storage access patters for local and remotely stored detector data as well
as the possibilities of detector data replication

4. Investigate possibilities of generic approaches to common data exchange for detector
description data
In the following the outline of this document is presented with a brief description of each chapter:
» In chapter 2. we describe in detail the solution for Gaudi detector description.
» In chapter 3. we describe the implementation of GDML processing engine.
» In chapter 4. we compare the two implementations using various criteria.
» Inchapter 5. we discuss the relevant theoretical models.
» In chapter 6. we mention the related work in the area of detector description

» Inchapter 7. we summarize the outcomes of this work and discuss possible improvements and
future research directions in this area referring to the latest research results in the related
fields.

The text provides pointers for the technical details or theoretical background in the corresponding
appendices or bibliography.

5
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 1 Introduction Version/Issue: 1.0/4

page 6
S)

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

Chapter 2
Use-case: Detector Description in
Gaudi Framework

The use-case of detector description solution of LHCb experiment will be described in this part. In
order to understand the implementation context the Gaudi framework will be introduced and detector
description sub-system will be described in more detail. After being familiar with the environment the
implementation will be explained. For detailed description of the Gaudi framework refer to
[22][23]]26].

2.1 Gaudi framework

The goal of the project is to build a framework which can be applied to a wide range of physics data
processing applications for the LHCb experiment. It should cover all stages of the physics data
processing: physics and detector simulation, high level software triggers, reconstruction program,
physics analysis programs, visualisation, etc. There is also the coverage of a wide range of different
environments such as interactive non interactive applications, off-line and on-line programs, etc.

It spans the domains of on-line and off-line computing. It includes the algorithms to filter interesting
events from background (so called high level triggers), as well as the full reconstruction and analysis
tasks. The overview of these tasks are shown in Figure 2.1 using a data flow diagram. As it can be seen,
the event data processing system will consist of a series of processes or tasks that will transform the
data collected from the detector into physics results. The data processing is done in various stages
following the traditional steps: data collection and filtering, physics and detector simulation,
reconstruction and finally physics analysis. The development of all these data processing tasks will
involve in one hand computing specialists to build the framework and the basic components and on the
other hand the people specialised on each sub-detector that will build the specific code which will be
needed for the reconstruction, simulation of each of the sub-detectors and its final combination. In
addition, there will be the people developing the data analysis programs to produce the final physics
results.

7
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

Detector Front End

Detector Description

Build Events

Align+Calibrate Reconstruct

Events

Detector
simulation

Alignment+Calibration
Constants

L2/L3 Triggers

Physics
generators

Data Store

Make selections

Design selections

Selection Criteria Physics Results

D

Figure 2.1 Processing data flow of the LHCb experiment

There

are four categories of the people who work with the framework. This categorisation is not

intended to be exclusive, it is a categorisation of interaction rather than of people and many people will
belong to several groups:

1.

Physicists. These people are principally interested in analysing reconstructed data and getting
results. They produce histograms, statistical distributions which they fit to extract parameters,
etc.

Physicist developers. These people will contribute to a big fraction of the system code in
terms of number of lines. Their principal occupation is to implement components within the
provided framework. These components are such things as: Detector simulation and response
code; reconstruction code, etc. This activity requires more knowledge of the framework than
that required by the average physicist user.

Configuration managers. These people are responsible for the management of data production
(Monte Carlo, Reconstruction,...), versioning of detector geometry, calibration, alignment, etc.
etc. They do not necessarily need to write much code, but they will probably need to be
conversant with database management tools.

Framework developers. These people are responsible for the design, implementation and
maintenance of the framework itself.

page 8

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

The architecture of the system is described in terms of the identified components and their interactions.
A software component is a part of the system which performs a single function and has a well defined
interface. Components interact with other components through their (abstract) interfaces.

The notation used to specify the architecture is the Unified Modelling Language (UML). This notation
is not completely adequate for describing architectures in general, but in this case it seems to be
sufficient and it has the advantage that is widely known, thus we no other notation is needed.

2.1.1 Major design criteria

Before the description of the architecture is done the set of design criteria and strategic decisions has to
be documented.

2.1.1.1 Clear separation between “data” and “algorithms”

Despite the intention to produce an object oriented design, the decision has been made to separate data
from algorithms. For example, thinking to have “hits” and “tracks” as basically data objects and to have
the algorithms that manipulate these data objects encapsulated in different objects such as “track_fitter”
or “cluster_finder”. The methods in the data objects will be limited to manipulations of internal data
members. An algorithm will, in general, process data objects of some type and produce new data
objects of a different type. For example, the cluster finder algorithm, produces cluster objects from raw
data objects.

2.1.1.2 Three basic categories of data: event, detector and statistical data

There are three major categories of data objects. There is the event data which is the data obtained from
particle collisions and its subsequent refinements (raw data, reconstructed data, analysis data, etc.).
Then, there is detector data which is all the data needed to describe and qualify the detecting apparatus
in order to interpret the event data (structure, geometry, calibration, alignment, environmental
parameters, etc.). And finally the statistical data being the result of some processing applied to a set of
events (histograms, n-tuples, etc.).

2.1.1.3 Clear separation between “persistent data” and “transient data”

A main feature of the design is that it separates the persistent data from the transient data for all types of
data e.g. event, detector description, histograms, etc. Physics algorithms should not use directly the data
objects in the persistency store but instead use pure transient objects. Moreover neither type of object
should know about the other. There are several reasons for that choice:

+ The majority of the physics related code will be independent of the technology we use for
object persistency.

+ The optimisation criteria for persistent and transient storage are very different. In the
persistent world you want to optimise I/O performance, data size, avoid data duplication to
avoid inconsistencies, etc. On the other hand, in the transient world you want to optimise
execution performance, ease of use, etc. Additionally you can afford data duplication if that
helps in the performance and ease of use.

9
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

+ To plug existing external components into the architecture they have to be interfaced to the
data. If they are interfaced to the transient data model, then the investment can be reused in
many different types of applications requiring or not requiring persistency. In particular, the
transient data can be used as a bridge between two independent components.

2.1.1.4 Data centric architectural style

The architecture allows development of physics algorithms in a fairly independent way. Since many
developers will be collaborating in the experiment software effort, the coupling between independent
algorithms should be minimised. The transient data storage is used as a means of communication
between algorithms. Some algorithms will be “producing” new data objects in the data store whereas
others will be “consuming” them. In order for this to work, the newly produced data objects need to be
“registered” somehow into the data store such that the other algorithms may have the possibility of
identifying them by some “logical” addressing schema.

2.1.1.5 Encapsulated “User code” localised in few specific places: “Algorithms” and “Converters”

One needs to take into account the need to customise the framework when it is used by different event
data processing applications in various environments. Most of the time this customising of the
framework will be in terms of new specific code and new data structures. A number of “place holders”
needs to created where the physics and sub-detector specific code will be later added. There are two
main places: Algorithms and Converters.

2.1.1.6 All components with well defined “interfaces” and as “generic” as possible

Each component of the architecture implements a number of interfaces (pure abstract classes in C++)
used for interacting with the other components. Each interface consists of a set of functions which are
specialised for some type of interaction. The intention is to define these interfaces in a way as generic as
possible. That is, they should be independent of the actual implementation of the components and also
of the concrete data types that will be added by the users when customising the framework.

2.1.1.7 Re-use standard components wherever possible

The intention is to have one single team with an overview of the complete LHCb software system
covering the traditional domains of oft-line and on-line computing. This way unnecessary duplication is
avoided by identifying components in the different parts of the system which are the same or very
similar. The standard and existing components are re-used wherever possible.

2.1.2 Overview of Gaudi components

Description of the architecture by an object diagram showing the main components of system is
introduced in Figure 2.2. Using object diagrams are not the best way to show the structure of the
software but they are very illustrative for explaining how the system is decomposed. They represent a
hypothetical snapshot of the state of the system, showing the objects (in this case component instances)
and their relationships in terms of navigability and usage.

page 10

7

Object Databases for Detector Description PhD Thesis

Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4
JobOptionsSvc ApplicationMgr .
E’_,_,.H
Alg
MessageSvc AlgFactory | | Properties
< —

EventSelector

PObj Algorithm1
PDetElem

/\ EventDataSvc DetDataSvc

- o N
PersistencySvc
L DetPerstySvc
-] ObjContainer DetPerstySve
IT 1
| 1
: T~ 1 !
= Converter - N | 1 TDetElem1 [B
‘L = =y Converter [~
Obj3. ohE oon H Converter_ |
AnotherPercySvc Obj2 || Obi1 T Detector Store

| \ HistogramSvc
Ty \ Transient Event Store \
HistPerstySvc
4 Hist1
PObj ~<——— uses ist J \j

o — ~<——— creates

navigability

T Histogram Store Converter

Figure 2.2 Object diagram of the LHCb software architecture, the kernel of any data processing application

2.1.3 Algorithms and Application Manager

The essence of the event data processing applications are the physics algorithms. These are
encapsulated into a set of components that called algorithms. These components implement a standard
set of generic interfaces. Algorithms can be called without knowing what they really do. In fact, a
complex algorithm can be implemented by using a set of simpler ones. At the top of the hierarchy of
algorithms sits the application manager. The application manager is the “chef d’orchestre”, it decides
what algorithms to create and when to call them.

2.1.4 Transient data stores

The data objects needed by the algorithms are organised in various transient data stores. The data are
distributed over three stores as shown in the diagram. This distribution is based on the nature of the data
itself and its lifetime. The event data which is only valid during the time it takes to process one event is
organised in the transient event store. The detector data which includes the detector description,
geometry, calibration, etc. and generally has a lifetime of many events is stored in the transient detector
store. Finally, the statistical data consisting of histograms and n-tuples which generally have a lifetime
of the complete job is stored in the transient histogram store. It is understood that the three stores
behave slightly differently, at least with respect to the data lifetime (the event data store is cleared for
each event), but their implementations have many things in common. They could be simply different
instances of a common component.

11
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

2.1.5 Services

Number of components is defined which should offer all the services directly or indirectly needed by
the algorithms. The idea here is to offer high level services to the physicist, so that they can concentrate
on developing the physics content of the algorithms and not on the technicalities needed for making
everything work. This category of components is called services.

Some examples of services can be seen in the object diagram. For instance, there are services for
managing the different transient stores (event data service, detector data service,...). These services
should offer simplified data access to the algorithms. Another class of service are the different
persistency services. They provide the functionality needed to populate the transient data stores from
persistent data and vice versa. These services require the help of specific converters which know how to
convert a specific data object from its persistent representation into its transient one or the other way
around. Other services like the job options service, message service, algorithm factory, etc. which are
also shown in the diagram offer the service which its name indicates. They will be described in more
detail later.

2.1.6 Selectors

There is a number of components whose function will be to select subset of data according to a user
defined criteria. For instance, the event selector provides functionality to the application manager for
selecting the events that the application will process. Other types of selectors will permit choosing what
objects in the transient store are to be used by an algorithm, by a service, etc.

2.1.7 Main components

The principle functionality of an algorithm is to take input data, manipulate it and produce new output
data. Figure 2.3 shows how a concrete algorithm object interacts with the rest of the application
framework to achieve this.
The figure shows the four main services that algorithm objects use:

* The event data store

* The detector data store

* The histogram service

» The message service

In addition, a fifth service, the job options service (see) is used by the Algorithm base class, but is not
usually explicitly seen by a concrete algorithm.

Each of these services is provided by a component and the use of these components is via an interface.
The interface used by algorithm objects is shown in the figure, e.g. for both the event data and detector
data stores it is the IDataProviderSvc interface. In general a component implements more than one
interface. For example the event data store implements another interface: IDataManager which is used
by the application manager to clear the store before a new event is read in.

page 12

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

Real dataflow Apparent dataflow Data T1

<

)

Data T1

Data T2, T3

Transient Event| DataT2
Data Store Data T4
<

Figure 2.3 Interaction and data flow between algorithms in the Gaudi system

An algorithm's access to data, whether the data is coming from or going to a persistent store or whether
it is coming from or going to another algorithm is always via one of the data store components. The
IDataProviderSvc interface allows algorithms to access data in the store and to add new data to the
store. It is discussed further in chapter where we consider the data store components in more detail.

The histogram service is another type of data store intended for the storage of histograms and other
“statistical” objects, i.e. data objects with a lifetime of longer than a single event. Access is via the
[HistogramSvc which is an extension to the IDataProviderSvc interface, and is discussed in chapter.
The n-tuple service is similar, with access via the INtupleSvc extension to the IDataProviderSvc
interface, as discussed in.

In general an algorithm will be configurable: It will require certain parameters, such as cut-off, upper
limits on the number of iterations, convergence criteria, etc., to be initialized before the algorithm may
be executed. These parameters may be specified at run time via the job options mechanism. This is
done by the job options service. Though it is not explicitly shown in the figure this component makes
use of the IProperty interface which is implemented by the Algorithm base class.

During its execution an algorithm may wish to make reports on its progress or on errors that occur. All
communication with the outside world should go through the message service component via the
IMessageSvc interface. Use of this interface is discussed in.

As mentioned above, by virtue of its derivation from the Algorithm base class, any concrete algorithm
class implements the IAlgorithm and IProperty interfaces. IProperty is usually used only by the job
options service.

13
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

Top level algorithms, i.e. algorithm objects created by the application manager are controlled via the
[Algorithm interface. This consists essentially of the methods: initialize(), execute(), and finalize().

The figure also shows that a concrete algorithm may make use of additional objects internally to aid it
in its function. These private objects do not need to inherit from any particular base class so long as they
are only used internally. These objects are under the complete control of the algorithm object itself and
so care is required to avoid memory leaks etc.

The terms “interface” and “implements” have been used quite freely above. The term interface is used
to describe a pure virtual C++ class, i.e. a class with no data members, and no implementation of the
methods that it declares. For example:

Listing 2.1 Pure abstract class (interface) definition

1: class PureAbstractClass
2 virtual methodl () = 0;
3: virtual method2 () = 0;
4: }

is a pure abstract class or interface. It is said that a class implements such an interface if it is derived
from it, for example:

Listing 2.2 Concrete implementation of a pure abstract interface

class ConcreteComponent: public PureAbstractClass {
methodl () { }
method2 () { }

}

0 3 o Ul

A component which implements more than one interface does so via multiple inheritance, however,
since the interfaces are pure abstract classes the usual problems associated with multiple inheritance do
not occur.

Within the framework every component, i.e. services and algorithms, has two qualities:

* A concrete component class, e.g. TrackFinderAlgorithm or MessageSvc.

+ Its name, e.g. “KalmanFitAlgorithm” or “stdMessageService”.
In addition, as discussed above, a component may implement several interfaces. These interfaces are
identified by a unique number which is available via a global constant of the form: IID InterfaceType,

such as for example IID IDataProviderSvc. Using these it is possible to inspect what interfaces a
particular component implements.

2.2 Gaudi Detector Description

As was already mention above, in the section 2.1.7 Main components, Gaudi architecture identifies
various transient data stores. One of them is the focus of this work, the detector data store. The data sets
managed by this store consist of so called detector data objects which are very important in all event

page 14

S

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

data processing tasks. The data typically consist of the description of a detector in terms of its geometry,
the calibration and alignment constants, the environmental conditions and parameters like a
temperature or pressure. A framework has been developed to manage in a coherent way all the detector
data and to ease the implementation of the specifics of the sub-detectors in the LHCb experiment. The
whole development process has been use-case driven. One of the most important use-cases has been
that users want have a single detector description for all applications (simulation, reconstruction, event
display, etc.). Therefore the information in the database should be a union of all the information needed
by all applications; the level of detail should be selected by the client application. The developer using
framework should concentrate only with the specifics of his/her sub-detector and leave the
commonialities to be provided by the framework itself.

2.2.1 Architecture

Data Processing Application

Algorithms

version & event time

Projection view:

e

|

Persistent Detector
Description (DDDB)
~N

Transient detector

era /

Conversion
services

Detector
Data
Producers,

L
Update <‘

Other
representations

Figure 2.4 Gaudi DDDB store

Separation of the transient data from the persistent representation applies also to detector data. This
fundamental design choice of Gaudi is clearly visible also in the Figure 2.6 which shows the Gaudi
detector description object diagram. Gaudi architecture is followed here as well, as one can see that
algorithms access detector data through the transient representation. This representation is obtained
from the detector description database via conversion services. There may exist multiple kinds of
transient representations(e.g. visualisation graphics primitives or Geant4 data model[10]) for the same
detector data type thus the conversion services are not exclusively dedicated to conversions from
persistent to transient world.

page 15
@)

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

2.2.2 Transient store structure

The detector data store defines two basic views. The logical detector view and the physical detector
view. The latter provides access to the physical description items like dimensions, materials as well as
detector element specific attributes usually defined by the sub-detector experts.

The logical view defines the user oriented view focused on the subject begin described, e.g. the detector
itself. It provides two basic functions:

+ Simplified access to the physical parts via hierarchical navigation across whole detector
structure.

» Defines detector elements identification so each detector element can be referred to by its
logical name.

Figure 2.5 shows how the transient detector data store is organized. The physical organization of the
store is defined in terms of data catalogues which play a similar role of directories in a UNIX file
system. These can be either organized further in a hierarchical way or simply contain a flat list of data
objects. One can see in the figure that Structure catalogue is hierarchically organized. It is actually the
logical view of the LHCb detector described above. There are other data catalogues, for example the
Geometry catalogue is part of the physical view and holds geometrical attributes of each of the detector
elements described in the logical view.

3, ad
=45 Geomety
- 03 wLHCh
[ﬂ [rehduion

L3 keuonStation

e N
= E[% s ertenS tation
= [:1 M aterials
[:'l Boron_10
W
i [ﬂ Oupgen
B [:L Structure
=-[3, LHCh
E' [:]. Muan
= [:]. Yertey
-7, Station01
~. [, Stationdz

Figure 2.5 Detector description transient store snapshot

In Gaudi any data object registered in the transient data store must be directly or indirectly identifiable
by a name. Indirectly here means that for practical reasons is sometimes more convenient to keep data
objects inside one transient data container. This is often more efficient from the memory allocation
point of view or simply because the data objects of that type are very tiny and to define unique identifier
for each of them is inefficient as it would occupy more space than the information of the data object
itself. In this case such objects are kept inside one container and the container is the identifiable entity
in the data store. The unique name of a particular tiny data object inside the container can be easily
obtained by merging the name of the container with the position index of the given data objects in the
container.

page 16

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

For example the logical identifier of the first sub-detector inside the Vertex detector in the logical view
is /dd/Structure/LHCb/Vertex/Station01l. The same way one can access physical data
objects, for example one access material oxygen using /dd/Materials/Oxygen. In the case one
deals with the data object container, for example let’s consider that data catalogue of materials is a data
container one can address a first material as /dd/Materials/ [0] which means that Boron 10
material would be addressed.

2.2.3 Detector data access scenario

The typical way an algorithms access data n the detector data store is show in Figure 2.6. The data store
is populated by detector data from the persistent storage on demand as algorithms ask for the data they
need or Gaudi ApplicationManager component triggers synchronisation of event and detector data
when a new event is loaded into the even data store.

Detec Persistenth)

Algorithm ‘Ill]]]]]]]]ll} Def S!e!r'v!iceE ata C:> Pegsw‘r_ency Detector

ervice Stofl
= A .

Service DetElement? -
=

e emen
Transient v

\ Detector Store /

Geant4
Representation

Figure 2.6 Object diagram of detector description components’ interaction

The algorithm in the figure demands a detector data by asking the Gaudi DetectorDataService by
giving it a detector data identifier. The service then scans the content of the transient data store to make
sure that the data object is already present. If that is the case the reference to that data is returned back t
the algorithm.

If the data has not been already loaded the DetectorDataService makes a request to the
DetectorPersistencyService to load the required data from the persistent storage. The persistency
service locates the set of converters for the given data type and passes them the logical identifier of the
data object to be loaded. If converter exists for such data type the logical identifier is resolved into its
corresponding persistent reference and the converter performs access to the persistent storage. After
persistent representation of the data is located and accessed by the given converter it transforms it to the
required transient data object and returns its reference back to the DefectorPersistencyService which in
turn passes it back to DefectorDataService. When data service has received the fresh data object it
registers it in the transient data store and passes its transient data store reference back to the algorithm
which asked for it.

page 17
@)

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

The figure shows also the second scenario which does not trigger the access into persistent storage but
triggers on the fly conversion from one transient data representation into another one, in this case
Geant4 geometrical data object. This way Gaudi transient store can play role of a bridge between two
independent components or frameworks.

2.2.4 Detector data model

Model of the transient detector data has been designed strictly following the use-cases and requirements
coming from the LHCb user community[27]. It covers all the domains required for the proper
processing of the event data. The model has been tuned, however, to specific characteristics of the
detector description data. It has been known from the past experience that detector data have a different
life-time than the event data. For example when a new event has been loaded and detector description
needs to be accordingly synchronised not all data in the detector description data store need to be
re-loaded or updated.

On the other hand the detector data, in opposite to event data, can exhibit very rich set of internal
cross-references and can share a lot of common pieces of information. For example one can have inside
detector setup many different detector elements built from the same material. It would be very
inefficient and wrong to load the same material as many times as the number of detector elements. All
kinds of such optimisations and requirements have been taken into account during design of the
transient detector description data model.

The transient detector data model, for a simplified UML diagram see Figure 2.7, covers the following
major domains:
1. Detector setup
+ defines hierarchical organization of detector elements
* more than one setup can be loaded into the same detector data store

+ the principal data object, a generic DetElement class can be customized by a
sub-detector expert to fit his/her detector specific properties

2. Geometry

* detector geometry is modelled as hierarchy of so called logical volumes and physical
volumes following closely the principles of detector geometry defined in Geant4[10]
general purpose simulation toolkit

* logical volume represents a non-placed volume described in terms of a solid defining
its shape and material it is made of plus the (possibly zero) number of children
volumes (physical volumes) placed w.r.t its own system of coordinates

+ standard part of geometry data model is a set of useful function offered to algorithms
like local-to-global coordinates conversion and vice versa or locating a volume
which contain the given point having points’ 3D coordinates

3. Materials
» required by logical volumes

» one can define isotopes, elements which can be optionally built from isotopes and
material mixtures which can be built from elements or other mixtures either by
specifying the number of atoms of fractional mass for each constituent in the
material mix

page 18

7

Object Databases for Detector Description PhD Thesis

Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4
DataObject
1~ -
: Association
Hierarchy : ={ resolved on
-== demand
Geometry
O Info
A >O—LVolumefr = = = = = = = =>0O— Material
*
DetElement - l—>0
>(O— ReadOut 1
1
\ : Solid
(O—calibration
_ _ Jpvolume Mixture | [Element||Isotope

Specific I *_‘ N I :‘ M
detector Sd

description SolidBox

questions from
Geometry 7 Material 7

algorithms
Figure 2.7 The detector data model UML diagram

MuonStation

Detector Description

2.3 Persistent representation of detector data

The benefit of using a system on Gaudi architecture is due to its clear separation of the transient and
persistent data. That design choice has its direct impact on users and developers. It shields end users
from a persistent technology and simplifies their daily development as they need to interface only to
their transient data models. On the other hand a system built using such an architecture allows
co-existence of different persistency technologies so a data set can be read from one technology and
after some data processing the produced results may be written into another type of persistent storage.

The typical scenario is reading in the detector description data matching the event currently being
processed. When data are in the transient store a user may need to visualize the selected detector
element and possibly launch a simulation task. In order to configure the simulation, the present
transient representation needs to be converted into the representation understood by the simulation
engine. At the end of the application run the user might need to store the detector element view into a
graphics format for documentation of presentation purposes and write down the data he/she has
produced, for example a set of statistical data in form of the histograms. One can see that multiple
representations are needed for the data involved which fit best the particular type of data.

Since many different persistent representations need to be supported, the machinery which allows such
a functionality must be well defined to allow this in a flexible and scalable manner. This goal has been
achieved in the Gaudi design by keeping a technology specific code only on well defined places, the
services and converters.

Detector description framework defines a set of conversion services, one per technology type. Each of
the conversion services is managing a set of converters, usually one per data type. There may be some
generic converters in cases there is a family of data types sharing some common characteristics or make
sense to be read and written always bound one to each other. This is a typical case for converters of
containers holding polymorphic data from the same class hierarchy.

page 19
@)

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

This conversion services machinery requires however a hint which lets it discover what technology
needs to be used and what types of data are to be transformed from/into persistent storage. This hint is
provided by the data service of the given transient store which passes it as a part of the request for data
conversion down to the persistency service. Gaudi architecture defines for this purpose so called
opaque addresses. An opaque address object is created from a data object’s logical identifier supplied
by the user asking for a data. The opaque address object contains encoded information about the
technology, database name and possibly a container or table name. In order to be able to uniquely locate
a given persistent data object the opaque address defines its persistent reference which is technology
specific, for example it can be positional index inside a container where the object is placed or it can be
a primary key into a table in case of relational database system.

A careful reader might have observed that such a machinery for reading and writing of data objects
works on very generic foundation and thus allows to build flexible and scalable solutions with many
degrees of freedom. The freedom allows then to perform optimisations if needed at various levels and
do it per technology or even per each data type!

Because of the features described above this system is not forcing a premature choice of the storage
technology in very early stages of the framework development. For the same reason the choice of
persistency technology for detector description has not been fixed. The simple argument for this was
that nobody can predict what kind of technology will be available in a few years from now. In the case
of detector description in Gaudi framework the time period was 7 years to the expected start of LHC.

2.4 The Choice: XML

When first prototypes of Gaudi haven been released into public the number of storage technologies it
supported was not high. The focus was on the legacy data formats used by the previous generation of
software in order to be able to read and write the existing legacy data. In addition to that the question of
database technology was wide open at that time as well. There were three parallel streams of activity in
this field each trying to provide a satisfactory solution for LHC data storage in terms of data volume
scalability at the first place and how fast the required set of operations on the data can be performed.
The first it was the using object-oriented databases where the principal implementation was build using
commercial OO database system[12]. The second stream was still trying the well known RDBMS
technologies and their new object-relational extensions coming at the time. The last group was trying to
address this problem by building a home grown solution[13].

Since the whole high energy physics community has not been definitely convinced by any of the
approaches the choice of persistency technology for Gaudi was open. Therefore the detector description
has been developed a bit differently. It has been decided that first the transient data model is defined and
implemented together with technology independent persistency part of the system. Because the
performance issues were not a priority at the time the requirements for the persistency technology were
focusing on the ease of use, flexibility and possibility of sharing the data among different applications
with the possibility to be imported later into a database system if needed.

After some initial attempts to define a ASCII based human readable format with hand written parser it
has been decided that the primary detector description format will be based on XML technology. The
XML specification has reached at that time the W3C Recommendation status[14][60]. It was a
reasonable choice as it provides features fitting well the functionality required by detector description
data. In brief, XML exposes the following set of features:

page 20

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

XML 1.0 standard
W3C provided standardisation process for XML and related technologies which ensures a

guarantee that these technologies will be adopted by industrial solutions and supported by
the major software vendors world wide.

Powerful expressiveness with relatively simple syntax
XML has been derived from the Standard Generalized Markup Language (SGML)[59].
The design of XML tried to keep its expressive power but a considerable effort has been
invested to make it less complex with stricter syntax rules to simplify writing of XML
software processing applications. Basically this design followed the 80 - 20 rule which
means XML keeps 80% of SGML flexibility and only 20% of its complexity.

Data exchange mission
XML was deigned for application independent data exchange on the World Wide Web
(WWW). This original idea has been, however, soon adopted not only in the world of
WWW but adopted rather quickly in database community.

Safe investment
The fact that the family of XML standards is maintained by W3C consortium with
industrial partners being involved in the standardisation process presents low risk factor in
adopting XML technology because it does not require an additional in house expertise and
increasing support from industrial vendors promises that a number of XML processing
tools will be available.

2.4.1 XML features overview

XML is a meta language. It is supposed to be used to define custom languages describing a specific data
domain. For that reason XML provides a relatively simple syntax which allows to annotate data in a
human readable format clearly indicating what a given piece of data means. This annotation is done via
so call tags attached to each piece of data. In order to make this format to be easily processed by a
computer program there is a set of constraints which prescribes the process of attaching the tags to data.
The tags can be also called marks that is why it is called a mark-up language. Having for example a
simple e-mail message in its raw text form like

From: user@domain.org
To: admin@company.com
Subject: The account request

I would like to ask for an account

one can produce marked-up form of the raw text above as

21
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

<?xml version="1.0" encoding="UTF-8"7?>
<emails>

<from>user@domain.org</froms>
<to>admin@company.com</to>
<subject>The account request</subjects>
<body>

I would like to ask for an account
</body>
</emails>

One can see that each piece of raw text data has been enclosed by a pair of tags in the form
<tags>...</tag>. Careful reader may have noticed that all of the XML tags follow proper opening
and closing convention. The reasons for that will be explained bellow. The markings, tags, in the XML
snippet tell a reader immediately what kind of information they present. The raw text version does not
exposes this immediately as a computer program must scan the raw text data itself to find out what it
means and requires some hard wired logic to be able to deduce what type of data has been found. In
case of XML snippet, a XML parser can scan only the tags and deduce the semantic information
immediately without a need to parse the data values.

This was one of the main reasons for inventing XML technology for the Web. The language of the
WWW is the famous HTML, invented at CERN by Tim Berners Lee the father of the World Wide Web,
which has gone through very dynamic evolution with the global adoption of WWW. The number of
web sites and HTML pages has grown exponentialy during a few years and it became very difficult to
find an information on the Web. This has led to invention of Web search engines which dynamically
discover the new Web sites and pages and cache pointers to them inside their indexing databases. The
problem with HTML is that it provides no indication at all what kind of data a web page holds. HTML
provides only the formatting and hypertext facilities exploited by the Web browser applications. With
the increasing number of information presented on the Web it became very difficult for the search
engine to provide a useful classification of the indexed data in order to make search optimisation. It is
important that a user search request does not produce a big number of irrelevant results. Apart from
having the result page full of wrong hits it causes wasting of Internet bandwidth. Because HTML does
not provide any information about the data in a web page (meta data) a new way of presenting the
information on the web was required. XML has been designed to fill this gap by providing means of
attaching the meta data information to each piece of data on the Web.

The second reason for which XML has been created is the fact that the due to the war of Web browsers
on the Internet software market these went into extremes of ability to process any HTML documents
very often breaking many HTML syntactic rules. HTML is derived as well as XML from SGML but
with focus on simplicity, hypertext support and presentation facilities. It was this design decision which
has made it so popular on Internet because writing a HTML page was extremely easy and with
hypertext facilities it was possible to build a very complex web site in a short time. HTML has reached
its limits due to introduction of many features forced by needs of commercial market and the major
vendors of Web browsers competed in supporting as many of them as possible. People writing HTML
markup very often did not realize they break many HTML syntactic rules as browsers tried their best in
parsing broken HTML so there are many broken HTML pages on the web today. This number is very
high and poses the real problem for other internet applications like search engines and web directories.

Therefore design of XML has taken this into account and there are two levels of syntactic safety built
into the XML specification. At the simplest level any XML document must be well formed. The XML

page 22

S

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

well formedness means that each XML tag is properly opened and closed as is shown in the snippet of
the marked up e-mail message above. All the tags must be properly nested inside their corresponding
parent tag apart from the top-level one. The is at most one top-level tag in a XML document. The
top-level tag than defines the type of the XML document. For example the top-level tag of the XML
snippet above is <email></emails.

The second level of XML safety relies on the concept of validity. XML validity means that a given
XML document contains only allowed set of tags which are organized according to some prescription.
This prescription is implemented in XML by defining so called XML schema document before hand.
Originally there was only one XML schema language called Document Structure Definition language
(DTD)![60]. As XML itself the XML DTD has been derived from SGML DTD format. DTD describes
XML document structural constraints and set of valid tags and their corresponding attributes to be used
ina XML document valid w.r.t this DTD. Having a XML document which refers to a DTD it is possible
to validate the given XML document and say whether this document is valid or corrupted. It has
practical implication for the XML document processing because it allows to check automatically by a
computer program if the incoming XML data are valid or not. The rule of error handling in case of a
broken XML document is quite strict saying that if an error has been observed on the given instance of
a XML document the XML processing application should report the deviation from the given XML
schema and stop. The validation mechanism for XML DTD is based on the context free grammars
adopted from SGML DTD but limited to deterministic content models only. The details of the XML
schema internal mechanisms will be discussed in the next chapters.

The last issue related to XML versus HTML case is the ability of visual presentation of the document
content. Unlike the HTML tags which hold the visualisation hints the tags of XML document do not say
anything about how a given piece of XML data should formatted for human visual consumption. It has
been decided that in order to be able to provide such functionality the XML documents can be
accompanied by so called XSL style sheets[62] which define how a given XML document should be
post-processed. There is already a similar technology available for HTML called cascading style sheets
(CSS)[69] which is however able to describe formatting only for the fixed set of HTML tags. The XML
way is much advanced than the CSS capabilities because it can perform complex transformations on the
input XML data and it can even produce on its output a brand new XML document valid w.r.t a
different XML schema than the original one. XML thus managed to separate the data content from its
behaviour?. This is very important postulate confusing XML newcomers which often thin that one can
write in XML a procedural code which performs a function. This is invalid statement and it has to be
emphasized that XML describes only data and no data behaviour.

2.4.2 XML based Detector Description in Gaudi

Before the XML has been applied to detector description data in Gaudi framework the complete
transient data model has been designed and the transient detector data store prototype has been
implemented. The task thus has been to define the way how to map the transient data types of Gaudi
detector description model into the XML persistent form. This process had to take into account the
design choices made for Gaudi architecture and the guidelines developed along the Gaudi
implementation. There were additional factors affecting this process due to the user requirements that

1. There many other XML schema languages available today, they will be described in detail in the next chapters, in
particular W3C XML Schema language[66].

2. The same postulate is defined for Gaudi architecture

23
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

the syntax should be as compact as possible so it can be typed into an editor of user’s choice and it
should be easy to learn keeping its adoption easy. LCHD users also required support for the WWW
hypertext paradigm in the XML detector description of Gaudi to allow remote references across the
whole detector description database.

The implementation phase of XML based detector description persistency consisted of the following
steps

Domain decomposition in terms of components, see Figure 2.8
The set of components has been identified and their interactions defined. At this stage the
overall structure has been defined and the outcome of this was the class and sequence
model of XML converters and set of selected classes to be stored in the XML format. Not
all transient classes need to be stored to minimize the volume of the data in XML and
reduce the XML processing time involved in reading/writing of the data from/into XML
form.

XML schema design for the selected classes using DTD model
The set of DTD schemas has been developed capturing detector data model classes in
order to be able to validate the XML data defined by the detector description users. The
XML tags defined in the DTD were identified according to the adopted mapping strategy.

Definition of the strategy for mapping of C++ detector data types into XML
Due to the different type systems of C++ and DTD some convention had to be established
how to find correspondence between C++ classes and DTD structured types.

Evaluation and proposal of the XML API for C++ language
There were just a very few XML C/C++ APIs available at that time. Basically the only
choice was to use either SAX[50] or DOM[51] APIs. The way they work is totally
different so some evaluation had to take place first before the final decision could be
made. The choice for the implementation was SAX API. The details behind this choice
will be described later in this chapter.

Design of remote linking facility

One of the user requirements was the ability to refer to a XML data stored in a different
file. The reason for this is to be able to emulate the C++ pointers or references which do
exist in the transient world. There is a pure practical reason related to the way users work
with the XML data files. It is more natural keep the data for different detector modules in
the separate files rather than in one possibly huge XML file. There are some very complex
detector modules which consist of many other modules which are still complex more than
enough. Populating and keeping separate XML files up to date is much easier if they can
be updated independently of each other.

Design of strategy for detector element customizing

The specific detector description can be made available to algorithms by customizing the
generic detector element. Customizing is done by inheritance of the DetectorElement base
class. The sub-detector specialist can provide specific answers to algorithms based on a
combination of common parameters and functionality (general geometry, material, etc.)
and some specific parameters. The specialist can “code” the answer by using the minimal
number of parameters specific to the detector being described. For example, an Algorithm
may need the local position of a calorimeter cell knowing its cell ID. In this case,
probably, a simple parametric equation in a detector element method can give the answer.

page 24

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

2.4.2.1 XML conversion services

Conversion between the transient and persistent worlds in Gaudi happens with help of the conversion
services and their converter components. The role of a conversion service is to manage a set of
converters for a given technology and to dispatch the right converter for a given data type. The
converter has to provide a set of data conversion functions depending on the context of its invocation.
There are three basic contexts when a converter is activated:

 Read
e Write
» Update

There are other situations when a converter can be activated, for example to resolve or update
references to other objects but these will not be described in detail. For full description of this
mechanism see [22][23].

<<Interface>>
HandlerBase XmiCnv
(from XML4C) (from XmICnySvc)

7

Converter
(from Gaudi)

- <<Interface>> <<Interface>>
XmiGenericCny ISax8BitDocHandler IUserSaxBBitDocHandler
(from XmICnvSvc) (from XmiCnvSvc) (from XmICnvSvc)

XmiDetectorElementCnv XmlUserDeCnv

(from XmICnvSvc) S (from XmICnvSvc)

<<Interface>>
XmiSvc
(from Gaudi)

Figure 2.8 Data model of XML converters in Gaudi detector description framework.

The only place in Gaudi architecture which deals directly with a concrete technology are the converters.
Only the converters directly access the persistent storage in the technology specific way. In case of
XML they access the XML data using the chosen XML API and after validating the file they try to
locate the required XML data inside the file and finally perform the conversion. Since the data are
spread across many files, as will be described later in the section explaining the remote object linking,
the XML converters had to be optimised from the beginning to minimize the number of access to the
XML data files to avoid costly parsing. This has been achieved by the strategy that whenever a new
object has been loaded from XML and it contained one or more remote references, this information has
been recorded by converter on the transient store. When the request came to load the object behind the
reference the right converter has been immediately activated and direct access has been made to the file
which was marked in the previously seen reference. This has minimized the need to re-open the file
again just to get the embedded reference. More details about the internal workings will be explained in
the next sections.

25
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

2.4.2.2 DTD definition for detector description data model

Having the DTD schema available helped to fulfil two goals. First it enabled the automatic data
validation whenever the XML data files have been accessed. The second goal was it provided reference
documentation for the users. By reading the documentation the users could learn what tags are allowed
and what attributes they can have.

There were actually multiple DTD files defined one for each domain of detector data model. They were
finally combined to a single DTD via built-in DTD inclusion mechanism so the users could refer to it
from their XML data files. One of the DTD files defined overall logical structure similar to the structure
of transient detector data store. It provided a view to XML data in a fashion similar to that of the
transient detector data store. The important tag defined in this DTD was <catalog> tag. This tag
defines a container like XML type which plays role similar to that of directory in the file system.
Recalling the Figure 2.5 there is one top-level catalog and three major ones Geometry, Materials
and Structure. Structure uses embedded catalogues to allow hierarchical data organization.

The rest of the DTD files defined XML types for most of the classes in the detector data model. For
example Figure 2.9 shows definition and example XML data of <box> and boolean solid <union>
XML types which represent geometrical shape respectively a boolean combination of a volume shapes:

<!ENTITY % simplesolid "(box | cons | sphere | tubs | trd)">
<!ELEMENT box ((posXYZ | posRPhiZ | posRThPhi), (rotXYZ | rotAxis)?)?>
<!ATTLIST box name ID #REQUIRED

sizeX CDATA #REQUIRED sizeY CDATA #REQUIRED sizeZ CDATA #REQUIRED>
<!ELEMENT union (%$simplesolid;)+>
<!ATTLIST union name ID #REQUIRED>

<logvol material="Vacuum" name="lvEcalOQuter">
<subtraction name="boxEcalOuter'>
<box name="boxEOMain”
sizeZ="432*§mm;" sizeX="7933.44*&mm;" sizeY¥="6445.9
<posXYZ z="0*&mm;" y="0*&mm;" x="0*&mm;"/>
</box>
<box name="boxEOSubtracted”
sizeZ="432*&mm;" sizeX="2479.20%&mm;" si
<posXYZ z="O0*&mm;" y="0*&mm;" x="0*&mm;"/>

</subtraction>
</logvol>

Figure 2.9 Example of DTD definition in Gaudi detector description framework

The full description of the DTD including UML diagrams can be found in [24].

2.4.2.3 C++ to XML mapping strategy

The type systems of DTD and C++ are different. DTD can define only structural constraints of the valid
set of tags in a given class of XML documents and has primitive reference model. C++ on the other
hand allows to define abstract data types (classes, structures), sub-typing relation (inheritance),
aggregation of types by composition of by reference (data members of complex types or data members

page 26

S

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

as pointer or references to other objects of complex data types). There is no direct correspondence
between these two worlds so a convention is needed to bridge this gap and find a way of coming from
C++ classes to DTD XML elements. The Table 2.1 shows the mapping rules adopted for Gaudi detector
description data model.

Table 2.1 XML to C++ and vice-versa mapping used in Gaudi detector description

C++ XML

Class XML element

Class data members of base types | XML element attributes

Class data member of a complex | XML element in content model

type of the parent element

Reference, pointer XML reference of IDREF type
holding the URL of the remote
XML element

There is however one sensitive spot in this strategy. The question is whether to use attributes or
embedded XML elements for class data members. There is no definitive answer to this question even
among the XML experts themselves. The strategy adopted in Gaudi is just one of many possibilities
which could be applied here. In the Appendix A is shown by example how this strategy is applied for
DTD modelling of C++ classes.

2.4.2.4 Implementation of XML converters

After the mapping from C++ to XML has been defined a set of XML converters has been implemented.
Before actual implementation started the evaluating of the available XML processing tools has been
done. The most mature tool for XML processing in C++, found at that time, was XML4C XML parser
developed at IBM XML laboratories. This tool has been later donated to Apache project for its suite of
open source XML processing tools[15] and today is known as Xerces-C XML parser. This parser
supported from the beginning both standard APIs SAX and DOM and later has been extended with
SAX2 support. The Table 2.2 shows brief comparison of SAX/SAX2 and DOM APIs.

The final choice for implementation was to use SAX based implementation. The main reason for that
choice was uncertainty about the memory requirements of DOM based implementation. DOM requires
the document to be present in memory and in the way Gaudi is working there may be many XML
documents open at the same time. Even if documents are kept on disk as 8 bit ASCII encoded files the
DOM will expand the size of document in memory by factor of 3 to 10! The actual factor depends very
much on the document itself the number of child elements, number of sattributes and structure of text
content inside the XML elements. The reason for the size explosion of XML data in the DOM case
comes first from the fact that by XML specification the XML processors should treat any XML data as
Unicode[16] characters which are 16 bits long in opposite to 8 bit ASCII characters. This is already a
factor of 2 in size. The explanation for factor 3 as the lower bound is that DOM data structures
themselves require some memory in order to build the proper DOM document tree. DOM is a great API
for the document oriented XML applications which read, update and write back XML documents like
XML editors of browsers.

27
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

Table 2.2 Comparison of two common XML APIs

Feature SAX/SAX2 DOM

Parsing method event based? load whole file

Requires whole document in NO YES

memory

User API type push style tree navigation styleb

Preserves document structure NO YES

Memory footprint minimal can be a problem if the file is big

a. incremental parsers do exist, Xerces-C can be run in incremental mode

b. can be push style too using DOM tree visitor which calls application call back a la SAX

The SAX API relaxed the worry about the memory footprint and there was possibility to parse
documents incrementally which means that once the required data have been localized in a XML file
the SAX parser has been postponed. When there was a need to load more data the parsing has been
resumed and more XML data have been loaded and so on. This way there were multiple instances of
converters running each of them driving its own instance of SAX parser. At that time there was no
urgent need to write XML data out of detector data store so SAX was sufficient!. See Appendix B for
detailed description of the SAX and DOM APIs.

The simplified view of XML processing chain in Gaudi detector description implementation is shown
in Figure 2.10.

—
"]:> XML Sl?éﬁPI Transient
Parser Converter Store
.

Figure 2.10 Conversion process for XML based data in Gaudi detector description framework

There is typically one XML converter per detector data type aligned with the C++ to XML mapping
rules. What has been done in addition to the standard practice in XML programming is the introduction
of ASCII only layer between Xerces-C APIs and Gaudi code. The reason was that none of the HEP C++

1. The recent releases of Gaudi detector description use DOM based converters but with tunable caching mechanism
behind. The transition to DOM based converters happened more than one year after [left LHCb collaboration so it is not
discussed in this work. The detailed description of the DOM based converters can be found at URL: http://lh-
cb-comp.web.cern.ch/lhcb-comp/Frameworks/DetDesc

page 28

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

tools is truly Unicode based (not even all operating systems are) and this layer provided the shield for
non-Unicode code. This layer can be, however, very easily removed if needed in the future.

2.4.2.5 User defined customizing of detector elements

The detector data model tries to define all the data types in order to cover as much as possible of the
detector description domain. Nothing is perfect in our world, and there had to be left one degree of
freedom in the detector description data model. The subject in question is the possibility of having the
user defined detector elements without a need for heavy programming which is the job of core Gaudi
developers. The solution to this problem in XML based detector description is shown in Figure 2.11.

<IDOCTYPE DDDB SYSTEM "xmldb.dtd" [
<l--Number of stations in Vertex detector-->
<|IELEMENT SiTankRadius EMPTY >
<lATTLIST SiTankRadius n CDATA #REQUIRED>
<IELEMENT DiodePitch EMPTY >
<JATTLIST PiodePitch n CDATA #REQUIRED>
<IELEMENT ReadoutPitch EMPTY >
<lIATTLIST ReadoutPitch n CDATA #REQUIRED>
1>
<DDDB>
<detelem classID="9999" name="Vertex">

Definition
of the user
XML tags

Detector
specific
data

<geometryinfo>
<lvname name="/dd/Geometry/IvVertex" />
<support name="/dd/Structure/LHCb"> <rpath value="0" /> </support>
</geometryinfo>
<detelemref classID="2" href="#VStation01"/>
<detelemref classID="2" href="#VStation02"/>

<specific> =
<SiTankRadius n="17" /> <DiodePitch n='0.0025' /> <ReadoutPitch n='0.0050" />
</specific>
</detelem>
</DDDB>

Figure 2.11 Emulation of inheritance by using DTD internal subset

The solution on the C++ implementation is relatively simple because one can simply inherit from a base
class defined for this purpose and which deals with all low level details. Such a user defined detector
element extended according to the user requirements can be directly used as any other detector
description classes. What has to be done in addition on the user side is to implement a set of methods
which allows to initialize properly the additional information defined by the user. There are many ways
to achieve this in C++. The problem is more visible on the side of XML based persistent storage. The
DTD is defined once and its modifications are controlled and carefully coordinated not to break the rest
of the system. By using internal DTD subset inside the XML file the new custom tags can be defined
and placed inside the <specific> tag and there is a well defined procedure how to implement in
easy way the user defined XML converter for a customized detector element[23].

29
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 2 Use-case: Detector Description in Gaudi Framework Version/Issue: 1.0/4

page 30
S)

7

Object Databases for Detector Description PhD Thesis
Chapter 3 Use-case: Geometry Description Markup Language (GDML) Version/Issue: 1.0/4

Chapter 3
Use-case: Geometry Description
Markup Language (GDNML)

The Gaudi detector description use-case has shown the importance of the detector data for the high
energy physics data processing applications. It shows the overall view touching all the corners of a
typical software environment one can find in any HEP experiment. The context of the Geometry
Description Markup Language is placed a bit deeper in the software chain. It is close to the environment
of detector simulations where it has been created. It is also more focused, to cover only the geometry
data used by the simulations engines. Nonetheless, its use-case deals with problems at the same level of
complexity as the Gaudi detector description use-case.

Why there is a need for such a language? What is the benefit of having a common XML format for
geometry data? These questions have been partially answered already by reasoning behind the design of
detector description use-case. There are, however, many other projects which keep their detector
description data in XML, see Chapter 6 Related work.

During the past years these projects have built their own dialects of XML. There is nothing bad about it
if users and developers work only in context of a single project. The situation in HEP community is a
bit different. Many individuals are involved in multiple projects at the same time. The consequence is
that the people need to be familiar with multiple XML dialects in order to be able to do their work. So
far, there is no common XML format in HEP which allows to share data across application or project
boundaries. The reason for this may be the fact that HEP collaborations and their developer groups
started to apply XML based technologies only recently and without much experience. It can be said that
these days most of the projects matured enough and more effort will be spent on integration tasks then
development of new features.

Very similar situation is in the simulation community. The classical form of geometry data which exists
today is in the source code form (C, C++, FORTRAN, Python). There are of course other sources of
geometry data like various text based and proprietary semi-structured data formats and geometry data
stored in relational databases. There is certain analogy here. There is no common way to share
geometry data between any of the simulation tools in use.

Being actively involved on both sides I have started the GDML project[28] in believe that this project
fills the gap of problems described above.

31
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 3 Use-case: Geometry Description Markup Language (GDML) Version/Issue: 1.0/4

3.1 Requirements

Before any work on GDML project has begun an open discussion was launched among the users and
developers actively working on XML based solutions across high energy physics community. The aim
of this discussion was to collect the user requirements about the common XML geometry description
format. The focus has been intentionally narrowed down to the scope of geometry and materials. The
requirements collection process focused on the most generic features. The result of this activity in form
of informal requirements is briefly summarized by the following points:

Geometry model

High energy physics community is traditionally used to work with many geometry
models. The most common way of geometry representation in program’s memory is a tree
based model. Unlike the geometry models of various CAD systems which are often
organized in a flat way the HEP geometry tree like models exploit the tree topology for
navigational purposes. The navigation is for example used for either interactive browsing
or by simulation engines to propagate a particle through whole detector geometry and
pass the information about the environment at the current position down to the physics
processes.

Hierarchical geometry model must be assumed by a XML geometry description format.

Numerical expressions

The geometry data involve regular use of values of various quantities with units. In order
to describe some complex geometrical setup users apply various numerical expressions
which contain variables holding the quantities defined before hand. Very much like in an
imperative programming language. For the reasons of easier maintenance is preferred to
keep pre-defined set of globally known mathematical and physical constants in single
place and build a set of numerical expressions from these later when needed. XML
contains only Unicode[16] data and no data behaviour defined. Clearly the regular
expressions need to be evaluated but pure XML parser simply can’t perform such an
operation. For this reason the use of numerical expressions has been agreed and
responsibility to evaluate them was defined to be done by a GDML processor in addition
to GDML parsing.

The use of numerical expressions must be supported and evaluation of numerical
expressions should be done by a GDML processor before the data are passed into the
client application.

Uniform treatment of 3D transformations

There are multiple ways of interpreting transformations in 3D space. Many applications
working with geometry do it in a compatible way but this behaviour is not guaranteed in
general. The problem of geometry exchange format is that geometry data can be exported
from a different application then the application consuming it. The possibility of
ambiguous handling of 3D transformations led to the following requirement.

The exchange format must define the uniform rules for treatment of transformations in
space and it must be ensured that GDML data being exported/imported follow the rules.

Identification and linking mechanism
Having the possibility to uniquely identify geometry elements and refer to them from
remote locations using hypertext links is essential. The local linking mechanism is built
into XML via ID/IDREF mechanism. W3C XML Schema[66] has more advanced
mechanism based on key/keyref. More sophisticated XML technologies like XLink[63],

page 32

7

Object Databases for Detector Description PhD Thesis
Chapter 3 Use-case: Geometry Description Markup Language (GDML) Version/Issue: 1.0/4

XPath[61], Xpointer[64] look promising but not yet considered for geometry data
exchange.

Geometry data format must provide means to express umique identity for geometry
elements. It should be possible to define references pointing to such elements.

Application independent model for geometry

It was considered a bad idea to bind design of geometry exchange format to philosophy of
a particular geometry model. The exchange format should support first the common ways
for geometry modelling with focus on its modularity and extensibility in order to support
less common practices if required. Neither of the extremes, nor the minimal common
denominator nor “The Whole World” approach, were encouraged for geometry exchange
format.

The geometry exchange format should be modular, open and extensible in order to
support evolution driven by use-cases and requirements.

Simple application binding
At some moment the data stored in geometry exchange format must to be delivered into
the client application. In order to make the GDML adoption easier it is essential if GDML
defines an easy application binding strategy. It would gain lower maintenance costs and
save human resources spent on developing redundant code.
GDML should provide an easy way to integrate its processing sofiware into a target
application or framework.

3.2 GDML Schema

GDML schema has been defined using W3C XML Schema and its design has been driven by the set of
colleted requirements. Figure 3.1 shows the GDML schema component breakdown and its connection
to the major application frameworks and libraries in HEP community. As one can see the schema has
been defined in a modular way. XML Schema features allowed object-oriented approach for GDML
design in a similar way an object-oriented application design is done. From the very beginning the
design of GDML focused on providing very generic foundation on top of which other GDML schema
components can be built. The concept of reusability has been applied as much as possible.

In order to come up quickly with a working schema prototype some features have been omitted from
the first public release of GDML schema, namely the remote element linking. Schema has been
released in a simpler version and supports geometry element unique identification and references only
in scope of a single GDML data file. Most of the other GDML schema components have been defined
and there are already plans for some extensions demanded by GDML clients. The whole process of
GDML extensions is under control and is discussed with all involved parties.

33
S) e

7

Object Databases for Detector Description
Chapter 3 Use-case: Geometry Description Markup Language (GDML)

PhD Thesis
Version/Issue: 1.0/4

Geant4 Gaudi
Ch1\B XML/GDML | O
NLLEg8 Conversion i
WLLEW Service

/f//é /’////

Structure

volumes
placements
replicas

Boolean Solids

union

BREP Solids subtraction
Polyhedron B-spline. .. intersection

CSG6G Solids

Materials
isotopes
elements

box sphere cone .

v

v

mixtures

v

Utilities
visualization attributes
drawing primitives

Core

identifiers references
transformations
expressions units

Figure 3.1 GDML Schema components?, implementation status and its adoption status®.

a. The components in dark colour are implemented

b. The OK sign marks the components for which underlying support in GDML processor exists

3.3 Processing Architecture

The requirement for simple application binding was one of the strongest on the list. All developers who
used to be involved in XML related programming knew that application binding for XML may require
considerable effort, especially for XML schemas with many elements. In the case GDML the number of
elements is not yet high but can be already considered an issue from application binding point of view.

Due to the requirement the development of GDML schema has been done together with the design of
application binding. The driving forces behind the application binding architecture are:

Separation of XML dependent code
GDML binding can’t force a choice of specific XML parser tool to its clients, so the
processing engine must not depend on any particular XML API.

Minimize the amount of the application specific code
GDML is generic format and does not rely on any concrete application data model.
However, the application native data model must be populated in some way from a
GDML input. GDML should not require an extensive amount code on the application
side.

page 34
S)

7

Object Databases for Detector Description PhD Thesis
Chapter 3 Use-case: Geometry Description Markup Language (GDML) Version/Issue: 1.0/4

GDML processing code should minimally suffer from schema updates
Changes to the GDML schema will inevitably happen which implies update of GDML
processing code. GDML architecture must take this into account and make sure that effect
of changes to the schema have minimal impact on GDML processing code as well as on
the GDML clients.

3.3.1 Analysis of data types

Simulation environment in high energy physics is a jungle of data models. There are models for
geometry, for materials, for physics processes and many others. They are different in each simulation
tool and their implementations exist in many programming languages. This is not the ideal situation for
for a common exchange format like GDML aims to be. It is not critical from semantics point of view as
the structure and behaviour of the data models is rather well understood. The more serious problem
seems to be the side of integration, the data binding between two different worlds. On one hand there is
the common exchange format in XML and on the other hand there are many different implementations
of data models. It is impossible to find a single common solution which fits all of them.

In order to find a starting point for a solution of this puzzle the classification of all the various type
systems has been done. Since the goal was to provide quickly a working GDML prototype the analysis
focused only on the C++ applications which are being used by LHC experiments in their production
environments.

Let’s look at the use-case of reading XML data into an application. In the use-case the application is a
simulation tool implemented in C++, GDML processing software is also written in C++ and XML data
format is based on GDML schema implemented in W3C XML Schema language.

Looking at the scenario just described, the following type systems have been identified:

XML element types
Defined using XML schema, as shown in the left column of Table 3.1. These types define
the set of XML elements to be read from the XML data file. GDML schema defines such

types.

Application data types
Defined using the application’s implementation language. In this use-case it is the
application native C++ data model to be populated from the XML data in GDML format.
There is no guarantee of direct correspondence between XML element types and the
application native data types.

C++ element types
The reason to have such type system is due to the motivation point above, saying that the
application and GDML processing code should be insulated from any XML API. If such
insulation layer is provided the question is: How are the XML data manipulated if they
cannot be accessed directly in order to avoid dependency on XML API?

Why not to have a mirror image of the XML element types defined in C++? It is not very
difficult to define such data types. Their only purpose is to hold the information encoded
by XML element types, for an example see the right column of Table 3.1.

35
S) e

7

Object Databases for Detector Description

Chapter 3 Use-case: Geometry Description Markup Language (GDML)

PhD Thesis
Version/Issue: 1.0/4

Table 3.1 Example of mirroring the GDML types into C++

XML element type

C++ element type

<xs:element
name="box"
substitutionGroup="Solid">
<xs:complexType>
<xs:complexContent>
<xs:extension base="SolidType">
<xs:attribute
name="x" use="required"
type="ExpressionOrIDREFType" >
</xs:attribute>
<xs:attribute
name="y" use="required"
type="ExpressionOrIDREFType" >
</xs:attribute>
<xs:attribute
name="z" use="required"
type="ExpressionOrIDREFType" >
</xs:attribute>
</xs:extensions>
</xs:complexContent>
</xs:complexType>
</xXs:element>

#include "Saxana/SAXObject.h"
#include "Schema/SolidType.h"
#include <strings>

public SAXObject,
public SolidType

class box :

{
public:
box () ;
virtual ~box() ;
virtual SAXObject::Type type ()

{

return SAXObject::element;

}

const std::string& get_x() const;
const std::string& get_y() const;
const std::string& get z () const;
void set_x(const std::string& x);
void set_y(const std::string& y);
void set_z(const std::string& z);

private:
std::string m_x;
std::string m_y;
std::string m_z;

}i

3.3.2 Functional decomposition

GDML processing architecture defines a set of software components and their

interactions during

processing of GDML files. There are four types of components identified in the whole GDML

processing chain:

XML Engine

Separation of XML API dependent code from the rest of the GDML and application
processing code is done via this component. Only this component sees the real XML data
coming from XML API such as SAX/SAX2 or DOM. It can be implemented in terms of
SAX or DOM style but exposes its own single interface to the rest of the GDML

processing system.

XML schema handlers

Set of components which are activated whenever a new XML data have been loaded by
XML engine component. Their role is to construct an instance of a C++ element type
corresponding to the freshly loaded XML data. There is usually one schema handler per
XML element of a given XML schema but having a single handler for multiple XML

element types is possible.

page 36

7

Object Databases for Detector Description PhD Thesis
Chapter 3 Use-case: Geometry Description Markup Language (GDML) Version/Issue: 1.0/4

Application subscribers
The actual construction of application specific data objects is performed by these
components. They receive as input the instances of the C++ element types and produce
application native objects. The name subscriber indicates that these components can
register themselves to get notified about any number of C++ element objects they want.
The logic behind their implementation is driven by application needs. It’s perfectly
possible to write only a single subscriber handling on its input all C++ element types.

Numerical Expressions Evaluator
The component handling evaluation of expressions. In addition to that it acts as registry of
constants, quantities and expressions including proper interpreting of their physical units
following the standard of SI units.

pre-4 Expressions
Evaluator

XML Schema/DTD Application binding | 4 N
Handlers (Subscribers) | | Application

2 —T3

XML Engine

l

GDML

Figure 3.2 Schematic view of GDML processing architecture and its components interactions

The Figure 3.2 shows a simplified collaboration diagram of interactions between GDML processing
components. The figure captures the use-case of reading GDML data by a simulation application. As
the first step the XML engine starts parsing GDML input by using some XML parser tool. When XML
engine observes a complete XML element type it performs a dispatch step which activates a schema
handler component corresponding to the type of XML element just loaded. The schema handler
produces a new instance of a C++ element type and sends it back to the XML engine. The engine
performs a second dispatch during which it checks if there is a subscription pending for a given type of
C++ element. If yes, it activates the corresponding subscriber and passes the fresh C++ element object
to it. The subscriber extracts the data it needs and if possible it creates application native data object.
Before it sends this new native object to application it may ask expressions evaluator component to
evaluate any numerical expressions found. The last step is that application receives its new data object
as if it was created the standard way.

page 37
@)

7

Object Databases for Detector Description PhD Thesis
Chapter 3 Use-case: Geometry Description Markup Language (GDML) Version/Issue: 1.0/4

3.4 Implementation of processing components

The implementation to be described in this section is not the final one. It started as a proof of concept
prototype but its implementation has been kept to be production level as much as possible. A new
implementation is planned and it will be built using the experience with this prototype. The only way
how to test a geometry exchange format is to use it with a real client tool to exercise various scenarios
and input data sets. The next sections describe two implementations one which allows to import GDML
data in Geant4[10] simulation program and the second which allows to export existing geometry of a
running Geant4 application into a user defined output stream or file on disk. Both implementations are
going to be included as part of the Geant4 distribution.

3.4.1 GDML Reader

The first thing that needed to be exercised was reading the GDML input data into Geant4 based
application. The second important issue was to experiment with insulation layer of XML APIs for
GDML processing software. All the components identified in the previous analysis needed to be
implemented. The following paragraphs will mention briefly how this was achieved.

3.4.1.1 XML insulation layer

To achieve complete separation of XML API from the rest of the system the XML dependent part has
been written in two phases. During the first phase the XML parsing part of engine has been defined and
its prototype written based on SAX paradigm, for SAX details see Appendix B.

In the second phase the dispatching part has been developed and the interfaces defined for activation of
XML element handlers and Subscribers. The dispatching part of the XML engine implements a state
automaton based on theoretical model of hedge regular grammars[43], this will be discussed in detail
later in this document.

This part of GDML processing software is the most generic one and is 100% re-usable.

3.4.1.2 C++ element types library

In order to let the XML element handlers perform their tasks the C++ element type library was required
as discussed above. The data types defined in this library are kept as simple as possible by intention.
The original idea is to generate them directly from a supplied XML schema. For this prototype the hand
written approach has been adopted in order to study the feasibility of possible generative approach for
the future implementation.

This library is dependent on GDML schema but the approach taken for the hand written data types has
gained valuable experience.

The issues and the possible future improvements will be discussed in Future research steps.

page 38

7

Object Databases for Detector Description PhD Thesis
Chapter 3 Use-case: Geometry Description Markup Language (GDML) Version/Issue: 1.0/4

3.4.1.3 Processing components

The last phase of GDML Reader prototype consisted of implementation of the XML element handlers
and actual application binding components, the Subscribers. In order to make the whole system flexible
the plug-in system has been developed first. This system allows to add or remove processing
components very easily and keeps internal run-time dependencies at the minimal level. Whole system is
initialized in plug and play manner and components are loaded and registered fully automatically at the
application start-up.

The first group of components was the XML element handlers. Their implementation is not very
complex and as in case of C++ element types it could be generated together with C++ element types
library.

This part is GDML schema dependent because requires knowledge about C++ element types internals.

The actual application binding, the subscriber components, was the last and the smallest part of the
whole GDML reader implementation. It was possible because all the hard work is done by the rest of
the system and the only job of a subscriber component is to extract data values from the passed in C++
element type object and use the data as proper arguments into the application native data types’
constructors. The number of subscribers was kept low because some of the subscribers process multiple
C++ element types.

This part of the system is very hard to implement using a generative approach because it depends on
C++ element types as well as on the application native data model. Some parts of it like subscriber
stubs and method skeletons could be generated in principle together with XML element handlers and
C++ element types but the actual code invoking constructors of application native data types must
written by hand there may be some semantics issues concerning the order of constructors and
application settings.

I principle there could be a way of defining a rule based system to achieve the goal but populating such
a system would be very impractical and would require a very skilled developer who understands the
rules. The goal of this exercises was to minimize exactly this part of code, to reduce the number of lines
of code which needs to be updated if some changes happen to the GDML schema.

3.4.2 GDML Writer

The GDML Writer prototype is a very simple tool which enables writing out valid GDML data into a
standard C++ stream or file on disk. The goal was to provide a generic writer library as part of the
GDML processing software. The little part has been left to the application developer who must write a
bit of glue code on the application or framework side.

The separation from XML API was not needed in this case and the problem was simply solved by not
using any XML API at all. Actually nothing like that is needed if one just wants to write out XML data.
Since no XML API is used the GDML writer library it is pure C++ code with no dependencies on any
external tool. It depends of course on the GDML schema as it must guarantee that an attempt to write
out invalid GDML data must not be allowed.

The core part of the library is built around a simple data structure inspired by simple application of
XML Schema formal model[65]. Once this internal model has been implemented the user API has been

39
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 3 Use-case: Geometry Description Markup Language (GDML) Version/Issue: 1.0/4

defined. The API defines a few database cursors like objects which represent the main GDML domains.
The role of each cursor is to guard the validity of GDML data inserted at the current cursor position.

page 40
S)

7

Object Databases for Detector Description PhD Thesis
Chapter 4 Gaudi Detector Description versus GDML Version/Issue: 1.0/4

Chapter 4
Gaudi Detector Description versus
GDML

The both presented use-cases try to address the storage for detector description data in XML based
formats. The solutions will be compared using various criteria and the open issues in both solutions
which will be discussed.

4.1 Impact of environment

Gaudi detector description is providing access to XML based detector data for user algorithms in
context of the same framework. This makes it simpler because there is only one application data model
to be considered which is the transient detector data store of Gaudi framework.

On the other hand the GDML, as common exchange format for geometry data, is addressing
heterogeneous environment of simulation tools in high energy physics community where the number of
target data models and implementations is virtually infinite.

4.2 DTD versus W3C XML Schema

At the more fundamental level, there is the difference at the schema language used by both solutions.
Gaudi detector description has used XML DTD schema language while GDML has used W3C XML
Schema to define its XML data structures. Brief comparison of both schema language is shown in
Table 1. The following paragraphs will discuss each of the features in more detail.

4.2.1 Syntax

DTD syntax is inherited from old fashioned SGML DTD. Soon after XML has reached developers
these started to complain about the fact that DTD syntax is different the that of XML itself. It caused
complications for more sophisticated applications trying to use DTD schema information at more
advanced level like code generators or database applications.

41
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 4 Gaudi Detector Description versus GDML Version/Issue: 1.0/4

Table 1 Brief comparison of DTD and W3C XML Schema

DTD XML Schema

non-XML syntax XML syntax

no data types data types supported, attributes inclusive
only structural constraints structural and data type constraints + regular

expression facets of values

single type without sub-typing subtyping supported by extension or by restriction

poor for data oriented applications data oriented applications may benefit from (semi)
automated solution using XML Schema

XML Schema comes with the syntax which is the same as XML syntax. This allows to use the same
tools which are used for XML data and thus process XML Schema in more natural way.

Parsing schema files makes sense for data oriented XML applications because schema holds very useful
information about internal structure of the data. This information can be used either at run-time to
perform various consistency checking or off-line to generate for example some modules of application
data binding or documentation about the data model implemented by a schema.

4.2.2 Data types

DTD was developed by document oriented community. It is sufficient for document oriented XML
applications like DocBook[17] or MathML[18]. For data oriented application like Gaudi detector
description or GDML it poses certain problems.

DTD is pushing its schema definitions strongly into the syntactic level and the only “data” it allows to
define is #PCDATA which is basically a variable text data. For a developer this means that nothing can
be done by XML parser validating XML data against a DTD in order to check if the expected data value
is a valid integer or float, for example. For the XML parser it will be a perfectly valid value if a
#PCDATA was defined at the given place inside DTD. The direct consequence is that developer must
introduce a lot of additional code to check if the string values read in by XML parser are really what a
client code expects.

In Gaudi implementation a lot of code had to be written to ensure the proper value semantics at the
application level.

With XML Schema this problem is solved as XML Schema can express base types[68] and complex
data types[67]. So putting a floating point number in place of an integer will generate an error during
run of XML Schema validating parser and thus programmer is freed from burden to implement
additional test in his/her code.

In GDML case using XML Schema allowed to express more semantics constraint at GDML schema
level including constraints like proper units in case of some types for physical quantities and properly
typed default values without a need to of additional C++ code.

page 42

7

Object Databases for Detector Description PhD Thesis
Chapter 4 Gaudi Detector Description versus GDML Version/Issue: 1.0/4

4.2.3 Sub-typing

Sub-typing relation or in other words ability to specialize one type by extending it or narrowing its
value domain is called in object-oriented community inheritance.

DTD does not support something like that which forced complex expressions inside Gaudi detector
description DTD which are hard to maintain.

The detector element customising issue in Gaudi needs to be treated explicitly in combination with
additional application code. Because of missing inheritance in DTD it was required to emulate this
behaviour.

XML Schema allows to define types by extension which roughly corresponds to inheritance in
imperative object oriented languages. Together with this mechanism one can use type substitution very
much like one does in object-oriented language. Sub-typing by restriction is a but special technique
which allows to constrain the value domain of the derived types. This applies to some extent to types
and cardinality of attributes and content model definitions.

In GDML it allowed to simplify many definitions and define type hierarchies in a compatible way with
the C++ language. This was found as advantage during development of the C++ element types library
because the associations defined in GDML schema could be translated easily into C++ code.

Further it also encouraged the idea of automatic generation of C++ elements data model from GDML
schema because of the high degree of similarities between XML Schema and C++. In principle any
object-oriented language more or less matches the XML Schema type system.

GDML schema can be easily extended without intrusive impact on the rest of the system as the old
client will work as before.

4.3 Maintenance

Implementation of Gaudi XML converters suffered from the maintenance point of view due to the
following reasons:

Direct use of SAX API
There is nothing bad on using SAX API for fast XML processing with low memory
footprint. The problems arise when changes to DTD had to be done which implied
updates on the implementation of XML converters. Changes like renaming of element
tags, adding or removing element attributes were the reasonably simple ones.The real
complications were caused by re-arranging element content models which affected the
way XML converters based on SAX where assembled together. In other words the
problem was that for some content models the XML SAX based converters were not
stateless. Their state was dependent on the type of child element. Whenever for some
reason the content model has been changed it triggered often set of massive changes to the
code of XML converters.

Redundant code
Insufficient separation of the Gaudi code from the XML API caused a lot of redundant
code across the whole implementation. In case some changes were needed a lot of code
needed to be updated.

43
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 4 Gaudi Detector Description versus GDML Version/Issue: 1.0/4

Complex control flow

Efficiency

SAX is so called push based API which means that SAX XML parser is in charge of
program control during whole parsing period. The only moments when application code is
activated are the implementations of SAX callbacks. In order to keep track of what the
actual processing context is the XML converters needed to maintain their own state which
consisted of the special stack and a set of control variables which required a special
handling in cases where XML converter has been called recursively. This was required in
a few places where it was too complicated to pass control back to SAX parser. One of
these cases was remote link resolution task which created a new SAX parser instance
reading the content of the remote link.

SAX is fast because it parses file in one go and no extensive memory allocation is
involved during that process. The problem is if random access is needed to XML elements
ina XML file. At the moment SAX based solution is not fast any more because it needs to
parse the file again and again from the beginning to the point the data are found. This
could happen easily in Gaudi as the Gaudi detector data store behaves like a random
access storage device and triggers activation of converters any time a data object is
required from the persistent storage.

Looking at maintenance issues in GDML using the same set of points one can see the following:

XML API well separated from the rest of the system

The proof of this is that switching parsing engine in the XML engine from SAX to SAX2
required 20 lines change in the XML dependent part and the rest of the system is working
without noticing that.

Minimal code redundancy

The way GDML processing software is designed eliminated a lot source of code
redundancy. There is some code redundancy inside the C++ element type library and
XML element handlers but this code is simple and it was not worth to re-factorise.

Control flow well defined

GDML processing architecture defines control flow in the single place. Unlike in Gaudi
XML converters this mistake was avoided by precise design of component interactions
during each phase of GDML processing. The clean and simple control flow has been
achieved by the implementation based on stack push down state machine. This state
machine has very few well defined steps and simple book-keeping. The main advantage
of this implementation is that is not affected at all by changes to GDML schema. This
XML engine works the same way for any XML Schema.

Comparing GDML to Gaudi implementation from the efficiency point of view is not completely
possible as GDML now supports only single input file and no remote object linking. It is at least
efficient as Gaudi XML SAX converters are when processing a single XML data file.

page 44

7

Object Databases for Detector Description PhD Thesis
Chapter 5 Connections to Theory Version/Issue: 1.0/4

Chapter 5
Connections to Theory

At this point we have gone through the complete descriptions of the presented use-cases including their
comparison using various criteria. During the course of explaining the design choices and
implementation decisions some forward references have been made indicating issues related to some
theoretical models.

GDML solutions seem to provide better answers to the set of identified problems than the solution
described of Gaudi detector description framework. Despite the fact that GDML has been built with
more experience in hand there is still some space for improvements.

Recalling the discussion about implementation of the GDML processing architecture the careful reader
can guess that two parts of the whole GDML processing implementation which were explicitly
mentioned as hand written. The guilty parts are C++ element library and XML element handlers. In
both cases they occupy a considerable amount of C++ code, which means a maintenance commitment
in case of any update to GDML schema.

The second thing the careful reader may recall is the original intention of keeping the code of C++
element library type definitions and XML element handlers as simple as possible due to a possibility of
generating this part of GDML processing code out of GDML schema.

There are reasons for the generative approach which have not been discussed so far. The logical
connection between the generative approach and keeping the code simple is why the XML dispatching
engine is implemented in a particular way. Very brief remark has been made, saying that the core part of
the XML engine in GDML processing implementation, which is the bridging component between the
world of XML and the world of transient C++ objects, is based on the principle of a state automaton.

The state automaton belongs to the family of push down stack automata known from the area of context
free grammars[35][36]. Such automata are used to answer the question of the membership problem for
a language defined by a context free grammar. However, such a test does not really happen in the
implementation of the GDML XML engine component but the state machine itself follows the rules of
this theoretical model. The reason for this will be discussed in the following sections which reveal the
relevant pieces of theory as the discussion will go through the topic.

45
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 5 Connections to Theory Version/Issue: 1.0/4

5.1 XML, trees and hedges

Let’s consider the following XML snippet shown in Listing 5.1.

Listing 5.1 Simple XML snippet before being transformed

<a>
text
<c></c>
another text

Now let’s forget about the end tags in form </x> and let’s draw the connector lines from enclosing
(parent) elements to embedded (children) elements. The result may look like the one shown in
Figure 5.1.

Q

1

b

another text

(2]

Figure 5.1 XML snippet after transformation

Yes, it’s a tree. Note that the nodes containing just the text are leaves only. Nobody in XML community
will ever consider something else than trees as the native representation for XML. Now, if we perform a
virtual zoom into the top level element <a> we get the following picture shown in Figure 5.2. The tree
is gone but we got a sequence of elements. If we attach a special “empty” symbol e to the element <c>
we get clearly a sequence of trees apart from the text node “another text” which became a free flying
leaf as shown in the Figure 5.3.

b c another text
"I'HHII’

Figure 5.2 Inside the content of the top level element <a>

page 46

7

Object Databases for Detector Description PhD Thesis
Chapter 5 Connections to Theory Version/Issue: 1.0/4

b c another text

Figure 5.3 The content of <a> a bit decorated

Now the following formal definition from [43]:

Definition: Hedge
A hedge over a finite set Z (of symbols) and a finite set X (of variables) is:

1. € (the null hedge),

2. X, where X is a variable in X,

3. a<u>, where a is a symbol in X and u is a hedge

4. uv, where u and v are hedges (the concatenation of two hedges).

The elements of Z (i.e., a and b) are used as labels of non-leaf nodes, while elements of X
(i.e., x) are used as labels of leaf nodes. We abbreviate a<e> as a. Thus, the third example
is denoted by a b<b x>.

Figure 5.4 Examples of hedges: a<e>, a<x>, and a<e> b<b<e> x>

makes perfect sense. The Figure 5.5 shows informally the definition above. Don’t get confused by the
word forest in the picture. The term forest applies equally well here, since hedge is a special case of a
forest introducing ordering relation on its children, so unlike the term forest which means set of trees
the term hedge means sequence of trees which describes the XML data more precisely especially if we
consider the notion of validity of XML documents w.r.t. a DTD or W3C XML Schema where order of

child elements matters!.

1. We apologize for less formal treatment of the theoretical topics in this section, but interested reader is encouraged to
follow references for the complete formal treatment of hedge automata in [43].

47
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 5 Connections to Theory Version/Issue: 1.0/4

Forest variable T
#PCDATA Definitions
from X

X - set of variables, e.g. #PCDATA
S —set of symbols, e.g. XML elements
F - set of all forests

F* - set of all forests + EPSILON

Null forest, epsilon, e
(neutral element) — OR O T - set of all trees

+
from F X?S
T=F
Q The cloud represents the forest’s
imaginary boundary
Forest u; u<e> or simply u
from F* or @
Also forms a tree u<e>
from T
Forest u; u<#PCDATA> u
from F*

Also forms a tree

u<#PCDATA> #PCDATA

from T

Forest u.v; u<e> v<e>
or L
simply uv
from F*

Example: a<#PCDATA>.b<c #PCDATA>

b
a

o
A

d g

OR XML Form
<a>

#HPCDATA

<c /> #HPCDATA

a

Figure 5.5 Forests or hedges seen as natural formalism for XML

5.2 Hedge automata and XML SAX API

Now let’s recall again the way two SAX XML API works. In SAX style of XML parsing the parser
travels through the XML document tree in depth first search manner. This behaviour corresponds to a
run of bottom-up hedge automaton. In other words, during this traverse, first all children elements are
visited then their parent element. This behaviour is exploited by XML engine of GDML processor in
order to perform proper dispatching and activation of XML element handlers and subscribers.

During initial phase of implementation of XML engine the testing GDML schema was defined using
DTD schema language. At that time no problems were observed and the dispatching worked well.

page 48

7

Object Databases for Detector Description PhD Thesis
Chapter 5 Connections to Theory Version/Issue: 1.0/4

When GDML schema based on W3C XML Schema has been finished the C++ element library was
updated and first run have shown some problems during dispatching where either wrong subscriber has
been activated or none at all. After having a deeper look at the way the dispatcher was working the
problem has been identified.

The problem happend due to the fact that DTD and XML Schema describe different classes of regular
tree grammars [44]. While DTD does allow only deterministic content models for child elements the
W3C XML schema defines a bit less restricted class of regular tree grammars, so called single type tree
grammars according to [44].

The consequence is the following. In case of XML Schema there is a little non-determinism introduced.
Thanks to that non-determinism one is allowed to define the schema to allow the following XML
fragment which is not possible with DTD:

Listing 6

<structure>
<assembly>
<child><volumeref ref="blabla”/></child>
</assembly>
<volume>
<childs><volumeref ref="blablablabla”/><positionref ref="one”/></child>
</volume>
</structure>

The XML snippet shows two so called competing elements because of the <child> tag in their content
model. The confusion happened when the <child>’s C++ element object has been successfully created
and XML engine tried to locate a subscriber ready to consume the object. What happened was that there
were two subscribers waiting to handle the <child> type object, e.g. the assemblySubscriber and
volumeSubscriber components. XML dispatch step went wrong way, because it was ambiguous
to choose the proper one of the two just knowing that the type of object in hand is <child>. In order to
make the right choice one needs to know the parent’s element type.

That implementation of XML engine had simple bookkeeping based on single stack to keep track of the
current context and active XML element handler. The subscriber look-up happened when end of the
current element has been found.

The current implementation is using two stacks which should be sufficient for XML Schema class of
regular tree grammars. This second stack is so called parent stack. This stack keeps track of parent
elements and uses this information to resolve ambiguous situations. In addition to the previous simpler
dispatching the new implementation of XML engine also performs so called parent notifications about
all the children observed inside the content model. This way it is easier to implement some cases and
avoid ambiguous dispatching steps.

49
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 5 Connections to Theory Version/Issue: 1.0/4

page 50
S)

7

Object Databases for Detector Description PhD Thesis
Chapter 6 Related work Version/Issue: 1.0/4

Chapter 6
Related work

The related work can be split into two groups. The first one deals with the detector description efforts to
use XML technology for detector description. The second area is the world of transport, exchange and
sharing formats where GDML project aims to belong, at least in scope of high energy physics
applications.

6.1 Detector description domain

This section will discuss efforts and solutions competing with Gaudi detector description framework.

6.1.1 ATLAS AGDD

Very soon after XML has been deployed in LHCb experiment for purposes of detector description, the
group of developers in ATLAS[4] collaboration launched AGDD XML project [5]. This project had
very similar goals as Gaudi detector description framework.

The main difference was that ATLAS was just finishing at that time their common framework and not
so many developers in ATLAS understood the new framework internals in order to be able to integrate
their new developments. This affected AGDD initial design choices and subsequent implementations
they provided.

The AGDD DTD focused more on advanced geometry patterns than a robust detector description
foundation. Generic Object Model framework has been developed to enable import/export of AGGD
XML descriptions into ATLAS applications. They had made a design mistake by implementing a tree
like memory representation for AGDD data and they used DOM API to read XML data it into
application’s memory. The straight effect of that was high data redundancy due to the fact that at the
same time the DOM and AGDD data structures occupied a lot of memory before any application data
object has been created.

When AGDD developers realized the mistake they developed sophisticated system to allow writing so
called compact AGDD XML data. This solution helped them to suppress memory footprint problems
but it had impact on XML syntax and required additional user defined C++ code which was needed to
properly expand the compact AGDD representation read from XML data file.

51
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 6 Related work Version/Issue: 1.0/4

The lack of common framework support in their solution caused that many independent applications
have been developed with low level of inter-operability. They could not handle distributed set of XML
data files with remote object linking. Their solution was more towards using high level XML tools like
XSL style sheets to prepare AGDD input data before an application could be run.

The future of this project is uncertain as today the production solution in ATLAS experiment is based
on RDBMS system.

6.1.2 CMS DDD

The use of XML for detector description in CMS[6] experiment had started much later after the first
deployment of the solution in Gaudi framework. The goals of this project, called DDD[7], were very
much like the ones of Gaudi detector description framework. Their implementation enjoyed the support
of the CMS common framework and they achieved the same goal as in Gaudi. The DDD had become
the single source of detector description data for all CMS applications which required it.

Their processing model was based on tree like transient data model with focus on built in configuration
management system. Their implementation did not support directly the remote object linking and
loading on demand of detector description data. The effective implementation on their side has been
achieved by preparing the input stream of detector description data by filtering their whole database
according to the current configuration tag.

6.1.3 GLAST

The GLAST detector description solution is somewhere between Gaudi and ATLAS solutions. Their
XML data format is inspired by ATLAS AGDD DTD and XML data processing part follows very much
the ATLAS philosophy. Unlike the ATLAS AGDD, this project is still being actively developed.

6.2 Data exchange domain

GDML project is a bit outstanding because there is no other XML format in HEP community with the
ambition to become the common exchange format for detector geometry. The competitors to GDML
are the XML formats described above including the XML format of Gaudi detector description. But
these formats rely on the common framework infrastructure and target usually only a single transient
data model.

When looking for a related XML language with a similar mission like GDML, there two mark-up
languages which are somehow related. The X3D[19], virtual reality language for the WWW and the
GML[20], the Geography Markup Language used for transfer, exchange and storage of geographical
data. In both cases, the evaluation studies have been done before GDML development has started, but
conclusion of developers in HEP community was that these languages are not of relevant use.

page 52

7

Object Databases for Detector Description PhD Thesis
Chapter 7 Summary Version/Issue: 1.0/4

Chapter 7
Summary

Looking back at the list of principal goals, I believe that all of them have been achieved at a good level
of satisfaction. In my case it means that the solutions I have provided are still being used in the
production environments.

The transient data model of Gaudi detector description has been designed and proven to work in the
complex computing environment of LHCb experiment. This object oriented data model was not only
fulfilling the requirements collected at the early stages of its analysis and design, but along the way
even set of optimisations was implemented and well aligned with philosophy of Gaudi framework. The
data model protects the optimal use of computing resources because it does not allow that a redundant
data are loaded or data which are not needed at all.

The outstanding solution on the persistency side of detector description data has been provided as the
first solution of this kind in high energy physics environment. The XML based persistent detector data
in Gaudi framework was and is still the only one supporting transparent inter object navigation for
detector data stored across distributed set of files.

There are some aspects of XML data processing in Gaudi detector description framework which were
not resolved in the most optimal way. I believe that these mistakes have been avoided in the design of
GDML solution which aims to become the common geometry exchange data format in the high energy
physics computing environemt. The ambitions of this project are not only at the modular XML format
design but as well on the software support side with the goal of providing very optimal solution for easy
integration into experimental frameworks or simulation tools.

The GDML processing architecture has been carefully designed building on the experience gained from
other projects in that domain. The numbers might tell a bit more about the GDML processing
implementation. For the Geant4 GDML reader the total number of lines in C++ for the whole
implementation is almost 16000. The number of lines of code required to integrate the GDML reader
into Geant4 was roughly 2500 lines of C++ which is around 15% of total code base used for the whole
prototype. On the side of GDML Writer the total number of lines in C++ is 3300 and to integrate it into
Geant4 system required less then 300 lines of C++ which is around 9%. This clearly shows that the
requirement of low cost application data binding in terms of glue code has been fulfilled.

The XML engine component of the GDML processing is written with care and its generic
implementation, going closely along the theoretical models for XML, can be used for more general
processing tasks.

53
S) e

7

Object Databases for Detector Description PhD Thesis
Chapter 7 Summary Version/Issue: 1.0/4

page 54
)

7

Object Databases for Detector Description PhD Thesis

References Version/Issue: 1.0/4
References
1 European Laboratory for Particle Physics (CERN)
http://www.cern.ch
2 The Large Hadron Collider project ate CERN,
http://www.cern.ch/LHC
3 LHCDb collaboration,
http://www.cern.ch/lhcb
4 ATLAS collaboration,
http://www.cern.ch/atlas
5 ATLAS AGDD in XML
http://www.nikhef.nl/~stanb/AGDD/AGDD.html
6 CMS collaboration
http://cmsinfo.cern.ch/Welcome.html
7 CMS Detector Description Database
http://cmsdoc.cern.ch/cms/software/ddd/www
8 GLAST Detector Description
http://www-glast.slac.stanford.edu/software/detector description
9 GRID at CERN
http://www.cern.ch/grid
10 GEANT4, Object Oriented Simulation Toolkit
http://www.cern.ch/geant4
11 Gaudi Framework Project
http://www.cern.ch/Gaudi
12 Objectivity DB
http://objectivity.com
13 ROOT
http://root.cern.ch
14 World Wide Web Consortium
http://www.w3c.org
15 Apache XML project
http://xml.apache.org
16 Unicode
http://www.unicode.org
17 DocBook
http://www.docbook.org
18 MathML

http://www.w3.org/Math

55
S) e

7

Object Databases for Detector Description PhD Thesis

References

Version/Issue: 1.0/4

19

20

21

22

23

24

25

26

27

28

29

30

31

32

X3D
http://www.web3d.org

Geography Markup Language (GML)
http://opengis.net/gml

LHCDb Collaboration, LHCb Technical Proposal, European Laboratory for Particle
Physics (CERN), CH-1211, Geneve 23 - Suisse, ISBN 92-9083-123-5, 1998

P. Mato and LHCb software architecture group, Gaudi - Architecture Design Document,
LHCb experiment, European Laboratory for Particle Physics (CERN), CH-1211, Geneve
23 - Suisse, LHCb/98-064 COMP

P. Maley and LHCD software architecture group, Gaudi User Guide, LHCb Experiment,
European Laboratory for Particle Physics (CERN), CH-1211, Geneve 23 - Suisse, 1999

LHCDb Detector Description DTD
http://Ihcb-comp.web.cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/lhcbdtd.pdf

P. Binko, Object Oriented Databases in High Energy Physics, in Proceedings of CERN
SCHOOL OF COMPUTING 1997, ISBN 92-9083-120-5

P. Binko et al., LHCbh Computing Tasks, LHCDb experiment, European Laboratory for
Particle Physics (CERN), CH-1211, Geneve 23 - Suisse, LHCb/98-042 COMP, Phys.
Rev. D Volume 50, Issue 3, August 1, 1994

R. Chytracek, GAUDI Detector Data Model,
http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/GaudiDDD
B.pdf

Geometry Description Markup Language
http://www.cern.ch/gdml

Radovan Chytracek, “The Geometry Description Markup Language”, In proceedings of
CHEP 2001, Pages 473-476, Beijing, China

G. Barrand, 1. Belyaev, P. Binko, M. Cattaneo, R. Chytracek, G. Corti, M. Frank, G.
Gracia, J. Harvey, E. van Herwijnen, B. Jost, 1. Last, P. Maley, P. Mato, S. Probst and F.
Ranjard, A. Tsaregorodtsev, “GAUDI - The Software Architecture and Framework for
building LHCb Data Processing Applications”, CHEP2000 proceedings, Padova, Feb.
2000.

G. Barrand, 1. Belyaev, P. Binko, M. Cattaneo, R. Chytracek, G. Corti, M. Frank, G.
Gracia, J. Harvey, E. van Herwijnen, B. Jost, 1. Last, P. Maley, P. Mato, S. Probst and F.
Ranjard, A. Tsaregorodtsev, “Data Persistency Solution for LHCb”, CHEP2000
proceedings, Padova, Feb. 2000.

G. Barrand, 1. Belyaev, P. Binko, M. Cattaneo, R. Chytracek, G. Corti, M. Frank, G.
Gracia, J. Harvey, E. van Herwijnen, B. Jost, . Last, P. Maley, P. Mato, S. Probst and F.
Ranjard, A. Tsaregorodtsev, “The LHCb Detector Description Framework”, CHEP2000
proceedings, Padova, Feb. 2000.

page 56

7

Object Databases for Detector Description PhD Thesis
References Version/Issue: 1.0/4

33 G. Barrand, 1. Belyaev, P. Binko, M. Cattaneo, R. Chytracek, G. Corti, M. Frank, G.
Gracia, J. Harvey, E. van Herwijnen, P. Maley, P. Mato, S. Probst and F. Ranjard,
“GAUDI -- A software architecture and framework for building HEP data processing
applications”, Computer Physics Communications, Volume 140, Issues 1-2, 15 October
2001, Pages 45-55.
(http://www.sciencedirect.com/science/article/B6TJ5-4435B2B-7/1/250e27db65134bcd
4bbb2065534b4ecd)

34 A. Ballaminut, C. Colonello, M. Dénszelmann, E. van Herwijnen, D. Képer, J.
Korhonen, M. Litmaath, J. Perl, A. Theodorou, D. Whiteson and E. Wolff, “WIRED --
World Wide Web interactive remote event display”, Computer Physics Communications,
Volume 140, Issues 1-2, 15 October 2001, Pages 266-273.
(http://www.sciencedirect.com/science/article/B6TJ5-4435B2B-14/1/343fe541c0dda3c8

e065cbecb4b19790)

35 A.V. Aho, R. Sethi, J.D. Ullman, “Compilers - Principles, Techniques and Tools",
Addison-Wesley, 1986

36 J.E. Hopcroft, R. Motwani, J.D. Ullman, “Introduction to Automata Theory, Languages,
and Computation”, 2-nd ed., Addison-Wesley, 2001

37 H. Comon and M. Dauchet and R. Gilleron and F. Jacquemard and D. Lugiez and S.

Tison and M. Tommasi, “Tree Automata Techniques and Applications®, 1997,
http://www.grappa.univ-lille3.fr/tata

38 R. Behrens, “A Grammar Based Model for XML Schema Integration”,
in: Lings,B. et al (Eds.): Advances in Databases, 17th British National Conference on
Databases, BNCOD 17 (London,UK,3.-5. July), Springer-Verlag 2000, LNCS, Vol. 1832,

S. 172-190.

39 R. Behrens, “On the Complexity of Standard and Specialized DTD Parsing”,
12. Workshop “Grundlagen von Datenbanken”, Plon, 13.-15. June 2000

40 D. Beech, A. Malthora, M. Rys, “A Formal Data Model and Algebra for XML*, W3C
XML Query working group note, September 1999

41 M. Fernandez, J. Simeon, P. Wadler, “A Data Model and Algebra for XML Query”,

AT&T Research Labs Technical Report, Unpublished manuscript, 2000
http://www.research.att.com/~mft/files/algebral.ps

42 A. Brown, M. Fuchs, J. Robie, and P. Wadler., “MSL. A model for W3C XML Schema”,
In 10th Int'l World Wide Web Conf., Hong Kong, May 2001
43 M. Murata, “Hedge Automata: a Formal Model for {XXML} Schemata”, 2000,

http://citeseer.ist.psu.edu/murata99hedge.html

44 M. Murata, D. Lee, and M. Mani, “Taxonomy of XML Schema Languages using Formal
Language Theory”, In Extreme Markup Languages, Montreal, Canada, Aug. 2001,
http://www.cs.ucla.edu/dongwon/paper/

45 B. Stroustrup, “The C++ Programming Language - Special Edition”, Addison-Wesley,
2000

46 M.H. Austern, “Generic Programming and the STL”, Aiddison-Wesley, 1999

47 C. Szyperski, “Component Software”, Addison-Wesley, 1998

48 K. Czarnecki, U. W. Eisenecker, “Generative Programming*, Addison-Wesley, 2000

57
S) e

7

Object Databases for Detector Description PhD Thesis

References Version/Issue: 1.0/4

49 Cleaveland, “Program generators in Java and XML”, Prentice Hall, 2001

50 Simple API for XML (SAX)
http://sax.sourceforge.net

51 Document Object Model,
http://www.w3c.org/DOM

52 Apache XML Project, Xercec-C DOM Proramming Guide
http://xml.apache.org/xerces-c/program-dom.html

53 L. Dodds, “Parsing the Atom”, Xml.com, April 25 2001
http://www.xml.com/pub/a/2001/04/25/deviant.html

54 L. Dodds, “Painting by Numbers with SVG”, March 15 2000
http://www.xml.com/pub/a/2000/03/15/deviant/index.html

55 Lee, D., Mani, M., Chiu, F., Chu, W. W., “Nesting-based Relational-to-XML Schema
Translation”. In: Int'l Workshop on the Web and Databases (WebDB). Santa Barbara,
CA., May 2001.

56 Oracle XML-SQL Utility,
http://otn.oracle.com/tech/xml/oracle xsu

57 IBM DB2 XML Extender,
http://www.ibm.com/software/data/db2/extenders/xmlext

58 THE BREEZE XML BINDER,
http://www.breezefactor.com

59 International Organization for Standardization, Geneva, Switzerland, “ISO 8879:
Information Processing - Text and Office Systems - Standard Generalized Markup
Language (SGML), 1986

60 T. Bray, J. Paoli, and C. M. Spreberg-McQueen (Eds.), “Extensible Markup Language
(XML) Version 1.0, 2nd Edition, Oct. 2000,
http://www.w3.org/TR/2000/REC-xml

61 J. Clark and S. DeRose (Eds.), “XML Path Language (XPath) Version 1.0”, Nov. 1999,
http://www.w3.org/TR/xpath

62 J. Clark (Eds.), “XML Transformations” XSLT Version 1.0”, Nov. 1999,
http://www.w3.org/TR/xslt

63 S. DeRose, E. Maler, and D. Orchard (Eds.), “XML Linking Language (XLink) Version
1.0”, June 2001,
http://www.w3.org/TR/xlink

64 S. DeRose, E. Maler, and R. Daniel (Eds.), “XML Pointer Language (XPointer) Version
1.0 - W3C Candidate Recommendation”, September 2001,
http://www.w3.org/TR/xptr

65 A. Brown, M. Fuchs, J. Robie, P. Wadler, “XML Schema: Formal Description”
http://www.w3.org/TR/xmlschema-formal/

66 D.C. Fallside, “XML Schema Part 0: Primer”, May 2001,
http://www.w3.org/TR/xmlschema-0

page 58

7

Object Databases for Detector Description PhD Thesis
References Version/Issue: 1.0/4

67 H.S. Thompson, D. Beech, M. Maloney, N. Mendelsohn, “XML Schema Part 1:
Structures”, May 2001,
http://www.w3.org/TR/xmlschema-1

68 P.V. Biron, A. Malhotra, “XML Schema Part-2: Datatypes”, May 2001,
http://www.w3.org/TR/xmlschema-2
69 W3C Cascading Style Sheets

http://www.w3.org/Style/CSS

59
) e

7

Object Databases for Detector Description PhD Thesis
References Version/Issue: 1.0/4

page 60
S)

7

Object Databases for Detector Description PhD Thesis

Appendix A C++ to XML mapping Version/Issue: 1.0/4

Appendix A

C++ to XML mapping

The couple examples shows how the C++ classes can be mapped into XML elements. The example
demonstrations are done according to the mapping rules shown in Table 2.1.

A.1 Class

Table A.1 Class to XML element mapping

C++ DTD XML example

class A {...}; <!ELEMENT A (...)> <A>...

A.2 Class data members of base types

Table A.2 Class data members of base type mapped into XML

C++ DTD XML example
class B { <!ELEMENT B(...)> <B i="0" d="3.14">
Ce <!ATTLIST B R
private: i CDATA #REQUIRED
int m_i; d CDATA #REQUIRED
double m_d; >
Vi

61
S) e

7

Object Databases for Detector Description
Appendix A C++ to XML mapping

PhD Thesis
Version/Issue: 1.0/4

A.3 Class data members of a complex type

Table A.3 Class data members of a complex type mapped into XML

C++ DTD XML example
class A { <!ELEMENT A (...)> <B i="0">
}i <!ELEMENT B (A)> <A>
class B { <!ATTLIST B
i CDATA #REQUIRED
private: >
A m aj;
int m 1i;
Vi
A.4 Class data members of a container type
Table A.4 Class data members of a container type mapped into XML
C++ DTD XML example
class A { <!ELEMENT A (...)> <B i="0">

Vi

class B {

private:
vector<A> m_a;
int m i;

}i

<!ELEMENT B (A+) >
<!ATTLIST B
i CDATA #REQUIRED

<A>...

<A>...

<A>...

<A>...

page 62

7

Object Databases for Detector Description PhD Thesis
Appendix A C++ to XML mapping Version/Issue: 1.0/4

A.5 Class references

Table A.5 Class references mapped into XML

C++ DTD XML example

class A { <!ELEMENT A (...)> <B aref="idA” i="0">
}i <!ATTLIST A ..
class B { name ID #REQUIRED
A >
private: <!ELEMENT B (...)>

A* m_a; <!ATTLIST B

int m 1i; aref IDREF #REQUIRED
}i i CDATA #REQUIRED

>

63
) e

7

Object Databases for Detector Description PhD Thesis
Appendix A C++ to XML mapping Version/Issue: 1.0/4

page 64
S)

7

Object Databases for Detector Description PhD Thesis
Appendix B Application Programming Interfaces for XML Version/Issue: 1.0/4

Appendix B
Application Programming Interfaces
for XML

B.1 SAX - Simple API for XML[50]

SAX is event based XML API. For each XML fragment of a given type it generates a correspondning
type of event and pushes this to the application via its DocumentHandler interface. Listing B.1
shows example of SAX2 interface in GDML XML parsing engine. This interface has to be
implemented by the client application and registered with the instance of the SAX parser used to parse
XML data. The process of generating event is shown in Table B.1:

Table B.1 The process of generating SAX events

XML data SAX events
startDocument ()
<a> startElement (a)
<b battr="val”/> startElement (b, [battr,”val”])
endElement (b)
<?instr, data?> processingInstruction (instr, ”data”)
<c>text</c> startElement (c)

characters (“text”)
endElement (c)
 endElement (a)
endDocument ()

The table shows only the basic events. There are more types of events depending on the version of SAX
API. There are SAX and SAX2 APIs defined. The SAX2 API provides more types of events including
XML declaration, comments and others. SAX2 has been created when XML developers started to use
SAX based applications for more sofisticated XML processing which required more complete
informaton about the XML document being processed. With the arrival of XML Schema and XML
namespaces SAX API was not sufficient. SAX2 supports them well.

page 65

7

Object Databases for Detector Description
Appendix B Application Programming Interfaces for XML

PhD Thesis

Version/Issue: 1.0/4

Listing B.1 DocumentHandler, the base SAX interface

1
2
3
4.
5:
6
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24 :
25:
26:
27 :
28:
29:
30:
31:
32:
33:
34:
35:

#include <xercesc/sax2/DefaultHandler.hpp>
class SAX2EventGun : public xercesc::DefaultHandler
public:
void characters(const XMLCh* const chars,
const unsigned int length) ;
void endDocument () ;
void endElement (const XMLCh* const uri,
const XMLCh* const localname,
const XMLCh* const gname) ;
void ignorableWhitespace(const XMLCh* const chars,
const unsigned int length);
void processingInstruction(const XMLCh* const target,
const XMLCh* const data);
void resetDocument () ;
void setDocumentLocator (const Locator* const locator);
void startDocument () ;
void startElement (const XMLCh* const uri,
const XMLCh* consgst localname,
const XMLCh* const gname,
const Attributes& attributes);
InputSource* resolveEntity(const XMLCh* const publicId,

const XMLCh* const systemId) ;

void error (const SAXParseException& exception) ;

void fatalError (const SAXParseException& exception) ;

void warning (const SAXParseException& exception) ;

void resetErrors () ;

void notationDecl (const XMLCh* const name,

const XMLCh* const publicId,

const XMLCh* const systemId) ;

void resetDocType () ;

void unparsedEntityDecl(const XMLCh* const name,
const XMLCh* const publicId,
const XMLCh* const systemId,
const XMLCh* const notationName

i

)i

In addition, SAX ca be used to build so called XML filters which allow more sofisticated XML
processing from software engineering point of view. The idea is to build a chain of objects which
implement the SAX DocumentHandler interfaces and each of them is dedicated to process a given
tag or subset of XMI elements. The filters are composed in producent/consument manner. Using this
paradigm similar to Unix shell pipes one can combine them in the best way to fit the applications needs.

page 66

7

Object Databases for Detector Description PhD Thesis
Appendix B Application Programming Interfaces for XML Version/Issue: 1.0/4

B.2 DOM - Document Object Model

DOM defines the W3C standard[51] programming interface for XML processing. Unlike SAX, this
programmng interface loads whole XM document into memory and allows its manipulation via
exposed set of DOM functions. Figure B.1shows example of DOM structur ein memory of GDML
Schema structure element. DOM data consist of set of nodes for each XML element in the document.
There are several types of nodes for each type of XML elements. DOM provides a convenient way of
manipulating XML data including fetch by tag name and document tree traversal. The latest DOM
specification DOM Level 3 is addressing the capability to load and save a XML document to support
XML data serialization.

FARMBRament -o0v E e

nodeMame &=
;I Mode Mame: us:element

Mamespace URI: hiip: /fweww, w3.0rg/200 1/ XMLS chema
1 Mode Type: 0

- Fromment
[+ x5: complexType
- Foomment
[l xs:element | Mode Value:
[%]-xs:annumﬁnn :

. ¥

a

o #d nodeMame nodeValue
=l xs:documentation | name structure

: - #text
E-xs:cumplexﬁ'pe

[=l-xs:sequence
[=l-xs:chaice
~-xs:element
. xs:element

- Foomment - I

Browser
- <xs:element name="structur=">

- <xXs:annofation>
- <xs:documentation>
Definitions of a geometrical hierarchy of a set of volumes
</xs:documentation>
</xs:annotation>
- <xs:complexType>
- <Xsisequence=
- =xs:choice maxOccurs="unbounded">
<xs:element name="volume" type="VolumeTvpe"/> J
<xs:element name="assembly" type="AssemblyVolumeType"/>
</xs:choice>
</Xs:sequence>
</xs:complexType>
</xs:element> =]

|LI£

Figure B.1 Example of DOM model in memory

7

page 67

Object Databases for Detector Description PhD Thesis
Appendix B Application Programming Interfaces for XML Version/Issue: 1.0/4

Listing B.2 Example of creating a DOM document[52]

1: //
2: // Create a small document tree
3: //
4: {
5: XMLCh* tempStr[100];
6: XMLString: :transcode ("Range", tempStr, 99);
7: DOMImplementation¥*
8: impl = DOMImplementationRegistry::getDOMImplementation (tempStr, 0);
9:
10: XMLString: :transcode ("root", tempStr, 99);
11: DOMDocument* doc = impl->createDocument (0, tempStr, 0);
12: DOMElement* root = doc->getDocumentElement () ;
13
14 : XMLString: :transcode ("FirstElement", tempStr, 99);
15: DOMElement* el = doc->createElement (tempStr) ;
16: root->appendChild(el) ;
17
18: XMLString: :transcode ("SecondElement", tempStr, 99);
19: DOMElement* e2 = doc->createElement (tempStr) ;
20: root->appendChild(e2) ;
21
22: XMLString: :transcode ("aTextNode", tempStr, 99);
23: DOMText* textNode = doc->createTextNode (tempStr) ;
24: el->appendChild (textNode) ;
25
26: // optionally, call release() to release the resource
27: // associated with the range after done
28: DOMRange* range = doc->createRange() ;
29: range->release() ;
30:
31: // removedElement is an orphaned node, optionally call release()
32: // to release associated resource
33: DOMElement* removedElement = root->removeChild(e2) ;
34: removedElement->release () ;
35:
36: // no need to release this returned object
37: // which is owned by implementation
38: XMLString: :transcode ("*", tempStr, 99);
39: DOMNodeList* nodelList = doc->getElementsByTagName (tempStr) ;
40:
41: // done with the document, must call release()
42: // to release the entire document resources
43: doc->release() ;
44: };

The Listing B.2 shows an example of creating and manipualting a DOM document in memory. The
lines in bold are the DOM API calls.

7

page 68
S)

Object Databases for Detector Description PhD Thesis
Definitions Version/Issue: 1.0/4

Definitions

Architecture The software architecture of a program or computing system is the structure
or structures of the system, which comprises software components, the
externally visible properties of those components, and the relationships
among them.

Framework A framework represents a collection of classes that provide a set of services
for a particular domain; a framework exports a number of individual classes
and mechanisms that clients can use or adapt. A framework realises an
architecture.

Component A software component is a re-useable piece of software that has a well
specified public interface and it implements a limited functionality. Software
components achieve reuse by following standard conventions.

69
S) e

7

Object Databases for Detector Description PhD Thesis
Definitions Version/Issue: 1.0/4

page 70
S)

7

Object Databases for Detector Description PhD Thesis
Abbreviations and acronyms Version/Issue: 1.0/4

Abbreviations and acronyms

CERN European Organisation for Nuclear Research!

LHC Large Hadron Collider

LHCb LHC beauty experiment

(o]0} Object-Oriented

OOA Object Oriented Analysis

ooD Object-Oriented Design

USDP Unified Software Development Process

USDP Unified Software Development Process

URD User Requirements Document

ADD Architecture Design Document

UML Unified Modelling Language

ODBMS Object Data Base Management System

OMG Object Management Group

OMG Object Management Group

OMG Object Management Group

PB petabyte, 2 to the 50th power (1,125,899,906,842,624) bytes,
a petabyte is equal to 1,024 terabytes.

SGML Standard Generalized Markup Language (ISO 8879:1985)

DTD Document Type Definition

XML eXtensible Markup Language

XSD XML Schema Definition

1. Laboratoire Européen pour la Physique des Particules

71
) e

7

Object Databases for Detector Description PhD Thesis
Abbreviations and acronyms Version/Issue: 1.0/4

page 72
S)

7

Object Databases for Detector Description

PhD Thesis

Index Version/Issue: 1.0/4
Index
A H
ADD, 71 HEP, v, 31
algorithms, 15, 17 HTML, 22
Architecture, 69
ATLAS, vi I

ID, 32
C IDREF, 32
C++ 2,35
CAD, 4 K
cascading style sheets, 23
catalogue, 16 key, 32
CERN, v, 71 keyref, 32
Component, 69
conversion services, 15 L

converters, 17, 19
CSS, 23

D

detector data, 15
detector data objects, 14
detector data store, 14
Detector Description, 14
detector description, 5
detector element, 16
detector geometry, 18
Detector setup, 18
detector simulation, Vi
Document Structure Definition language, 23
DOM, 27, 28, 36

DTD, 23,71

F

Framework, 69

G

GAUDI, 3

Gaudi, vi, 5

Gaudi detector description, 31

GDML, vi, 5, 31

Geant4, 38

Geometry, 18

Geometry Description Markup Language, 31
GRID, v

LHC, v, 20, 35,71
LHCb, vi, 1, 15,71
logical detector view, 16
logical identifier, 20
logical view, 16

logical volumes, 18

M

Materials, 18
Monte Carlo, 4

O

ODBMS, 71

OMG, 71

00, 71

00A, 71

00D, 71

opaque addresses, 20

P

persistency services, 19
physical detector view, 16
physical volumes, 18

S

SAX, 27,28, 36
SAX2, 27,36
services, 19

SGML, 21, 22,23,71

7

page 73

Object Databases for Detector Description
Index

PhD Thesis
Version/Issue: 1.0/4

Standard Generalized Markup Language, 21 X
T Xerces-C, 27
XLink, 32
transient store, 18 XML, iii, v, vi, 21, 31, 32,71
XML 1.0 standard, 21
U XML API, 36
XML features, 21
UML, 71 XML Schema, 32
URD, 71 XML specification, 20
Uspp, 71 XML tags, 22
XML validity, 23
W XML well formedness, 22
W3C, 20, 32 XMLAC 2T
World Wide Web, 21 Xpoinjter 33
WWW, v, 21 XSD, 71
XSL, 23
page 74

7

